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Placement exam

The answers® to this placement exam will tell you where to start reading.
1. What is the derivative of sin(z)?

2. What is the second derivative of Asin(wz)?

3. What is the value of z ?

4. What is the magnitude of the gravitational force between two planets
of mass M and mass m separated by a distance r?

5. Calculate lim .
rz—3— T — 3

6. Solve for t in:
7(3 4+ 4t) = 11(6t — 4).

7. What is the component of the weight W acting in the wdireetion-direction?

8. A mass-spring system is undergoing simple harmonic motion. Its posi-
tion function is z(t) = Asin(wt). What is its maximum acceleration?

LAns: 1. cos(x), 2. —Aw? sin(wx), 3. g, 4. \ﬁg| = %, 5. —o0, 6. %, 7.+mgsin0,
8. Aw?.  Key: If you didn’t get Q3, Q6 right, you should read the book starting from

Chapter 1. If you are mystified by Q1, Q2, Q5, read Chapter 5. If you want to learn
how to solve Q4, Q7 and Q8, read Chapter 4.
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Preface

This book contains lessons on topics in math and physics, written in
a style that is jargon-free and to the point. Each lesson covers one
concept at the depth required for a first-year university-level course.
The main focus of this book is to highlight the intricate connections
between the concepts of math and physics. Seeing the similarities and
parallels between the concepts is the key to understanding.

Why?

The genesis of this book dates back to my student days when I was
required to purchase expensive textbooks for my courses. Not only
are these textbooks expensive, they are also tedious to read. Who has
the energy to go through thousands of pages of explanations? I began
to wonder, “What’s the deal with these thick books?” Later, I realized
mainstream textbooks are long because the textbook industry wants
to make more profits. You don’t need to read 1000 pages to learn
calculus; the numerous full-page colour pictures and the repetitive
text that are used to “pad” calculus textbooks are there to make the
$130 price seem reasonable.

Looking at this situation, I said to myself, “something must be
done,” and I sat down and wrote a modern textbook to explain math
and physics clearly, concisely, and affordably. There was no way I
was going to let mainstream publishers ruin the learning experience
of these beautiful subjects for the next generation.

How?

Eaeh—-seetion—The sections in this book is-a—are self-contained
tuterialtutorials. Each section covers the definitions, formulas, and
explanations associated with a single topic. You can therefore read
the sections in any order you find logical. Along the way, you will
learn about the connections between the concepts of calculus and
mechanics. Understanding mechanics is much easier if you know the
ideas of calculus. At the same time, the ideas behind calculus are

vil
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viii PREFACE

best illustrated through concrete physics examples. Learning the two
subjects sunultaneously is the best approach

%eheel—Pﬂth—In order to make the %wgymw
calculus accessible for all readers, the-boek-begins-we’ll begin with a
review chapter on numbers, algebra, equations, functions, and other
prerequisite concepts. If you feel a little rusty on those concepts, be
sure to check out Chapter 1.

The end of each section contains links to interesting webpages,
animations, and further reading material. You can use these links
as a starting point for further exploration. The end of each chapter
contains a series of exercises. Make sure you spend some quality time
with them. You will learn a lot by solving exercises on your own.

Is this book for you?

My aim is to make learning calculus and mechanics more accessible.
Anyone should be able to open this book and become proficient in
calculus and mechanics, regardless of their mathematical background.

The book’s primary intended audi-
ence is students. Students taking a me-
chanics class can read the chapters se-
quentially until Chapter 4, and option-
ally read Chapter 5 for general knowl-
edge. Taking a calculus course? Skip

MECH CALC PRECALC
CLASS CLASS CLASS

Ch.1 Ch.1 Ch1
Ch.2 Ch.2 Ch. 2t

ahead directly to the calculus chapter gﬁi
(Chapter 5). High school students or "t ¢y 5

university students taking a precalculus
class will benefit from reading Chapter 1,
which is a concise but thorough review of
fundamental math concepts like numbers, equations, functions, and
trigonometry.

Non-students, don’t worry: you de—set—don’t need to be taking
a class in order to learn math. Independent learners interested in
learning university-level material will find this book very useful. Many
university graduates read this book to remember the calculus they
learned back in their university days.

In general, anyone interested in rekindling and—imprevine—their
relationship with mathematics should consider this book as an op-
portunity to repair the broken connection. Math is good stuff; you
shouldn’t miss out on it. People who think they absolutely hate math
should read Chapter 1 as therapy.

1 = optional reading.
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2 INTRODUCTION

In Chapter 2, we’ll look at how techniques of high school math
can be used to describe and model the world. We’ll learn about the
basic laws that govern the motion of objects in one dimension and
the mathematical equations that describe the motion. By the end of
this chapter, you’ll be able to predict the flight time of a ball thrown
in the air.

In Chapter 3, we will learn about vectors. Vectors describe di-
rectional quantities like forces and velocities. We need vectors to
properly understand the laws of physics. Vectors are used in many
areas of science and technology, so becoming comfortable with vector
calculations will pay dividends when learning other subjects.

Chapter 4 is all about mechanics. We’ll study the motion of ob-
jects, predict their future trajectories, and learn how to use abstract
concepts like momentum and energy. Science students who “hate”
physics can study this chapter to learn how to use the 20 main equa-
tions and laws of physics. Youwil-'1l see physics is actually quite
simple. Chapter 5 covers topics from differential calculus and inte-
gral calculus. We will study limits, derivatives, integrals, sequences,
and series. YouwiH-'ll find that 100 pages are enough to cover all
the concepts in calculus, as well as illustrate them with examples and
practice exercises.

Ch.1 = Ch.2 Ch.3

b\

Ch.5 4% Ch.4

Figure 2: The prerequisite structure for the chapters in this book.

Calculus and mechanics are often taught as separate subjects. It
shouldn’t be like that! If you learn calculus without mechanics, it
will be boring. If you learn physics without calculus, you won’t truly
understand. The exposition in this book covers both subjects in an in-
tegrated manner and aims to highlight the connections between them.
Let’s dig in.
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1.1 SOLVING EQUATIONS 5

which simplifies to
z? = 49.

The expression looks simpler, yes? How did I know to perform this
operation? I was trying to “undo” the effects of the operation —4.
We undo an operation by applying its inverse. In the case where
the operation is subtraction of some amount, the inverse operation is
the addition of the same amount. We’ll learn more about function
inverses in Section 1.4 (page 12).

We're getting closer to our goal, namely to isolate x on one side of
the equation, leaving only numbers on the other side. The next step
is to undo the square z2 operation. The inverse operation of squaring
a number 22 is to take the square root v/ so this is what we’ll do

next. We obtain
Va2 =/49.

Notice how we applied the square root to both sides of the equation?
If we don’t apply the same operation to both sides, we’ll break the
equality!

The equation Va2 = /49 simplifies to

lz| = 7.

What’s up with the vertical bars around x? The notation |z| stands
for the absolute value of x, which is the same as x except we ignore
the sign. For example |[5| = 5 and | — 5| = 5, too. The equation
|z| = 7 indicates that both = 7 and # = —7 satisfy the equation
2? = 49. Seven squared is 49, and so is (—7)? = 49 because two
negatives cancel each other out.

We're done since we isolated x. The final solutions are

z=7 or r=—".

Yes, there are two possible answers. You can check that both of the
above values satisfy—eur—of x satisfy the initial equation 22 — 4 = 45.

If you are comfortable with all the notions of high school math
and you feel you could have solved the equation 22 — 4 = 45 on your
own, then you should consider skipping ahead to Chapter 2. If on the
other hand you are wondering how the squiggle killed the power two,
then this chapter is for you! In the following sections we will review
all the essential concepts from high school math that you will need to
power through the rest of this book. First, let me tell you about the
different kinds of numbers.
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1.3 VARIABLES 11

Variable names

There are common naming patterns for variables:

e z: general name for the unknown in equations (also used to de-
note a function’s input, as well as an object’s position in physics
problems)

e v: velocity in physics problems

o 0. p: the Greek letters theta and phi are eften—used to denote
angles

e z;,xy: denetes—denote an object’s initial and final pesitien
positions in physics problems

e X: a random variable in probability theory

e (' costs in business along with P for profit, and R for revenue

Variable substitution

We can often change variables and replace one unknown variable with
another to simplify an equation. For example, say you don’t feel
comfortable around square roots. Every time you see a square root,
you freak out until one day you find yourself taking an exam trying
to solve for z in the following equation:

6
=z
5—+T Ve
Don’t freak out! In crucial moments like this, substitution can help
with your root phobia. Just write, “Let u = /2" on your exam, and
voila, you're allowed to rewrite the equation in terms of the variable
u:

6 J—
5w 0
which contains no square roots.
The next step to solve for w is to undo the division operation.
Multiply both sides of the equation by (5 — u) to obtain
6
d—u

(5—u) =u(5—u),
which simplifies to
6 = bu — u’.

This can be rewritten as a quadratic equation, u? — 5u+6 = 0. Next,
we can factor the quadratic to obtain the equation (u—2)(u—3) =0,
for which vy = 2 and uy = 3 are the solutions. The last step is
to convert our u-answers into x answers by using u = /x, which
is equivalent to * = u2. The final answers are z; = 22 = 4 and
xo = 32 = 9. Try plugging these x values into the original square root
equation to verify that they satisfy it.
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12 MATH FUNDAMENTALS

Compact notation

Symbolic manipulation is a powerful tool because it allows us to man-
age complexity. Say you're solving a physics problem in which you're
told the mass of an object is m = 140 kg. If there are many steps in
the calculation, would you rather use the number 140 kg in each step,
or the shorter variable m? It’s much easier in the long run to use the
variable m throughout your calculation, and wait until the last step
to substitute the value 140 kg when computing the final answer.

1.4 Functions and their inverses

As we saw in the section on solving equations, the ability to “undo”
functions is a key skill for solving equations.

Example Suppose we're solving for x in the equation

fl@)=c,

where f is some function and c is some constant. Our goal is to isolate
x on one side of the equation, but the function f stands in our way.

By using the inverse function (denoted f~!) we “undo” the effects
of f. Then we apply the inverse function f~' to both sides of the
equation to obtain

@) =2=f""(c).

By definition, the inverse function f~! performs the opposite action
of the function f so together the two functions cancel each other out.
We have f~1(f(z)) = « for any number z.

Provided everything is kosher (the function f~! must be defined
for the input ¢), the manipulation we made above is valid and we have
obtained the answer z = f~!(c).

The above example introduces the notation f~! for denoting the
function’s inverse. This notation is borrowed from the notion of in-
verse numbers: multiplication by the number a~! is the inverse op-
eration of multiplication by the number a: ¢ 'ax = 1z = z. In the
case of functions, however, the negative-one exponent does not re-
fer to “one over-f(x)” as in ﬁ = (f(z))~1; rather, it refers to the

function’s inverse. In other words, the number f~*(y) is equal to the
number z such that f(x) =y.

Be careful: sometimes applying the inverse leads to multiple so-
lutions. For example, the function f(z) = x? maps two input values
(r and —x) to the same output value 22> = f(z) = f(—z). The in-
verse function of f(z) = 22 is f~!(z) = /x, and-but both x = +,/¢c
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1.5 BASIC RULES OF ALGEBRA 15

Discussion

The recipe I have outlined above is not universally applicable. Some-
times x isn’t alone on one side. Sometimes = appears in several places
in the same equation. In these cases, you can’t effortlessly work your
way, Bruce Lee-style, clearing bad guys and digging toward x—you
need other techniques.

The bad news is there’s no general formula for solving complicated
equations. The good news is the above technique of “digging toward
2" is sufficient for 80% of what you are going to be doing. You can get
another 15% if you learn how to solve the quadratic equation (page
19):

az® +bx+c=0.

Solving third-degree polynomial equations like az3 +bx? +cx+d =0
with pen and paper is also possible, but at this point you might as
well start using a computer to solve for the unknowns.

There are all kinds of other equations you can learn how to
solve: equations with multiple variables, equations with logarithms,
equations with exponentials, and equations with trigonometric func-
tions. The principle of “digging” toward the unknown by applying
the-funetion—inverse-inverse functions is the key for solving all these
types of equations, so be sure to practice using it.

1.5 Basic rules of algebra

It’s important that you know the general rules for manipulating num-
bers and variables, a process otherwise known as—you guessed it—
algebra. This little refresher will cover these concepts to make sure
you’re comfortable on the algebra front. We’ll also review some impor-
tant algebraic tricks, like factoring and completing the square, which
are useful when solving equations.

When an expression contains multiple things added together, we
call those things terms. Furthermore, terms are usually composed of
many things multiplied together. When a number x is obtained as
the product of other numbers like = abe, we say “x factors into a,
b, and ¢.” We call a, b, and c the factors of x.

Given any four numbers a, b, ¢, and d, we can apply the following
algebraic properties:

1. Associative property: a +b+c= (a+b)+c=a+ (b+c¢) and
abe = (ab)e = a(be)

2. Commutative property: a + b= b+ a and ab = ba
3. Distributive property: a(b+ ¢) = ab+ ac
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18 MATH FUNDAMENTALS

Factoring the expression #2+-52+6-22 — 52 + 6 will help us see
the properties of the function more clearly. To factor a quadratic
expression is to express it as the product of two factors:

f(z) =2% 52 +6 = (r—2)(x - 3).

We now see at a glance the solutions (roots) are z; = 2 and z3 = 3.
We can also see for which x values the function will be overall positive:
for z > 3, both factors will be positive, and for x < 2 both factors
will be negative, and a negative times a negative gives a positive. For
values of x such that 2 < x < 3, the first factor will be positive, and
the second factor negative, making the overall function negative.

For certain simple quadratics like the one above, you can simply
guess what the factors will be. For more complicated quadratic ex-
pressions, you’ll need to use the quadratic formula (page 19), which
will be the subject of the next section. For now let us continue with
more algebra tricks.

Completing the square

Any quadratic expression Az? + Bz + C can be rewritten in the form
A(z — h)? + k for some constants h and k. This process is called
completing the square due to the reasoning we follow to find the value
of k. The constants h and k can be interpreted geometrically as
the horizontal and vertical shifts in the graph of the basic quadratic
function. The graph of the function f(z) = A(xz — h)? + k is the
same as the graph of the function f(z) = Ax? except it is shifted h
units to the right and k units upward. We will discuss the geometrical
meaning of h and & in more detail in Section 1.14 (page 58). For now,
let’s focus on the algebra steps.

Let’s try to find the values of £ and h needed to complete the
square in the expression x2 + 5x + 6. We start from the assumption
that the two expressions are equal, and then expand the bracket to
obtain

2245246 = A(z—h)?+k = A(x* —2ha+h?)+k = Ax* —2Ahx+ Ah* +k.

Observe the structure in the above equation. On both sides of the
equality there is one term which contains x? (the quadratic term), one
term that contains x! (the linear term), and some constant terms. By
focusing on the quadratic terms on both sides of the equation (they
are underlined) we see A = 1, so we can rewrite the equation as

224+ 5z +6 =22—2hx + h% + k.

Next we look at the linear terms (underlined) and infer h = —2.5.
After rewriting, we obtain an equation with-a—single-in which k is the
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1.6 SOLVING QUADRATIC EQUATIONS 19

only unknown:
22 450+ 6 =2 —2(—2.5)x + (—2.5)* + k.

Finally—we—We must pick a value of £ that willamake—makes the
constant terms matehequal:

5\° 4 25 24-25 -1
k:——2 2:—2. 2:—7 = —_—— = = —
6—(—2.5)" =6—(2.5) 6 <2> 6% 1 1 1
After completing the square we obtain
2 2 1
x“+5x+6=(x+2.5) -1

The right-hand side of the expression above tells us our function is
equivalent to the basic function 2, shifted 2.5 units to the left and
i units down. This would be very useful information if you ever had
to draw the graph of this function—you could simply plot the basic
graph of 2 and then shift it appropriately.

It is important you become comfortable with this procedure for
completing the square. It is not extra difficult, but it does require you
to think carefully about the unknowns h and k and to choose their
values appropriately. There is no general formula for finding &, but
you can remember the following simple shortcut for finding h. Given
an equation Az? + Bz + C = A(z — h)? + k, we have h = 52 Using
this shortcut will save you some time, but you will still have to go
through the algebra steps to find k.

Take out a pen and a piece of paper now (yes, right now!) and
verify that you can correctly complete the square in these expressions:
22 —6x+13=(r—3)>+4and 2% + 42 + 1 = (v +2)? - 3.

1.6 Solving quadratic equations

What would you do if asked to solve for z in the quadratic equation
2% = 452 + 237 This is called a quadratic equation since it contains
the unknown variable z squared. The name comes from the Latin
quadratus, which means square. Quadratic equations appear often,
so mathematicians created a general formula for solving them. In
this section, we’ll learn about this formula and use it to put some
quadratic equations in their place.

Before we can apply the formula, we need to rewrite the equation
we are trying to solve in the following form:

ax? 4+ bx + ¢ =0.
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20 MATH FUNDAMENTALS

We reach this form—called the standard form of the quadratic
equation—by moving all the numbers and s to one side and leaving
only 0 on the other side. For example, to transform the quadratic
expression—equation 22 = 45z + 23 into standard form, subtract
45x 4 23 from both sides of the equation to obtain 2% — 45z — 23 = 0.
What are the values of = that satisfy this formula?

Claim

The solutions to the equation az? + bx + ¢ = 0 are

—b+ Vb2 — 4ac —b— Vb?2 — dac
S and Ty =

Let’s see how these formulas are used to solve 22 — 45z — 23 = 0.
Finding the two solutions requires the simple mechanical task of iden-
tifying a = 1, b = —45, and ¢ = —23 and plugging these values into
the formulas:

4 452 — 4(1)(=2
45+ 52 WE23) _ s so5a..

45 — /452 — 4(1)(—23)

2

Verify using your calculator that both of the values above satisfy the
original equation 2% = 45z + 23.

= —0.5054....

To =

Proof of claim

This is an important proof. I want you to see how we can derive the
quadratic formula from first principles because this knowledge will
help you understand the formula. The proof will use the completing-
the-square technique from the previous section.

Starting with ax? + bx + ¢ = 0, first move ¢ to the other side of
the equation:

az? +bx = —c.
Divide by a on both sides:
b
2+ Zx = ¢
a a

Now complete the square on the left-hand side by asking, “What are
the values of h and k that satisfy +his-the equation

b
(x—h)?+k=a4+ -2 7
a
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1.7 EXPONENTS 25

Property 4 When an exponential expression is exponentiated, the
inner exponent and the outer exponent multiply:

(b™)"™ = (bbb - - - bb) (bbb - - - b) - - - (bbb - - - bb) = b™™.
—_—_— N

m times m times m times

n times
Property 5.1

(ab)™ = (ab)(ab)(ab) - - - (ab)(ab) = aaa - --aadbb---bb = a™b".

n times n times

n times

Property 5.2

a\™ _ra a a a ay % _a
(ﬂ‘%ﬂ%ﬂﬁmﬁﬂﬁ’mmw’m'
n times n times

Property 6 Raising a number to the power % is equivalent to find-
ing the n'® root of the number:

biz%.

In particular, the square root corresponds to the exponent of one half:
Vb = bz. The cube root (the inverse of 23) corresponds to v/b = b3.
We can verify the inverse relatlonshlp between /z and x?’ by using ei-

« 1 .
ther Property 1: {3/} ={as Has Hasy=anitats = ol — o 3/a)3 — (4

or by using Property 4: (¥/z)% = (z3)3 = 2% = 2! = x.

Properties 5.1 and 5.2 also apply for fractional exponents:

W—(ab)%—%% Ya Vb, ’% l:(l/g'

Discussion

Even and odd exponents

The function f(z) = z™ behaves differently depending on whether the
exponent n is even or odd. If n is odd we have

(%yzWﬁa

However, if n is even, the function x™ destroys the sign of the number
(see 2, which maps both —z and z to 22). The successive application



DIFFCHANGE


1.8 LOGARITHMS 27

of light is written as 2.99792458e8 and the permeability of free space
is 1.256637e-6.

Links

[ Further reading on exponentiation |
http://en.wikipedia.org/wiki/Exponentiation

[ More details on scientific notation |
http://en.wikipedia.org/wiki/Scientific_notation

1.8 Logarithms

Some people think the word “logarithm” refers to some mythical,
mathematical beast. Legend has it that logarithms are many-headed,
breathe fire, and are extremely difficult to understand. Nonsense!
Logarithms are simple. It will take you at most a couple of pages
to get used to manipulating them, and that is a good thing because
logarithms are used all over the place.

The strength of your sound system is measured in logarithmic
units called decibels [dB]. This is because your ears are sensitive only
to exponential differences in sound intensity. Logarithms allow us to
compare very large numbers and very small numbers on the same
scale. If sound were measured in linear units instead of logarithmic
units, your sound system’s volume control would need to range from
1 to 1048576. That would be weird, no? This is why we use the
logarithmic scale for volume notches. Using a logarithmic scale, we
can go from sound intensity level 1 to sound intensity level 1048 576
in 20 “progressive” steps. Assume each notch doubles the sound in-
tensity, rather than increasing the intensity by a fixed amount. If
the first notch corresponds to 2, the second notch is 4—still prob-
ably inaudible, turn it up! By the time you get to the sixth notch
you're at 26 = 64 sound intensity, which is the level of audible music.
The tenth notch corresponds to sound intensity 2'° = 1024 (medium-
strength sound), and finally the twentieth notch reaches a max power
of 229 = 1048576, at which point the neighbours come knocking to
complain.

Definitions
Youare-"re hopefully familiar with these following concepts from the
previous section:

e b”: the exponential function base b

e exp(z) = e®: the exponential function base e, Euler’s number
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28 MATH FUNDAMENTALS

e 27: exponential function base 2

e f(x): the notion of a function f: R — R

e f~1(y): the inverse function of f(z). It is defined in terms of
f(x) such that f~1(f(z)) = x. In other words, if you apply
f to some number and get the output y, and then you pass y
through f~!, the output will be = again. The inverse function
f~! undoes the effects of the function f.

In this section wewil-'ll play with the following new concepts:
e log,(): the logarithm of  base b is the inverse function of b®.
e In(z): the “natural” logarithm base e. This is the inverse of e®.
e log,(x): the logarithm base 2 is the inverse of 2.

I say play because there is nothing much new to learn here: a loga-
rithm is a clever way to talk about the size of a number; essentially,
it tells us how many digits the number has.

Formulas

The main thing to realize is that logs don’t really exist on their own.
They are defined as the inverses of their corresponding exponential
functions. The following statements are equivalent:

logy(z) =m & b = z.

Logarithms with base e are written In(z) for “logarithme naturel”
because e is the “natural” base. Another special base is 10 because
our numbers are based on the decimal system. The logarithm base 10
logyo(x) tells us roughly the size of the number z—how many digits
the number has.

Example When someone working for the System (say someone with
a high-paying job in the financial sector) boasts about his or her “six-
figure” salary, they are really talking about the log of how much money
they make. The “number of figures” Ng in their salary is calculated
as 1 plus the logarithm base 10 of their salary S. The formula is

Ng =1+ logy,(5).

