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Figure 1: This concept map
::::::
diagram

:
shows all the topics and concepts

:::
and

:::::
topics covered in this bookand illustrates the connections between them.
This book is all about linking the concepts together. Since it’s a lot of
stuff, we’ll start slowly by reviewing prerequisite topics of high school math
(Chapter 1), and gradually build your knowledge from there.
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:::::::
Consult

:::
the

::::::
index

:::
on

::::
page

::::
455

::
to

::::
find

::::
the

:::::
exact

::::::::
location

::
in

:::
the

:::::
book

::::::
where

::::
each

:::::::
concept

::
is
::::::::
defined.

:
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Figure 4: Matrix operations and matrix computations play an important role
throughout this book. Matrices are used to represent linear transformations,
systems of linear equations, and various geometric computations

:::::::::
operations.

Figure 5: The book concludes with three chapters on linear algebra ap-
plications. In Chapter 7 we’ll discuss applications to science, economics,
business, computing, and signal processing.

::
In

:
Chapter 8 on

::::
we’ll

::::::
explain

probability theory,
:

and
:::::
finally

::
in

:
Chapter 9 on

::::
we’ll

::::::::
introduce

:
quantum

mechanicsserve as examples of advanced subjects that you can access once
you learn linear algebra.

:::
You

::::
can

::::::::
annotate

::::
the

:::::::
concept

:::::
maps

:::::
with

:::::
your

::::::
current

:::::::::::
knowledge

::
of

::::
each

::::::::
concept

::
to

:::::
keep

:::::
track

:::
of

:::::
your

::::::::
progress.

::::::
Add

:
a
::::::

single
::::

dot
:::
(‚)

::::
next

::
to

:::
all

::::::::
concepts

:::::::
you’ve

::::::
heard

:::
of,

::::
two

::::
dots

::::
(‚‚)

::::
next

:::
to

::::::::
concepts

:::
you

::::::
think

::::
you

::::::
know,

::::
and

:::::
three

:::::
dots

:::::
(‚‚‚)

:::::
next

::
to

::::::::
concepts

:::::::
you’ve

::::
used

::
in

:::::::::
exercises

::::
and

:::::::::
problems.

:::
By

:::::::::
collecting

:::::
some

::::
dots

:::::
every

::::::
week,

:::::
you’ll

:::
be

::::
able

::
to

::::::
move

:::::::
through

:::
the

::::::::
material

:::
in

::
no

:::::
time

::
at

:::
all.

:

ix
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x

:
If
::::

you
::::::

don’t
:::::
want

:::
to

:::::
mark

:::
up

:::::
your

::::::
book,

::::
you

::::
can

:::::::::
download

::
a

::::::::
printable

:::::::
version

::
of

::::
the

:::::::
concept

:::::
maps

:::::
here:

:
bit.ly/LAcmaps

:
.
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Ivan Savov
The "point system" is a new idea with the goal
of making readers more aware of how their 
knowledge is developing.
 
The idea is for readers to actively mark up
concepts as unknown, known, and used and
observe the progress: from a giant map with
scary unknown terminology ...

 ... to a bunch of "completed levels" made
up of concepts the reader knows well. 

Ivan Savov
Looking for feedback about this idea
from anyone who tries it out. 

Did it feel motivational or just a chore? 

https://bit.ly/LAcmaps


Preface

This is a book about linear algebra and its applications. The mate-
rial is presented at the level of a first-year university course, in an
approachable style that cuts to the point. It covers both practical and
theoretical aspects of linear algebra, with extra emphasis on explain-
ing the connections between concepts and building a solid under-
standing of the material.

This book is designed to give readers access to advanced math
modelling tools

:::::::::
regardless

::
of

:::::
their

:::::::::
academic

:::::::::::
backgroundregardless

of their academic background. Since the book includes all the pre-
requisites needed to learn linear algebra, it’s suitable for readers of
any skill level—including those who don’t feel comfortable with
fundamental math concepts.

Why learn linear algebra?
Linear algebra is one of the most fundamental and all-around use-
ful subjects in mathematics. The practical skills learned by studying
linear algebra—such as manipulating vectors and matrices—form
an essential foundation for applications in physics, computer sci-
ence, statistics, machine learning, and many other fields of scientific
study. Learning linear algebra can also be a lot of fun. Readers will
experience

:::::::::
numerous

:
knowledge buzz as they learn about

::::::::
moments

:::::
when

:::::
they

::::
feel

:::::
math

::::::
ideas

::::::
“click”

:::::
into

:::::
place

::::
and

::::::::::::
understand the

connections between concepts, and it’s not uncommon to experience
mind-expanding moments while studying this subject.

