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Mechanics explained in seven pages
Excerpt from the No bullshit guide to math and physics by Ivan Savov

Abstract—Mechanics is the precise study of the motion of objects, the forces
acting on them, and more abstract concepts such as momentum and energy.
You probably have an intuitive understanding of these concepts already, but in
the next seven pages you will learn how to use precise mathematical equations
to support your intuition. All topics will be covered including prerequisites.

INTRODUCTION

To solve a mechanics problem is to obtain the equation of motion x(t)
that describes the position of the object as a function of time. Once you
know x(t), you can answer any question pertaining to the motion of the
object. To find the position of the object at t = 3[s], simply plug 3[s]
into the equation of motion. To find the time(s) when the object reaches a
distance of 20[m] from the origin, you must solve for t in x(t) = 20[m].
Many of the problems on your mechanics final exam will be of this form
so, if you know how to find x(t), you’ll be in good shape to ace the final.

A. Dynamics is the study of forces

The first step toward finding x(t) is to calculate all the forces that
act on the object. Forces are the cause of motion, so if you want to
understand motion you need to understand forces. Newton’s second law
F = ma states that a force acting on an object produces an acceleration
inversely proportional to the mass of the object. Once you have the
acceleration, you can compute x(t) using calculus. We will discuss the
calculus procedure for getting from a(t) to x(t) shortly. For now, let’s
focus on the causes of motion: the forces acting on the object. There are
many kinds of forces: the weight of an object ~W is a type of force, the
force of friction ~Ff is another type of force, the tension in a rope ~T is
yet another type of force and there are many others. Note the little arrow
on top of each force, which is there to remind you that forces are vector
quantities. Unlike regular numbers, forces act in a particular direction, so it
is possible for the effects of one force to counteract the effects of another
force. For example the weight of a flower pot is exactly counter-acted by
the tension in the rope on which it is suspended, thus, while there are two
forces acting on the pot, there is no net force acting on it. Since there is no
net force to cause motion and since the pot wasn’t moving to begin with,
it will just sit there motionless despite the fact that there are forces acting
on it! To find the net force acting on the object you have to calculate the
sum of all the forces acting on the object ~Fnet ≡

∑ ~F . Once you have the
net force, you can use the formula ~a(t) = ~Fnet

m
to find the acceleration of

the object.

B. Kinematics is the study of motion

If you know the acceleration of an object a(t) as a function of time
and its initial velocity vi = v(0), you can deduce the object’s velocity
function v(t) at all later times. This is because the acceleration function
a(t) describes the change in the velocity of the object. If you know the
object started with an initial velocity of vi ≡ v(0), the velocity at a later
time t = τ is equal to vi plus the “total velocity change” between t = 0
and t = τ . The mathematical way of saying this is v(τ) = vi+

∫ τ
0
a(t) dt.

The symbol
∫
· dt is called an integral and is a fancy way of finding the

total of some quantity over a given time period. To find the change in the
velocity we calculate the total of a(t) between t = 0 and t = τ .

To understand what is going on, it may be useful to draw an analogy with
a scenario you are more familiar with. Consider the function ba(t) which
represents your bank account balance at time t, and the function tr(t) which
corresponds to the transactions (deposits and withdraws) on your account.
The function tr(t) describes the change in the function ba(t), the same way
the function a(t) describes the change in v(t). Knowing the balance of your
account at the beginning of the month, you can calculate the balance at the
end of the month as follows: ba(30) = ba(0) +

∫ 30

0
tr(t) dt.

If you know the initial position xi and the velocity function v(t) you
can find the position function x(t) by using integration again. We find the
position at time t = τ by adding up all the velocity (change in the position)
between t = 0 and t = τ . The formula is x(τ) = xi +

∫ τ
0
v(t) dt.

The entire procedure for predicting the motion of objects can be
summarized as follows:

1

m

(∑
~F = ~Fnet

)
︸ ︷︷ ︸

dynamics

= a(t)
vi+

∫
dt

−→ v(t)
xi+

∫
dt

−→ x(t)︸ ︷︷ ︸
kinematics

. (1)

If you understand the above equation, then you understand mechanics. My
goal for the next couple of pages is to introduce you to all the concepts
that appear in this equation and the relationships between them.

C. Other stuff

Apart from dynamics and kinematics, we’ll discuss several other topics.
Newton’s second law can also be applied to the study of objects in

rotation. Angular motion is described by the angle of rotation θ(t), the
angular velocity ω(t) and the angular acceleration α(t). The causes of
angular acceleration is angular force, which we call torque T . Apart from
the change to angular quantities, the principles behind circular motion are
exactly the same as those for linear motion.

During a collision between two objects, there will be a sudden spike
in the contact force between them which can be difficult to measure and
quantify. It is therefore not possible to use Newton’s law F = ma to
predict the accelerations that occur during collisions. In order to predict
the motion of the objects after the collision we must use a momentum
calculation. An object of mass m moving with velocity ~v has momentum
~p ≡ m~v. The principle of conservation of momentum states that the total
amount of momentum before and after the collision is conserved. Thus,
if two objects with initial momenta ~pi1 and ~pi2 collide, the total momentum
before the collision must be equal to the total momentum after the collision:∑

~pi =
∑

~pf ⇒ ~pi1 + ~pi2 = ~pf1 + ~pf2.

Using this equation, it is possible to calculate the final momenta ~pf1, ~pf2
of the objects after the collision.

Another way of solving physics problems is to use the concept of energy.
Instead of trying to describe the entire motion of the object, we can
focus only on the initial parameters and the final parameters. The law of
conservation of energy states the total energy of the system is conserved.
Knowing the total initial energy of a system allows us to find the final
energy, and from this calculate the final motion parameters.