A salary of S = 100000 corresponds to Ng = 1 + log;,(100000) =
145 = 6 figures. What is the smallest “seven-figure” salary? We must
solve for S given Ng = 7 in the formula. We find 7 = 1 + log;,(.5),
which means 6 = log,y(5), and—using the inverse relationship be-
tween logarithm base 10 and exponentiation base 10—we discover
S =105 = 1000000. One million dollars per year! Yes, for this kind
of money I see how someone might want to work for the System. But
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Function names

We use short symbols like +, —, X, and + to denote most of the
important functions used in everyday life. We also use the weird

surd notation to denote n'" root a and e

superscripts to denote exponents. All other functions are identified
and denoted by their name. If I want to compute the cosine of the
angle 60° (a function describing the ratio between the length of one
side of a right-angle triangle and the hypotenuse), I write cos(60°),
which means I want the value of the cos function for the input 60°.
Incidentally, the function cos has a nice output value for that spe-
cific angle: cos(60°) = % Therefore seeing cos(60°) somewhere in an
equation is the same as Seelng . To find other values of the func-
tion, say cos(33.13°), you’ll need a calculator. A scientific calculator
features a convenient little button for this very purpose.

Handles on functions

When you learn about functions you learn about the different “han-
dles” by which you can “grab” these mathematical objects. The main
handle for a function is its definition: it tells you the precise way to
calculate the output when you know the input. The function defini-
tion is an important handle, but it is also important to “feel” what
the function does intuitively. How does one get a feel for a function?

Table of values

One simple way to represent a function is to look at a list of input-
output pairs: in =xy,out = f(x
fin =z, out—famphrat = £zol). (n = 7ot = F(mal}, .}
A more compact notation for the input-output pairs is {(z1, f(z1)),
(2, f(z2)), (w3, f(x3)), ...}. You can make your own little table
of values, pick some random inputs, and record the output of the
function in the second column:

input = x — f(x) = output
0 - f(0)
=)
55  — (55
T4 — fzy).

In addition to choosing random numbers for your table, it’s also gen-
erally a good idea to check the function’s values at z = 0, x = 1,
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Square root

The square root function is defined-as-denoted

flz) =z =23,

The square root /z is the inverse function of the guadratiesquare

function z? for z > 0. The symbol \/c refers to the positive solution
of 22 = ¢. Note that —,/c is also a solution of 2% = c.

Graph

v (16,4)

(9.3

(4.2)

Figure 1.12: The graph of the function f(z) = y/z. The domain of the
function is z € [0, c0. You can’t take the square root of a negative number.

Properties

e Domain: z € [0,00.
The function f(z) = v/x is only defined for nonnegative inputs
x > 0. There is no real number y such that y? is negative, hence
the function f(z) = \/z is not defined for negative inputs z.

e Image: f(x) € [0,00.
The outputs of the function f(zr) = /x are never negative:
Vo >0, for all z € [0,00.

In addition to square root, there is also cube root f(z) = /T = x3,
which is the inverse function for the cubic function f(z) = x3. We
have /8 = 2 since 2 x 2 x 2 = 8. More generally, we can define the
root-n'Mreet-root function {/z as the inverse function of z™.
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Polynomial functions
The general equation for a polynomial function of degree n is written,
f(z) = ap + a1 + agz® + aza® + - - + a,a™.

The constants a; are known as the coefficients of the polynomial.

Parameters

e n: the degree of the polynomial

e qg: the constant term

e ay: the linear coefficient, or first-order coefficient
e as: the quadratic coefficient

e aj3: the cubic coefficient

e a,: the n'® order coefficient

A polynomial of degree n has n + 1 coefficients: ag, a1, ao, ..., ay.

Properties

e Domain: z € R. Polynomials are defined for all inputs « € R.
e Image: depends on the coefficients
e The sum of two polynomials is also a polynomial.

Even and odd functions

The polynomials form an entire family of functions. Depending on
the choice of degree n and coefficients ag, a1, ..., a,, a polynomial
function can take on many different shapes. Wewil-"ll study polyno-
mials and their properties in more detail in Section 1.15, but for now
consider the following observations about the symmetries of polyno-
mials:

e If a polynomial contains only even powers of z, like f(z) =
1+ x2 — z* for example, we call this polynomial even. Even
polynomials have the property f(z) = f(—x). The sign of the
input doesn’t matter.

e If a polynomial contains only odd powers of x, for example
g(z) =  + 23 — 2°, we call this polynomial odd. Odd poly-
nomials have the property g(z) = —g(—z).

e If a polynomial has both even and odd terms then it is neither
even nor odd.

Nete-that+the-The terminology of odd and even applies to functions in
general and not just to polynomials. All functions whieh-that satisfy
f(z) = f(—x) are called everneven functions, and all functions which
satisfy f(x) = —f(—x) are called eddodd_functions.
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Exponential

The exponential function base e = 2.7182818 ... is denoted
f(z) = €e” = exp(x).

Graph

Figure 1.18: The graph of the exponential function f (:r) = e® passes
through the following (x,y) coordinates: (—2,-%), (—1,1), (0, ) (1,e),
(2,€%), (3,e* =20.08...), (5,148.41...), and (10 22026. 46 ).

Properties

e Domain: z € R

e Range: e* € (0,00

o f(a)f(b) = f(a+b) since ete® = eat?.

e The derivative (the slope of the graph) of the exponential func-
tion is equal to the exponential function: f(z) =e* = f'(z) =

er.

A more general exponential function would be f(z) = Ae", where
A is the initial value, and v (the Greek letter gamma) is the rate of
the exponential. For v > 0, the function f(x) is increasing, as in
Figure 1.18. For v < 0, the function is decreasing and tends to zero
for large values of z. The case v = 0 is special since € = 1, so f(z)
is a constant of f(z) = A1* = A.

Links

| The exponential function 2% evaluated |
http://www.youtube.com/watch?v=e4AMSN6IImpl
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namely x = —2 and x = 5, also satisfy
22% + 2z = 2 + 5z + 10,

which is the original problem we’re trying to solve.

This “shuffling of terms” approach will work for any polynomial
equation A(x) = B(x). We can always rewrite it as C(x) = 0, where
C(z) is a new polynomial with coefficients equal to the difference of
the coefficients of A and B. Don’t worry about which side you move
all the coefficients to because C'(z) = 0 and 0 = —C(x) have exactly
the same solutions. Furthermore, the degree of the polynomial C' can
be no greater than that of A or B.

The form C(z) = 0 is the standard form of a polynomial, and we’ll
explore several formulas you can use to find its solution(s).

Formulas

The formula for solving the polynomial equation P(z) = 0 depends
on the degree of the polynomial in question.

First

For a first-degree polynomial equation, P;(x) = mz 4 b = 0, the solu-

tion is a%%%ﬁ just move b to the other side and divide by m.

Second

For a second-degree polynomial,
Py(z) = ax® + bz + ¢ =0,
the solutions are x; = _’””/m and 79 = %\/ﬁ

If b — 4ac < 0, the solutlons will involve taking the square root
of a negative number. In those cases, we say no real solutions exist.

Higher degrees

There is also a formula for polynomials of degree 3, but it is compli-
cated. For polynomials with order > 5, there does not exist a general
analytical solution.

Using a computer

When solving real-world problems, you’ll often run into much more
complicated equations. To find the solutions of anything more com-
plicated than the quadratic equation, I recommend using a computer
algebra system like sympy: http://live.sympy.org.
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Pythagoras’ theorem

In a right-angle triangle, the length of the hypotenuse squared is equal
to the sum of the squares of the lengths of the other sides:

|adj|? + |opp|* = [hyp|*.
If we divide both sides of the above equation by |hyp|?, we obtain

ladj]> lopp|* _
lhypl?  |hyp|?

b

which can be rewritten as
cos? @ +sin’0 =1.

This is a powerful trigonometric identity deseribing-the-that describes
an important relationship between sin and cos.

Sin and cos

Meet the trigonometric functions, or trigs for short. These are your
new friends. Don’t be shy now, say hello to them.

“Hello.”

“Hi.”

“Soooooo0, you are like functions right?”

“Yep,” sin and cos reply in chorus.

“Okay, so what do you do?”

“Who me?” asks cos. “Well I tell the ratio...hmm... Wait, are
you asking what I do as a function or specifically what I do?”

“Both I guess?”

“Well, as a function, I take angles as inputs and I give ratios as
answers. More specifically, I tell you how ‘wide’ a triangle with that
angle will be,” says cos all in one breath.

“What do you mean wide?” you ask.

“Oh yeah, I forgot to say, the triangle must have a hypotenuse of
length 1. What happens is there is a point P that moves around on
a circle of radius 1, and we imagine a triangle formed by the point
P, the origin, and the point on the z-axis located directly below the
point P.”

“I am not sure I get it,” you confess.

“Let me try explaining,” says sin. “Look on the next page, and
you’ll see a circle. This is the unit circle because it has a radius of 1.
You see it, yes?”

“Yes.”

“This circle is really cool. Imagine a point P that starts from the
point P(0) = (1,0) and moves along the circle of radius 1. The = and
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y -eoordinates—coordinates of the point P(0) = (P,(0), P,(0)) as a
function of 6 are

P(0) = (P.(8), Py(8)) = (cosb, sinf).

So, either you can think of us in the context of triangles, or you think
of us in the context of the unit circle.”

“Cool. I kind of get it. Thanks so much,” you say, but in reality
you are weirded out. Talking functions? “Well guys. It was nice to
meet you, but I have to get going, to finish the rest of the book.”

“See you later,” says cos.

“Peace out,” says sin.

The unit circle

The unit circle consists of all points (z that satisfy the equation
22+ 92 =1. A point P = (P,, P,) on the unit circle has coordinates
P,..P,) = (cos@,sin @), where 6 is the angle P makes with the z-axis.

Figure 1.22: The unit circle corresponds to the equation z2 + y2 = 1.
The coordinates of the point P on the unit circle {eos-f5sin-f)-are indieated

08y = cos0 and Py = sin .

You should be familiar with the values of sin and cos for all angles
that are multiples of & (30°) or 7 (45°). All of them are shown in
Figure 1.24. For each angle, the z-coordinate (the first number in the
bracket) is eescos @, and the y-coordinate is sinsin 6.
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Figure 1.24: The unit circle. The coordinates of the point on the unit
circle (cos @, sin @) are indicated for several important values of the angle 6.

Maybe you're thinking that’s way too much to remember. Don’t
worry, you just have to memorize one fact:

sin(30°) = sin(%) - %

Knowing this, you can determine all the other angles. Let’s start with
cos(30°). We know that at 30°, point P on the unit circle has the

vertical coordinate % = sin(30°). We also know the cos quantity we

are looking for is, by definition, the horizontal component:
P = (cos(30°),sin(30°)).

Key fact: all points on the unit circle are a distance of 1 from the
origin. Knowing that P is a point on the unit circle, and knowing the

f(0)

1
I

3 \ £(6) =sin6
Lt N\,

1 0

Ik

IMER

SIE]
L]

Z'2+y2:1

Figure 1.23: The function f(6) = sin 0 describes the vertical position of a
oint P that travels along the unit circle. The first half of a cycle is shown.




DIFFCHANGE


DIFFCHANGE


72 MATH FUNDAMENTALS

From this point on in the book,
we’ll always talk about the length of
the adjacent side as r, = rcos6, and
the length of the opposite side as ry, =
rsinf. It is extremely important you
get comfortable with this notation.
The reasoning behind the above calculations is as follows:

di
cosf = M _Iz = 71, =rcosb,
hyp T
and
sinf = oD _ Ty = ry=rsinf.
hyp r
Calculators

Make sure to set your calculator to the correct units for working with
angles. What should you type into your calculator to compute the
sine of 30 degrees? If your calculator is set to degrees, simply type:

[30] [sin .-

If your calculator is set to radians, you have two options:
1. Change the mode of the calculator so it works in degrees.

2. Convert 30° to radians

oy 2m [rad]
30[]><W[0]76[rad]7

and type: , , @, , E] on your calculator.

Links

| Unit-circle walkthrough and tricks by patrickJMT on YouTube |

1.17 Trigonometric identities

There are a number of important relationships between the values of
the functions sin and cos. Here are three of these relationships, known
as trigonometric identities. There about a dozen other identities that
are less important, but you should memorize these three.

The three identities to remember are:
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1. Unit hypotenuse
sin?() + cos?(9) = 1.

The unit hypotenuse identity is true by the Pythagoras theorem and
the definitions of sin and cos. The ratiesum of the squares of the sides
of a triangle are-is equal to the square of the size-ef-the-hypotenuse.

2. sico + sico
sin(a 4+ b) = sin(a) cos(b) + sin(b) cos(a).

The mnemonic for this identity is “sico + sico.”

3. coco — sisi

cos(a + b) = cos(a) cos(b) — sin(a) sin(b).

The mnemonic for this identity is “coco - sisi.”

there because it’s not good to be a sissy.

The negative sign is

Derived formulas

If you remember the above three formulas, you can derive pretty much
all the other trigonometric identities.

Double angle formulas

Starting from the sico-sico identity as explained above, and setting
a = b=z, we can derive the following identity:

sin(2z) = 2sin(x) cos(x).

Starting from the coco-sisi identity, we derive er—H—we—rewrite—this

cos(2x) = cos?(z) — sin?(x)
= 2cos’(z) =1 =2(1 —sin*(z)) =1 =1-2sin*(z).

The formulas for expressing sin(2z) and cos(2z) in terms of sin(x

and cos(x) are called double angle formulas.
If we rewrite the double-angle formula for cos(2x) to isolate the
sin? and—or_the cos? —we-get—term, we obtain the power-reduction

ormulas:

(14 cos(2z)), sin?(z) = = (1 — cos(2x)) .

N
N

cos?(z) =
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Cylinder

The surface area of a cylinder consists of the
top and bottom circular surfaces, plus the
area of the side of the cylinder: ==

A =2(mr?) + (27r)h. \

The formula for the volume of a cylinder is h
the product of the area of the cylinder’s base
times its height:

V= (71'7"2) h.

Example You open the hood of your car and see 2.0 L written on
top of the engine. The 2.0 L refers to the total volume of the four
pistons, which are cylindrical in shape. The owner’s manual tells
you the diameter of each piston (bore) is 87.5 mm, and the height of
each piston (stroke) is 83.1 mm. Verify that the total volume of the
cylinder displacement of your engine is indeed 1998789 mm3 ~ 2 L.

1.19 Circle

The circle is a set of points located a constant distance from a centre
point. This geometrical shape appears in many situations.

Definitions

r: the radius of the circle

A: the area of the circle

C': the circumference of the circle

(z,y): a point on the circle

0: the angle (measured from the z-axis) of some point on the
circle

Formulas
A circle with radius r centred at the origin is described by the equation
2+ y2 =r2

All points (x,y) that satisfy this equation are part of the circle.
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Try to visualize the curve traced by the point (z(9),y(0)) =
(rcosd,rsinf) as 6 varies from 0° to 360°. The point will trace
out a circle of radius r.

If we let the parameter 6 vary over a smaller interval, we’ll obtain
subsets of the circle. For example, the parametric equation for the
top half of the circle is

{(z,9) €R? | x = rcosf,y = rsinf, 6 < [0,180°]}.

The top half of the circle is also described by {(z,y) € R? | y =
V12 — 2, x € [-r,r]}, where the parameter used is the z-coordinate.

Area

The area of a circle of radius r is A = 7r2.

Circumference and arc length

The circumference of a circle is
C = 2nr.

This is the total length you can measure by following the curve all
the way around to trace the outline of the entire circle.
What is the length of a part of the circle?
Say you have a piece of the circle, called an
arc, and that piece corresponds to the angle 14
0 = 57°. What is the arc’s length (7 _
If the circle’s total length C' = 27r repre-
sents a full 360° turn around the circle, then
the arc length ¢ for a portion of the circle cor-
responding to the angle 6 is

0
{=2mr—
"360
Nete-the-The arc length £ depends on r, the angle 6, and a factor of
Radians

Though degrees are commonly used as a measurement unit for angles,
itis-’s much better to measure angles in radians, since radians are the
natuml umts for measurmg angles The conversion ratio frem-degrees

between degrees and radians

is

2rr[rad] = 360°.
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When measuring angles in radians, the arc length is equal-te-the-angle
in-radians—Measuring-given by;

! = Tgrad.

Measuring angles in radians is equivalent to measuring arc length on

1.20 Ellipse

The ellipse is a fundamental shape that occurs in nature. The orbit
of planet Earth around the Sun is an ellipse.

Parameters

e a: the half-length of the ellipse along the z-axis, also known as
the semi-major axis
e b: the half-length of the ellipse along the y-axis

b2 1_E

e &: the eccentricity of the ellipse, == V —5e =

Fy, Fy: the two focal points of the ellipse

r1: the distance from a point on the ellipse to F}

ro: the distance from a point on the ellipse to Fy

Definition

An ellipse is the curve found by tracing along all the points for which
the sum of the distances to the two focal points is a constant:

r1 + 79 = const.

There’s a neat way to draw a perfect ellipse using a piece of string and
two tacks or pins. Take a piece of string and tack it to a picnic table
at two points, leaving some loose slack in the middle of the string.
Now take a pencil, and without touching the table, use the pencil to
pull the middle of the string until it is taut. Make a mark at that
point. With the two parts of string completely straight, make a mark
at every point possible where the two “legs” of string remain taut.
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Figure 1.25: An ellipse with semi-major axis a¢ and semi-minor axis b.
The locations of the focal points Fi and F> are indicated.

An ellipse is a set of points (z,y) that satisfy the equation
2 2
a? b2

The eccentricity of an ellipse describes how elongated it is:

[ B2
e=1/1——.
a

The parameter € € [0, 1) describes the shape of the ellipse in a scale-
less fashion. The bigger ¢ is, the bigger the difference will be between
the length of the semi-major axis and the semi-minor axis. In the
special case when ¢ = 0, the equation of the ellipse becomes a circle
with radius a.

The (z,y)-coordinates of the two focal points are

Fy = (—ag,0) and Fy = (ag, 0).

The focal points correspond to the locations of the two tacks where
the string is held in place. Recall that we defined the variables rq
and 7o to represent the distance from the focal points F; and F5.
Furthermore, we will denote by ¢ = a(1 — ¢) the distance of the
ellipse’s closest approach to a focal point.

Polar-coordinates
Polar coordinates

In polar coordinates, the ellipse can be described by a function r2(6).
This function gives the distance of a point E from F5 as a function of
the angle 6. Recall in polar coordinates, the angle 6 is the independent
variable and the dependent variable is the distance r2(8).
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The equation of the ellipse in E
polar coordinates depends on the
length of the semi-major axis @ and r2
the eccentricity €. The equation
that describes an ellipse in polar
coordinates is

_a(l—-¢?)
ra(0) = T+ ccos(0)

where the angle 6 is measured with

respect to the positive z-axis. The distance is smallest when 6 =
with r2(0) = a(l — ) = ¢ and largest when 8 = 7 with ro(7)
a+ae =a(l+e).

Calculating the orbit of the Earth

Caleulati ! bit-of the Eartl

To a close approximation, the motion of the Earth around the Sun is
described by an ellipse with the Sun positioned at the focus Fr. We
can therefore use the polar coordinates formula ro(#) to describe the
distance of the Earth from the Sun.

The eccentricity of Earth’s orbit around the Sun is e = 0.01671123,
and the half-length of the major axis is a = 149598 261[km|. We
substitute these values into the general formula for r9(6) and obtain
the following equation:

~ 149556484.56 ]
~ 1+0.01671123 cos(f) '

The point where the Earth is closest to the Sun is called the perihelion.
It occurs when # = 0, which happens around the 3¢ of January.
The moment where the Earth is most distant from the Sun is called
the aphelion and corresponds to the angle § = w. Earth’s aphelion
happens around the 3'4 of July.

We can use the formula for ro(f) to predict the perihelion and
aphelion distances of Earth’s orbit:

7"2(9)

B 149556483
~ 1+0.01671123 cos(0)
B 149556483
~ 1+0.01671123 cos()

= 147098290 [km],

T2, peri = T2 (0)

72,aphe = T2(T) = 152098 232 [km).

Can—you-Google “perihelion” and “aphelion” to verify that the above
predictions are accurate?— . _
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21, March

- winter Periapsis
6 = 0[rad]

‘ 3. January
¥

73 ’_\
{Equinox
i " B ,- .
i A wvinter
Line of Solstice -

spring

21. June ( 21. December

summer
autumn

Apoapsis \
0 =m[rad] ™
3. July

23. September
summer

Figure 1.26: The orbit of the Earth around the Sun. Key points of
the orbit are labelled. The seasons in the Northern hemisphere are also
indicated.

The angle 8 of the Earth relative to the Sun can be described as a
function of time 6(¢). The exact formula of the function 0(t) that
describes the angle as a function of time is fairly complicated, so we
won’t go into the details. Let’s simply look at some values of 6(t)
with ¢ measured in days. We’ll begin on Jan 3.

t[day] |1 2 "T182 | .] 365 365.242199
t [date] Jan3 | Jan4 | . | July3 | . | Jan 2 ?

90 ] |0 1180 | . | 359.761356 360
0(t) [rad] | 0 R | 6.27902 o

Table 1.1: The angular position of the Earth as a function of time. Note
the extra amount of “day” that is roughly equal to i = 0.25. We account
for this discrepancy by adding an extra day to the calendar once every four

years.

N s insiel
Newton’s insight

Contrary to common belief, Newton did not discover his theory of
gravitation because an apple fell on his head while sitting under a
tree. What actually happened is that he started from Kepler’s laws
of motion, which describe the exact elliptical orbit of the Earth as a
function of time. Newton asked, “What kind of force would cause two
bodies to spin around each other in an elliptical orbit?” He determined
that the gravitational force between the Sun of mass M and the Earth
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of mass m must be of the form F; = G%m. We’ll discuss more about

the law of gravitation in Chapter 4.

For now, let’s give props to Newton for connecting the dots, and
props to Johannes Kepler for studying the orbital periods, and Tycho
Brahe for doing all the astronomical measurements. Above all, we
owe some props to the ellipse for being such an awesome shape!

By the way, the varying distance between the Earth and the Sun is
not the reason we have seasons. The ellipse had nothing to do with
seasons! Seasons are predominantly caused by the azial tilt of the
Earth. The axis of rotation of the Earth is tilted by 23.4° relative to
the plane of its orbit around the Sun. In the Northern hemisphere, the
longest day of the year is the summer solstice, which occurs around
the 21" of June. On that day, the Earth’s spin axis is tilted toward
the Sun so the Northern hemisphere receives the most sunlight.

Links

[ Further reading about Earth-Sun geometry |
http://www.physicalgeography.net/fundamentals/6h.html

1.21 Hyperbola

The hyperbola is another fundamental shape of nature. A horizontal
hyperbola is the set of points (z,y) which satisfy the equation

The numbers a and b are arbitrary constants. This hyperbola passes
through the points (—a,0) and (a,0). The eccentricity of this hyper-

bola is defined as
/ B2

Eccentricity is an important parameter of the hyperbola, as it deter-
mines the hyperbola’s shape. Recall the ellipse is also defined by an
eccentricity parameter, though the formula is slightly different. This
could be a coincidence—or is there a connection? Let’s see.
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Graph

Figure 1.27: The unit hyperbola z? —y? = 1. The graph of the hyperbola
has two branches, opening to the sides. The dashed lines are called the
asymptotes of the hyperbola. The eccentricity determines the angle between

the asymptotes. The eccentricity of > —y? = 1is e = 4/1 + % =2

The graph of a hyperbola consists of two separated-separate branches,
as illustrated in Figure 1.27. We'll focus our discussion mostly on the
right branch of the hyperbola.