The powerful concepts and tools of linear algebra form a bridge
to more advanced areas of mathematics. For example, learning about
abstract vector spaces will help students

::::::
readers

:
recognize the com-

mon “vector space structure” in seemingly unrelated mathematical
objects like matrices, polynomials, and functions. Linear algebra

xi
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xii PREFACE

techniques apply not only to standard vectors, but to all mathemati-
cal objects that are vector-like!

What’s in this book?
Each section is a self-contained tutorial that covers the definitions,
formulas, and explanations associated with a single topic. Check out
the concept maps on the preceding pages to see the book’s many
topics and the connections between them.

The book begins with a review chapter on numbers, algebra,
::::
sets,

equations, functions, geometry, trigonometry, vectors, and complex
numbers

:::
and

::::::::::::
trigonometry

:
(Chapter 1). If you haven’t previously

studied these concepts, or if you feel your math and vector skills are
a little “rusty,” read this chapter and work through the exercises and
problems provided. If you feel confident in your high school math
abilities, jump straight to Chapter 2, where the linear algebra begins.

Chapters 3
:
2–6 cover the core topics of linear algebra: vectors,

bases, analytical geometry, matrices, linear transformations, matrix
representations, vector spaces, inner product spaces, eigenvectors,
and matrix decompositions. These chapters contain the material re-
quired for every university-level linear algebra course. Each section
contains plenty of exercises so you can test your understanding as
you read; and each chapter concludes with an extensive list of prob-
lems for further practice.

Chapters 7, 8, and 9 discuss various applications of linear alge-
bra. Though this material isn’t likely to appear on any linear algebra
final exam, these chapters serve to demonstrate the power of lin-
ear algebra techniques and their relevance to many areas of science.
The mini-course on quantum mechanics (Chapter 9) is unique to
this book. Read this chapter to understand the fascinating laws of
physics that govern the behaviour of atoms and photons.

Is this book for you?
The quick pace and lively explanations in this book provide inter-
esting reading for students and non-students alike. Whether you’re
learning linear algebra for a course, reviewing material as a pre-
requisite for more advanced topics, or generally curious about the
subject, this guide

::::
book

:
will help you find your way in the land of

linear algebra. The tutorial format cuts quickly and clearly to the
point—because we’re all busy people with no time to waste!

Students and educators can use this book as the main textbook for
any university-level linear algebra course. It contains everything stu-
dents need to know to prepare for a linear algebra final exam. Don’t
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xiii

be fooled by the book’s small size compared to other textbooks: it’s
all in here. The text is compact because we’ve distilled the essentials
and removed the unnecessary crud.

Publisher
The genesis of the no bullshit

::::::
starting

::::::
point

:::
of

:::
the

:::
No

::::::::
Bullshit

::::::
Guide

textbook series dates back to my student days , when I was required
to purchase expensive course textbooks, which were long and te-
dious to read. I said to myself, “Something must be done,” and
started a textbook

::::::::::
publishing company to produce textbooks that ex-

plain math and physics concepts clearly, concisely, and affordably.
The goal of Minireference Publishing is to fix the first-year

science textbook problem: mainstream textbooks are too expensive,
boring, and limited in how they teach. We’re creating a better
alternative—one that’s redefining readers’ expectations about what
textbooks should be. Print-on-demand and digital distribution
strategies allow us to provide readers with high-quality textbooks
at reasonable prices, making advanced math and science knowledge
accessible to anyone interested in learning.

The secret behind the effectiveness of the no bullshitseries is the
spirit of continuous improvement. All Minireference authors are
experts with years of teaching experience who co-own the books
they write. Our authors maintain a direct connection with their
readers by listening and responding to feedback. The combination
of skilled authors and small editorial teams equipped with a modern
publishing toolchain allows us to quickly respond to the feedback
we receive, constantly improving our titles

::::::::::::
Minireference

:::::
Co.

:
is

:
a
::::::::::

publisher
:::::::::::
specializing

:::
in

::::::
math

:::::
and

:::::::
science.