We will discuss all of these topics in the remainder of the document.

D. The plan

Most people think of mechanics as a horrible chore inflicted upon them
which requires complicated mathematical prerequisites. Instead, I propose
a different way of thinking about mechanics, namely, as an opportunity to
play LEGO with a bunch of cool scientific building blocks.

Of course, you must realize that simply reading this seven page tutorial
cannot make a mechanics expert out of you. Mechanics expertise comes
from solving exercises on your own. What we can do in seven pages is go
over all the important concepts and describe the physics formulas which
connect these concepts. The good news is that there are only twenty
equations that you need to know to understand mechanics. Don’t
worry about prerequisites. The hardest math you’ll have to do is solving a
quadratic equation and we will cover everything you need to know about
vectors and calculus in the next section. Flip the page to continue. ⇒

http://minireference.com/
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I. PRELIMINARIES

In order to understand the equations of physics you need to be familiar
with vector calculations and to know a bit about integrals. We’ll introduce
these concepts in the next two subsections.

A. Vectors

Forces, velocities, and accelerations are vector quantities. A vector ~v can
be expressed in terms of its components or in terms of its length and its
direction.

• x-axis: the x-axis is the horizontal axis in the coordinate system
• y-axis: the y-axis is perpendicular to the x-axis
• vx: the component of ~v along the x-axis
• vy: the component of ~v along the y-axis
• ı̂ ≡ (1, 0), ̂ ≡ (0, 1): unit vectors in the x and y-directions
• ‖~v‖: the length of the vector ~v
• θ: the angle that ~v makes with the x-axis

Given the xy-coordinate system, we can denote a vector in three equivalent
ways: ~v ≡ (vx, vy) ≡ vx ı̂+ vy ̂ ≡ ‖~v‖∠θ.

Given a vector expressed as a length and direction ‖~v‖∠θ, we calculate
its components using the following formulas:

vx = ‖~v‖ cos θ and vy = ‖~v‖ sin θ.

Alternately, a vector expressed in component form ~v = (vx, vy) can be
converted to the length-and-direction form as follows:

‖~v‖ =
√
v2x + v2y and θ = tan−1

(
vy
vx

)
.

It is important that you know how to convert between these two forms; the
component form is useful for calculations, whereas the length-and-direction
form describes the geometry of vectors.

The dot product between two vectors ~v and ~w can be computed in two
different ways:

~v · ~w = vxwx + vywy = ‖~v‖‖~w‖ cosφ,

where φ is the angle between the vectors ~v and ~w. The dot product
calculates how similar the two vectors are. For example, we have ı̂ · ̂ = 0
since the vectors ı̂ and ̂ are orthogonal—they point in completely different
directions.

B. Integrals

The integral of f(t) corresponds to the com-
putation of the area under the graph of f(t)
between two points:

Af (a, b) ≡
∫ b

a

f(t) dt.

The symbol
∫

is a mnemonic for sum, since
the area under the graph corresponds in some
sense to the sum of the values of the function
f(t) between t = a and t = b. The integral is the total amount of f
between a and b.

Consider for example the constant
function f(t) = 3. Let’s find the
expression F (τ) ≡ Af (0, τ) that
corresponds to the area under f(t) be-
tween t = 0 and the time t = τ . We
can easily find this area because the
region under the graph is rectangular:

F (τ) ≡ Af (0, τ) =
∫ τ

0

f(t) dt = 3τ.

The area of a rectangle is its height (f(τ) = 3) times its width (τ ).

Another important calculation is
the area under the function g(t) = t.
Let’s compute G(τ) ≡ Ag(0, τ),
which is the area under the graph
g(t) between 0 and τ . This area
is easily computed since the region
under the graph is triangular:

G(τ)≡Ag(0, τ)=
∫ τ

0

g(t) dt= 1
2
τ2.

The area of a triangle is the product of the length of the base (τ ) times the
height (g(τ) = τ ) divided by two.

For the purpose of understanding mechanics, what you need to know
is that the integral of a function is the total amount of the function
accumulated during some time period. You should also try to remember
the formulas:∫ τ

c

a dt = aτ + C,

∫ τ

c

at dt = 1
2
aτ2 + C,

which correspond to the integral of a constant function and the integral of
a line with slope a. Note that each time you give a general integral formula
it will contain an additive constant term +C, which depends on the starting
point of the area calculation. In the above examples we used c = 0 as the
starting point of the integral so the constant was zero C = 0.

The integral of the sum of two functions is the sum of their integrals.
Using this fact and the two formulas above, we can compute the integral
for the function f(t) = mt+ b as follows:∫ τ

c

(mt+ b) dt = 1
2
mτ2 + bτ + C. (2)

Now that you know about vectors and integrals, we can start our
discussion of the laws of physics.

II. KINEMATICS

Kinematics (from the Greek word for motion kinema) is the study of the
trajectories of moving objects. The equations of kinematics can be used to
calculate how long a ball thrown upward will stay in the air, or to calculate
the acceleration needed to go from 0 to 100[km/h] in 5 seconds.

A. Concepts

The key notions used to describe the motion of objects are
• t: the time. Time is measured in seconds [s].
• x(t): the position of an object as a function of time—also known as

the equation of motion
• v(t): the velocity of the object as a function of time
• a(t): the acceleration of the object as a function of time
• xi = x(0), vi = v(0): initial position and velocity (initial conditions)

The position, velocity and acceleration functions (x(t), v(t), and a(t)) are
connected. They all describe different aspects of the same motion. The
function x(t) is the main function since it describes the position of the
object at all times. The velocity function describes the change in the position
over time and it is measured in [m/s]. The acceleration function describes
how the velocity changes over time and is measured in [m/s2].