T bolic tei
Hyperbolic trigonometr

The trigonometric functions sin and cos describe the geometry of the
unit circle. The point P = (cos®,sin#) traces out the unit circle as
the angle 6 goes from 0 to 27. The function cos is defined as the
x-coordinate of the point P, and sin is the y-coordinate. The study
of the geometry of the points on the unit circle is called circular
trigonometry.

Instead of looking at a point P on the unit circle 22 + y? = 1,
let’s trace out the path of a point @ on the unit hyperbola 2% —
y?2 = 1. We will now define hyperbolic variants of the sin and cos
functions to describe the coordinates of the point (). This is called
hyperbolic trigonometry. Doesn’t that sound awesome? Next time
your friends ask what you have been up to, tell them you are learning
about hyperbolic trigonometry.
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| An in-depth discussion on the conic sections |
http://astrowww.phys.uvic.ca/ tatum/celmechs/celm2.pdf

1.22 Solving systems of linear equations

We know that solving equations with one unknown—Ilike 2z +4 = 7z,
for instance—requires manipulating both sides of the equation until
the unknown variable is isolated on one side. For this instance, we
can subtract 2x from both sides of the equation to obtain 4 = 5z,
which simplifies to x = %.

What about the case when you are given two equations and must
solve for two unknowns? For example,

r+ 2y =5,
3z + 9y = 21.

Can you find values of x and y that satisfy both equations?

Concepts

e z.y: the two unknowns in the equations
e eql,eq2: a system of two equations that must be solved simul-

taneously. These equations will look like
a1z + by = ¢,

asx + boy = co,

where as, bs, and cs are given constants.

Principles

If you have n equations and n unknowns, you can solve the equations
simultaneously and find the values of the unknowns. There are several
different approaches for solving equations simultaneously. We’ll learn
about three ef-these-different approaches in this section.

Solution techniques
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When solving for two

WMM%&MWMMMMMMWMWW one of
the variables from the equations. By combining the two cquations
appropriately, we can reduce the problem to finding one unknown in
one equation.

SubstitutienSolving by substitution

)

selvineWe want to solve the following system of equations:

T+ 2y =5,
3z + 9y = 21.

We can isolate x in the first equation to obtain

T =05—2y,
3z + 9y = 21.

Now substitute the expression for x from the top equation into the
bottom equation:
3(5—2y) +9y =21.

We just eliminated one of the unknowns by substitution. Continuing,
we expand the bracket to find

15 — 6y + 9y = 21,
or

3y = 6.

Thus—we-We find y = 2, but what is 27 Easy. To solve for z, use

the-erigtnal-plug the value y = 2 into any of the equations we started
from. Using the equation z = 5 — 2yte—find»={(5—2(21=1, we
find x =5 —2(2) = 1.

SubtractionSolving by subtraction

There-is-athird-waytosolve-the-equations-Let’s return to our set
of equations to see another approach for solving:

T+ 2y =5,
3z + 9y = 21.
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Observe that any equation will remain true if we multiply the whole
equation by some constant. For example, we can multiply the first
equation by 3 to obtain an equivalent set of equations:

3x + 6y = 15,
3z + 9y = 21.

Why did I pick 3 as the multiplier? By choosing this constant, the x
terms in both equations now have the same coefficient.

Subtracting two true equations yields another true equation. Let’s
subtract the top equation from the bottom one:

3 —34+9y—6y=21—15 = 3y=6.

The 3z terms cancel. This subtraction beeame—possible—eliminates
the variable z because we multiplied the first equation by 3—We-see

that 3. We find y = 2. We-—ean-thensubstitute2-for4—in—To find x,
substitute y = 2 into one of the original equations:

x+2(2) =5,

from which we deduce that x = 1.

Solving by equatin
There is a third way to solve the equations:
T+ 2y =5,
3z + 9y = 21.

We can isolate x in both equations by moving all other variables and
constants to the right sides of the equations:

T =5—2y,

1

x = 5(21—9y) =7-3y.

Though the variable x is still unknown, we know two facts about

it: x is equal to 5 — 2y and x is equal to 7 — 3y. Therefore, we can
eliminate z by equating the right sides of the equations:

5—2y=7-3y.

We solve for y by adding 3y to both sides and subtracting 5 from both

sides. We find y = 2. Pluggin = 2 into the equation x = 5 — 2y we
find

r=5-2y=5-2(2)=1
The solutions are x = 1 and y = 2.
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Discussion

The three climination techniques substitution, subtraction, and
elimination by equating—can be extended to solve equations with
more unknowns. There is actually an entire course called linear
algebra, in which youwill-'ll develop a more advanced, systematic
approach for solving systems of linear equations.

1.23 Compound interest

Soon after ancient civilizations invented the notion of numbers, they
started computing interest on loans. It is a good idea to know how
interest calculations work so that you will be able to make informed
decisions about your finances.

Percentages

We often talk about ratios between quantities, rather than mentioning
the quantities themselves. For example, we can imagine average Joe,
who invests $1000 in the stock market and loses $300 because the boys
on Wall Street keep pulling dirty tricks on him. To put the number
$300 into perspective, we can say Joe lost 0.3 of his investment, or
alternately, 30% of his investment.

To express a ratio as a percentage, multiply it by 100. The ratio
of Joe’s loss to investment is

R =300/1000 = 0.3.
The same ratio expressed as a percentage gives
R =300/1000 x 100 = 30%.

To convert from a percentage to a ratio, divide the percentage by 100.

Interest rates

Say you take out a $1000 loan with an interest rate of 6% compounded
annually. How much will you owe in interest at the end of the year?

Since 6% corresponds to a ratio of 6/100, and since you borrowed
$1000, the accumulated interest at the end of the year will be

6
I = 100 x $1000 = $60.
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Compounding infinitely often

What is the effective APR if the nominal APR is 6% and the bank
performs the compounding n times per year?
The annual growth ratio will be

L
100n ) ’

where the interest rate per compounding period is %%, and there are
n periods per year.

Consider a scenario in which the compounding is performed in-
finitely often. This corresponds to the case when the number n in
the above equation tends to infinity (denoted n — o0). This is not
a practical question, but it is an interesting avenue to explore nev-
ertheless because it leads to the definition of the natural exponential
function f(x) = e*.

When we set n — oo in the above expression, the annual growth
ratio will be described by the exponential function base e as follows:

6 \" 6
lim (14— ) =exp[ — ) = 1.0618365.
ninéo( + 100n> eXp(l()o)

The expression “lim,, _,.,” is to be read as “in the limit when n tends
to infinity.” We will learn more about limits in Chapter 5.

A nominal APR of 6% with compounding that occurs infinitely
often has an eAPR = 6.183%. After six years you will owe

6
6
Lo = exp(loo> x 1000 = $1433.33.

As you can see, the APR stays at a steady 6%—yet, the more frequent
the compounding schedule, the more money you’ll owe at the end of
six years.

Links

[ Very good article on interest calculations |
http://plus.maths.org/content/have-we-caught-your-interest

1.24 Set notation

A set is the mathematically precise notion for describing a group of
objects. You need—net—don’t need to know about sets to perform
simple math; but more advanced topics require an understanding of
what sets are ;—as—well-as—and how to denote set membership and
subset relations between sets.
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Definitions
e set: a collection of mathematical objects — Fhe—eoHection’s

e S, T: the usual variable names for sets

e N,7Z,Q,R: some important sets of numbers: the naturals, the
integers, the rationals, and the real numbers, respectively.

e { definition }: the curly brackets surround the definition of a
set, and the expression inside the curly brackets describes what
the set contains.

Set operations:

e SUT: the union of two sets. The union of S and T corresponds
to the elements in either S or T'.

o SNT: the intersection of the two sets. The intersection of S
and T corresponds to the elements in both S and T

o S\ T: set minus. The difference S\ T' corresponds to the ele-
ments of S that are not in 7.

Set relations:

e (C: is a subset of
e C: is a subset of or equal to

Special mathematical shorthand symbols and their corresponding
meanings:

o V: for all
e J: there exists

A: there doesn’t exist
| : such that
e c: eclement of

e ¢: not an element of

Sets

Much of math’s power comes from abstraction: the ability to see the
bigger picture and think meta thoughts about the common relation-
ships between math objects. We can think of individual numbers like
3, —5, and 7, or we can talk about the set of all numbers.

It is often useful to restrict our attention to a specific subset of
the numbers as in the following examples.
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The broader class of real numbers also includes all rationals as well
as irrational numbers like v/2 and 7:

R = {m,e,—1.53929411..., 4.99401940129401..., ...}.
Finally, we have the set of complex numbers:
C={1,i,14+4,2+3i,...}.

Note that the definitions of R and C are not very precise. Rather than
giving a precise definition of each set inside the curly brackets as we
did for Z and Q, we instead stated some examples of the elements in
the set. Mathematicians sometimes do this and expect you to guess
the general pattern for all the elements in the set.

The following inclusion relationship holds for the fundamental sets
of numbers:

NcZcQcRcC.

This relationship means every natural number is also an integer. Ev-
ery integer is a rational number. Every rational number is a real.
Every real number is also a complex number.

New vocabulary

The specialized notation used by mathematicians can be difficult to
get used to. You must learn how to read symbols like 3, C, |, and
€ and translate their meaning in the sentence. Indeed, learning ad-
vanced mathematics notation is akin to learning a new language.

To help you practice the new vocabulary, we will look at an ancient
mathematical proof and express it in terms of modern mathematical
symbols.

Square-root of 2 is irrational

Claim: /2 ¢ Q. This means there do not exist numbers m € Z
and n € Z such that m/n = V2. The same—sentenee-last sentence
expressed in mathematical notation would read,

AmeZnel | m/n = V2.

To prove this-elaim—-wewil-the claim we’ll use a technique called proof
by contradiction. We d-begin by assuming the opposite of what we
want to prove: that there exist numbers m € Z and n € 7Z such
that m/n = /2. We'll then carry out some simple algebra steps
and in the end we’ll obtain an equation that is not true—we’ll arrive
at a contradiction. Arriving at a contradiction means our original
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supposition is wrong: there are no numbers m € Z and n € Z such
that m/n = V2.

Proof: Suppose there exist numbers m € Z and n € Z such that
m/n = /2. We can assume the integers m and n have no common
factors. In particular, m and n cannot both be even, otherwise they
would both contain at least one factor of 2. Next, we’ll investigate
whether m is an even number m € FE, or an odd number m € O.
Look back to Example 2 for the definitions of the sets O and F.

Before we check for even and oddness, it will help to point out
the fact that the action of squaring an integer preserves its odd/even
nature. An even number times an even number gives an even number:
if e € F then e? € E. Similarly, an odd number times an odd number
gives an odd number: if o € O then o? € O.

We proceed with the proof. We assume m/n = V2. Taking the
square of both sides of this equation, we obtain

- =2 = m2:2n2.

Let’s-analyze-this-If we analyze the last equation in more detail, we
can conclude that m cannot be an odd number, or written “m ¢ O”

in math. If m is an odd number then m? will also be odd, but this
would contradlct the above equatlon since the right-hand side of the
equation e & y-contains the factor
mnumber contalnmg a factor 2 is even, se-inot odd. If
ML}MJ@@MM&M@JM&MNM% be
that beth-sides e ‘ even——m2 se-m s even
(me E—),

If m is even, then it must-eontain-contains a factor of 2, so it can
be written as m = 2q where q is some other number g € Z. The exact
value of ¢ is not important. Let’s revisit the equation m? = 2n? once
more, this time substituting m = 2¢ into the equation:

(29 =2n* = 2¢*=n>

By a similar reasoning as before, we can conclude n must-be-an-even

amumber—cannot be odd (n ¢ O) so n must be even (n € E). However,
this statement contradicts our previeusstatement-initial assumption
that m and n eannet-beth-be-evendo not have any common factors!

The fact that we arrived at a contradiction means we must have
made a mistake somewhere in our reasoning. Since each of the steps
we carried out were correct, the mistake must be in the original
premise, namely that “there exist numbers m € Z and n € Z such
that m/n = V2. Rather, the opposite must be true: “there do not
exist numbers m € Z and n € Z such that m/n = v/2.” The last
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ball is thrown in the positive y-direction with an initial veloc-
ity of v; = 12[m/s]. The ball reaches a maximum height of

max{y(t)} = 522 = 7.3[m] at t = 12/9.81 = 1.22]s], then hits

the ground after a total flight time of ¢ty = 24/ 2%L3 = 2.44[s].

The measurement units of physical quantities throughout this
book are denoted in square brackets, like in the example above.
Learning about the different measurement units is an important
aspect of physics vision.

Why learn physics?

The main reason why you should learn physics is te—experienee—for
the knowledge buzz. You will learn how to calculate the motion of
objects, predict the outcomes of collisions, describe oscillations, and
many other useful things. As you develop your physics skills, you will
be able to use physics equations to derive one physical quantity from
another. For example, we can predict the maximum height reached
by a ball 1f we know 1ts initial velomty when thrown Ph{y“ﬂe‘%—ﬁ—&

blet—k&ﬁThe e uatlons of h sics are a lot hke LEGOs our job is to
figure out different ways to connect them together.

By learning how to solve complicated physics problems, you will
develop your analytical skills. Later on, you can apply these skills
to other areas of life. Even if you don’t go on to study science, the
expertise you develop in solving physics problems will help you tackle
complicated problems in general. As proof of this statement, consider
the fact that companies like to hire physicists even for positions unre-
lated to physics: they feel confident that candidates who understand
physics will be able to figure out all the business stuff easily.

Intro to science

Perhaps the most important reason you should learn physics is be-
cause it represents the golden standard for the scientific method. First
of all, physics deals only with concrete things that can be measured.
There are no feelings or subjectivities in physics. Physicists must
derive mathematical models that accurately describe and predict
the outcomes of experiments. Above all, we can test the validity
of the physical models by running experiments and comparing the
predicted outcome with what actually happens in the lab.

The key ingredient in scientific thinking is skepticism. Scientists
must convince their peers that their equations are true without a
doubt. The peers shouldn’t need to trust the scientist; rather, they
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can carry out their own tests to see if the equation accurately pre-
dicts what happens in the real world. For example, let’s say I claim
that the height of a ball thrown up in the air with speed 12[m/s]
is described by the equation y.(t) = 2(—9.81)t% + 12t + 0. To test
whether this equation is true, you can perform a throwing-the-ball-
in-the-air experiment and record the motion of the ball as a video.
You can then compare the motion parameters observed in the video
with those predicted by the claimed equation y.(t).

e Maximum height reached One thing you can check is
whether the equation y.(¢) predicts the ball’s maximum height
Ymax- Lhe claimed equation predicts the ball will reach its
maximum height at ¢ = 1.22[s|. The maximum height predicted
is max;{y.(t)} = y.(1.22) = 7.3[m|. You can compare this value
with the maximum height y,.x you observe in the video.

e Total time of flight You can also check whether the equation
Ye(t) correctly predicts the time when the ball will fall back to
the ground. Using the video, suppose you measure the time it
took the ball to fall back to the ground to be tgy = 2.44[s]. If
the equation y.(t) is correct, it should predict a height of zero
metres for the time tg,;.

If both predictions of the equation y.(¢) match your observations from
the video, you can start to believe the claimed equation of motion y.(t)
is truly an accurate model for the real world.

The scientific method depends on this interplay between experi-
ment and theory. Theoreticians prove theorems and derive equations,
while experimentalists test the validity of equations. The equations
that accurately predict the laws of nature are kept while inaccurate
models are rejected. At the same time, experimentalists constantly
measure new data and challenge theoreticians to come up with equa-
tions that correctly describe the new measurements.

Equations of physics

The best physics equations are collected in textbooks. Physics text-
books contain only equations that have been extensively tested and
are believed to be true. Good physics textbooks also explain how
the equations are derived from first principles. This is important, be-
cause it is much easier to understand a few fundamental principles of
physics, rather than memorize a long list of formulas. Understanding
trumps memorization any day of the week.

The next section will teach you about three equations that fully
describe the motion of any object: x(t), v(t), and a(t). Using these
equations and the equation-solving techniques from Chapter 1, we can
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predict pretty much anything we want about the position and velocity
of objects undergoing constant acceleration.

Instead of memerizing—the-asking you to memorize these equations,
I'll show you a cool trick for obtaining one equation of motion from
another. These three equations describe different aspects of the same
motion, so it’s no surprise the equations are related. While you are
not required to know how to derive the equations of physics, you
do need to know how to use all these equations. Learning a bit of
theory is a good deal: just a few pages of “difficult” theory (integrals)
will give you a deep understanding of the relationship between a(t),
v(t), and z(¢t). This way, you can rely on your newly expanded math
knowledge, rather than remember three separate formulas!

2.2 Kinematics

Kinematics (from the Greek word kinema for motion) is the study of
trajectories of moving objects. The equations of kinematics can be
used to calculate how long a ball thrown upward will stay in the air,
or to calculate the acceleration needed to go from 0 to 100[km/h] in 5
seconds. To carry out these calculations, we need to choose the right
equation of motion and figure out the values of the initial conditions
(the initial position x; and the initial velocity v;). Afterward, we
plug the known values into the appropriate equation of motion and
solve for the unknown using one or two simple algebra steps. This
entire section boils down to three equations and the plug-number-
into-equation skill.

\

Figure 2.1: The motion of an object is described by its position, velocity,
and acceleration functions.

This section is here to teach you how to use the equations of motion
and help you understand the concepts of velocity and acceleration.
You'll also learn how to recognize which equations to use when solving
different types of physics problems.

Concepts

The key notions for describing the motion of objects are:
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t: the time. Time is measured in seconds |s].

e x(t): an object’s position as a function of time—also known as
the equation of motion. Position is measured in metres [m| and
depends on the time t.

e u(t): the object’s velocity as a function of time. Velocity is
measured in metres per second [m/s].

e a(t): the object’s acceleration as a function of time. Accelera-
tion is measured in metres per second squared [m/s?|.

o z; = x(0),v; = v(0): the object’s initial position and velocity,

as measured at ¢t = 0. Together x; and v; are known as the

initial conditions.

Position, velocity, and acceleration

The motion of an object is characterized by three functions: the po-
sition function x(t), the velocity function v(t), and the acceleration
function a(t). The functions z(t), v(t), and a(t) are connected—they
all describe different aspects of the same motion.

You are already familiar with these notions from your experience
of riding in a car. The equation of motion z(¢) describes the position
of the car as a function of time. The velocity describes the change in
the position of the car, or mathematically,

v(t) = rate of change in z(t).

If we measure z in metres [m| and time ¢ in seconds [s], then the
units of v(t) will be metres per second [m/s|. For example, an object
moving with at a constant speed-of-30velocity of +30[m/s] will change
increage it’s position by 30[m]| each second. Note that the velocity v(t)
could be positive or negative. The speed of an object is defined as the
absolute value of it’s velocity [u(t)].

The rate of change of an object’s velocity is called acceleration:
a(t) = rate of change in v(t).

Acceleration is measured in metres per second squared [m/s?]. A
constant positive acceleration means the velocity of the motion is
steadily increasing, similar to pressing the gas pedal. A constant
negative acceleration means the velocity is steadily decreasing, similar
to pressing the brake pedal.

In a couple of paragraphs, we’ll discuss the exact mathematical
equations for (), v(t), and a(t), but before we dig into the math, let’s
look at the example of the motion of a car illustrated in Figure 2.2.
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Figure 2.2: The illustration shows the simultaneous graphs of the position,
velocity, and acceleration of a car during some time interval. The car starts
from an initial position x; where it sits still for some time. The driver then
floors the pedal to produce a maximum acceleration for some time, and
the car picks up speed. The driver then releases—cases off the accelerator,
keeping it pressed enough to maintain a constant speed. Suddenly the driver
sees a police vehicle in the distance and slams on the brakes (negative
acceleration) and shortly afterward brings the car to a stop. The driver
waits for a few seconds to make sure the cops have passed. Next, the driver
switches into reverse gear and adds gas. The car accelerates backward for
a bit, then maintains a constant backward speed for an extended period
of time. Note how “moving backward” corresponds to negative velocity.
In the end the driver slams on the brakes again to stop the car. Notice
that braking corresponds to positive acceleration when the motion is in the
negative direction. The car’s final position is x .
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We can observe two distinct types of motion in the situation described
in Figure 2.2. During some times, the car undergoes motion at a con-
stant velocity (uniform velocity motion, UVM). During other times,
the car undergoes metions—motion with constant acceleration (uni-
form acceleration motion, UAM). There exist many other types of
motion, but for the purpose of this section we’ll focus on these two
types of motion.

e UVM: During times when there is no acceleration, the car main-
tains a uniform velocity and therefore v(t) is a constant func-
tion. For motion with constant velocity, the position function
is a line with a constant slope because, by definition, v(t) =
slope of z(t).

e UAM: During times where the car experiences a constant ac-
celeration a(t) = a, the velocity of the function changes at
a constant rate. The rate of change of the velocity is con-
stant a = slope of v(t), so the velocity function looks like a
line with slope a. The position function z(¢) has a curved shape
(quadratic) during moments of constant acceleration.

Formulas

There are basically four equations you need to know for this entire
section. Together, these four equations fully describe all aspects of
motion with constant acceleration.

Uniformly accelerated motion (UAM)

If the object undergoes a constant acceleration a(t) = a—Ilike a car
when you floor the accelerator—then its motion can be described by
the following equations:

a, (2.1)
v(t) = at + v, 2.2
%atz + v;t + x4,

where v; is the initial velocity of the object and x; is its initial position.
Here is another useful equation to remember:

[(®)]* = v} + 2alz(t) — ],
which is usually written

v? = v? + 2aAx, 2.4
f i
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where vy denotes the final velocity (at ¢ = ¢;) and Az denotes the
change in the z-coordinate between ¢ = 0 and ¢ = ¢;. The triangle
thing A is the capital Greek letter delta, which is often used to denote
the change in quantities. Using thisnetatienthe A-notation, we can
rewrite Formula-equation (2.2) in-A-netation-as-as follows: Av = aAt,
where Av = vy —v; and At =ty —1;.

Thatis——M se—'s it! Memorize these four equations,
plug-in the right numbers and you can solve any kinematics problem
humanly imaginable.

Uniform velocity motion (UVM)

The special case where there is zero acceleration (a = 0), is called
uniform velocity motion or UVM. The velocity stays uniform (con-
stant) because there is no acceleration. The following three equations
describe the motion of an object with uniform velocity:

a(t) =0,
u(t) = v,
x(t) = vit + x;.

As you can see, these are really the same equations as in the UAM
case above, but because a = 0, some terms are missing.