:::::::
Our

:::::
goal

::
is
:::

to
:::::
make

:::::::::
advanced

::::::
math

::::::::::
modelling

:::::
tools

::::::::::
accessible

:::
to

:::::::::
everyone

:::
by

:::::::::
producing

::::::::::
affordable

:::::::::
textbooks

::::
that

::::::::
explain

:::::
math

::::::::
concepts

:::::::
clearly

:::
and

:::::::::
concisely.

::::
It’s

::::
time

:::
for

:
a
::::::
break

::::
from

::::::::::
traditional

:::::::::
textbooks

::::
that

:::
are

:::::::::
expensive,

::::::
heavy,

::::
and

:::::::
tedious

:::
to

:::::
read.

::::
The

:::::
books

:::
in

:::
the

:::
No

::::::::
Bullshit

::::::
Guide

:::::
series

::::
are

:::
an

:::::::
efficient

:::::
and

:::::::::
enjoyable

::::::::::
alternative

:::
for

::::::::
learning

::::::::::::
mathematical

:::::::
subjects.

About the author
I have been teaching math and physics for more than 15

::
17 years

as a private tutor. Through teaching
::::
this

::::::::::
experience, I learned to

explain difficult concepts by breaking
:::::
break

:
complicated ideas into

smallerchunks,
::::::::::::::

interconnected
:::::::
chunks

::::
that

::::
are

::::
easy

:::
to

:::::::::::
understand.

An interesting feedback loop occurs when students learn concepts
in small, manageable chunks: they experience knowledge buzz when-
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xiv PREFACE

ever concepts “click” into place, and this excitement motivates them
to continue learning more. I know this from first-hand experience,
both as a teacher and as a student. I completed my undergradu-
ate studies in electrical engineering, then stayed on to earn a M.Sc.
in physics, and a Ph.D. in computer science from McGill University.
Nowadays I focus on teaching and writing effective lessons that help
students and adult learners increase their math power.

Linear algebra played a central role throughout my studies. With
this book, I want to share with you some of what I’ve learned about
this expansive subject.

Ivan Savov
Montreal, 2017

::::
2020
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Introduction

In recent years we’ve seen countless advances in science and tech-
nology. Modern science and engineering fields have developed ad-
vanced models for understanding the real world, predicting the out-
comes of experiments, and building useful technology. Although
we’re still far from obtaining a “theory of everything” that can fully
explain reality and predict the future, we do have a significant under-
standing of the natural world on many levels: physical, chemical, bi-
ological, ecological, psychological, and social. And, since mathemat-
ical models are leveraged throughout these fields of study, anyone
interested in contributing to scientific and technological advances
must also understand mathematics.

The linear algebra techniques you’ll learn in this book are some
of the most powerful mathematical modelling tools that exist. At the
core of linear algebra lies a very simple idea: linearity. A function f
is linear if it obeys the equation

f pax1 ` bx2q “ a f px1q ` b f px2q,

where x1 and x2 are any two inputs of the function. We use the term
linear combination to describe any expression constructed from a set of
variables by multiplying each variable by a constant and adding the
results. In the above equation, the linear combination ax1 ` bx2 of the
inputs x1 and x2 is transformed into the linear combination a f px1q `

b f px2q of the outputs of the function f px1q and f px2q. Essentially,
linear functions transform

:
a
:
linear combinations

::::::::::::
combination of

inputs into the same linear combinations
::::::::::::
combination of outputs.

If the input to the linear function f consists of five parts x1 and three
parts x2, then the output of the function will consist of five parts
f px1q and three parts f px2q. That’s it, that’s all! Now you know ev-
erything there is to know about linear algebra. The rest of the book
is just details.

1
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2 INTRODUCTION

:::::::
Linear

:::::::::
models

::::
are

::::::
super

::::::::
useful

A significant proportion of the models used by scientists and
engineers

:::::
math

:::::::
models

:::::
used

:::
in

:::::::
science describe linear relationships

between quantities. Scientists, engineers, statisticians, business folk,
and politicians

:::::::::::::::
Mathematicians,

:::::::::
scientists,

::::::::::
engineers,

::::
and

::::::::
business

:::::::
analysts

:
develop and use linear models to make sense of the systems

they study. In fact, linear models are often used to model even
nonlinear (more complicated) phenomena.

There are several excellent reasons for using linear models. The
first reason is that linear models are very good at approximating the
real world. Linear models that represent nonlinear phenomena are
referred to as linear approximations.