Assume now that we know the acceleration of the object a(t) and that
we want to find v(t). The acceleration is the change in the velocity of
the object. If we know that the object started with an initial velocity of
vi ≡ v(0), and we want to find the velocity at later time t = τ , we
have to add up all the acceleration that the object felt during this time
v(τ) = vi+

∫ τ
0
a(t) dt. The velocity as a function of time is given by the

initial velocity vi plus the integral of the acceleration.
If we integrate the velocity function, we will obtain the position function

x(t). Thus, the procedure for finding x(t) starting from a(t) can be
summarized as follows:

a(t)
vi+

∫
dt

−→ v(t)
xi+

∫
dt

−→ x(t).

We will now illustrate how to apply this procedure for the important
special case of motion with constant acceleration.
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B. Uniform acceleration motion

Suppose that an object starts from an initial position xi with initial
velocity vi and undergoes a constant acceleration a(t) = a from time
t = 0 until t = τ . What will be its velocity v(τ) and position x(τ) at time
t = τ?

We can find the velocity of the object by integrating the acceleration
from t = 0 until t = τ :

v(τ) = vi +

∫ τ

0

a(t) dt = vi +

∫ τ

0

a dt = vi + aτ,

where we used the formula for the integral of a constant function. To obtain
x(t) we integrate v(t) and obtain:

x(τ) = xi +

∫ τ

0

v(t) dt = xi +

∫ τ

0

(vi + at) dt = xi + viτ + 1
2
aτ2,

where we used the integral formula from equation (2). Note that the above
integral calculations required the knowledge of the initial conditions xi
and vi. This is because the integral calculations tell us the change in the
quantities relative to their initial values.

We can summarize our findings regarding uniform acceleration motion
(UAM) in the following three equations:

a(t) = a, (by definition of UAM)

v(t) = at+ vi, (3)

x(t) = 1
2
at2 + vit+ xi. (4)

These equations fully describe all aspects of the motion of an object
undergoing a constant acceleration a(t) = a starting from x(0) = xi
with initial velocity v(0) = vi. There is also another very useful formula
to remember:

v2f = v2i + 2a(xf − xi), (5)

which is obtained by combining equation (3) and (4) in a particular way.
A special case of the above equations is the case with zero acceleration

a(t) = 0. If there is no acceleration (change in velocity) then the velocity of
the motion will be constant so we call this uniform velocity motion (UVM).
The equations of motion for UVM are v(t) = vi and x(t) = vit+xi. If you
understand the difference between UVM and UAM and the three formulas
above, then you are ready to solve any kinematics problem.

C. Free fall

We say that an object is in free fall if the only force acting on it is
the force of gravity. On the surface of the earth, the force of gravity will
produce a constant acceleration of a = −9.81[m/s2]. The negative sign is
there because the gravitational acceleration is directed downward, and we
assume that the y-axis points upward.

You can test your knowledge by trying the following practice problems.
0 to 100 in 5 seconds. You want to go from 0 to 100[km/h] in 5 seconds

with your car. How much acceleration does your engine need to produce?
Assume the acceleration is constant. Sol: Use (3). Ans: a = 5.56[m/s2].

Moroccan example. Suppose your friend wants to send you a ball
wrapped in aluminum foil from his balcony, which is located at a height
of xi = 44.14[m]. At t = 0[s] he throws the ball straight down with an
initial velocity of vi = −10[m/s]. How long does it take for the ball to hit
the ground? Sol: Solve for t in (4) using a = −9.81. Ans: t = 2.15[s].

III. PROJECTILE MOTION

We will now analyze an important kinematics problem in two dimensions.
The motion of a projectile is described by:
• ~r(t) ≡ (x(t), y(t)): the position (vector) of the object at time t
• ~v(t) ≡ (vx(t), vy(t)): the velocity of the object as a function of time
• ~a(t) ≡ (ax(t), ay(t)): the acceleration as a function of time

The motion of an object starts form an initial position an goes to a final
position for which we’ll use the following terminology:
• ti = 0: initial time (the beginning of the motion)
• tf : final time (when the motion stops)
• ~vi = ~v(0) = (vx(0), vy(0)) = (vix, viy): the initial velocity at t = 0

• ~ri = ~r(0) = (x(0), y(0)) = (xi, yi): the initial position at t = 0
• ~rf = ~r(tf ) = (x(tf ), y(tf )) = (xf , yf ): the final position at t = tf

Projectile motion is nothing more than two parallel one-dimensional kine-
matics problems: UVM in the x-direction and UAM in the y-direction.

A. Formulas

The acceleration felt by a flying projectile is

~a(t) = (ax(t), ay(t)) = (0,−9.81) [m/s2].

There is no acceleration in the x-direction (ignoring air friction) and we
have a uniform downward acceleration due to gravity in the y-direction.
Therefore, the equations of motion of the projectile are the following:

x(t)=vixt+ xi, y(t)= 1
2
(−9.81)t2 + viyt+ yi,

vx(t)=vix, vy(t)=−9.81t+ viy,

v2yf =v
2
yi + 2(−9.81)(yf − yi).

In the x-direction we have the equations of uniform velocity motion
(UVM), while in the y-direction, we have equations of uniformly acceler-
ated motion (UAM). Projectile motion problems can be decomposed into
two separate sets of equations coupled through the time variable t.