Free fall

We say an object is in free fall if the only force acting on it is the force
of gravity. On the surface of the Earth, the force of gravity produces a
constant acceleration of a,, = —9.81|m/s?|. The negative sign is there
because the gravitational acceleration is directed downward, and we
assume the y-axis points upward. Since the gravitational acceleration
is constant, we can use the UAM equations to find the height y(t)
and velocity v(t) of objects in free fall.

Examples

Now we’ll illustrate how the equations of kinematics are used.

Moroccan example Suppose your friend wants to send you a ball
wrapped in aluminum foil by dropping it from his balcony, which is
located at a height of y; = 44.145[m]. How long will it take for the
ball to hit the ground?
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Imagine the apartment building as a y-axis that measures distance
upward starting from the ground floor. We know the balcony is lo-
cated at a height of y; = 44.145[m|, and that at ¢ = O[s] the ball
starts with v; = —10[m/s|. The initial velocity is negative because it
points in the opposite direction of the y-axis. We also know there is
an acceleration due to gravity of a, = —9.81|m/s?].

We start by writing the general UAM equation:

y(t) = %ayt2 + vt + Y.

To find the time when the ball will hit the ground, we must solve for
t in the equation y(t) = 0. Plug all the known values into the UAM
equation,

y(t) = 0= 1(—9.81)t* — 10t + 44.145,

and solve for ¢ using the quadratic formula. First, rewrite the
quadratic equation in standard form:

0=14.905¢>+10.0¢ —44.145.

a b c
Then solve using the quadratic equation:

—b+ Vb? —4ac  —10=£ /100 + 866.12

—21 .
% 981 5 Bl

tranl =

We ignore the negative-time solution because it corresponds to a time
in the past. Compared to the first Moroccan example, we see that
throwing the ball downward makes it fall to the ground faster.

Discussion

Most kinematics problems you'll be asked-te-selvewill-solving follow
the same pattern as the examples above. Given some initial values,
youwil-1l be asked to solve for some unknown quantity.

Itis-’s important to keep in mind the signs of the numbers you plug
into the equations. You should always draw the coordinate system and
indicate clearly (to yourself) the x-axis, which measures the object’s
displacement. A velocity or acceleration quantity that points in the
same direction as the z-axis is a positive number, while quantities
pointing in the opposite direction are negative numbers.

By the way, all this talk about v(¢) being the “rate of change of
x(t)” is starting to get on my nerves. The expression “rate of change
of” is an indirect way of saying the calculus term derivative. In order
to use this more precise terminology throughout the remainder of the
book, wewiH-"ll now take a short excursion into the land of calculus
to define two fundamental concepts: derivatives and integrals.
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2.3 INTRODUCTION TO CALCULUS 111

2.3 Introduction to calculus

Calculus is the study of functions and their properties. The two op-
erations in the study of calculus are derivatives—which describe how
quantities change over time—and integrals, which are used to calcu-
late the total amount of a quantity accumulated over a time period.

Derivatives

The derivative function f’(¢) describes how the function f(¢) changes
over time. The derivative encodes the information about the
instantaneous_rate of change of the function f(¢), which is the
same as the slope of the fanetion—f{(tgraph of the function at that
point:

, hange in f(¢ t+ At) — f(t
f(t)Eslopef(t):C;aiegeiji):f( Ai f()

If the derivative f/(t) is equal to

5 units per second, this means 0
that f(¢) changes by 5 units
each second. The derivative
of the constant function is zero -

: : Y
because it has zero rise over run 0900 /

everywhere, The derivative of the N
function f(t) =mi 18 (a line) is -
More generally, the instantaneous
slope of a function is different for different values of £, as illustrated

in the figure,

The derivative operation is denoted by several names and symbols:
Df(t) = f'(t) = % = &{f(t)} = f —alof which-and all these
symbols carry the same meaning. Think of f’(t) not as a separate
entity from f(t), but as a property of the function f(t). It’s best to
think of the derivative as an eperater-operator % that you can apply
to any function to obtain its slope information. Derivatives-are-use

Integrals

An integral corresponds to the compu-
tation of the area enclosed between the y
curve f(t) and the z-axis over some in-

i(t)
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terval:

t=b
A(a,b) = f(¢) dt

t=a

The symbol [ is shorthand for sum.

Indeed, the area under the curve cor-

responds to the sum of the values of

the function f(¢) between t = a and

t=b.

The integral is the total of f between a and b.

Example 1

We can easily find the area under the

eeﬁsfea—ﬂt—lf&ﬂeﬁeﬂjﬂﬁ%% raph of the
constant function t) = 3 between °

any two points because the region un- ¢
der the curve is rectangular. We-choose s o3
to—use-Choosing t = 0 as the reference ZJ )

m F(r) = /D f(t) dt =3
pointand-compute-the-integraly ]

oint, we obtain the integral function
F(7), which corresponds to the area ' 1 =2 3 475 ¢ 11

under f(t) startingfrom-between t = 0
and goinguntit = 7:

F(r)= A(0,7) /OTf(t) dt =

The area is equal to the rectangle’s height times its width.

Example 2

Consider now the area under the graph
of the line g(t) = ¢, starting from ¢ = 0.
Since the region under the curve is tri-
angular, we can compute its area. Re-
call the area of a triangle is given by
the length of its base times its height
divided by 2

general formula for the area below—under g(t) from ¢+= 0 untils =7
is described by the following integral calculation:

TXT 1 2

G(r) = A(0,7) = /OT g(t) dt = =57
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2.3 INTRODUCTION TO CALCULUS 113

Weare-'re able to compute the above integrals thanks to the simple
geemetry—geometries of the areas under the eurvesgraphs. Later in
this book (Chapter 5), we’ll develop techniques for finding integrals
(areas under the curve) of more complicated functions. In fact, there
is an entire course called Iategral-Galendusintegral calculus, which is
dedicated to the task of finding integrals.
Whatt-need—you—to—rememberfor-But_don’t worry, you don’t
need _to know everything about integrals to learn physics. What

is important rieht now is that the—you understand the concept of
integration. The integral of a function gives-you-is the area under the

eurvegraph of the function, which is in some sense the total amount
of the function accumulated during that—period— Youshould—also

remember-thefollowingtweformulas—+—some interval of time. For the
most part of the first-year physics, the only integral formulas you’ll

need to know are.

/adt:m‘ and /atdt:f
0 0

The first integral describes the general calculation of the area under

a_constant function, like in Example 1. The second formula is a
generalization of the formula we saw-inFExamplederived in Example 2.

Usins—the-abeve-Using these formulas in combination, you can new
compute the integral under—of an arbitrary line h(t) = mt + b as

follows:

H(r):/0 h(t)dt:/o(mter)dt:/Omtdt +/bdt:%m72+br

0

Regroup

At this point you’re probably on the fence about the new calculus
concepts. On the one hand, calculating slopes (derivatives) and areas
under the curve (integrals) seem trivial tasks. On the other hand
seeing five different notations for the derivative and the weird integral
sign has probably put some fear in you. You might be wondering
whether you really need to learn about derivatives and integrals. How

often do you have to compute the area below-a-funetion+{#H-under the
raph of a function in the real world? It turns out that “calculating

the area under a curve” is

selve-many—problems—very useful since it is the “undo operation” for

the derivative.
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114 INTRODUCTION TO PHYSICS

Inverse operations

The integral is the inverse operation of the derivative. ~Many

equations in math and physics involve the derivative of some unknown
function, Understanding the inverse relationship between integrals
and derivatives will allow_you to solve for the unknown function in
these equations.

You should already be familiar with the inverse relationship be-
tween functions. When solving equations (page 4), we use inverse
functions to undo functions that stand in our way as we try to isolate
the unknown z. Similarly, we use the integral operation to undo the
effects of the derivative operation when we try to solve for some un-
known function f(t). For example, suppose g(¢) is a known function
and we're trying to solve for f(¢) in the equation

L0} = 9(0).

Taking the integral on the left-hand side of the equation will undo the
derivative operation. To keep the equality true, we must apply the
integration operation on both sides of the equation to obtain

o= [ o)
£ = [ ott) .

Calculating the total of the instantaneous changes in f is the same as

the final change in f. Every time you want to undo a derivative, you
can apply the mtegral 0perat10nk There-, however, there is a little

INAAANARARARARANARA
technical eex ‘ ss—detail that we must clarif;
to make this statement recise.

The integral isn’t exactly the inverse of the derlvatlve—there exists

—is _a tricky extra
onstant factor that appears when we 1nte rate Let’s analyze in

more detail what happens when we perform the combo of the deriva-
tive operation followed by the integral operation on some function
f(t). Suppose we are given the derivative function f’(¢) and asked to
integrate it between ¢t = 0 and ¢ = 7. Intuitively, this integral corre-
sponds to calculating the total of the changes in f(t¢) during that
time interval. Recall the notation for “change in f” Af = f(7)— f(0),
which we used previously. This notation makes it easy to see how the
integral over f/(t) corresponds to the total change in f(¢) between
t=0and t=r:

/0 ) di= AF = f(r) - £(0).
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2.3 INTRODUCTION TO CALCULUS 115

Rewriting this equation to isolate f(7) we obtain Fhe-answer-

fo =10 + [ Py dr

Note that the expression for depends on the value of f(t) a

t =0, &Vb}%ﬂﬂlwmmm

function. In ph sics roblems the initial values of the equations of
motion z(0) = z; and v(0) = v; are called the initial conditions.

Banking example To illustrate how derivative and integral opera-
tions apply to the real world, I'll draw an analogy from a scenario that
every student is familiar with. Consider the function ba(t), which
represents your bank account balance at time t. Also consider the
function tr(¢), which corresponds to the transactions (deposits and
withdrawals) on your account.

The function tr(¢) is the derivative of the function ba(t). If you
ask, “how does my balance change over time?” the answer is the
function tr(¢). Using mathematical symbols, we can represent this
relationship as

tr(t) = %{ba(t)}.

If the derivative is positive, your account balance is growing. If the
derivative is negative, your account balance is depleting.

Suppose you have a record of all the transactions on your ac-
count tr(¢), and you want to compute the final account balance at the
end of the month. Since tr(¢) is the derivative of ba(t), you can use
an integral (the inverse operation of the derivative) to obtain ba(t).
Knowing the balance of your account at the beginning of the month,
you can predict the balance at the end of the month by calculating
the following integral:

ba(30) = ba(0) + /30 tr(t) dt.
0

This calculation makes sense since tr(t) represents the instantaneous
changes in ba(t). If you want to find the overall change from day
0 until day 30, you can compute the total of all the changes in the
account balance.

We use integrals every time we need to calculate the total of some
quantity over a time period. In the next section, we’ll see how these
integration techniques can be applied to the subject of kinematics,
and how the equations of motion for UAM are derived from first
principles.
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116 INTRODUCTION TO PHYSICS

2.4 Kinematics with calculus

To carry out kinematics calculations, all we need to do is plug the
initial conditions (z; and v;) into the correct equation of motion. But
how did Newton come up with these equations in the first place? Now
that you know Newton’s mathematical techniques (calculus), you can
see for yourself how the equations of motion are derived.

Concepts

Recall the kinematics concepts related to the motion of objects:

e {: time

e x(t): position as a function of time

e v(t): velocity as a function of time

e a(t): acceleration as a function of time

o z; = x(0),v; = v(0): the initial conditions

Position, velocity, and acceleration revisited

The equations of kinematics are used to predict the motion of objects.
Suppose you know the acceleration of the object a(t) at all times ¢.
Can you find z(t) starting from a(t)?

The equations of motion z(t), v(t), and a(t) are related:

a(t) 5 o(t) (1),

The velocity function is the derivative of the position function and
the acceleration function is the derivative of the velocity function.

General procedure

If you know the acceleration of an object as a function of time a(t),
and you know its initial velocity v; = v(0), you can find its velocity
function v(t) for all later times using integration. This is because the
acceleration function a(t) describes the change in the object’s velocity.
If you know the object started with an initial velocity of v; = v(0), the
velocity at a later time ¢ = 7 is equal to v; plus the total acceleration
of the object between t =0 and t = 7:

(1) =v; + /OT a(t) dt.

If you know the initial position z; and the velocity function v(t), you
can find the position function z(t) by using integration. We find the
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position at time ¢ = 7 by adding all the velocities (the changes in the
object’s position) that occurred between ¢t = 0 and t = 7:

(1) = + /OT v(t) dt.

The procedure for finding z(t) starting from a(t) can be summarized
as follows:

at) " ) L L.

Next, I'll illustrate how you can apply this procedure to the important
special case of an object undergoing uniformly accelerated motion.

Derivation of the UAM equations of motion

Consider an object undergoing uniformly accelerated motion (UAM)
with acceleration function a(t) = a. Suppose we know the initial
velocity of v; = v(0), and we want to find the velocity at a later time
t = 7. We compute y(7) using the following integral:

U(T):Ui+/ a(t)dt:Ui+/ adt =v; +ar.
0 0

Velocity as a function of time is given by the initial velocity v; added to
the integral of the acceleration. The integration step-can be visualized
as the calculation of the area of a rectangle, similar to the calculation
we saw in Example 1 on page 112.

You can also use integration to find the position function z(t) if
you know the initial position z; and the velocity function v(t). The
formula is

{E(T):l'i—f—/ v(t) dt:xi—i—/ (vi +at) dt = z; + v;7 + Lar?
0 0

The integration step can be visualized as the calculation of the area
of a triangle with slope a stacked on top of a rectangle of height v;.

Note that the above calculations required knowing the initial con-
ditions z; and v;. These initial values were required because the
integral calculations we performed only told us the change in the
quantities relative to their initial values.

The fourth equation

We can derive the fourth equation of motion,

vjzc =v? + 2a(zy — x;),
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by combining the equations of motion v(t) and z(t). Let’s see how.
Start by squaring both sides of the velocity equation vy = v; + at to
obtain

'U?‘ = (v; + at)® = v} + 2av;t + a*t* = v} + 2afv;t + Lat?].

The term in the square bracket is equal to Az = z(t) —z; = x¢ — ;.

Applications of derivatives

Recall that the velocity and the acceleration functions are obtained
by taking derivatives of the position function:

2(t) 25 u(t) 2 o(t).

We just saw how to use integration to follow this chain of operations
in reverse to obtain x(t) for the special case of constant acceleration:

¢
v(t) = v, —|—/ a(t) dr = v; + at,
0
¢
z(t) = x; +/ o(T)dr = x; + vit + %atQ.
0

Note that, in addition to the integral calculations, the formulas for
v(t) and z(t) require some additional information—the initial value

of the function.

Earlier we defined the derivative operator 4 that computes the

derivative function f’(t), which tells us the slope of the function f(t).

There are several derivative formulas that you need to learn to be
roficient at calculus. We’'ll get to that in Chapter 5. For now
the only derivative formula that you’ll need is the power rule for

derivatives:
if f(t) = At" then f'(t)=nAt"""
Using this formula on each term in the function f(t) = A + Bt + Ct>
we find its derivative is & = #/(+) = 0 + B + 2Ct.
Let’s now use the derivative to verify that the equations of motion

we obtained above satisfy z/(¢) = v(t) and v/ (t) = a(t). Applying the
derivative operation to both sides of the equations we obtain

a'(t) =0,
V(t) = v +at} = Lo} + £{at} =0+a = a(t),
o(t) = A + ity + ${Lat®} =0+ v; +at

<
—~

~~
~—
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2.4 KINEMATICS WITH CALCULUS 119

Note that computing the derivative of a function kills the information
about it’s initial value; the derivative contains only information about
the changes in f(¢).

Let’s summarize what we learned up until now about derivatives
and integrals. Integrals are useful because they allow us to compute
u(t) from a(t). and z(t) from v(t). The derivative operation is useful

because it allows us to obtain v(¢) if we know x(t), and/or obtain
a(t) if we know v(t). Recall that z(t), v(t), and a(t) correspond to
three different aspects of the same motion, as shown in Figure 2.2 on
page 106, The operations of calculus allow us to move freely between
the different descriptions of the motion.

Discussion

According to Newton’s second law of motion, forces are the cause of
acceleration and the formula that governs this relationship is

-Fnct = ma,

where Fet is the magnitude of the net force acting on the object.

In Chapter 4 we’ll learn about dynamics, the study of the different
kinds of forces that can act on objects: gravitational force fg, spring
force F_’;, friction force F' 'r, and other forces. To find an object’s accel-
eration, we must add together all the forces acting on the object and
divide by the object’s mass:

1
ZFi:Fnet = a:*F‘neh
m

The physics procedure for predicting the motion of ebjeets-an object
iven the forces acting on it can be summarized as follows:

%(Zﬁ:ﬁmt) — at) " ) L
|

R kinematics
dynamics

Free fall revisited

The force of gravity acting on an object of mass m on the surface
of the Earth is given by F, = —mgg, where g = 9.81|m/s?] is the
gravitational acceleration on the surface of the Earth. We previously
discussed that an object is in free fall when the only force acting on
it is the force of gravity. In this case, Newton’s second law tells us

—

Fnet =ma

—mgy = md.
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Dividing both sides by the mass, we see the acceleration of an object
in free fall is @ = —9.819.

It’s interesting to note that an object’s mass does not affect its
acceleration during free fall. The force of gravity is proportional to
the mass of the object, but acceleration is inversely proportional to
the mass of the object; overall, it holds that a, = —g for objects in
free fall, regardless of their mass. This observation was first made
by Galileo in his famous Leaning Tower of Pisa experiment. Galileo
dropped a wooden ball and a metal ball (same shape, different mass)
from the Leaning Tower of Pisa, and observed that they fell to the
ground at the same time. Search for “Apollo 15 feather and hammer
drop” on YouTube to see this experiment performed on the Moon.

What next?

You might have noticed that in the last couple of paragraphs we
started putting little arrows on top of certain quantities. The ar-
rows are there to remind you that forces, velocities, and accelerations
are vector quantities. Before we proceed with the physics lessons, we

H-make-an-interesting-must make a short mathematical digression to

introduce vectors.
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Chapter 3

Vectors

In this chapter wewil-"l] learn how to manipulate multi-dimensional
objects called vectors. Vectors are the precise way to describe direc-
tions in space. We need vectors in order to describe physical quantities
like the velocity of an object, its acceleration, and the net force acting
on the object.

Vectors are built from ordinary
numbers, which form the components
of the vector. You can think of a vec- Y
tor as a list of numbers, and vector al-
gebra as operations performed on the s
numbers in the list. Vectors can also
be manipulated as geometrical objects,
represented by arrows in space. The Vs T
arrow that corresponds to the vector
U = (vg,vy) starts at the origin (0,0)
and ends at the point (vg,v,). The
word vector comes from the Latin vehere, which means to carry. In-
deed, the vector ¥ takes the point (0,0) and carries it to the point
(va; vy).

This chapter will introduce you to vectors, vector algebra, and
vector operations, which are very useful for solving physics problems.
What you’ll learn here applies more broadly to problems in computer
graphics, probability theory, machine learning, and other fields of
science and mathematics. It’s all about vectors these days, so you
better get to know them.

121
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(coordinate systems )—( change of basis )

()

have”
~

\ respect to a

have a
length
-
dot product
—_—

vector products _
vectors|
are similarto

Figure 3.1: This figure illustrates the new concepts related to vectors.
As you can see, there is quite a bit of new vocabulary to learn, but don’t
be phased—all-fazed—all these terms are just fancy ways of talking about
arrows.

3.1 Great outdoors

Vectors are directions for getting from point A to point B. Directions
can be given in terms of street names and visual landmarks, or with
respect to a coordinate system.

While on vacation in British Columbia, you want to visit a certain
outdoor location your friend told you about. Your friend isn’t avail-
able to take you there himself, but he has sent you directions for how
to get to the place from the bus stop:

Sup G. Go to bus stop number 345. Bring a compass.
Walk 2 km north then 3 km east. You will find X there.

This text message contains all the information you need to find X.

Act 1: Following directions

You arrive at the bus station, located at the top of a hill. From
this height you can see the whole valley, and along the hillside below
spreads a beautiful field of tall crops. The crops are so tall they
prevent anyone standing in them from seeing too far; good thing you
have a compass. You align the compass needle so the red arrow points
north. You walk 2 km north, then turn right (east) and walk another
3 km. You arrive at X.
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Okay, back to vectors. In this case, the directions can be also
written as a vector d, expressed as:

d= 2km N + 3km E.

This is the mathematical expression that corresponds to the directions
“walk 2 km north then 3 km east.” Here, N is a direction and the
number in front of the direction tells you the distance to walk in that
direction.

Act 2: Equivalent directions

Later during your vacation, you decide to return to the location X.
You arrive at the bus stop to find there is a slight problem. From your
position, you can see a kilometre to the north, where a group of armed
and threatening-looking men stand, waiting to ambush anyone who
tries to cross what has now become a trail through the crops. Clearly
the word has spread about X and constant visitors have drawn too
much attention to the location.

Well, technically speaking, there is no problem at X. The problem
lies on the route that starts north and travels through the ambush
squad. Can you find an alternate route that leads to X7

"Use math, Luke! Use math!"

Recall the commutative property of addition for numbers: a 4+ b =
b+ a. Maybe an analogous property holds for vectors? Indeed, this
is the case:

d= 2kmN+3kmE:3kmE+2kmN.

The N directions and the E directions obey the commutative prop-
erty. Since the directions can be followed in any order, you can first
walk the 3 km east, then walk 2 km north and arrive at X again.

Act 3: Efficiency

It takes 5 km of walking to travel from the bus stop to X, and another
5 km to travel back to the bus stop. Thus, it takes a total of 10 km
walking every time you want to go to X. Can you find a quicker route?
What is the fastest way from the bus stop to the destination?
Instead of walking in the east and north directions, it would be
quicker if you take the diagonal to the destination. Using Pythagoras’
theorem you can calculate the length of the diagonal. When the side
lengths are 3 and 2, the diagonal has length /32 +22 = /9 +4 =
V13 = 3.60555. ... The length of the diagonal route is just 3.6 km,
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Pay careful attention to the dot product and the cross product. Al-
though they’re called products, these operations behave much differ-
ently than taking the product of two numbers. Also note, there is no
notion of vector division.

Vector algebra

Addition and subtraction Just like numbers, you can add vectors
T4+ W = (vg, vy) + (We, wy) = (Vg + Wy, vy + Wy),

subtract them
T— W = (vg,0y) — (Wg, wy) = (Vg — Wy, Uy — Wy),

and solve all kinds of equations where the unknown variable is a
vector. This is not a formidably complicated new development in
mathematics. Performing arithmetic calculations on vectors simply
requires carrying out arithmetic operations on their compo-
nents. Given two vectors, ¥ = (4,2) and @ = (3,7), their difference
is computed as ¥ — @ = (4,2) — (3,7) = (1, -5).

Scaling We can also scale a vector by any number « € R:
atl = (g, avy),

where each component is multiplied by the scaling factor a. Scaling
changes the length of a vector. If a > 1 the vector will get longer, and
if 0 < a < 1 then the vector will become shorter. If « is a negative
number, the scaled vector will point in the opposite direction.

Length A vector’s length is obtained from Pythagoras’ theorem.
Imagine a triangle with one side of length v, and the other side of
length v,; the length of the vector is equal to the length of the trian-
gle’s hypotenuse:

||2:vi+v§ = V]| = /v +vZ.