The second excellent reason to use linear algebra is that we can
describe nonlinear phenomena by combining linear models with
nonlinear transformations of the models’ inputs or outputs. These
techniques are often employed in machine learning: kernel methods
are arbitrary, nonlinear transformations of the inputs of a linear
model, and the sigmoid activation curve is used to transform the
smoothly-varying output of a linear model into a hard yes or no
decision, an on or off command, a 0 or 1 value, etc.

Perhaps the main reason linear models are widely used is
::::::
Linear

:::::::
models

::::
are

:::::::::
popular

:
because they are easy to describe

mathematically, and easy to “fit” to real-world systems
::::
easy

:::
to

::::::::
describe

::::::::::::::
mathematically. We can obtain the parameters of a linear

model for a real-world system by analyzing the system’s behaviour
for relatively few inputs. Let’s illustrate this important point with
an example.

Example Youenter
:::
’re

:::::::
visiting an art gallery. Inside, the screen of a

tablet computer is being projected onto a giant wall. Anything you
draw on the tablet instantly appears projected onto the wall. How-
ever, the tablet’s user interface doesn’t give any indication about how
to hold the tablet “right side up.” How can you find the correct orien-
tation of the tablet so your drawing won’t appear rotated or upside-
down?

This situation is directly analogous to the tasks scientists face
every day when trying to model real-world systems.
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3

px, yq

tablet

px1, y1
q

wall projection

T

Figure 6:
::
An

::::::::
unknown

:::::
linear

::::::::::::
transformation

::
T
:::::
maps

::::::
“tablet

::::::::::
coordinates”

::
to

::::
“wall

:::::::::::
coordinates.”

:::::
How

:::
can

:::
we

::::::::::
characterize

::
T?

The tablet’s screen is a two-dimensional input space , and the
:::::::::
described

:::
by

:::::::::::
coordinates

:::::
px, yq

:::::
and

:::
the

:::::
wall

:
projection is a two-

dimensional output space . We
::::::::
described

:::
by

:::::
wall

::::::::::
coordinates

:::::::
px1, y1

q.
:::
You’re looking for the unknown transformation T that maps the
pixels of the tablet screen (the input space) to the projection on the
wall (the output space)

:
:

px, yq
T

›Ñ px1, y1
q.

::::::::::::::::

::::
This

::::
task

::
is

::::::::
directly

:::::::::
analogous

:::
to

:::
the

:::::
tasks

:::::::::
scientists

::::
and

:::::::::
engineers

::::
face

:::::
every

::::
day

:::::
when

::::::
trying

::
to

::::::
model

:::::::::
real-world

::::::::
systems

:::
by

:::::::::
observing

::::
how

::::::::
systems

:::::::::
transform

::::::
inputs

::
to

::::::::
outputs. If the unknown transfor-

mation T is a lineartransformation, we can learn its parameters very
quickly.

An unknown linear transformation T maps “tablet coordinates”
to “wall coordinates.” How can we characterize T?

Let’s describe each pixel in the input space with a pair of
coordinates px, yq and each point on the wall with another pair
of coordinates px1, y1

q. The unknown transformation T describes the
mapping of tablet coordinates to wall coordinates:

px, yq
T

›Ñ px1, y1
q.

To uncover
:::::
linear,

::::
you

::::
can

:::::
learn

:::::
what

::
it

::
is

:::::
very

:::::::
quickly,

::::::
using

::::
only

:::
two

:::::::
swipes

:::
on

:::
the

:::::
tablet

:::::::
screen.

:

::
To

::::::::::::
understand

:
how T transforms

::::::
screen

:::::::::::
coordinates

::
px, yq

-coordinates to
::
to

:::::
wall

:::::::::::
coordinates

:
px1, y1

q-coordinates, you can
use the following three-step procedure. First, put a dot in the
lower left corner of the tablet to represent the origin p0, 0q of the
xy-coordinate system. Observe the location where the dot appears
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4 INTRODUCTION

on the wall—we’ll call this location the origin of the x1y1-coordinate
system. Next, draw a short,

:::
this

::::::::
two-step

::::::::::
“probing”

::::::::::
procedure:

1.
:::::
Draw

:
a
:
horizontal line on the tablet to represent the x-direction

p1, 0q, and observe the transformed Tp1, 0q that appears
::
in

:::
the

:::::
input

:::::
space

:::::::::::
Ñ “ p1, 0q.

::::
You

::::::::
observe

::::
the

::::::
output

:::
Õ

:::::::::
projected

on the wall. Last, draw
::::
This

::::
tells

::::
you

::::::::::
horizontal

::::::
lines

:::
are

:::::::::::
transformed

::
to

:::::::::
northeast

:::::::::
diagonal

::::
lines

:::
in

:::
the

::::::::::::::
wall-projection

:::::
space.