Example. Let’s now consider the example illustrated in Figure 1 which
shows a rock being thrown with an initial velocity 8.96[m/s] at an angle
of 51.3◦ from an initial height of 1[m]. You are asked to calculate the
maximum height h that the rock will reach, and the distance d where it
will fall back to the ground.

Your first step when reading any physics problem should be to extract
the information from the problem statement. The initial position is ~r(0) =
(xi, yi) = (0, 1)[m]. The initial velocity is ~vi = 8.96∠51.3◦[m/s], which is
~vi = (8.96 cos 51.3◦, 8.96 sin 51.3◦) = (5.6, 7)[m/s] in component form.

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

x

y

~r(t)

t = 0

~r(0) = (x(0), y(0))
= (xi, yi)

~vi = (vix, viy)

t = ttop

~r(ttop) = (x(ttop), h)

~r(tf ) = (d, 0)

t = tf

Figure 1. A rock is thrown with ~vi = 8.96∠51.3◦[m/s] from ~ri = (0, 1)[m]. What
is the maximum height h reached by the rock and the distance travelled d?

We can plug the values of ~ri and ~vi into the equations of motion and
find the unknown quantities. When the object reaches its maximum height,
it will have zero velocity in the y-direction: vy(ttop) = 0. We can use
this fact, and the vy(t) equation to find ttop = 7/9.81 = 0.714[s]. The
maximum height is then obtained by evaluating the function y(t) at t = ttop:
h = y(ttop) = 1+ 7(0.714) + 1

2
(−9.81)(0.714)2 = 3.5[m]. To find d, we

must solve the quadratic equation 0 = y(tf ) = 1+7(tf )+
1
2
(−9.81)(tf )2

to find the time tf when the rock will hit the ground. The solution is
tf = 1.55[s]. We then plug this value into the equation for x(t) to obtain
d = x(tf ) = 0 + 5.6(1.55) = 8.68[m]. We can verify that these answers
match the trajectory illustrated in Figure 1.

IV. DYNAMICS

Dynamics is the study of the various forces that act on objects. Forces are
vector quantities measured in Newtons [N]. In this section we will explore
all the different kinds of forces.

A. Kinds of forces

Next we list all the forces which you are supposed to know about.
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1) Gravitational force: The force of gravity exists between any two
massive objects. The magnitude of the gravitational force between two
objects of mass M [kg] and m[kg] separated by a distance r[m] is given
by the formula ~Fg = GMm

r2
[N], where G = 6.67 × 10−11

[N m2

kg2
]

is the
gravitational constant.

On the surface of the earth, which has mass M = 5.972× 1024[kg] and
radius r = 6.367 × 106[m], the force of gravity on an object of mass m
is given by

Fg =
GMm

r2
=
GM

r2︸ ︷︷ ︸
g

m = 9.81m =W. (6)

We call this force the weight of the object. To be precise, we should write
~W = −mg̂ to indicate that the force acts downward—in the negative
y-direction. Verify using your calculator that GM

r2
≡ g = 9.81.

2) Force of a spring: A spring is a piece of metal twisted into a coil that
has a certain natural length. The spring will resist any attempts to stretch
it or compress it. The force exerted by a spring is given by

~Fs = −k~x, (7)

where x is the amount by which the spring is displaced from its natural
length and the constant k[N/m] is a measure of the strength of the spring.
Note the negative sign: if you try to stretch the spring (positive x) then the
force of a spring will pull against you (in the negative x-direction), if you
try to compress the spring (negative x) it will push back against you (in
the positive x-direction).

3) Normal force: The normal force is the force between two surfaces
in contact. In this context the word normal means “perpendicular to the
surface of.” The reason why my coffee mug does not fall to the floor right
now, is that the table exerts a normal force ~N on it keeping in place.

4) Force of friction: In addition to the normal force between surfaces,
there is also the force of friction ~Ff which acts to prevent or slow down
any sliding motion between the surfaces. There are two kinds of force of
friction and both kinds of are proportional to the amount of normal force
between the surfaces:

max{~Ffs} = µs‖ ~N‖ (static), ~Ffk = µk‖ ~N‖ (kinetic), (8)

where µs and µk are the static and dynamic friction coefficients. Note that
it makes intuitive sense that the force of friction should be proportional
to the magnitude of the normal force ‖ ~N‖: the harder the surfaces push
against each other the more difficult it should be to make them slide. The
equations in (8) make this intuition precise.

The static force of friction acts on objects that are not moving. It
describes the maximum amount of friction that can exist between two
objects. If a horizontal force greater than Ffs = µsN is applied to the
object, then it will start to slip. The kinetic force of friction acts when two
objects are sliding relative to each other. It always acts in the direction
opposite to the motion.

5) Tension: A force can also be exerted on an object remotely by
attaching a rope to the object. The force exerted on the object will be
equal to the tension in the rope ~T . Note that tension always pulls away
from an object: you can’t push a dog on a leash.

B. Force diagrams

Newton’s 2nd law says that the net force on an object causes an
acceleration: ∑

~F ≡ ~Fnet = m~a. (9)

We will now learn how to calculate the net force acting on an object.

C. Recipe for solving force diagrams

1) Draw a diagram centred on the object. Draw the vectors of all the
forces acting on the object: ~W , ~Fs, ~N ,~Ffs, ~Ffk and ~T as applicable.

2) Choose a coordinate system, and indicate clearly in the force diagram
what you will call the positive x-direction, and what you will call the
positive y-direction. All quantities in the subsequent equations will
be expressed with respect to this coordinate system.

3) Write down this following “template”:∑
Fx = = max∑
Fy = = may

4) Fill in the template by calculating the x and y components of each
of the forces acting on the object.