A common technique is to scale a vector ¥ by the-inverse-ofitslensth
one over its length ﬁ to obtain a unit-length vector that points in

_ (”f “y>
(19l o’ 190 )

Unit vectors (denoted with a hat instead of an arrow) are useful when
you want to describe only a direction in space without any specific
length in mind. Verify that ||9] = 1.

17

the same direction as ¥:

=

0
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Length and direction representation

So far, we’ve seen how to represent a vector in terms of its components.
There is also another way of representing vectors: we can specify a
vector in terms of its length ||7]| and its direction—the angle it make
makes with the z-axis. For example, the vector (1,1) can also be
written as v/2/45°. This magnitude-and-direction notation is useful
because it makes it easy to see the “size” of vectors. On the other
hand, vector arithmetic operations are much easier to carry out in the
component notation. We will use the following formulas for converting
between the two notations.

To convert the length-and-direction
vector [|7]/£6 into an x-component and a y
y-component (ry,7,), use the formulas

r =
7y = |7l cos® and r, = |7 sin6. =3
D>
To convert from component notation ()
(rz,ry) to length-and-direction ||7]|£6, use | r cos %

r= |7 = /72 + 12 and 9=tan‘1<ry) .
: e

Note that the second part of the equation involves the inverse tangent
function. By convention, the function tan™! returns values between
/2 (90°) and —7/2 (—90°). You must be careful when finding the 6
of vectors with an angle outside of this range. Specifically, for vectors
with v, < 0, you must add 7 (180°) to tan='(r,/r,) to obtain the
correct 6.

Unit vector notation

As discussed above, we can think of a vector 7 = (vg,vy,v.) as a
command to “go a distance v, in the z-direction, a distance v, in the
y-direction, and v, in the z-direction.”

To write this set of commands more explicitly, we can use multiples
of the vectors 7, 7, and k. These are the unit vectors pointing in the
x, y, and z directions, respectively:

i=(1,0,0), j=1(0,1,0), and k=(0,0,1).

Any number multiplied by 7 corresponds to a vector with that number
in the first coordinate. For example, 3i = (3,0,0). Similarly, 47 =
(0,4,0) and 5k = (0,0, 5).

In physics, we tend to perform a lot of numerical calculations with
vectors; to make things easier, we often use unit vector notation:

—

Vel + vy ] + vk & U & (Vg, Uy, V).
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The addition rule remains the same for the new notation:

2%+3) + 51—2j = Ti+1j.
—— —— ——
7 (] T+

It’s the same story repeating all over again: we need to add s with
s, and 7s with Js.

Examples
Simple example

Compute the sum § = 474 5/30°. Express your answer in the length-
and-direction notation.

Since we want to carry out an addition, and since addition is per-
formed in terms of the components, our first step is to convert 5/30°
into component notation. We find 545
We can now compute the sum:

§ o= 4i +5%B0i+3) = 4+58)+ (D))

The z-component of the sum is s, = (4+ 5@), and the y-component
of the sum is s, = (%) To express the answer as a length and a

direction, we compute the length [|5]| = /s7 + s2 = 8.697 and the
direction tan~'(s,/s;) = 16.7°. The answer is §= 8.697/16.7°.

Vector addition example

You're heading to physics class after a “safety meeting” with a friend,
and are looking forward to two hours of finding absolute amazement
and awe in the laws of Mother Nature. As it turns out, there is no
enlightenment to be had that day because there is going to be an
in-class midterm. The first question involves a block sliding down an
incline. You look at it, draw a little diagram, and then wonder how the
hell you are going to ﬁnd the net force actmg on the block. The three
forces acting on the block are ¥ v . S
F%%SQ&(%&W =300£ —90°, N = 2604120O and Fy = 504300.
You happen to remember the net force formula:

Z F=F.=mad [ Newton’s 274 Jaw |.

You get the feeling Newton’s 2°¢ law is the answer to all your trou-
bles. You sense this formula is certainly the key because you saw the
keyword “net force” when reading the question, and notice “net force”
also appears in this very equation.
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3.4 Vector products

If addition of two vectors ¢ and w corresponds to the addition of their
components (vz +wy, vy +wy, v, +w;), you might logically think that
the product of two vectors will correspond to the product of their com-
ponents (vywy, vywy, VW, ), however, this way of multiplying vectors
is not used in practice. Instead, we use the dot product and the cross
product.

The dot product tells you how similar two vectors are to each other:

T W= vawy + vywy + v,w, = ||U]]||W] cos(¢) € R,

where ¢ is the angle between the two vectors. The factor cos(yp) is
largest when the two vectors point in the same direction because the
angle between them will be ¢ = 0 and cos(0) = 1.

The exact formula for the cross product is more complicated so I
will not show it to you just yet. What is important to know is that
the cross product of two vectors is another vector:

¥ x @ = { a vector perpendicular to both # and @ } € R3.

If you take the cross product of one vector pointing in the z-direction
with another vector pointing in the y-direction, the result will be a
vector in the z-direction.

Dot product

The dot product takes two vectors as inputs and produces a real
number as output:

R3xR®> — R

The dot product between two vectors can be computed using either
the algebraic formula

V- W = vpwy + vywy + vws,
or the geometrical formula

- = ||0]][[@]] cos(p),

where ¢ is the angle between the two vectors. This-eperation—

The dot_product is also known as the inner product or scalar
product. The name scalar comes from the fact that the result of the
dot product is a scalar number—a number that does not change when
the basis changes.

The-signature-We can combine the al ebraic and the geometric
formulas for the dot product At ‘ ‘ —badkes
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to obtain the

formula
cos(p) = i} . Ui = ela T Sywqi—i_ =1 and @ = cos™ ! (cos(p)).
iyl 15|l

Thus, it’s possible to find the angle between two vectors if we know

their components.
The geometric factor cos(y) depends on the relative orientation of

the two vectors as follows:

e If the vectors point in the same direction, then
cos(p) = cos(0°) = 1 and so ¥ - @ = ||7]|||]|.

e If the vectors are perpendicular to each other, then
cos(p) = cos(90°) = 0 and so ¢ - o = ||¥]|||w]|(0) = 0.

e If the vectors point in exactly opposite directions, then
cos(p) = cos(180°) = —1 and so ¥ - @ = —||¥]|||] .

Cross product

The cross product takes two vectors as inputs and produces another
vector as the output:

x:RExR3 — RS

Because the output of this operation is a vector, we sometimes refer
to the cross product as the vector product.
The cross products of individual basis elements are defined as fol-
lows:
ixi=k, jixk=1 kxi=}
The cross product is anti-symmetric in its inputs, which means swap-
ping the order of the inputs introduces a negative sign in the output:

ixi=—k, kxj=—i, ixk=—]

I bet you had never seen a product like this before. Most likely, the
products you’ve seen in math have been commutative, which means
the order of the inputs doesn’t matter. The product of two numbers is
commutative ab = ba, and the dot product is commutative @-v = v-1,
but the cross product of two vectors is non-commutative i X j # 7 X 1.

For two arbitrary vectors & = (a,, ay,a;) and b= (bs, by, b, ), the
cross product is calculated as

axb= (ayb, — azby, azby —azb,, azb, —ayby).
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The cross product’s output has a length that is proportional to the
sin of the angle between the vectors:

1@ > bl = [|all[|b] sin(p)-

-

The direction of the vector (& x b) is perpendicular to both @ and b.

The right-hand rule

Consider the plane formed by the vectors @ and b, There are
actually two vectors that are perpendicular to this plane: one above
the plane and one below the plane. We use the right-hand rule to
figure out which of these vectors corresponds to the cross product

When your index finger points in the same direction as the vector
d_and your middle finger points in_the direction of b, your thumb

will point in the direction of @ x b. The relationship encoded in the
right-hand rule matches the relationship between the standard basis

¢6x5

{
1) \/
=/

)

i
<
b
&«

[ A nice illustration of the cross product |
http://lucasvb.tumblr.com/post/76812811092/

3.5 Complex numbers

By now, you’ve heard about complex numbers C. The word “complex”
is an intimidating word. Surely it must be a complex task to learn
about the complex numbers. That may be true in general, but it
helps if you know about vectors. Complex numbers are similar to two-
dimensional vectors ¥ € R2. We add and subtract complex numbers
like vectors. Complex numbers also have components, length, and
“direction.” If you understand vectors, you will understand complex
numbers at almost no additional mental cost.
We'll begin with a practical problem.
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Example

Suppose youare-re asked to solve the following quadratic equation:
22 +1=0.

You're looking for a number z, such that 22 = —1. If you are only
allowed to give real answers (the set of real numbers is denoted R),
then there is no answer to this question. In other words, this equation
has no solutions. Graphically speaking, this is because the quadratic
function f(z) = 2% +1 does not cross the x-axis.

However, we're not g ot e s
&MQL@&@W&J@WM&@&%&
Wmmagme a new number ealled— that satisfies i
—1. We call ¢ the unit imaginary number. The solutions to the
equation are therefore 1 = ¢ and x5 = —i. There are two solutions
because the equation was quadratic. We can check that 2 + 1 =
—1+1=0andalso (—i)2+1=(-1)?2+1=42+1=0.

Thus, while the equation z? + 1 = 0 has no real solutions, it
does have solutions if we allow the answers to be eemplex-imaginary

numbers.

Definitions
Complex numbers have a real part and an imaginary part:

e i: the unit imaginary number i = \/—1 or i2 = —1

e bi: an imaginary number that is equal to b times ¢

o R: the set of real numbers

o C: the set of complex numbers C = {a + bi | a,b € R}

e z = a+ bi: a complex number

Re{z} = a: the real part of z

Im{z} = b: the imaginary part of z

Z: the complex conjugate of z. If z = a + bi, then z = a — bi.

The polar representation of complex numbers:
o=z = |21£0: = |z cos . izl sing,

o |z| = VZz = Va2 + b2: the magnitude of z = a + bi

o dr=tan—{b/a)—thephase—p. = tan"(b/a): the phase or

arqument of z =a+bi
=teteesoRe{z} = |2[cos .

h&%—%%&ﬂi&h:ﬂim
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Formulas
Addition and subtraction

Just as we performed the addition of vectors component by compo-
nent, we perform addition on complex numbers by adding the real
parts together and adding the imaginary part-parts together:

(a+bi)+ (c+di) = (a+c)+ (b+d)i.

Polar representation

We can give a geometrical interpretation of the complex numbers by
extending the real number line into a two-dimensional plane called the
complex plane. The horizontal axis in the complex plane measures the
real part of the number. The vertical axis measures the imaginary
part. Complex numbers are vectors in the complex plane.

It is possible to represent any com-
plex number z = a + bi in terms of its

magnitude and its phase: I

. . z=a+bi
z = |z|Zp, = |z|cos . + |z| sin g, . bt-------
a
|
. || ‘
The magnitude of a complex number }
z=a+biis !
Pz
|z| = Va2 + b2. (‘1 Re
0

This corresponds to the length of the
vector whieh-that represents the com-
plex number in the complex plane. The formula is obtained by using
Pythagoras’ theorem.

The phase, also known as the arqument of the complex number is:
zzatbils

@, =argz = atan2(b,a) = tan"'(b/a).

The phase corresponds to the angle z forms with the real axis.

Note the equality labelled ' is true only when a > 0, because the

function tan~' always returns numbers in the range [—Z. Z]. Manual

corrections of the output of tan”'(b/a) are required for complex
numbers with a < 0.

Some programming languages provide the 2-input math function
atan2(y,x) that correctly computes the angle the vector (z,y) makes
VMMMWWWWMM%&WM&Q
2-dimensional vectors so you can use atan2 to compute their phase.
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3.5 COMPLEX NUMBERS 139

Complex numbers have vector-like properties like magnitude and

hase, but we can also do other operations with them that are not
defined for vectors. The set of complex numbers C is a field. This

means, in addition to the addition and subtraction operations, we
can also perform multiplication and division with complex numbers.

Multiplication

The product of two complex numbers is computed using the usual
rules of algebra:

(a4 bi)(c+ di) = (ac — bd) + (ad + be)i.
In the polar representation, the product formula is
(p£¢)(a£2) = paZ(d + ).

To multiply two complex numbers, multiply their magnitudes and add
their phases.

Cardane’s-exampleDivision
Let’s look at the procedure for dividing complex numbers:

(a+bi) (a+bi)(c—di) 0t bi
(ctdi) (et di)(c—a) att)

(c —di) L ctdi

(@ +d?) (a+bi) lc+ dif?”

In other words, to divide the number z by the complex number s

compute § and |s|® = s5 and then use

s

z/5:z|8|2.

1

You can think of 5= as being equivalent to s~ '.

Cardano’s example One of the earliest examples of reasoning in-
volving complex numbers was given by Gerolamo Cardano in his 1545
book Ars Magna. Cardano wrote, “If someone says to you, divide 10
into two parts, one of which multiplied into the other shall produce
40, it is evident that this case or question is impossible.” We want to
find numbers x1 and x2 such that z1 + 22 = 10 and x129 = 40. This
sounds kind of impossible. Or is it?
“Nevertheless,” Cardano said, “we shall solve it in this fashion:

r1 =5+ V151 and z9 =5 — V1547
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When you add z; + x5 you obtain 10. When you multiply the two
numbers the answer is

T1X9 = (5 + \/E’L> (5 - \/EZ)
— 25 — 5v/15i + 5v/15i — V15 4% = 25 + 15 = 40.

Hence 5 + v/157 and 5 — v/15¢ are two numbers whose sum is 10 and
whose product is 40.

Fraensle

Compute the product of ¢ and —1. Both ¢ and —1 have a magni-
tude of 1 —but different phases. The phase of i hasphase-is T (90°),

while —1 has phase m (180°). Censider—the-The product of these two
numbers s _
(i)(-1) = (1£5)(14m) = 1L(5+7) = 143 = —i.

Multiplication by ¢ is effectively a rotation by 96-degreesleftwardy
90°) to the left.

Im

0
1
T
z=-3—1
Find the polar representation of z = —3 — 4 and compute 2
Let’s — e :

f%&b&%em
of z by H&e—eemple)eﬁmﬂber—s—ee}ﬂpﬂ%e—%?,'*ré We ﬁnd

=+/324+12 = /10 and }s . ‘
a&bemgeqtmtaleﬂt—%e—a— —tan11 + 1 =0.322 4 7.

Using the polar representation, we can easily compute 2°:
28 =r6/(6¢) = (V10)526(0.32247) = 10°£1.932+67 = 103/1.932.

Note we can ignore multiples of 27 in the phase. In component form
25 is equal to 1000 cos(1.932) + 1000sin(1.932)i = —353.4 + 935.54.

Fundamental theorem of algebra
The solutions to any polynomial equation @g—+er&—+———aa="0

aotazt ot anz! =0 are of the form
z =a+ bi.
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In other words, any polynomial P(z) of n'" degree can be written as
Plz)=(x—z1)(x —22) - (x — zp),

where z; € C are the polynomial s complex roots. Before today, you
might have said the equation 22 + 1 = 0 has no solutions. Now you
know its solutions are the complex numbers z; = i and 2o = —1.

The theorem is “fundamental” because it tells us we won't ever

need to invent any ‘fancier” set of numbers to solve polynomial
equations.  Recall that each set of numbers is associated with a
different_class_of equations. The natural numbers N appear as
solutions of the equation m +n =z, where m and n are natural
numbers_(denoted m,n € N).  The integers 7 are the solutions to
equations of the form x +m = n, where m.n €N, The rational
numbers Q are necessary to solve for « in mx = n. with m,n € Z. To
find the solutions of 22 = 2, we need the real numbers R, The process
of requiring new types of numbers for solving more complicated types
of equations stops at C: any polynomial equation —no matter how
complicated it ishas solutions that are complex numbers C.

Euler’s formula

You already know cos 6 is a shifted version of sin 6, so it’s clear these
two functions are related. It turns out the exponential function is also
related to sin and cos. Lo and behold, we have Euler’s formula:
e = cosf +isind.

Inputting an imaginary number to the exponential function outputs
a complex number that contains both cos and sin. Euler’s formula
gives us an alternate notation for the polar representation of complex
numbers: z=1}zlLd—=tzlel%y = |2|Lp, = |2]ei?=.

If you want to impress your friends with your math knowledge,
plug # = 7 into the above equation to find

e'™ = cos(m) + isin(r) = —1,
which can be rearranged into the form, e™ 4+ 1 = 0. This equation
shows a relationship between the five most important numbers in all
of mathematics: Euler’s number e = 2.71828 ..., m = 3.14159.. ., the
imaginary number 4, 1, and zero. It’s kind of cool to see all these
important numbers reunited in one equation, don’t you agree?

De Moivre’s theorem

By replacing 6 in Euler’s formula with nf, we obtain de Moivre’s
theorem:
(cos @ +isinf)" = cosnf + isinnb.
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De Moivre’s Theorem makes sense if you think of the complex number
z =€ = cosf + isin6, raised to the n'" power:

(cosf 4 isinh)” = 2" = (e)" = €™ = cosnb + i sin nd.

Setting n = 2 in de Moivre’s formula, we can derive the double angle
formulas (page 73) as the real and imaginary parts of the following
equation:

(cos? @ — sin? §) + (2sin  cos )i = cos(26) + sin(26)i.

Links

[ Mini tutorial on the complex numbers |
http://paste.lisp.org/display /133628
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Concepts

The basic concepts of kinematics in two dimensions are:

e I.7: the xy-coordinate system

e t: time, measured in seconds

o 7(t) = (x(¢),y(t)): the position vector of the object at time ¢
o (t) = (v2(t),vy(t)): the velocity vector of the object

o d(t) = (agy(t),ay(t)): the acceleration vector of the object

We will use the following terminology when analyzing the motion of
an object that starts from an initial peint—position and travels to a
final position:

e t; = 0: the initial time

e t¢: the final time

o U; = (v3(0),vy(0)) = (viz, viy): the initial velocity at t = 0
o 7 = (2(0),y(0)) = (zi,v;): the initial position at t =0

o iy =7(ty) = (x(ty),y(ty)) = (xf,ys): the position at t =t

Definitions
Motion in two dimensions

We use the position vector 7(¢) to describe the = and y coordinates
of the projectile as a function of time:

We use x to describe the horizontal distance travelled by the projectile
and y to describe the height of the projectile.
The velocity of the projectile is the derivative of its position:

i10) = 5 710 = (5 ) = wute). 0,0

The initial velocity is an important parameter of the motion:
7(0) = (v2(0),v,(0)) = (viz, viyy) = ([|Vi| cos 0, || 7| sin €) = ||7:]| £6.

The initial velocity vector can be expressed as components (vig, viy),
or in the length-and-direction form ||;||£6, where 6 measures the
angle between v; and the z-axis.

Fhe-On Earth, the acceleration of the projectile is

d

d(t) = - (U(t)) = (as(t), ay(t)) = (0, ~9.81).
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You flick r» with yew—your finger at an initial velocity of v; =
(10.5,0)[m/s| and the—partiele-it flies straight into the garbage bin.
Success!

Freedom and democracy

An American F-18 is flying above Iraq. It is carrying two bombs.
One bomb is named “freedom” and weighs 200[kg]|; the other is called
“democracy” and packs-a—mass-of-weighs 500[kg]. If the plane is flying
horizontally with speed v; = 300[m/s] and drops both bombs from a
height of 2000[m], how far will the-bombstravel-before-theyhit-each
bomb travel horizontally before it hits the ground? Which city will
get freedom and which city will get democracy?
The equations of motion for the bombs are

z(t) = vigt + x; = 300t + 0
and
y(t) = 2(—9.81)t% + vyt + y; = —4.9t% + 2000.

To find where the bombs will land, the first step is to calculate the
time of flight. We solve for ¢; in the equation y(t;) = 0 and find
t; = 20.20[s]. We can then find the final z-position where the bombs
hit the ground from the first equation: z; = 2(20.20) = 6060[m].
Both bombs hit the same-town—+the-one-point located 6.06[km| from
the launch point. Observe that the bombs’ masses did not play any
part in the final-equations of motion.

Let’s be real. The scenario at hand is essentially what the people
in Washington are talking about when they say they are bringing free-
dom and democracy to the Middle East. A monstrous amalgamation
of warmongering corporations, weak politicians, and special-interest
lobby groups make a complete mockery of the political process. In
order to see an end to world conflict, I think the entire military-
industrial complex needs to be dismantled. How can we stop them,
you ask? In my opinion, the best way to fight the System is not to
work for the System. If some recruiters from that sector comes to
offer you a job one day because you’re a math expert, tell them to
scram.

Interception

With all those people launching explosive projectiles at each other,
a need develops for interception systems that can throw counter-
projectiles at the incoming projectiles and knock them out of the
air.
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Normal force

The normal force is the force between two surfaces in contact. In this
context, the word normal means “perpendicular to the surface of.”
The reason my coffee mug is not falling to the floor right now is that
the table exerts a normal force N on the mug, keeping it in place.

Force of friction

In addition to the normal force between surfaces, there is also the
force of friction F 'r, which acts to impede any sliding motion between
the surfaces. There are two kinds of friction forces, and both are
proportional to the amount of normal force between the surfaces:

max{Fr,} = ps||N|| (static), and Fy = u||[N|| (kinetic),

where (15 and py, are the static and dynamiekinetic friction coeffi-
cients. It makes sense that the force of friction should be propor-
tional to the magnitude of the normal force | N, since the harder the
two surfaces push against each other, the more difficult it becomes to
make them slide. The above equations give mathematical precision
to this intuitive logic.

The static force of friction acts on objects that are not moving. It
describes the mazimum amount of friction that can exist between two
objects. If a horizontal force greater than Fy, = pe/N is applied to
the object, then it will start to slip. The kinetic force of friction acts
when two objects are sliding relative to each other. It always acts in
the direction opposite to the motion.

Tension

A force can also be exerted on an object remotely by attaching a rope
to the object, and pulling the rope. The force exerted on the object
will be equal to the rope’s tension T. Note that tension always pulls
away from an object: you can pull but you can’t push a dog by its
leash.

Discussion

Viewing the interactions between objects in terms of the forces that
act between them gives us a powerful tool for thinking and analyzing
physics problems. The following section shows you how to draw force
diagrams that account for all the forces acting on an object.
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Formulas
Newton’s 2™ law

The net force Foe is the sum of the forces acting on an object—.

Assuming the object is rigid, the location where the forces act on the
object is not important, so we can assume all forces act at the object’s

centre of mass.

The net force acting on an object, divided by the object’s mass,

gives the acceleration of the object:
> F = Foop = md. (4.7)

Vector components

If a vector v makes an angle 6 with the x-axis, then
vz = ||U|| cos 8 and vy = ||¥]| sin 6.

The vector v,? corresponds to the part of ¢ that points in the z-
direction.
Shortly, I'll be asking you over and over again to

find the component of F in the ? direction,

which is another way of asking you to find the number v-.

The answer is usually equal to the length || F|| multiplied by either
cos or sin or sometimes —1, depending on way the coordinate
system is chosen. So don’t guess. Look at the coordinate system.
If the vector points in the direction where z increases, then v, should
be a positive number. If ¥ points in the opposite direction, then v,
should be negative.