:

2.
:::::
Draw

:
a vertical line in the y-direction p0, 1q

::::::::
Ò “ p0, 1q on the

tablet, and see the transformed Tp0, 1q that
:
.
:::::

You
::::::::

observe
:::
the

:::::::
output

:::
Ô

:
appears on the wall. By noting how the

xy-coordinate system is mapped to the x1y1-coordinate system,
you can determine the orientation in which you must hold
the tablet so your drawing appears upright when projected
. Knowing the outputs of a linear transformation T for all
“directions” in its input space is a complete characterization
of T.

:::
This

:::::::
means

:::::::
vertical

:::::
lines

:::
on

::::
the

:::::
tablet

::::::
screen

:::::
turn

::::
into

:::::::::
northwest

::::::::
diagonal

:::::
lines

:::::
when

:::::::::
projected

:::
on

:::
the

:::::
wall.

:

In the case of the tablet and the wall, we’re looking for an
unknown transformation T from a two-dimensional input space to
a two-dimensional output space. Since T is a linear transformation,
it’s possible to completely describe T with only two lines (one line
for each dimension).

tablet

wall projection

Ñ
Õ

T

Ò
Ô

T

Figure 7:
:::::::
Drawing

:
a
:::::
short

::::::::
horizontal

:::::
arrow

:::
Ñ

::
on

:::
the

:::::
tablet

:::::
screen

::::::
results

::
in

:
a
::::::::
northeast

:::::::
diagonal

:::::::::
projection

:::
on

:::
the

::::
wall

::
Õ.

::::::::
Drawing

::
a
::::::
vertical

::::::
arrow

:
Ò

::
on

:::
the

:::::
tablet

::::::
results

::
in

:
a
:::::::::
northwest

:::::::
diagonal

:::
line

::::::::
projected

:::
on

:::
the

:::
wall

:::
Ô.

::::
Here

::::::
comes

::::
the

::::::::::
interesting

:::::
part:

::::
now

::::
that

::::
you

::::::
know

:::
the

::::::::
outputs

::
Õ

:::
and

:::
Ô

:::::::::
produced

::::
for

:::
the

::::
two

::::::
input

::::::::::
directions,

::::
you

:::
can

::::::::
predict

:::
the

:::::
linear

::::::::::::::::
transformation’s

::::::
output

::::
for

:::
any

::::::
other

::::::
input. Let’s look at the

math to see
::::::::
equations

::::
that

:::::
show

:
why this is true. Can you
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5

::::::::
Suppose

::::
you

:::::
want

:::
to

:
predict what will appear on the wall if

you draw an angled
:
a
:

line on the tablet in the p2, 3q-direction? First,
locate the point p2, 3q in the input space by moving 2

::::::::
direction

:::::
p3, 2q.

:::
The

:::::::::::
coordinates

:::::
p3, 2q

::::::::
describe

::
a

::::::
swipe

::::
with

::::::
length

::
3
:
units in the x-

direction and 3
:
2
:
units in the y-direction: p2, 3q “ p2, 0q ` p0, 3q “ 2p1, 0q ` 3p0, 1q.

Then, using the fact that .
::::::

The
:::::
input

::::::::::::
coordinates

:::::
p3, 2q

::::
can

:::
be

::::::
written

:::
as

::::::::::::::::::::::::::
3p1, 0q ` 2p0, 1q “ 3 Ñ ` 2Ò.

:::::::::
Because

::::
you

::::::
know

:
T is a

lineartransformation, we can predict the output of the transformation
when the input is p2, 3q:

Tp2, 3q “ Tp2p1, 0q ` 3p0, 1qq “ 2Tp1, 0q ` 3Tp0, 1q.

The projection of the diagonal line in the p2, 3q-direction
::::::
linear,

:::
the

::::
wall

:::::::::
projection

:::
of

::::
this

:::::
input

:
will have a length equal to 2 times the

unit
:
3
::::::

times
:::
the

:
x-direction output Tp1, 0q plus 3 times the unit

::
Õ

::::
plus

:
2
::::::

times
:::
the

:
y-direction output Tp0, 1q. Knowing the outputs of

the two lines Tp1, 0q and Tp0, 1q is sufficient
::
Ô:

:

T
`
3 Ñ ` 2Ò

˘
“ 3T

`
Ñ

˘
` 2T

`
Ò

˘
“ 3 Õ ` 2 Ô .