5) Solve the equations for the unknown quantities.
Let us now illustrate the procedure by solving an example problem.
Example. A block sliding down an incline with angle θ. The coefficient

of friction between the block and the incline is µk. What is its acceleration?
Step 1: We draw a diagram

which includes the weight, the
normal force, and the kinetic
force of friction.

Step 2: We choose the coor-
dinate system to be tilted along
the incline. This is important
because this way the motion is
purely in the x-direction, while
the y-direction will be static.

Step 3,4: We copy over the empty template and fill in the components∑
Fx = ‖ ~W‖ sin θ − Ffk = max,∑
Fy = N − ‖ ~W‖ cos θ = 0.

Now substitute the known values to obtain∑
Fx = mg sin θ − µkN = max,∑
Fy = N −mg cos θ = 0.

Step 5: We solve for ax by first finding N = mg cos θ in the y-equation
and then substituting this value into the x-equation:

ax =
1

m
(mg sin θ − µkmg cos θ) = g sin θ − µkg cos θ.

V. MOMENTUM

During a collision between two objects there will be a sudden spike
in the contact force between them that can be difficult to measure and
quantify. It is therefore not possible to use Newton’s law F = ma to predict
the accelerations that occur during collisions. We must use a momentum
calculation to predict the motion of the objects after a collision.

A. Definition

The momentum of a moving object is equal to the velocity of the moving
object multiplied by the object’s mass:

~p = m~v [kg m/s]. (10)

Momentum is a vector quantity. If the velocity of the object is ~v = 20ı̂ =
(20, 0)[m/s] and it has a mass of 100[kg] then its momentum is ~p =
2000ı̂ = (2000, 0)[kg m/s].

B. Conservation of momentum

The law of conservation of momentum states that the total amount of
momentum before and after a collision is the same. In a collision involving
two moving objects, if we know the initial momenta of the objects, we can
calculate their momenta after the collision:∑

~pin =
∑

~pout ⇒ ~p1,in + ~p2,in = ~p1,out + ~p2,out. (11)

This conservation law is one of the furthest reaching laws of physics you
will learn in mechanics. The quantity of motion (momentum) cannot be
created or destroyed, it can only be exchanged between systems. This law
applies very generally: for fluids, for fields, and even for collisions involving
atomic particles described by the laws of quantum mechanics.

Example. You throw a piece of rolled up carton from your balcony on a
rainy day. The mass of the object is 0.4[g] and it is thrown horizontally with
a speed of 10[m/s]. Shortly after it leaves your hand, the carton collides



5

with a rain drop of weight 2[g] falling straight down at a speed of 30[m/s].
What will be outgoing velocity of the objects if they stick together after
the collision? Sol: The conservation of momentum equation says that:
~pin,1 + ~pin,2 = ~pout so 0.4× (10, 0) + 2× (0,−30) = 2.4× ~vout.
Ans: ~vout = (1.666,−25.0)[m/s].

VI. ENERGY

Instead of finding the position function x(t), we can solve physics
problems using energy calculations. The key idea is the principle of total
energy conservation, which tells us that, in any physical process, the sum
of the initial energies is equal to the sum of the final energies.

A. Concepts

Energy is measured in Joules [J] and it arises in several different contexts:

K Moving objects: An object of mass m moving at velocity ~v has
kinetic energy K = 1

2
m‖~v‖2[J].

W Moving objects by force: If a constant force ~F acts on a object
during a displacement ~d, then the work done by this force is
W = ~F · ~d[J]. Positive work corresponds to energy being added to
the system. Negative work corresponds to energy being removed
from the system.

Ug Gravitational potential energy: The gravitational potential en-
ergy of an object raised to a height h above the ground is given
by Ug = mgh[J], where m is the mass of the object and
g = 9.81[m/s2] is the gravitational acceleration on the Earth.

Us Spring potential energy: The potential energy stored in a spring
when it is displaced by x[m] from its relaxed position is given
by Us = 1

2
k|x|2[J], where k[N/m] is the spring constant.

B. Conservation of energy

Consider a system which starts from an initial state (i), undergoes some
motion and arrives at a final state (f). The law of conservation of energy
states energy cannot be created or destroyed in any physical process.
This means that the initial energy of the system plus the work that was
input into the system must equal the final energy of the system plus any
work that the was output:∑

Ei +Win =
∑

Ef +Wout. (12)

The expression
∑
E(a) corresponds to the sum of the different types of

energy the system has in state (a). If we write down the equation in full
we have:

Ki + Ugi + Usi +Win = Kf + Ugf + Usf +Wout.

Usually, some of the terms in the above expression can be dropped. For
example, we do not need to consider the spring potential energy Us in
physics problems that do not involve springs.

1) Work: The work done by a force ~F during a displacement ~d is:

W = ~F · ~d = ‖~F‖‖~d‖ cos θ =

∫ d

0

~F (x) · d~x.

Note the use of the dot product to obtain only the part of ~F that is pushing
in the direction of the displacement ~d. When the strength of the force
changes during the motion, we must use integration to calculate the work.

2) Potential energy is stored work: Some types of work, like work
against friction, are called dissipative since they just waste energy. Other
kinds of work are called conservative since the work you do is not lost: it
is converted into potential energy. The gravitational force and the spring
force are conservative forces. Any work you do while lifting an object up
into the air against the force of gravity is not lost but stored in the potential
energy of the object. The gravitational potential energy of lifting an object
from a height of y = 0 to a height of y = h is defined as the negative of
the work done:

Ug(h) ≡ −Wdone = −~Fg · ~h = −(−mg̂) · h̂ = mgh. (13)

You can get all that energy back if you let go of the object. The energy
will come back in the form of kinetic energy since the object will pick up
speed during the fall.