To add forces F; and ﬁg, you need to add their components:

ﬁ1+ﬁ2:(FlzaFly)+(Flz7F2y):(F11+F217F1y+F2y):ﬁnet~

However, instead of dealing with vectors in the bracket notation, when
solving force diagrams it is easier to simply write the z equation on
one line, and the y equation on a separate line below it:

Fnct,x = Fl:E +F2£E7

Fnet,y = Fly + F2y~

It’s a good idea to always write those two equations together as a
block, so it’s clear the first row represents the x dimension and the
second row represents the y dimension for the same problem.
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Other types of problems

Each of the previous examples asked you to find the acceleration, but
sometimes a problem might give you the acceleration and ask you
to solve for a different unknown. Regardless of what you must solve
for, you should always start with a diagram and a sum-of-the-forces
template. Once these equations are in front of you, you’ll be able to
reason through the problem more easily.

Experiment

You remove the spring from a retractable pen, and from the spring you
suspend an object of known mass—say a 100[g| chocolate bar. With
a ruler, you measure how much the spring stretches in the process.
What is the spring constant k7

Discussion

In previous sections we discussed the kinematics problem of finding
an object’s position x(t) given its acceleration function a(t), and given
the initial conditions x; and v;. In this section we studied the dynam-
ics problem, which involves drawing force diagrams and calculating
the net force acting on an object. Understanding these topics means
you fully understand Newton’s equation F' = ma, which is perhaps
the most important equation in this book.

We can summarize the entire procedure for predicting the position
of an object z(t) from first principles in the following equation:

1 _, —» . T+ [dt it fdt
- (ZF - Fmt) —at) " sy " .
dyna'mics kinematics

The left-hand side calculates the net force acting on an object, which
is the cause of acceleration. The right-hand side indicates how we can
calculate the position vector 7(t) starting from the acceleration and
the initial conditions. If you know the forces acting on any object
(rocks, projectiles, cars, stars, planets, etc.) then you can predict the
object’s motion using this equation, which is pretty cool.

So far we discussed one approach for analyzing the motion of objects.
Calculating the forces and the acceleration of objects, then using
integration to find the position function 7(t) is a very useful approach.
for solving physics problems, There are several other ways of looking.
at the motion of objects that are equally useful and provide us with
different insights. In the next two sections, we’ll discuss how to model
physical situations in terms of momentum and energy.
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4.5 Momentum

A collision between two objects creates a sudden spike in the contact
force between them, which can be difficult to measure and quantify.
It is not possible to use Newton’s law F' = ma to predict the accel-
erations that occur during collisions. To predict the motion of the
objects after the collision, we need a momentum calculation. Accord-
ing to the law of conservation of momentum, the total amount of
momentum before and after the collision is the same. Once we know
the momenta of the objects before the collision, it becomes possible to
calculate their momenta after the collision, and from this determine
their subsequent motion.

To illustrate the importance of momentum, consider the follow-
ing situation. Say you have a 1[g| pieee—of-paper—paper ball and a
1000[kg] car moving at the same speed of 100[km/h]. Which of the
two objects would you rather be hit by? Momentum, denoted p; is
the precise physical concept that measures the quantity of motion. An
object of mass m moving with velocity ¢ has a momentum of p'= mv.
Momentum plays a key role in collisions. Your gut feeling about the
piece of paper and the car is correct. The car weighs 1000 x 1000 = 10°
times more than the piece of paper, so the car has 10 times more
momentum when moving at the same speed. Colliding with the car
will “hurt” one-million times more than colliding with the piece of
paper, even though both objects approach have-at the same velocity.

In this section, we’ll learn how to use the law of conservation of
momentum to predict the outcomes of collisions.

Concepts

e m: the mass of the moving object
e v: the velocity of the moving object
e p'=m: the momentum of the moving object

® > pin: the sum of the momenta of particles before a collision

> Pout: the sum of the momenta of particles after a collision

Definition

The momentum of a moving object is equal to the velocity of the
object multiplied by its mass:

p=mv kg m/s]. (4.8)

If an object’s velocity is ¥ = 20i = (20, 0)[m/s] and its mass is 100[kg],
then its momentum is p'= 20007 = (2000, 0)[kg m/s].
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learn the rules for converting one energy into another. The key idea
to keep in mind is the principle of total energy conservation, which
says that in any physical process, the sum of the initial energies is
equal to the sum of the final energies.

Example

You drop a ball from a height hlm] and want to predict its speed
just before it hits the ground. Through the kinematics approach, you
would set up the general equation of motion,

v)% =} + 2a(ys — yi),

substitute y; = h, yy = 0, v; = 0, and a = —g, and solve for the ball’s
final veloeity-speed at impact vy. The answer is vy = v/2gh[m/s].

Alternately, we can use an energy calculation. The ball starts from
a height h, which means it has U; = mgh[J] of potential energy. As
the ball falls, potential energy is converted into kinetic energy. Just
before the ball hits the ground, its final kinetic energy is equal to the
initial potential energy: Ky = U;. Since the formula for kinetic energy
is K = $mv?[J], we have %mv? = mgh. We cancel the mass on both
sides of the equation and solve for v; to obtain vy = \/2gh[m/s|.

Both methods of solving the example problem lead us to the same
conclusion, but the energy reasoning is arguably more intuitive than
blindly plugging values into a formula. In science, it is really impor-
tant to know different ways of arriving at the same answer. Knowing
about these alternate routes will allow you to check your answers and
better understand concepts.

Concepts

Energy is measured in Joules [J] and it arises in several contexts:

e K = kinetic energy: the type of energy objects have by virtue
of their motion

e W = work: the amount of energy an external force adds or
subtracts from a system. Positive work corresponds to energy
added to the system while negative work corresponds to energy
withdrawn from the system.

e U, = gravitational potential energy: the energy an object
has by virtue of its position above the ground. We say this
energy is potential because it is a form of stored work. Potential
energy corresponds to the amount of work the force of gravity
will add to an object when the object falls to the ground.
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Kinetic energy

A moving object has energy K = $m/|7]|?[J], called kinetic energy
from the Greek word for motion, kinema.

Note that velocity ¥ and speed ||¥]| are not the same as energy.
Suppose you have two objects of the same mass, and one is moving
two times faster than the other. The faster object will have twice the
velocity of the slower object, and four times more kinetic energy.

Work

When hiring movers to help you move, you must pay them for the
work they do. Work is the product of the amount of force needed for
the move and the distance of the move. When the move requires a
lot of force, more work will be done. And the bigger the displacement
(think moving to the South Shore versus moving next door), the more
money the movers will ask for.

The amount of work done by a force F on an object that moves
along some path p is given by

W= /ﬁ(x) -dz.

The integral aceeunt-accounts for the fact that the force’s magnitude
and direction might change along the path of motion.

If the force is constant and the displacement path is a straight
line, the formula for work simplifies to

d d
W:/ F-df:F-/ 5= F.d=|F|dlcoss.  (4.11)
0 0

Note the use of the dot product to obtain only the part of F that
is pushing in the direction of the displacement d. A force that acts
perpendicular to the displacement produces no work, since it neither
speeds nor slows the object’s motion.

Potential energy is stored work

Some kinds of work are just a waste of time, like working at a job
you despise. You work and you get your paycheque, but you don’t
learn anything useful at the end of the day. Other kinds of work leave
you with some useful resource at the end of the work day—they grow
your human potential.

In physics, we make a similar distinction. Some types of work, like
work against friction, are called dissipative since they simply waste
energy. Other kinds of work are called conservative since the work
performed isn’t lost but converted into potential energy.
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higher at (A) than it is at (B), so we write
. 1,
0+ mgly;|sind = 2MVE +0.

In the formula above, we assume the block has zero gravitational
potential energy at point (B). The potential energy at point (A) is
U; = mgh = mgly; — 0|sin @ relative to point (B), since point (A) is
h = |y; — 0| sin @ metres higher than point (B).

Solving for vp in this equation answers the first part of our ques-

tion:
vp = v/ 2g|y;| sin 6.

Now for the second part of the block’s motion. The law of conservation
of energy dictates that

Ki+Ugi+Usi :Kf+Ugf+U3f,

where ¢ now refers to the moment (B), and f refers to the moment (C).
Initially the spring is uncompressed, so Us; = 0. By the end of the
motion, the spring is compressed by a total of Ay = |y —0|[m], so its
spring potential energy is Uy = $k|yy|2. We choose the height of (C)
as the reference potential energy; thus U,r = 0. Since the difference
in gravitational potential energy is Uy, — Ugy = mgh = |y; — 0| siné,
we can complete the entire energy equation:

1 1
imv% + mglys|sind +0=0+0+ §k|yf|2.

Assuming the values of k and m are given, and knowing vg from the
first part of the question, we can solve for |ys| in the above equation.

To obtain the answer |y/| in terms of Ah, we'll use Y E; = > Ey
again, but this time ¢ will refer to moment (A) and f to moment (C).
The conservation of energy equation tells us mgAh = %k|yf|, from

which we obtain |ys| = %-

Energy lost to friction

You place a block of mass 50[kg| on an incline. The force of friction
between the block and the incline is 30[N|. The block slides for 200[m)]
down the incline. The incline’s slope is § = 30° making the block’s to-
tal vertical displacement 206-sin-36-=166200sin 30° = 100[m|. What
is the block’s speed as-it—reachesthe-bottom—of-the-after sliding for
200[m] down the incline?

This is a problem in which initial energies are converted into a
combination of final energies and lost work:

> Ei=) Ef+Wis.
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The term Wj,s represents energy lost due to friction.
A better way of describing this situation is that a negative
amount of work is done on the block:

ZE1+ Wdone = ZEf

negative

The quantity Wyene is negative because the friction force acts on the
object in the opposite direction of the object’s motion:

Waone = F - d = || Fy|||d]| cos(180°) = —Fy/|d],

where @E[J\CZ[L is the sliding distance of 200[m] over which the friction
acts.

We substitute the value of Wyone into the conservation of energy
equation:

K; +U; + Waone = Kf + Ufa

1
0+ mgh + (—Fy|d|) = imv? +0.

Note we used the formula mgh = U; — Uy for the difference in gravi-
tational potential energy.

Since we're told Fy = 30[N], we can calculate Waone = Whriction =
—30[N] x 200[m] = —6000[J]. Substituting all known values, we find

1
050 x 9.81 x 100 — 6000 = 2 (50)u7 +0,

which we can solve for vy.

Discussion

It’s useful to describe physical situations in terms of the energies
involved. The law of conservation of energy allows us to use sim-
ple “energy accounting” principles to calculate the values of unknown
quantities.

4.7 Uniform circular motion

This section covers the circular motion of objects. Circular motion
differs from linear motion, and we’ll need to learn new techniques and
concepts specifically used to describe circular motion.

Imagine a rock of mass m attached to the end of a rope and swing-
ing around in a horizontal circle. The rock flies through the air at a
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Moment of inertia

An object’s mementwm-moment of inertia describes how difficult it is
to cause the object to rotate:

I = { how difficult it is to make an object turn }.

The calculation describing the moment of inertia accounts for the

mass distribution of the object. An object with most of its mass close

to its centre will have a smaller moment of inertia, whereas objects

with masses far from their centres will have larger moments of inertia.
The formula for calculating the moment of inertia is

I = Zmir? :/ r? dm [kg m?).

bj

The contribution of each piece of the object’s mass dm to the total
moment of inertia is proportional to the squared distance of that piece
from the object’s centre, hence the units [kg m?].

We rarely use the integral formula to calculate objects’” moments
of inertia. Most physics problems you’ll be asked to solve will involve
geometrical shapes for which the moment of inertia is given by simple
formulas:

Idisk = %mPE, Iring = mR2> Isphere = ng27 Isph‘shell = %mRQ
When you learn more about calculus (Chapter 5), you will be able
to derive each of the above formulas on your own. For now, just try
to remember the formulas for the inertia of the disk and the ring, as
they are likely to show up in problems.

The quantity I plays the same role in the equations of angular
motion as the mass m plays in the equations of linear motion.

Torques cause angular acceleration

Recall Newton’s second law F' = ma, which describes the amount
of acceleration produced by a given force acting on an object. The
angular analogue of Newton’s second law is expressed as

T =Io. (4.13)

This equation indicates that the angular acceleration produced by the
torque 7 is inversely proportional to the object’s moment of inertia.
Torque is the cause of angular acceleration.



DIFFCHANGE


DIFFCHANGE


4.8 ANGULAR MOTION 199

To solve this kinematics problem, we’re looking for the angular
acceleration produced by the brake. We can find it with the equation
T = Ia. We need to find 7 and Igisx and solve for . The torque
produced by the brake is calculated using the force-times-leverage for-
mula: F=Fr=60x03=187 = Fr =60 x 0.3 = 18]N-m|. The
moment of inertia of a disk is given by Igi = 3mR? = 3(20)(0.3)2 =
0.9lkg m?]. Thus we have e-=20q = —3% = —20[rad/s?]. Now we
can use the UAM formula for angular velocity w(t) = at + w; and
solve for the time when the object’s motion will stop: 0 = at + w;.

The disk will come to a stop after t=w/e=1t = —w;/a = 1[s].

Combined motion

A pulley of radius R and moment of inertia I has a rope wound around
it. At the end of the rope is attached a rock of mass m. What will be
the angular acceleration of the pulley if we let the rock drop to the
ground while unwinding the rope?

A force diagram of the rock tells us that mg —T' = ma, (where g
points downward). A torque diagram of the disk tells us that TR =
Ia. Taking the product of R times the first equation and adding it
to the second equation gives us

R(mg —T)+ TR = Rma, + Ia,
and after simplification we’re left with
Rmg = Rmay + ILa.

Additionally, since we know the rope forms a solid connection between
the pulley and the rock, this means that the angular acceleration of
the pulley is related to the linear acceleration of the rock: Ra = a,,.
We can use this relationship between the variables a, and « to obtain
an equation with only one unknown. We substitute Ra for a, in the
above equation to obtain

Rmg = Rm(Ra) + Ia = (R*m + I)a.

Solving for a we find
Rmg
o= ="
RPm+1
This answer makes sense intuitively. From the rotating disk’s point
of view, the cause of rotation is the torque produced by the falling
mass, while the denominator represents the total moment of inertia
for the mass-pulley system as a whole.
The vertical acceleration of the falling mass is obtained via a, =

Ra:
R%myg mg
ay, = = .
Y RPm+1 m + #
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seconds. Look carefully at the plot of the function cos(t). As t goes
from t = 0 to t = 27, the function cos(t) completes one full cycle. We
say the period of cos(t) is T = 2.

Input-scaling

If we want to describe a periodic motion with a different period, we
can still use the cos function, but inside the cos function we must
include a multiplier before the variable ¢. This multiplier describes
the angular frequency and is denoted w (omega). The input-scaled
cos function

f(t) = cos(wt)

has a period of T' = 27”

Scaling the input of the cos function by the constant w = 2%
produces a periodic function with period 7. When you vary ¢ from
0 to T, the quantity wt goes from 0 to 27, so the function cos(wt)
completes one cycle. You shouldn’t just take my word for this; try it
yourself by building-drawing a cos function with a period of 3 units.

The frequency of periodic motion describes the number of times
per second the motion repeats. A-metion’s"The frequency is equal to
the inverse of #s-the period:

1

w
f:T:%[HZ].

Frequency f and angular frequency w are related by a factor of 2. We
need this multiplier since the natural cycle length of the cos function
is 27 radians.

Output-scaling

We can scale the output of the cos function by a constant A, called
the amplitude. The function

f(t) = Acos(wt)

will oscillate between —A and A.

Time-shifting

The motion described by the function A cos(wt) starts from its maxi-
mum value at ¢ = 0. A mass-spring system described by the position
function z(t) = A cos(wt) begins its motion with the spring maximally
stretched x; = z(0) = A.
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If we want to describe other starting positions for the motion, it
may be necessary to introduce a phase shift inside the cos function:

z(t) = Acos(wt + ).

The constant ¢ must be chosen so that at ¢ = 0, the function x(t)
correctly describes the initial position of the system.

For example, if the harmonic motion starts from the system’s
centre x; = z(0) = 0 and initially moves in the positive direction,
then the motion is described by the function Asin(wt). Or, since
sin(f) = cos(f — %), we can describe the same motion in terms of a

2
shifted cos function:

x(t) = Acos(wt — g) = Asin(wt).

Note, the function z(t) correctly describes the system’s initial position
x(0) =0.
By now, the meaning of all the parameters in the simple harmonic

motion equation should be clear to you. The constant in front of the
cos tells us the motion’s amplitude A, and the multiplicative constant

w inside the cos is related to the motion’s period/frequency: w =
2% = 2nf. Finally, the additive constant q’) is chosen dependlng on
the 1n1t1a1 condltlons

Mass and spring

Okay, it’s time to apply all this math to a physical system which
exhibits simple harmonic motion: the mass-spring system.

An object of mass m }rrattached to a sprlng with spring constant
k—H-, when disturbed from rest, this : 8 will undergo
snnple harmonic motion with angular frequency e#

k
w=1/—. 4.16
- (116)
A stiff spring attached to a small mass will result in very rapid oscil-
lations. A weak spring or a heavy mass will result in slow oscillations.
A typical exam question may tell you k and m and ask about the
period T'. If you remember the definition of T, you can easily calculate

the answer:
2 m
T=—=2m]—.
w T k
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Equations of motion

The general equations of motion for the mass-spring system are

z(t) = Acos(wt + ¢), (4.17)
v(t) = —Awsin(wt + ¢), (4.18)
a(t) = —Aw? cos(wt + ). (4.19)

The general shape of the function x(t) is similar to that of a cos func-
tion. The angular frequency w parameter is governed by the physi-
cal properties of the system. The parameters A and ¢ describe the
specifics of the motion, namely, the amplitude of the oscillation and
its starting position.

The function v(t) is obtained, as usual, by taking the derivative
of 2(t). The function a(t) is obtained by taking the derivative of v(t),
which corresponds to the second derivative of x(t). The velocity and
acceleration are also periodic functions.

Motion parameters

The key motion parameter of SHM is how far the mass swings back
and forth through the centre position. The amplitude A describes the
maximum distance the mass will travel in the positive x-direction.

We can also find the maximum values of an object’s velocity and
acceleration by reading the coefficient located in front of sin and cos
in the functions v(t) and a(t).

e The object’s maximum velocity is vypax = Aw.
o The object’s maximum acceleration is amax = Aw?.

The velocity function reaches its maximum as the object passes
through the centre position. The acceleration is maximum when the
spring is maximally stretched or compressed—these are the locations
where the pull of the spring is the strongest.

You’ll definitely be asked to solve for the quantities vyax and amax
in exercises and exams. This is an easy task if you remember the
above formulas and you know the values of the amplitude A and the

angular frequency w. Note the term amplitude applies more generally
Vo = Aw s the amplitude of the velocity and tumay = Aw? is the
amplitude of the acceleration,

Energy

The potential energy stored in a spring that is stretched or compressed
by a length z is given by the formula U, = ka?. Since we know (%),



DIFFCHANGE


DIFFCHANGE


DIFFCHANGE


DIFFCHANGE


DIFFCHANGE


210 MECHANICS

as w = 2%7 so the angular frequency for the pendulum is
2 g
=— =4/=. 4.20
W= 7 (4.20)

Instead of describing the pendulum’s position = with respect to
GCartesian—eoordinate-the xy-coordinate system, we describe its po-
sition in terms of the angle 6 it makes with the vertical line that
passes through the centre of the motion. The equations of motion
are described in terms of angular quantities: the angular position
0, the angular velocity wyg, and the angular acceleration gy of the

pendulum:
0(t) = Omax cos(\/gt + QS) ,
_ 9 9
wy(t) = Hmax\/; sln(\/;t + qb) ,
_ 9 of 19
ap(t) = Gmaxg cos<\/;t + qb) .

The angle 0.« describes the maximum angle to switeh—which the
pendulum swings. Notice the new variable name wy we use for the
pendulum’s angular velocity wp(t) = 4(6(t)). The angular velocity
wp of the pendulum should not be confused with the angular frequency
w = \/g of the periodic motion, which is the constant inside the cos

function.

Energy

A pendulum’s motion is best understood by imagining how the energy
in the system shifts between gravitational potential energy and kinetic
energy.

The pendulum reaches its maximum potential
energy when it swings sideways to reach angle
Omax- At this angle, the mass’s vertical position
is increased by a height h above the mass’s lowest
point. We can calculate h as follows: O

h=4/0—/{cosOpax.

£ cos Omax

The maximum gravitational potential energy of
the mass is therefore

Ug.max = mgh = mgl(1 — cos Omax)-
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By the conservation of energy principle, the pen-
dulum’s maximum kinetic energy must equal its
maximum gravitational potential energy:

1
mgg(l — CO8 amax) = Ug,max = Knax = imvfnax’

where vpax = fwg is the linear velocity of the mass as it swings
through the wvertieal-centre position.

Explanations

It’s worthwhile to understand where the simple harmonic motion
equation comes from. In this subsection, we’ll discuss how the equa-
tion z(t) = A cos(wt+¢) is derived from Newton’s second law F' = ma
and the equation for the force of a spring Fy = —kx.

Trigonometric derivatives

The slope (derivative) of the function sin(t) varies between —1 and 1.
The slope is largest when sin passes through the x-axis, and the slope
is zero when the function reaches its maximum and minimum values.
A careful examination of the graphs of the bare functions sin and cos
reveals that the derivative of the function sin(t) is described by the
function cos(t), and vice versa:

f(t) = sin(t) = f'(t) = cos(t),
f(t) = cos(t) = f'(t) = —sin(t).

When you learn more about calculus, you’ll know how to find the
derivative of any function you want; for now, you can take my word
that the above two formulas are true.

The chain rule for derivatives (page 256) dictates that a composite
function f(g(z)) has derivative f'(g(x)) - ¢’(x). First we take the
derivative of the outer function, then we multiply by the derivative of
the inner function. We can find the derivative of the position function
x(t) = Acos(wt + ¢) using the chain rule:

v(t) = 2/ (t) = —Asin(wt + ¢) - w = —Awsin(wt + @),

where the outer function is f(z) = Acos(x) with derivative f'(z) =
—Asin(z), and the inner function is g(z) = wz + ¢ with derivative
() —
g (x) =w.
The same reasoning is applied to obtain the second derivative:

a(t) = %{v(t)} = —Aw? cos(wt + ¢) = —w?z(t).

Note the function a(t) = 2" (¢) has the same form as the function z(t);

the two functions differ only by the factor —w?.
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Derivation of the mass-spring SHM equation

You may be wondering where the equation z(t) = A cos(wt+¢) comes
from. This formula looks very different from the kinematics equation
for linear motion z(t) = z; + v;t + at?, which we obtained start-
ing with Newton’s second law F' = ma and completing two steps of
integration.

In this section, I've seemingly pulled the z(t) = Acos(wt + ¢)
formula out of thin air, as if by revelation. Why did we suddenly start
talking about cos functions and Greek letters with dubious names like
“phase” Are you phased-fazed by all of this? When I was first learning
about simple harmonic motion, I was totally phased-fazed because I
didn’t see where the sin and cos were coming from.