:::::::::::::::::::::::::::::::::::::::::::::::

ÑÑÑ
Ò
Ò

Õ

Õ

Õ

Ô

ÔT

Figure 8:
:::

The
::::
linear

:::::::::::::
transformation

:
T
:::::
maps

:::
the

:::::
input

::::::::
3 Ñ ` 2Ò

::
to

::
the

::::::
output

:::::::::::::::::::::::::
3T

`Ñ˘ ` 2T
`Ò˘ “ 3 Õ ` 2 Ô.

::::::::
Knowing

::::
that

::::
the

:::::
input

:::
Ñ

:::::::::
produces

:::
the

:::::::
output

:::
Õ

::::
and

:::
the

:::::
input

::
Ò

::::::::
produces

::::
the

::::::
output

:::
Ô

::::::
allows

::::
you

:
to determine the linear transfor-

mation’s output for any input pa, bq. Any
::
all

::::::
other

:::::::
inputs.

::::::
Every

input pa, bq can be expressed
:::::::
written

:
as a linear combination:

pa, bq “ ap1, 0q ` bp0, 1q. The
::::::::::::::::::::::::::::::::
pa, bq “ ap1, 0q ` bp0, 1q “ a Ñ ` bÒ.

:::::
Since

::::
you

:::::
know

::
T

::
is

::::::
linear,

::::
you

:::::
know

:::
the

:
corresponding output will

be Tpa, bq “ aTp1, 0q ` bTp0, 1q. Since we know Tp1, 0q and Tp0, 1q,
we can calculate Tpa, bq.

Don’t worry if you can ’t follow all the math in this example. It’s
the concepts that are essential right now, and we’ll have plenty of
time to work on the math behind the concepts in the rest of the book

T
`
a Ñ ` bÒ

˘
“ aT

`
Ñ

˘
` bT

`
Ò

˘
“ a Õ ` b Ô .

::::::::::::::::::::::::::::::::::::::::::::::

:::::
Since

:::
you

::::
can

:::::::
predict

:::
the

::::::
output

::
of

::
T

:::
for

:::
all

:::::::
possible

:::::::
inputs,

::::
you

::::
have

::::::::
obtained

:
a
:::::::::
complete

:::::::::::::::
characterization

::
of

:::
the

::::::
linear

:::::::::::::
transformation

::
T.
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6 INTRODUCTION

:::
The

::::::::
probing

:::::::::
procedure

:::
we

:::::
used

::
to

:::::::::::
characterize

::::
the

:::::::::::::::
two-dimensional

::::::::::::
tablet-to-wall

::::::
linear

::::::::::::::
transformation

:::::::::
(denoted

::::::::::::
T : R2

Ñ R2)
::::

can
:::

be
::::
used

:::
to

::::::
study

::::::::
arbitrary

::::::
linear

:::::::::::::::
transformations

:::::
with

:::::::::::::
n-dimensional

::::::
inputs

:::
and

::::::::::::::
m-dimensional

:::::::
outputs

:::::::::
(denoted

:::::::::::::
T : Rn

Ñ Rm).
:::::::::
Knowing

:::
the

::::::::
outputs

::
of

::
a

::::::
linear

::::::::::::::
transformation

::
T

:::
for

:::
all

::::::::::::
“directions”

::
in

:::
its

:::::
input

:::::
space

::::::
gives

::
us

::
a
:::::::::
complete

:::::::::::::::
characterization

::
of

:::
T.

TL;DR Linearity
:::
The

::::::
linear

::::::::
property allows us to analyze multidi-

mensional processes and transformations
:::::::
systems

::::
and

:::::::::
processes

:
by

studying their effects on a small set of inputs. This is the essential
reason linear models are so prominent

::::
used

:::
so

:::::::
widely

:
in science.

Probing a linear system with each “input direction” is enough to
completely characterize the system. Without this linear structure,
characterizing

:::
the

::::::::::
behaviour

::
of

:
unknown input-output systems is

::::::
would

::
be

:
a much harder task. Linear algebra is the study of linear

structure, in all its details. The theoretical results and computational
procedures you’ll learn apply to all things linear and vector-like.

Linear transformations

::::::
Linear

::::::::::::::
transformations

::::
will

:::
be

::
a

::::::
central

:::::
topic

:::::::::::
throughout

::::
this

:::::
book.