The potential energy stored in a spring as it is compressed from y = 0
to y = x[m] is given by:

Us(x) = −Wdone = −
∫ x

0

~Fs(y) · d~y = k

∫ x

0

y dy = 1
2
kx2. (14)

Example. An investment banker is dropped (from rest) from a 100[m]-tall
building. What is his speed when he hits the ground? We’ll use the formula∑
Ei =

∑
Ef , where i corresponds to the top and f is at the bottom of the

building. We have Ki+Ui = Kf +Uf and after plugging-in the numbers
we obtain 0 +m(9.81)(100) = 1

2
m(vf )

2 + 0. When we cancel the mass
m from both sides of the equation, we’re left with 9.81(100) = 1

2
(vf )

2,
which we can solve for vf . We find vf =

√
2(9.81)(100) = 44.29[m/s].

This is like 160[km/h]. Ouch! That will def initely hurt.

VII. UNIFORM CIRCULAR MOTION

Circular motion is different from linear motion. In linear motion the
acceleration leads to changes in the speed of the object whereas in circular
motion the speed of the object stays constant, but the velocity continuously
changes direction. We’ll now discuss some techniques and concepts which
are well suited for describing circular motion.

A. New coordinate system

Instead of the usual coordinate system x̂, ŷ which is static, we’ll use a
new coordinate system t̂, r̂ that is “attached” to the object:

• r̂: the radial direction always points toward the centre of rotation
• t̂: the tangential direction in the instantaneous direction of motion of

the object. The name comes from the Greek word for “touch” (imagine
a straight line “touching” the circle of rotation).

The r̂t̂-coordinate system makes it very easy to describe the velocity and
the acceleration of an object undergoing circular motion. The velocity of
the object is always in the tangential direction ~v = (0, vt)r̂t̂ = 0r̂+vtt̂. The
constant vt is called the tangential velocity. The acceleration of a rotating
object is always in the radial direction ~a = (ar, 0)r̂t̂ = ar r̂. The constant
ar is called the radial acceleration.

B. Radial acceleration

The defining feature of circular motion is the presence of an acceleration
that acts towards the centre of rotation, perpendicularly to the direction of
motion. The result of this inward acceleration is that the object will follow
a circular path. The radial acceleration ar of an object moving in a circle
of radius R with a tangential velocity vt is given by:

ar =
v2t
R
. (15)

Using Newton’s second law ~F = m~a, we can also calculate the
magnitude of the radial force Fr which is the cause of this rotation:
Fr = mar = m

v2t
R

. In words, this equation tells us the amount of radial
force that is required in order to keep an object moving in a circular path.

Example. A rock of mass m = 0.3[kg] is swinging around in a
horizontal circle attached at the end of a rope. The tangential velocity of
the rock is vt = 50[m/s] and the radius of the circle is R = 1.5[m]. What
is the tension T in the rope? The tension in the rope ~T is the force that is
causing the rotation. We have Fr = T = mar , from which we find that
the tension in the rope must be T = m

v2t
R

= 500[N].

VIII. ANGULAR MOTION

The basic concepts used to describe the rotation of objects are directly
analogous to the concepts for linear motion: position, velocity, acceleration,
force, momentum, and energy. This means that you already know all the
equations of angular motion—you just have to do a “search and replace”
with the new quantities. We’ll now look into this more closely.
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A. Concepts

The new concepts used to describe the angular motion of objects are
• The angular kinematics quantities:

– θ(t)[rad]: the angular position
– ω(t)[rad/s]: the angular velocity
– α(t)[rad/s2]: the angular acceleration

• I[kg m2]: the moment of inertia of an object tells you how difficult
it is to make it turn. The quantity I plays the same role in angular
motion as the mass m plays in linear motion.

• T [N m]: torque measures angular force, the cause of rotation
• L = Iω[kgm2/s]: the angular momentum of a rotating object describes

the “quantity of rotational motion.”
• Kr =

1
2
Iω2[J]: the angular or rotational kinetic energy quantifies the

amount of energy an object has by virtue of its rotational motion.

B. Formulas

Instead of talking about position x, velocity v, and acceleration a, we’ll
now talk about the angular position θ, angular velocity ω, and angular ac-
celeration α. Except for this change of ingredients, the recipe for fining the

equation of motion remains the same: α(t)
ωi+

∫
dt

−→ ω(t)
θi+

∫
dt

−→ θ(t).
In particular, if you apply this recipe to the case of uniformly accelerated
angular motion (α(t) = α), we obtain the equations ω(t) = αt + ωi and
θ(t) = 1

2
αt2 + ωit+ θi, which are analogous to equations (3) and (4).

1) Torque: Torque is angular
force. In order to get an object to
rotate you must exert a torque on
it. Torque is measured in Newton
metres [N m]. The torque produced
by a force depends on how far from
the centre of rotation it is applied:

T = F⊥ r = ‖~F‖ sin θ r, (16)

where r is how far from the centre
of rotation the force acts. Note only the F⊥ component produces torque.

2) Moment of inertia: The quantity I is defined as follows:

I = { how difficult it is to make an object turn }.

The moment of inertia depends on the mass distribution of the object:

Idisk =
1

2
mR2, Iring = mR2, Isphere =

2

5
mR2.

The quantity I plays the same role in the equations of angular motion as
the mass m plays in the equations of linear motion.

3) Torque causes angular acceleration: The angular analogue of New-
ton’s second law is the equation

T = Iα, (17)

which indicates that the angular acceleration produced by the a toque T is
inversely proportional to the object’s moment of inertia.