The cos also comes from F' = ma, but the story is a little more
complicated this time. The force exerted by a spring is Fy = —k=x.
Since we assume the surface the mass slides along is frictionless, the
only force acting on the mass is the force of the spring:

ZF:FS:ma = —kx = ma.

Recall that the acceleration function is the second derivative of the
position function:

We can rewrite the equation —kx = ma in terms of the function z(t)
and its second derivative:

d*x(t)
—kx(t) =m 2
k d*x(t)
— t —_ 7
mw( ) dt?
which can be rewritten as
dx(t)  k

This is called a differential equation. Instead of looking for an un-
known number as in normal equations, in differential equations we
are looking for an unknown function x(t). We do not know what the
f,@gww( ) is, but mm%mmmrmone of

its —properties: the second derivative of x(t)
: is equal to the negative of z(t) multiplied

by some constant.
To solve a differential equatlon —you must guess Wthh functlon

x(t) satisfies this property.
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4.9 SIMPLE HARMONIC MOTION 213

gi ‘ “Enginecering.
and physics students must take a dlfferentlal equations course to learn
to do this guessing thing. Can you think of a function that, when
multiplied by %, is equal to its second derivative?

Okay, I thought of one:

oi(t) = Ay cos<\/Zt> .

Come to think of it, there is also a second function that works:

- 5.

You should try this for yourself. Verify that = (t) + £ (t) = 0 and
24 (t) + La,(t) = 0, which means these functions are both solutions
to the differential equatlon x’ (t) + £2(t) = 0. Since both z;(t) and
x9(t) are solutions, ationof their sum must also be
a solution:

z(t) = Aj cos(wt) + Ag sin(wt).

This is kind of the answer we’re looking for: an expression that de-
scribes the object’s position as a function of time. I say kind of be-
cause the solution we obtained is not specified as a cos function with
amplitude A and a phase ¢, but instead in terms of the coefficients
Ay and As, which describe the cos and sin components of the motion.
Lo and behold, using the trlgonometrlc 1dent1ty fremcos(a + b) = cos(a) cos(b
(see page T2e = ), we can rewrite
the above expression for z(t) as a tlme—shlfted trlgonometrlc function:

x(t) = Acos(wt + ¢) = Aj cos(wt) + Az sin(wt),

where A1 = Acos(¢) and A, = —Asin(¢). The expression on the left
is the preferred way of describing simple harmonic motion because the
parameters A and ¢ correspond to observable aspects of the motion.

If we know the coefficients A, and Aj, we can find the canonical
arameters A and ¢ using A = \/A2 + A2 and ¢ = tan ' (A, /A

Let’s review one more time: we are looking for the equation of
motion that predicts an object’s position as a function of time z(t).
We can draw an analogy to a situation we’ve seen before. In linear
kinematics, uniform accelerated motion with a(t) = a is described by
the equation x(t) = x; + vt + %at2 in terms of parameters x; and
v;. Depending on the object’s initial position and initial velocity, we
obtain different trajectories. Simple harmonic motion with angular
frequency w is described by the equation x(t) = Acos(wt + ¢) in
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terms of the parameters A and ¢. Depending on the values of the
amplitude A and the phase ¢, we obtain different simple harmonic
motion trajectories.

Derivation of the pendulum SHM equation

To see how the simple harmonic motion equation for the pendulum is
derived, we need to start from the torque equation 7 = Ia.

The diagram illustrates how we can
calculate the torque on the pendulum,
which is caused by the force of gravity
on the mass as a function of the mass’s
displacement angle 6. Recall the torque
calculation only accounts for the F| com-
ponent of any force, since this is the only
part of the force that causes rotation:

To=F {=—mgsinbl.

The torque is negative because it acts
in the opposite direction to the displace- mg
ment angle 6.

Now we substitute this expression for 7y into the angular version
of Newton’s second law 7 = [« to obtain

T =1«
2
—mgsin0(t)¢ = mﬁzddigt)
. d?6(t)
—gsinf(t) = EF .

To continue with the derivation, we must make an approximation.
When 6 is a small angle, we can use the following approximation:

sin(d) ~ 6, for 0 < 1.

This is known as a small angle approximation. You'll see where it
comes from later when you learn about Taylor series approximations
to functions (page 337). For now, you can convince yourself of the
above formula by zooming in near the origin on the graph of the
function sin z until you realize y = sin(z) looks very much like y = x.

Using the small angle approximation sinf ~ 6, we rewrite the
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learned by studying oscillating systems where the energy is slowly
dissipating. This is known as damped harmonic motion, for which the
equation of motion looks like z(t) = Ae™ 7" cos(wt + ¢). This equation
describes an oscillation with an amplitude that slowly decreases. The
coefficient v is known as the damping coefficient, and indicates how
quickly the system’s energy dissipates.

The concept of simple harmonic motion arises in many other ar-
eas of physics. When you learn about electric circuits, capacitors, and
inductors, you'll run into equations of the form v”(t) + w?v(t) = 0,
which indicates that a circuit’s voltage is undergoing simple harmonic
motion. Guess what—the same equation that describes the mechan-
ical motion of the mass-spring system is used to describe the voltage
in an oscillating circuit!

Links

[ Plot of the simple harmonic motion using a can of spray-paint |
http://www.youtube.com/watch?v=p9uhmijbZn-c

[ Slow motion movie clip of a mass-spring system

http://bit.1ly/QTRse3 [ 15 pendulums with different lengths |
http://www.youtube.com/watch?v=yVkdf JOPkRQ

4.10 Conclusion

The fundamental purpose of mechanics is to predict the motion of
objects using equations. In the beginning of the chapter, I claimed
there are only 20 equations you need to know in order to solve any
physics problem. Let us verify this claim and review the material
we’ve covered.

Our goal was to find x(t) for all times ¢t. However, none of the
equations of physics tell us z(t) directly. Instead, we have Newton’s
second law F' = ma, which tells us that the acceleration of the object
a(t) equals the net force acting on the object divided by the object’s
mass. To find z(t) starting from a(t), we use integration twice:

%(Zﬁzﬁm) —a(t) "L ) T ),

We studied kinematics in several different contexts. We originally
looked at kinematics problems in one dimension, and derived the
UAM and UVM equations. We also studied the problem of projec-
tile motion by deconstructing it into two separate kinematics sub-
problems: one in the z-direction (UVM), and one in the y-direction
(UAM). Later, we studied the circular motion of objects and stated
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the pendulum’s transversal displacement.

Sol: This is a simple harmonic motion question involving a pendulum.
Begin by writing the general equation of motion for a pendulum: 0(t) =
Omax cos(wt), where w = \/W Enter the walkway, which is moving to
the left at velocity v. If we choose the £ = 0 coordinate at a time when
0(t) = Omax, the pattern on the walkway can be described by the equation
y(z) = £sin(Omax) cos(kx), where k = 27/A, and A tells us how long (mea-
sured as a distance in the z-direction) it takes for the pendulum to complete
one cycle. One full swing of the bucket takes T = 27 /w[s]. In that time,
the moving walkway will have moved a distance of vT metres. So one cycle
in space (one wavelength) is A = vT = v27/w. We conclude that the equa-
tion of the paint on the moving sidewalk is y(z) = £sin(Omax) cos((w/v)x).

Links

[ Physics exercises |
http://en.wikibooks.org/wiki/Physics Exercises

[ Lots of examples with solutions |
http://farside.ph.utexas.edu/teaching/301/lectures/lectures.html



DIFFCHANGE

http://en.wikibooks.org/wiki/Physics_Exercises
http://farside.ph.utexas.edu/teaching/301/lectures/lectures.html

5.2 OVERVIEW 227

The derivative function, denoted f’(z) or %7 describes the rate
of change of the function f(x). For example, the constant function
f(z) = ¢ has derivative f’(x) = 0 since the function f(x) does not
change at all.

The derivative function describes the slope of the graph of the
function f(z). The derivative of a line f(x) = max +bis f'(z) = m
since the slope of this line is equal to m. In general, the slope of a
function is different at different values of x. For a given choice of
input x = x¢, the value of the derivative function f’(z¢) is equal to
the slope of f(x) as it passes through the point (zq, f(z¢)).

Figure 5.2: The diagram illustrates how to compute the derivative of the
function f(z) = %132 at three different points on the graph of the function.
To calculate the derivative of f(z) at z = 1, we can “zoom in” near the point
{1-11(1, 1) and draw a line that has the same slope as the function. We can
then calculate the slope of the line using a rise-over-run calculation, aided
by the mini coordinate system that is provided. The derivative calculations
for xe—@%rmand x = 2 are also shown. Note that the slope of the
function is different for each value of . What is the value of the derivative

at = 07 Can you find the general pattern?

The derivative function f’(x) describes the slope of the graph of the
function f(x) for all inputs € R. The derivative function is a func-
tion of the form f’ : R — R. In our study of mechanics, we learned
about the position function z(t) and the velocity function v(t), which
describe the motion of an object over time. The velocity is the deriva-
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f(@) = $a?

332

Figure 5.4: An illustration of the tangent line to the function f(z) =
at the point #—=-4go =1. The equation of the tangent line is T1(x

1z — 0.5.

)

the input value x moves farther from x(, the tangent becomes less
accurate at approximating the function f(z).

Integral calculus

The integral of f(x) corresponds to the
computation of the area under the graph AY
of f(x). The area under f(x) between

the points x = @ and x = b is denoted as A
follows:

f(x)

b
A(a,b) :/ f(z) dx. Aa,b)

The area A(a,b) is bounded by the func- a b

tion f(x) from above, by the z-axis from

below, and by two vertical lines at z = a

and x = b. The points x = a and = b are called the limits of integra-

tion. The [ sign comes from the Latin word summa. The integral is

the “sum” of the values of f(z) between the two limits of integration.
The integral function F(c) corresponds to the area calculation as

a function of the upper limit of integration:

=Y

Fle) = /ch(x) do.
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Applications of integration

Integral calculations have widespread applications to more areas of
science than are practical to list here. Let’s explore a few examples
to gain a general idea of how integrals are applied in the real world.

Computing totals Integral calculations are needed every time
we want to compute the total of some quantity that changes over
time. If the quantity in question remains constant over time, we
can multiply this quantity by the time to find the total quantity.
For example, if your monthly rent is $720, your annual rent is
T —$720 < 12R = $720 x 12.

But what if your rent changes over time? Imagine a crazy
landlord who demands you pay on a daily basis and changes the
daily rent r(t) each day. Some days rent is $20/day, some days
$23/day, and some days he lets you stay for only $15/day. In
this situation, computing your annual rent involves the integral
%ﬁwﬁw which describes the calculation of
the daily rate r(t) times the duration of each day dt summed over all
the days in the year.

Computing potentials In Section 4.6 we defined the notion of po-
tential energy as the negative of the work done when moving an object
against a conservative force. We studied two specific cases: gravi-
tational potential energy Uy(h ) = fhﬁ dy = mgh, and spring
potential energy Ug(z) = — fo s(y) - dy = 1kac Understanding in-
tegrals will allow you to solidify your understandlng of the connection
between each force Fb (x) and its associated potential energy Us(z).

Computing moments of inertia An object’s moment of inertia
describes how difficult it is to make the object turn. The moment of
inertia is computed as the following integral:

I:/ r? dm.
obj

In the mechanics chapter, I asked you to memorize the formulas for
Tgisk = %mR2 and Isphere = %mR2 because it was not yet time to
explain the details of integral calculations. After learning about in-
tegrals, you’ll be able to derive the formulas for Igisx and Isphere OD
your own.

Solving differential equations One of the most important appli-
cations of integrals is their ability to “undo” the derivative operation.
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Recall Newton’s second law Fet(t) = ma(t), which can also be writ-

ten as
F";;(t) = alt) =" (1) = (ix(t)) .

In Chapter 2 we learned how to use integration to solve for z(t) in
special cases where the net force is constant Fiet(t) = Fpes. In this
chapter, we’ll revisit the procedure for finding x(t), and learn how to
calculate the motion of an object affected by an external force that
varies over time Fje(t).

Limits
The main new tool we’ll use in our study of calculus is the notion of
a limit. In calculus, we often use limits to describe what happens to
mathematical expressions when one variable becomes very large, or
alternately becomes very small.

For example, to describe a situation where a number n becomes
bigger and bigger, we can say,

lim (expression involving n) .

n—oo
This expression is read, “in the limit as n goes to infinity, expression
involving n.”

Another type of limit occurs when a small, positive number—for
example § > 0, the Greek letter delta—becomes progressively smaller
and smaller. The precise mathematical statement that describes what
happens when the number § tends to 0 is

lim (expression involving 4),
§—0

which is read as, “the limit as § goes to zero, expression involving §.”
Derivative and integral operations are both defined in terms of

limits, so understanding limits is essential for calculus. We’ll explore

limits in more detail and discuss their properties in Section 5.4.

Sequences

So farin-this-beek—we, we've studied functions defined for real-valued
inputs z € R. We can also study functions defined for natural number
inputs n € N. These functions are called sequences.

A sequence is a function of the form a : N — R. The sequence’s
input variable is usually denoted n or k, and it corresponds to the
index or number in the sequence. We describe sequences either by
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Techniques

The main mathematical question we’ll study with series is the ques-
tion of their convergence. We say a series Y a,, converges if the infinite

sum Soo = ), oy @n equals some finite number L € R.

oo
Seo = Z a, =L = the series Zan converges.
n=0

We call L the limit of the series ) ay,.
If the infinite sum Sy = > _yan grows to infinity, we say the
series Y a,, diverges.

neN

oo
Soo = Z a, = too = the series Zan diverges.

n=0

The main series technique you need to learn is how to spot the dif-
ferences between series that converge and series that diverge. You’ll
soon—tearn—to—perform—a—number—of-learn how to perform different
convergence tests on the terms in the series, which will indicate
whether the infinite sum converges or diverges.

Applications

Series are a powerful computational tool. We can use series to com-
pute approximations to numbers and functions.
For example, the number e can be computed as the following series:

1 1 1 1 1
— B T I N
€ ;n! tite Tty et s a5 032"

The factorial operation n! is the product of n times all integers smaller
than n: n! =n(n—1)(n —2)---3-2-1. As we compute more terms
from the series, our estimate of the number e becomes more accurate.
The partial sum of the first six terms (as shown above) gives us an
approximation of e that is accurate to three decimals. The partial
sum of the first 12 terms gives us e to an accuracy of nine digits-
decimals.

Another useful thing you can do with series is approximate func-
tions by infinitely long polynomials. The Taylor series approximation
for a function f(z) is defined as the series

o0
f(x) :chx” =co4 1+ cx® + g+t + o

n=0
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Each term in the series is of the form a, = c¢,z", where ¢, is a
constant that depends on the function f(z).
For example, the power series of sin(x) is

T (x)
o T N N R
R T R T TR
T (x)

We can truncate the infinite series anywhere to obtain an approxima-
tion to the function. The function T5(z) = = — é—? + f.)—f is the best
approximation to the function sin(x) by a polynomial of degree 5.
The equation of the tangent line T7(z) at x = 0 is a special case of
the Taylor series approximation procedure, which approximates the
function as a first-degree polynomial. We will continue the discussion
on series, their properties, and their applications in Section 5.21.

If you haven’t noticed yet from glancing at the examples so far, the
common theme underpinning all the topics of calculus is the notion
of infinity. We now turn our attention to the infinite.

5.3 Infinity

Working with infinitely small quantities and infinitely large quantities
can be tricky business. It is important that you develop an intuitive
understanding of these concepts as soon as possible. Like, now.

Infinitely large

The number oo is really large. How large? Larger than any number
you can think of. Think of any number n. It is true that n < oo.
Now think of a bigger number N. It will still hold true that N < oc.
In fact, any finite number you can think of, no matter how large, will
always be less than oco.

Technically speaking, oo is not a number; infinity is a process.
You can think of co as the answer you obtain by starting from 0 and
continuously adding 1 forever.

To see why N < oo for any finite number IV, consider the following
reasoning. When we add 1 to a number, we obtain a larger number.
The operation +1 is equivalent to taking one unit step to the right
on the number line. For any n, n < n+ 1. To get to infinity we
start from n = 0 and keep adding 1. After IV stepsteps, we’ll arrive
at n = N. But then we must continue adding 1 and obtain N + 1,
N + 2, N + 3, and so on. Since adding 1 always creates a larger
number, the following chain of inequalities is true:

N < N+1 < N+4+2 < N+4+3< -+ < o0
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tried to verify his theory experimentally by placing himself in front of
an arrow. A wrong argument about limits could get you killed!

Interlude

If the concept of infinity were a person, it would have several prob-
lematic character traits. Let’s see what we know about infinity so
far. The bit about the infinitely large shows signs of megalomania.
There is enough of this whole “more, more, more” staf-mentality in
the world already, so the last thing you want is someone like this as a
friend. Conversely, the obsession with the infinitely small € could be a
sign of abnormal altruism: the willingness to give up all and leave less
and less for oneself. You don’t want someone that altruistic in your
group. And that last part about how infinitely many numbers can fit
in a finite interval of the number line sounds infinitely theoretical—
definitely not someone to invite to a party. Let’s learn about one
redeeming, practical quality of the concept of infinity. Who knows,
you might become friends after all.

Infinitely precise

A computer science (CS) student and a math student are chatting
over lunch. The CS student recently learned how to write code that
computes mathematical functions as infinitely long series:

n .1‘2 .Z‘B $4

xr OOJ,'
= = 7:1 — —
fl)=e Zn! Tt o t3 s 132

She wants to tell her friend about her newly acquired powers.

The math student is also learning cool stuff about transcenden-
tal numbers. For example the number e can be defined as e =
lim (14 1)", but can never be computed exactly—it can only be

n—oo
approximated.

“You know, math is soooo much better than CS,” says the math
student, baiting her friend into an argument about the relative merits
of their fields of study.

“What? No way. I can do anything on a computer,” replies the
incredulous scholar of code.

“But can you find exact answers?” the mathematician asks. “Can
you compute the number e ezxactly?”

“Sure,” says the computer scientist, opening her laptop and typing
in a few commands. “The answer is e = 2.718281828459045.”

“That is not exact,” the mathematician points out, “it is just an
approximation.”
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compute N = 19 terms in the series:

19 1
6192277—14-1—1— + =
n=0

L
3! 19!

The resulting approximation ejg is a number somewhere in the in-
terval (e — 1071% e + 1071%). We can also say the absolute value of
the difference between e1g and the true value of e is smaller than e:
‘619 — €| < 10715,

When the mathematician asks for a precision of ¢ = 1072, the
computer scientists takes NV = 26 terms in the series to produce

26

1 11 1 1
e =) —=ldld gttt omtotog,
n=0

which satisfies |esg — e| < €. In the third step, the mathemati-
cian demands a precision ¢/ = 107°°, and the CS student computes
N = 42 terms in the series, to produce an approximation satisfying
less — €] < €’. In principle, the game can continue indefinitely be-
cause the computer scientist has figured out a process for computing
increasingly accurate approximations.

This scenario embodies precisely how mathematicians think about
limits. It’s a bit like a game: the ¢,N-game. The object of the game
is for the CS student to convince the mathematician she knows the
number e. The mathematician chooses the precision e. To prove
she knows e to precision €, the CS student computes the appropri-
ate number of terms in the series such that her approximation ey
comes e-close to the true answer ey — e| < e. If she can produce an
approximation which satisfies ey — e| < ¢ for all € > 0, then the
mathematician will be convinced.

Knowing the value of any finite approximation ey, no matter how
precise, does not constitute a mathematical proof that you can com-
pute e. The mathematician is convinced because the computer scien-
tist has found a process for computing approximations with arbitrary
precision. In the words of the band Rage Against The Machine,

“ (BXPEETIPIVEEXPLETIVE) the G-rides,
I want the machines that are making them.”

Calculus proofs are not about the approximations eqg, €6, €42, but
about the machines that meake-are making them.

The scenarios presented in this section illustrate the need for a pre-
cise mathematical language for talking about infinitely large numbers,
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The limit of f(x) when x approaches from the left is defined anal-
ogously,

lim f(z)= %Lr%f(a— 9).

If both limits from the left and from
the right of some number exist and are ¥

equal to each other, we can talk about %
the limit as x — a without specifying
the direction of approach: /

L

€
lim f(z) = lim f(z) = lim f(z). €
T—a r—at T—a~ /
For the two-sided limit of a function to
exist at a point, both the limit from the
left and the limit from the right must a x
converge to the same number. If the

function f(x) obeys, f(a) = L and lisg—qf{z)="Llim f(z) = L, we

say the function f(x) is continuous at = = a.

9 9

Continuity

A function is said to be continuous if its graph looks like a smooth
curve that doesn’t make any sudden jumps and contains no gaps. If
you can draw the graph of the function on a piece of paper without
lifting your pen, the function is continuous.

A more mathematically precise way to define continuity is to say
the function is equal to its limit for all x. We say a function f(z) is
continuous at a if the limit of f as  — a converges to f(a):

lim f(2) = f(a).
Remember, the two-sided limit lim,_., requires both the left and the
right limit to exist and to be equal. Thus, the definition of continuity
implies the following equality:

lim f(z)= f(a) = lim f(x).

T—a~ z—at
Consider the mathematical definition of continuity given in the equa-
tion above. Can you see how it connects to the intuitive idea of
continuous functions as functions that can be drawn without lifting
the pen?

Most functions we’ll study in calculus are continuous, but not all

functions are. Functions that are not defined for some value, as well as
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functions that make sudden jumps, are not continuous. For example,
consider the function

flz) = r—3 | -1 ifz<3.

|z — 3| _{ 1 ifx >3,

This function is continuous from the right at the point z = 3, since
lim,_ 3+ f(z) = 1 = f(3). However, taking the limit from the left,
we find lim,_,3- f(z) = —1 # f(3). Therefore, the function is not
continuous. The function f(z) is continuous everywhere on the real
line except at = = 3.

2+ 1

MMMWWMHI%
—as follows;
241 205)+1 11
lim = = —.
xr—5 X 5 5

There is nothing tricky going on here—pluag-here—we plug the number
5 into the equation, and voila. The function f(x) = 2“”;'1 is continuous
at the value x = 5, so the limit of the function as z — 5 is equal to

the value of the function lim5 f(x) = f(5).

Asymptotes

An asymptote of the function f(x) is a line the function approaches
but never touches. The word asymptote comes from the Greek asump-
totos, which means “not falling together.” For example, the line y = 0
(the x-axis) is an asymptote of the function f(z) = % as r goes to
infinity.

A wvertical asymptote is a vertical line that the function approaches.
For example, the function f(z) = ﬁ has a vertical asymptote at
x = 3. When the function approaches x = 3 from the left, the function
increases to infinity: .

a:lig)l_ 3—x -
The limit describes x taking on values like 2.9, 2.99, 2.999, and so
on. The number in the denominator gets smaller and smaller, thus
the fraction grows larger and larger. Note, the function is not defined
at the exact value x = 3. Nevertheless, the above limit allows us to

describe what happens to the function near that point.