You can think of linear transformations as “vector functions” and un-
derstand their properties as analogous to the properties of the reg-
ular functions you’re familiar with. The action of a function on a
number is similar to the action of a linear transformation on a vector:

function f : R Ñ R ô linear transformation T : Rn
Ñ Rm

input x P R ô input ~x P Rn

output f pxq P R ô output Tp~xq P Rm

:: inverse function f ´1
ô inverse transformation T´1

zeros of
::::
roots

:::
of f ô kernel of T

Studying linear algebra will expose you to many
::::
new topics associ-

ated with linear transformations. You’ll learn about concepts like
vector spaces, projections,

::::::::
rotations,

:
and orthogonalization proce-

dures. Indeed, a first linear algebra course introduces many ad-
vanced, abstract ideas; yet all the new ideas you’ll encounter can be
seen as extensions of ideas you’re already familiar with. Linear al-
gebra is the vector-upgrade to your high school knowledge of func-
tions.
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7

Prerequisites
To understand linear algebra, you must have some preliminary
knowledge of fundamental math concepts like numbers, equations,
and functions. For example, you should be able to tell me the mean-
ing of the parameters m and b in the equation f pxq “ mx ` b. If
you do not feel confident about your basic math skills, don’t worry.
Chapter 1 is a prerequisites chapter specially designed to help bring
you quickly up to speed on the material of high school math . It
also contains a short summary of vectors concepts usually taught
in the first week of Physics 101, and a section on complex numbers
(Section ??). You should read about complex numbers at some
point because we’ll use complex numbers in Section 6.7 later in the
book

::::::::
material.

Executive summary
The book is organized into nine chapters. Chapters 2 –

:::::::
through

:
6

are the core of linear algebra. Chapters 7 through 9 contain op-
tional reading about linear algebra applications. The concept maps
on pages vi, viii, and ix illustrate the connections between the top-
ics we’ll cover. I know the maps are teeming with concepts

::::
may

:::::
seem

::::::::::::::
informationally

::::::::::::
intimidating

::
at

::::
first

:::::
sight, but don’t worry—

the book is split into tiny chunks, and we’ll navigate the material
step by step. It will be like Mario World, but in n dimensions and
with a lot of bonus levels.

Chapter 2 is an introduction to the subject of
:
a

:::::::
general

:::::::::::
introduction

::
to linear algebra. Linear algebra is the math of vectors and matri-
ces, so we’ll start by defining the mathematical operations we can
perform on vectors and matrices.

In Chapter 3, we’ll tackle the computational aspects of linear alge-
bra. By the end of this course,

::::::
chapter

:
you’ll know how to solve sys-

tems of equations, transform a matrix into its reduced row echelon
form

:::::::
reduced

:::
row

:::::::
echelon

::::
form, compute the product of two matrices,

and find the determinant and the inverse
::::::::::
determinant

::::
and

:::
the

::::::
inverse

of a square matrix. Each of these computational tasks can be tedious
to carry out by hand and can require lots of steps. There is no way
around this; we must do the grunt work before we get to the cool
stuff.

In Chapter 4, we’ll review the properties and the equations that
describe basic geometric objects like points, lines, and planes. We’ll
learn how to compute projections onto vectors, projections onto
planes, and distances between objects. We’ll also review the mean-
ing of vector coordinates, which are lengths measured with respect
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8 INTRODUCTION

to a basis. We’ll learn about linear combinations of vectors, the span
::::
span of a set of vectors, and formally define what a vector space is.
In Section 4.5, we’ll learn how to use the reduced row echelon form
of a matrix, to describe the fundamental spaces associated with the
matrix.

:::::
vector

:::::
space

::
is.

:

Chapter 5 is about linear transformations. Armed with the com-
putational tools from Chapter 3 and the geometric intuition from
Chapter 4, we can tackle the core subject of linear algebra: linear
transformations. We’ll explore in detail the correspondence between
linear transformations (T : Rn

Ñ Rm) and their representation as
m ˆ n matrices. We’ll also learn how the coefficients

::::::
entries

:
in a

matrix representation depend on the choice of basis for the input
and output spaces of the transformation. Section 5.4 on the in-
vertible matrix theorem serves as a midway checkpoint for your
understanding of linear algebra. This theorem connects several
seemingly disparate concepts: reduced row echelon forms, matrix
inverses, row spaces, column spaces, and determinants. The in-
vertible matrix theorem links all these concepts and highlights the
properties of invertible linear transformations that distinguish them
from non-invertible transformations. Invertible transformations are
one-to-one correspondences (bijections) between vectors in the input
space and vectors in the output space.