4) Relation to linear quantities: We can relate the angular quantities θ,
ω, and α to quantities like distance, velocity and acceleration by multiplying
the angular quantity by the radius: d = Rθ, vt = Rω, at = Rα.

5) Angular momentum: The angular momentum of a spinning object
measures the “amount of rotational motion” that the object has. The formula
for the angular momentum of a an object with moment of inertia I rotating
at an angular velocity ω is L = Iω [kg m2/s]. The angular momentum of
an object is a conserved quantity in the absence of torque Lin = Lout. This
is analogous to the way momentum ~p is a conserved quantity in the absence
of external forces.

6) Rotational kinetic energy: The kinetic energy of a rotating object is
Kr =

1
2
Iω2[J]. This is the rotational analogue to the linear kinetic energy

1
2
mv2. The amount of work produced by a torque T which is applied

during an angular displacement of θ is W = T θ[J].
Example. A solid disk of mass 20[kg] and radius 30[cm] is spinning

with an angular velocity of 20[rad/s]. A brake pad is applied to the edge
of the disk producing Ffk = 60[N]. How long before the disk stops?

To solve this rotational kinematics problem we need to find the angular
acceleration produced by the brake. We can do this using the equation
T = Iα. We must find T and Idisk and then solve for α. The torque
produced by the brake is calculated using the force-times-leverage formula:
T = F⊥r = 60 × 0.3 = 18[N m]. The moment of inertia of a disk is
given by Idisk = 1

2
mR2 = 1

2
(20)(0.3)2 = 0.9[kg m2]. Thus we have

α = − 18
0.9

= −20[rad/s2]. We can now use the UAM formula for the
angular velocity ω(t) = αt+ωi and solve for the time when the motion will
stop: 0 = αt+ ωi. The disk will come to a stop after t = −ωi/α = 1[s].

IX. SIMPLE HARMONIC MOTION

We will now learn about simple harmonic motion, which describes
oscillations and vibrations in mechanical systems.

A. Concepts

• A: The amplitude of the movement is how far the object moves back
and forth relative to its centre position.

• x(t)[m], v(t)[m/s], a(t)[m/s2]: position, velocity, and acceleration of
the object as functions of time

• T [s]: the period of the object’s motion. The period is how long it
takes for the motion to repeat.

• f [Hz]: the frequency of the motion
• ω[rad/s]: angular frequency, ω = 2πf .
• φ[rad]: the phase shift denoted by the Greek letter phee

The figure on the right illustrates
a mass-spring system undergoing
simple harmonic motion. Observe
that the position of the mass as a
function of time behaves like the
cos function. From the diagram, we
can identify two important param-
eters of the motion: the amplitude
A, which describes the maximum
displacement of the mass from the
centre position and the period T ,
which describes how long it takes
for the mass to come back to its
initial position.

The equation which describes the
position of the object as a function
of time is the following:

x(t) = A cos(ωt+ φ). (18)

The constant ω (omega) is called the angular frequency of the motion. It
is related to the period T by the equation ω = 2π

T
. The additive constant

φ inside the cos is called the phase constant or phase shift and its value
depends on the initial condition for the motion xi ≡ x(0).

1) Review of trigonometric functions: In order to understand the purpose
of the three parameters A, ω, and φ, we’ll now review the properties of
the cos function. The function f(t) = cos(t) is a periodic function which
oscillates between −1 and 1 with a period of 2π. As t goes from t = 0 to
t = 2π the function cos completes one full cycle.

To describe periodic motion with a different period, we can use a
multiplier in front of the variable t inside the cos function: f(t) = cos(ωt).
If you want to have a periodic function with period T , you should use the
multiplier constant ω = 2π

T
. When you vary t from 0 to T , the function

cos(ωt) goes through one cycle because the quantity ωt goes from 0 to
2π. The frequency of a periodic motion describes how many times per
second it repeats. The frequency is equal to the inverse of the period
f = 1

T
= ω

2π
[Hz].

If we want to have oscillations that go between −A and +A instead of
between −1 and 1, we can multiply the cos function by the appropriate
amplitude: f(t) = A cos(ωt).

The function A cos(ωt) starts from its maximum value at t = 0. For a
mass-spring system, this corresponds to the case when the motion begins
with the spring maximally stretched xi ≡ x(0) = A. In order to describe
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other starting positions for the motion, it may be necessary to introduce a
phase shift inside the cos function

f(t) = A cos(ωt+ φ).

The constant φ must be chosen so that at t = 0, the function f(t) correctly
describes the initial position of the system. For example, the a harmonic
motion which starts from the centre xi ≡ x(0) = 0 is described by
x(t) = A sin(ωt) = A cos

(
ωt− π

2

)
. Note that the function x(t) correctly

describes the initial condition xi ≡ x(0) = 0.

B. Mass-spring system

Okay, enough math! It is time to learn about a physical sys-
tem which exhibits simple harmonic motion: the mass-spring system.
An object of mass m attached to a
spring with spring constant k will
undergo simple harmonic motion with
angular frequency:

ω =

√
k

m
. (19)

A stiff spring attached to a small mass will result in very rapid oscillations.
A weak spring or a large mass will result in slow oscillations. A typical
exam question will tell you k and m and ask about the period T . If you
remember the definition of T , you can easily calculate the answer T =
2π
ω

= 2π
√

m
k

[s].
We showed the position function x(t) of the mass-spring system in

equation (18). We can obtain the velocity and the acceleration functions
of the mass-spring system by computing the derivatives of x(t):

v(t) = −Aω sin(ωt+ φ), a(t) = −Aω2 cos(ωt+ φ). (20)

1) Energy: Recall that the potential energy stored in a spring which is
stretched (compressed) by a length x is given by the formula Us = 1

2
kx2.