Example 4 Find lim,_ 22t
Plugging = 0 into the fraction yields a divide-by-zero error

2(0)+1 . .
( 3+ , so a more careful treatment is required.
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First we’ll consider the limit from the right lim, ot % We
want to approach the value x = 0 with small positive numbers. First
we’ll define a small positive number § > 0, then choose x = §, and
then compute the limit:

im 200y i L ot e
6—0 6—00
In this instance, we take it for granted that lims_,¢ % = 00. Intuitively,
let’s imagine what happens in the limit as § approaches 0. When
d = 1073, the function value will be % = 103. When 6 = 1076,
% = 105. As § — 0, the expression % becomes larger and larger all
the way to infinity.

If we take the limit from the left, letting = take on small negative
values, we obtain

2(—6 1
e

Since baz—g+F{#)r lim f(z) does not equal Hz—yg—F{+) lim f(x),
G Jim f(z)« q r=o— ) lim, f(z)
we say Hmz—of{a-lim f(z) does not exist.
5

—0Q.

Limits are fundamentally important for calculus. Indeed, the three
main calculus topics we’ll discuss in the remainder of this chapter are
derivatives, integrals, and series—all of which are defined using limits.

Limits for derivatives

The formal definition of a function’s derivative is expressed in terms
of the rise-over-run formula for an infinitesimally short run:
rise . flx+96) — f(z)

! = lim — =1
f(z) 0 run 51—11% r+d6 — x

‘We’ll continue the discussion of this formula in Section 5.6.

Limit for integrals

One way to approximate the area under the curve f(x) between x = a
and z = b is to split the area into N little rectangles of width ¢ =
b_T“ and height f(z), and then calculate the sum of the areas of the

rectangles:

Ala,b) = ef(a) +ef(a+e€)+ef(a+2e)+---+ef(b—re¢).

N terms
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1 1 o 1 7%
Vo =a2 N %
x eI
a® a”In(a)
In(z) %
log, () (zIn(a)™
sin(z) cos(x)
cos(x) — sin(x)
tan(x) sec?(x) = cos % (x)
sin™!(z) T 1_ ~
cos ™ (z) \/%
—1 1
tan™" () 722
sinh(z) cosh(z)
cosh(z) sinh(x)

You can find a complete table of derivative formulas on page 77 in
the back of the book.

5.8 Derivative rules

Taking derivatives is a simple task: find the appropriate formula in
the table of derivative formulas and apply the formula to the specific
problem at hand. Derivative tables come in handy, but they usually
do not list formulas for composite functions. This section covers some
important derivatives rules that will allow you to find derivatives of
more complicated functions.

Li .
Linearity
The derivative of a sum of two functions is the sum of the derivatives:
f@)+ g@)] = @)+ (2),
and for any constant a, we have
[af () = af'(z).

The derivative of a linear combination of functions af(z) + Bg(z) is
equal to the linear combination of the derivatives a.f’(z) + B¢’ (z).
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Product rule
Product rule
The derivative of a product of two functions is obtained as follows:
[f(2)g(2)] = f'(x)g(x) + f(2)g ().
B
Quotient rule

The quotient rule tells us how to obtain the derivative of a fraction
of two functions:

Chain rule

If you encounter a situation that includes an inner function and an
outer function, like f(g(x)), you can obtain the derivative by a two-
step process:

[flg(@)]) = f'(9(2))g' (x).

In the first step, leave the inner function g(x) alone. Focus on taking
the derivative of the outer function f(z), and leave the expression g(x)
inside the f’ expression. As the second step, multiply the resulting
expression by the derivative of the inner function ¢'(z).

The chain rule tells us the derivative of a composite function is
calculated as the product of the derivative of the outer function and
the derivative of the inner function.

Consider the following derivative calculation:

[sin(xz))]/ = cos(x?) [mQ]/ = cos(x?)2x.

The chain rule also applies to functions of functions of functions
f(g(h(x))). To take the derivative, start from the outermost function
and work your way toward .
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Let’s compute the following derivative:

[sin(In(z?))] '= cos(In(z?)) [In(z?)] = cos(In(z?)) % [2°] ' zcos(ln(m?’))%

Simple, right?

Examples

The above rules define all you need to know to take the derivative
of any function, no matter how complicated. To convince you, I'll
show you some examples of really hairy functions. Don’t be scared
by complexity: as long as you follow the rules, you’ll find the right
answer in the end.

Example Calculate the derivative of
2
fz)=e".
We need the chain rule for this one:

Flz) =" [2%) = e 2a.

Example 2 Find the derivative of
f(z) = sin(x)e””2.

We’ll need the product rule for this one:

#/(z) = cos(z)e” + sin(z)2ze” .

Example 3 Compute the derivative of

f(z) = sin(x)e”fz In(x).

This situation again calls for the product rule, but this time we’ll have
three terms. For each term, take the derivative of one of the functions
and multiply this derivative by the other two functions:

f(x)= cos(ac)egﬁ2 In(z) + Sin(x)2x63”2 In(z) + sin(:r)e$2 %

Example 4 Take the derivative of
f(x) = sin(cos(tan(x))) .
We need a triple chain rule for this one:
f'(x) = cos(cos(tan(z))) [cos(tan(z))]’
= — cos(cos(tan(z))) sin(tan(z)) [tan(z)]’
2

(
= — cos(cos(tan(z))) sin(tan(z)) sec”(x).
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The trick is to define a new quantity
A =gz +6)—g(x),
and then substitute g(z+9d) = g(z)+ A into the derivative expression:

Flg(a))] = lim L@ T2) = Fl9@)

5—0 1)

This is starting to look more like a derivative formula, but the quan-
tity added in the input is different from the quantity by which we
divide. To fix this, we can multiply and divide by A and rearrange
the expression to obtain

flg(x) +A) — flg(z)) A flgx) +A) — flg(x)) A

Jimy 3 A A 5

Now use the definition of the quantity A and rearrange the fraction:

o] = iy 0@+ 8) = o)) glo+) —ola)

This looks a lot like f'(g(x))g’(x), and in fact, it is. Taking the limit
0 — 0 implies that the quantity A(6) — 0. This is because the
function g(z) is continuous: lims_o[g(z + §) — g(z)] = 0. Taking a
derivative by using the quantity A is just as good as using 6. Thus,
we’ve shown that

Alternate notation

The presence of so many primes and brackets can make the expressions
above difficult to read. As an alternative, we sometimes use another
notation for derivatives. The three rules of derivatives in the alternate
notation are written as follows:

e Linearity: (af(x) + Bg(x)) = 0‘% + 5%9
) )+ f(@) g

d

dx
e Product rule: -L(f(z)g(z)) = j—wg(x f(z)
e Chain rule: L (f(g(x))) = d—{]g—g

Some authors prefer the notation % for the derivative of the function
f(z), because it is more evocative of a rise-over-run calculation.
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Optimization: the killer app of calculus

Knowing your derivatives will allow you to optimize any function—a
crucial calculus skill. Suppose you can choose the input of f(x) and
you want to pick the best value of x. The best value usually means
the mazimum value (if the function measures something desirable like
profits) or the minimum value (if the function describes something
undesirable like costs). We’ll discuss the optimization algorithm in
more detail in the next section, but first let us look at an example.

Crime TV

A calculus teacher turned screenwriter is working on the pilot episode
for a new TV series. Here is the story he has written so far.

The local drug boss has recently been running into problems as
police are intercepting his dealers on the street. The more drugs he
sells, the more money he makes; but if he sells too much, police arrests
will increase and he’ll lose money. Fed up with this situation, he
decides to find the optimal amount of drugs to release on the streets:
as much as possible, but not enough to trigger the police raids. One
day he tells his brothers and sisters in crime to leave the room and
picks up a pencil and a piece of paper to do some calculus.

If z is the amount of drugs he releases on the street every day,
then the amount of money he makes is given by the function

f(z) = 300020257,

where the linear part 3000z represents his profits with no police in-
volvement and the e~%-25% represents the effects of the police stepping
up their actions as more drugs are released.

Looking at the function, the drug boss asks, “What is the value
of x which will give me the most profit from my criminal dealings?”
Stated mathematically, he is asking,

argmax 3000xe~ 2% =7

x

which means “find the value of the argument x that gives the mazimum
value of f(x).”

Remembering a conversation with a crooked financial analyst he
met in prison, the drug boss recalls the steps required to find the
maximum of a function. First he must take the function’s derivative.
Because the function is a product of two functions, he applies the
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e saddle point: a place where f'(x) = 0 at a point that is neither a

. LT 5
max nor a min. For example, the function #{#)}==>f(z) = 23

has a saddle point at z = 0.

Suppose some function f(z) has a global maximum at x*, and the
value of that maximum is f(z*) = M. The following mathematical
notations apply:

e argmax, f(x) = x*: the location (the argument of the function)

where the maximum occurs

e max, f(xz)= M: the maximum value

Algorithm for finding extrema

Input: a function f(z) and a constraint region C' = [x;, z /]
Output: the location and value of all maxima and minima of f(x)

Follow this algorithm step-by-step to find the extrema of a function:

1.

First, look at f(x). If you can plot it, plot it. If not, try to
imagine what the function looks like.

Find the derivative f’(x).

Solve the equation f’(z) = 0. Usually, there will be multiple
solutions. Make a list of them. We’ll call this the list of candi-
dates.

. For each candidate z* on the list, check to see whether it is a

max, a min, or a saddle point:

o If f/(x* —0.1) is positive and f’(z*+0.1) is negative, then
the point £* is a max. The function goes up, flattens at x*,
then goes down after x*. Therefore, * must be a peak.

o If f/(x* —0.1) is negative and f’(z* 4 0.1) is positive, the
point z* is a min. The function goes down, flattens, then
goes up, so the point must be a minimum.

o If f/(z*—0.1) and f'(z*+0.1) have the same sign, the point
z* is a saddle point. Remove it from the list of candidates.

. Now go through the list one more time and reject all candi-

dates x* that do not satisfy the constraints C. In other words, if
x € [x;, xy], the candidate stays; but if « & [z;, zf], we remove it
since this solution is not feasible. Returning to the alcohol con-
sumption example, if you have a candidate solution that says
you should drink 5[L] of booze, you must reject it because oth-
erwise you would die.
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(a) For x = —2, we check f/(—2.1) = 4(—2.1)(—2.1-2)(—2.1+
9) < 0 and f/(—1.9) = 4(—1.9)(~1.9 — 2)(=1.9+2) > 0 to

conclude £ = —2 must be a minimum.

(b) For x = 0 we try f'(—0.1) = 4(—-0.1)(-0.1—2)(—-0.1+2) >
0 and f/(0.1) = 4(0.1)(0.1 — 2)(0.1 + 2) < 0, which reveals

we have a maximum at x = 0.

(c) For x = 2, we check f/(1.9) = 4(1.9)(1.9-2)(1.94+2) <0
and f'(2.1) = 4(2.1)(2.1 = 2)(2.1+2) > 0, so = 2 must

be a minimum.

5. We don’t have any constraints, so all of the above candidates
make the cut.

6. We add the two constraint boundaries —oo and oo to the list
of candidates. At this point, our final shortlist of candidates
contains {x = —oc0,x = =2,z = 0,2 = 2,z = c0}.

7. We now evaluate the function f(x) for each of the values to ob-
tain location-value pairs (z, f(x)), like so: {(—o0, 00), (—2, 340),
(0,356), (2,340), (c0,00)}. Note that f(co) = lim, o f(2) =
oot — 8002 + 356 = oo and the same is true for f(—oc0) = oco.

We are done. The function has no global maximum since it increases
to infinity. It has a local maximum at = = 0 with value 356. It also
has two global minima at x = —2 and « = 2, both of which have value
340. Thank you, come again.

Alternate algorithm

Instead of checking nearby points to the left and right of each critical
point, we can modify the algorithm with an alternate Step 4 known
as the second derivative test. Recall the second derivative tells us the
function’s curvature. If the second derivative is positive at a critical
point z*, then the point z* must be a minimum. If, on the other
hand, the second derivative at a critical point is negative, the function
must be maximum at z*. If the second derivative is zero, the test is
inconclusive.

Alternate Step 4

e Cheek-For each candidate x*teo-determine—if-, see if it is a max,
a min, or a saddle point—:_

> If f”(2*) < 0 then z* is a max.
> If f”(z*) > 0 then z* is a min.
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> If f”(z*) = Othen—, the second derivative test fails. We
must revert back to checking nearby values f'(z* — §) and
f'(z* + 0) to determine if z* is a max, a min, or a saddle
point.

Limitations

The optimization algorithm above applies to differentiable functions
of a single variable. Not all functions are differentiable. Functions
with sharp corners, such as the absolute value function |z|, are not
differentiable everywhere, and therefore won’t work with the algo-
rithm above. Functions with jumps in them, like the Heaviside step
function, are not continuous and therefore not differentiable—the al-
gorithm cannot be used on them either.

We can generalize the optimization procedure, which help us op-
timize functions of multiple variables f(z,y). You'll learn how to do
this in the course multivariable calculus. The optimization techniques
will be similar to the steps above, but with more variables and more
intricate constraint regions.

At last, I want to comment on the fact that you can only maximize
one function. Say the drug boss from the TV series wanted to max-
imize his funds f(z) and his gangster street cred g(z). This is not a
well-posed problem; either you maximize f(z) or you maximize g(z),
but you can’t do both. There is no reason why a single x would give
the highest value for both f(z) and g(z). If both functions are impor-
tant to you, you can make a new function that combines the original
two F(x) = f(z) + g(z) and maximize F'(z). If gangster street cred
is three times more important to you than funds, you could optimize
F(z) = f(z)+3g(x), but it is mathematically and logically impossible
to maximize two things at the same time.

Exercises

The function f(x) = 23— 22?4+ has a local maximum on the interval
x € [0,1]. Find where this maximum occurs, and find the value of f
at that point.

Ansz(%,%).

5.11 Implicit differentiation

Thus far, we’ve discussed how to compute derivatives of functions
f(x). When we identify the function’s output with the variable y,
we can write y(z) = f(x), which shows the variable y depends on x
through the function f(z). The slope of this function is calculated
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Example Compute :

oo

1 N " > n a N+1
— = = = :1.
n_ON+1<N+1> 7;‘”" T—r 1-

Computational example Compute sin(40°) to 15 decimal places.
The Maclaurin series of sin(z) is

3 5 7 9 oo n.2n+1
. x x x x (=) "z
o) e g g T T

To calculate the sine of 40 degrees, we compute the sum of the series
with x replaced by 40 degrees (expressed in radians). In theory, we
need to sum infinitely many terms in the series, but in practice we
only need to sum the first 8 terms in the series to obtain an accuracy
of 15 digits after the decimal. In other words, the series converges
very quickly.

Let’s use the computer algebra system at live.sympy.org to com-
pute the first few terms in the series to see what is going on.

First, we define the n'" term:

(_1)n1.2n+1

an (@) = 5, )1

>>> def axn_sin(x,n):
return (-1.0)**n * x**(2*n+1) / factorial (2*n+1)

Next we convert 40° to radians:

>>> forty = (40%pi/180).evalf ()
0.698131700797732 # 40 degrees in radians

These-arethe-Let’s look at the list of the first 10 coefficients in the

series:

>>> [ axn_sin(forty,n) for n in range(0,10) ]
[ 0.69813170079773179, # a_0

-0.056710153964883062, # a_l
0.0013819920621191727, # a_2
-1.6037289757274478e-05, # a_3
1.0856084058295026e-07, # a_4
-4.8101124579279279e-10, # a_b
1.5028144059670851e-12, # a_6
-3.4878738801065803e-15, # a7
6.2498067170560129e-18, # a_8
-8.9066666494280343e-21 ] # a_9
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To compute sin(40°), we sum together all the terms:

>>> sum( [ axn_sin(forty,n) for n in range(0,10) ] )
0.642787609686539 # the Taylor series approximation

>>> sin(forty) .evalf ()
0.642787609686539 # the true value of sin(40)

Note the first 8 terms of the series would have been sufficient to obtain
an approximation to 15 decimals since the terms ag and ag are much
smaller than 1015,

Discussion

You can think of the Taylor series as containing the “similarity coef-
ficients” between f(z) and the different powers of . We choose the
terms in the Taylor series of f(x) to ensure the series approximation
has the same n'" derivative as the function f(z). For a Maclaurin
series, the similarity between f(z) and its power series representation

. . ()

is measured at x = 0, so the coefficients are chosen as ¢, = fT(O).
The more general Taylor series allows us to build an approximation
to f(x) at any point = a, so the similarity coefficients are calculated

(n)
to match the derivatives at that point: ¢, = ! n!(a).

Another way of looking at the Maclaurin series is to imagine it is
a kind of X-ray picture for each function f(x). The zero'™™ coefficient
¢p in the Maclaurin series tells you how much of the constant function
is in f(x). The first coefficient, ¢, tells you how much of the linear
function z is in f; the coefficient ¢y tells you about the z? contents
of f, and so on.

Now get ready for some crazy shit. I want you to go back to
page 338 and take a careful look at the Maclaurin series of €%, sin(z),
and cos(z). As you will observe, it’s as if e* contains both sin(x)
and cos(z), the only difference being the presence of the alternating
negative signs. How about that? Do you remember Euler’s formula
e = cosz+isinx? Verify Euler’s formula (page 141) by substituting
iz into the power series for e”.

Another interesting equation to think about in terms of series is
e” = coshz + sinh z.

Links

| Animation showing Taylor series approximations to sin(z) |
http://mathforum.org/mathimages/index.php/Taylor_Series
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End matter

Conclusion

We managed to cover a lot of ground, explaining many topics and
concepts in a relatively small textbook. We reviewed high school math
and learned about mechanics and calculus. Above all, we examined
math and physics material in an integrated manner.

If you liked or hated this book, be sure to send me feedback.
Feedback is crucial so I know how to adjust the writing, the content,
and the attitude of the book for future learners of math. Please take
the time to drop me a line and let me know what you thought. You
can reach me by email at ivan.savov@gmail . com.

or-If you want to learn about other books in the NO BULLSHIT GUIDE
series and hear about the technology we’re using at Minireference
Publishing to take over the textbook industry, check out the com-

pany blog at minireference.com/blog/. You can also find us on the
twitter @minireference and on the facebook fb.me/noBSguide.
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Further reading

You have reached the end of this book, but youare-'re only at the
beginning of the journey of scientific discovery. There are a lot of cool
things left for you to learn about. Below are some recommendation
of subjects you might find interesting.

Electricity and Magnetism

Electrostatics is the study of the electric force F, and the associated
electric potential U,. Here, you will also learn about the electric field
E and electric potential V.

Magnetism is the study of the magnetic force F), and the magnetic
field B , which are caused by electric currents flowing through wires.
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General mathematics

Mathematics is a very broad field. There are all kinds of topics to
learn about; some of them are fun, some of them are useful, some
of them are boring, and some of them whieh—are-are totally mind
expanding.

I recently discovered a book that covers many math topics of gen-
eral interest and serves as a great overview of the many areas of math-
ematics. I highly recommend you take a look at this book.

[BOOK] Richard Elwes. Mathematics 1001: Absolutely Everything
That Matters About Mathematics in 1001 Bite-Sized Explanations,
Firefly Books, 2010, ISBN 1554077192.

General physics

If you want to learn more about physics, I highly recommend the
Feynman lectures on physics. This three-tome collection covers all of
undergraduate physics with countless links to more advanced topics.

[BOOK] Richard P. Feynman, Robert B. Leighton, Matthew Sands.
The Feynman Lectures on Physics including Feynman’s Tips on

Physics: The Definitive and Extended Edition, Addison Wesley, 2005,
ISBN 0805390456.

While on the Feynman note, I want to also recommend his other book
about life.

[BOOK] Richard P. Feynman. Surely You’re Joking, Mr. Feynman!
(Adventures of a Curious Character), W. W. Norton & Company,
1997, ISBN 0393316041.

Lagrangian mechanics

In this book we learned about Newtonian mechanics, that is, me-
chanics starting from Newton’s laws. There is a much more general
framework known as Lagrangian mechanics which can be used to an-
alyze more complex mechanical systems. The following is an excellent
book on the subject.

[BOOK] Herbert Goldstein, Charles P. Poole Jr., John L. Safko.
Classical Mechanics, Addison-Wesley, Third edition, 2001, ISBN
0201657023.
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Final words

Throughout this book, I strived to equip you with the tools you’ll
need to make your future science studies enjoyable and pain free.
Remember to always take it easy. Play with math and never take
things too seriously. Grades don’t matter. Big paycheques don’t
matter. Never settle for a boring job just because it pays well. Try
to work only on projects you care about.

I want you to be confident in your ability to handle math, physics,
and the other complicated stuff life will throw at you. You have the
tools to do anything you want; choose your own adventure. And if
the big banks come-a-knocking one day with a big paycheque trying
to bribe you into applying your analytical skills to their avaricious
schemes, you-ean-send them-a-walking.
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Appendix A

Constants, units, and
conversion ratios

F—In this appendix you will find a number of tables of useful
information whieh-that you might need when solving math and physics
problems.

Fundamental constants of Nature

Many of the equations of physics include constants as parameters of
the equation. For example, Newton’s law of gravitation says that the
force of gravity between two objects of mass M and m separated by a

distance r is F; = G%m, where G is Newton’s gravitational constant.
Symbol Value Units Name

G 6.67384 x 10711 m3 kg~ 1572 gravitational constant

g 9.806 65 ~ 9.81 ms 2 Earth free-fall acceleration
mp 1.672621 x 10727 kg proton mass

Me 9.109 382 x 103! kg electron mass

Na 6.022 141 x 10?2 mol ! Avogadro’s number

kB 1.380648 x 10722  JK! Boltzmann’s constant

R 8.3144621 JK ! mol™?! gas constant R = Nakp
o 1.256 637 x 107° NA? permeability of free space
€0 8.854187 x 1072 Fm™! permittivity of free space
c 299 792 458 ms! speed of light ¢ = \/#10750

e 1.602176 x 107 C elementary charge

h 6.626069 x 10734 Js Planck’s constant
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MECHANICS FORMULAS 381

Mechanics formulas

Forces:
GMm

r2

W:Fg: =gm, FS:_k'T7 FfSS/‘LsN7 ka:,LLkN

Newton’s three laws:

if no ﬁext, then 7; = Uy (1)
Foet = ma (2)
if Fi2, then 3F = —Fis (3)

Uniform acceleration motion (UAM):
a(t) = (4)
o(t) = at + v (5)
x(t) =2 at + vt + x4 (6)
U?‘ = vf + 2aAx (7)

Momentum:

F=mi (8)

Energy and work:
K =1mv®, U, =mgh, Us=1ka®, K,=1Iw*, W=F-d (9)

Conservation laws:

Zﬁn = Zﬁout (10)

Lin = Lous (11)
Z Ein + Wi = Z Eout + Wout (12)

Circular motion (radial acceleration and radial force):
ar = —, E, = ma,? (13)

Angular motion:

F=ma = 7T=Iua (14)

a(t),v(t),z(t) = a(t),w(t),0(t) (15)

F=mi = L=Iuw (16)

K=1im® = K,=1I’ (17)

SHM with w = \/% (mass-spring system) or w = /4 (pendulum):

z(t) = Acos(wt + @) (18)

v(t) = —Awsin(wt + ¢) (19)

a(t) = —Aw? cos(wt + ¢) (20)
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