Since we know x(t), we can obtain the potential energy of the mass-spring
system as a function of time Us(t) = 1

2
k[x(t)]2. The kinetic energy of the

mass as a function of time is given by K(t) = 1
2
m[v(t)]2.

The potential energy reaches its maximum value Us,max = 1
2
kA2 when

the spring is fully stretched or fully compressed. The kinetic energy is
maximum when the mass passes through the center position. The maximum
kinetic energy is given by Kmax = 1

2
mv2max = 1

2
mA2ω2.

2) Conservation of energy: We know that, in the absence of dissipative
forces, the energy of a system is conserved. The best way to understand
SHM is to think of the energy in the system which shifts between the
potential energy of the spring and the kinetic energy of the moving mass.
When the spring is maximally stretched x = ±A, the mass will have
zero velocity and hence zero kinetic energy K = 0. At this moment all
the energy of the system is stored in the spring ET = Us,max. The other
important moment is when the mass has zero displacement but maximal
velocity x = 0, Us = 0, v = ±Aω,ET = Kmax, which corresponds to all
the energy being stored as kinetic energy. The total energy of the system
remains constant at all times: ET = Us(t) +K(t) = constant.

You will often be asked in exercises to find the quantities vmax = Aω and
amax = Aω2. This is an easy task if you know the values of the amplitude
A and the angular frequency ω.

Example. You are observing a mass-spring system build from a 1[kg]
mass and a 250[N/m] spring. The amplitude of the oscillation is 10[cm].
Determine (a) the maximum speed of the mass, (b) the maximum acceler-
ation, and (c) the total mechanical energy of the system.

First we find the angular frequency for this system ω =
√
k/m =√

250/1 = 15.81[rad/s]. To find (a) we use the equation vmax = ωA =
15.81×0.1 = 1.58[m/s]. Similarly, we can find the maximum acceleration
using amax = ω2A = 15.812×0.1 = 25[m2/s]. To solve (c), we can either
calculate the total energy of the system by considering the potential energy
of the spring when it is maximally extended (compressed) ET = Us(A) =
1
2
kA2 = 1.25[J], or we can obtain the total energy from the maximum

kinetic energy ET = K = 1
2
mv2max = 1.25[J].

SUMMARY

The fundamental purpose of mechanics is to predict the motion of objects
using equations. In the beginning of this tutorial, I made the claim that
there are only twenty equations that you need to know in order to solve
any physics problem. Let us now verify this claim and review the material.

Our goal was to find x(t) for all times t. However, there are no equations
of physics which will tell us x(t) directly. Instead, we have Newton’s
second law (9), which tells us that the acceleration of the object a(t) is
equal to the net force acting on the object divided by the object’s mass. To
find x(t) starting from a(t), we must use integration (twice). The entire
“mechanics recipe” is described by equation (1).

In the remainder of the document we applied this recipe in several
different contexts. In Section II we looked at kinematics problems in one
dimension, and derived equations (3) and (4), which describe the motion
of a particle undergoing constant acceleration (UAM). In Section III we
studied the problem of projectile motion by decomposing it into two
separate kinematics subproblems: one in the x-direction (UVM) and one
in the y-direction (UAM). In Section VII we studied the circular motion of
objects and stated equation (15) which describes an important relationship
between the radial acceleration, the tangential velocity and the radius of the
circle of rotation. In Section VIII we described rotational motion in terms
of angular quantities. We defined the concept of torque in equation (16)
and used this concept to write down the angular equivalent of Newton’s
second law in equation (17). Finally, in Section IX we stated equation (18)
which describes simple harmonic motion and formula (19), which is used
to find the angular frequency of a mass-spring system.

We also discussed three conservation laws: the law of conservation
of linear momentum

∑
~pi =

∑
~pf from equation (11), the law of

conservation of angular momentum (Li = Lf ), and the conservation of
energy law in equation (12). Each of these three fundamental quantities is
conserved overall and cannot be created nor destroyed. In Section V we
described how momentum calculations can be used to analyze collisions,
while in Section VI we used energy formulas like equations (13) and (14)
to analyze the motion of objects in terms of energy principles.

As you can see, twenty equations really are enough for all of mechanics.

ABOUT THE BOOK

If you want to learn more university-level math and physics, I invite you
to check out my book, the No bullshit guide to math and physics.

This book contains short lessons
on topics in math and physics,
written in a style that is jargon-free
and to the point. Often calculus
and mechanics are taught as sep-
arate subjects. It shouldn’t be like
that. If you learn calculus without
mechanics, it will be boring. If you
learn mechanics without calculus,
you won’t truly understand. This
textbook covers both subjects in
an integrated manner and aims to
highlight the connections between
them.

Contents:
• HIGH SCHOOL MATH

• VECTORS

• MECHANICS (just 70 pages!)
• DIFFERENTIAL CALCULUS

• INTEGRAL CALCULUS

5½[in] × 8½[in] × 383[pages]

For more information, see the book’s website minireference.com or
you can get in touch with me by email here ivan.savov@gmail.com.

You can also follow @minireference on twitter and check out the
facebook page fb.me/noBSguide.

http://minireference.com/
https://twitter.com/minireference
http://fb.me/noBSguide
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Figure 2. Each concept in this diagram corresponds to one section in the “No bullshit guide to math and physics,” by Ivan Savov, Fifth edition, ISBN 9780992001001.
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