Chapter 6 covers more advanced theoretical topics of linear al-
gebra. We’ll define the eigenvalues and the eigenvectors

:::::::::
eigenvalues

:::
and

::::
the

::::::::::
eigenvectors of a square matrix. We’ll see how the eigenval-

ues of a matrix tell us important information about the properties
of the matrix. We’ll learn about some ,

::::
and

:::::
learn

::::::
about

:::
the

:
special

names given to different types of matrices , based on the properties
of their eigenvalues. In Section 6.3 we’ll learn about abstract vector
spaces

::::::
discuss

:::::::
abstract

::::::
vector

:::::
spaces. Abstract vectors are mathemati-

cal objects that—like vectors—have components and can be scaled,
added, and subtracted by manipulating their components. Sec-
tion 6.7 will discuss linear algebra with complex numbers. Instead
of working with vectors with real coefficients, we’ll see how to do
linear algebra with vectors that have complex coefficients. This
section serves as a review of all the material in the book. We’ll
revisit all the key concepts and find out how they are affected when
working with complex numbers.

In Chapter 7, we’ll discuss the applications of linear algebra. If
you’ve done your job learning the material in the first seven

:::
six chap-

ters, you’ll get to learn all the cool things you can do with linear alge-
bra. Chapter 8 will introduce the basic concepts of probability theory.
Chapter 9 contains an introduction to quantum mechanics.

The sections in the book are self-contained so you can read them
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9

in any order. Feel free to skip ahead to the parts that you want
to learn first. That being said, the material is ordered to provide an
optimal knowing-what-you-need-to-know-before-learning-what-you-want-to-know
experience

Figure 9:
::::
The

::::::::::
dependency

:::::::
structure

::
of

:::
the

:::::::
chapters

:::
in

::
the

:::::
book.

::::::
Figure

:
9
:::::::

shows
:::
the

::::::::::::
prerequisite

::::::::
structure

::::::::
between

::::
the

::::::::
chapters. If

you’re new to linear algebra, it would be best to read everything
:::
the

::::::::
chapters

:
in order. If you find yourself stuck on a concept at

some point, refer to the concept maps to see if
:::::::
already

:::::
have

:::::
some

:::::::::
experience

:::::
with

::::
the

:::::::
subject,

::::
you

::::
can

::::
skip

::::::
ahead

::
to

::::
the

:::::
parts you’re

missing some prerequisites and flip to the section of the book that
will help you fill in your knowledge gap accordingly

:::::::::
interested

:::
in.

:::
Use

::::
the

:::::
table

::
of

:::::::::
contents,

:::
the

:::::::
concept

::::::
maps

:::
on

:::::
pages

::::::
vi–ix,

::::
and

:::
the

:::::
index

:::
on

::::
page

::::
455

::
to

::::::::
navigate

:::
the

::::::
book.

::::
The

::::::::
chapters

:::
and

::::::::
sections

::
in

:::
the

:::::
book

:::
are

:::::::::::::
self-contained

::
so

:::::
they

::::
will

:::::
make

:::::
sense

:::::
even

::
if

::::
you

::::
read

:::::
them

:::
out

::
of

::::::
order.

Difficulty level
In terms of difficulty, I must prepare you to get ready for some seri-
ous uphill pushes. As your personal “trail guide” up the mountain
of linear algebra, it’s my obligation to warn you about the difficulties
that lie ahead, so that you can mentally prepare for a good challenge.

Linear algebra is a difficult subject because it requires developing
your computational skills, your geometric intuition, and your ab-
stract thinking.

:::::::::::
thinking—all

:::
at

:::
the

:::::
same

:::::
time!

:
The computational

aspects of linear algebra are not particularly difficult, but they can be
boring and repetitive. You’ll have to carry out hundreds of steps of
basic arithmetic. The geometric problems you’ll encounter in Chap-
ter 4 can be tough at first, but they’ll get easier once you learn to draw
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Chapter 1

Math fundamentals

In this chapter we’ll review the fundamental ideas of mathematics
which are the

::::::::::::::::
mathematics—the prerequisites for learning linear al-

gebra. We’ll define the different types of numbers and the concept
of a function, which is a transformation that takes numbers as inputs
and produces numbers as outputs. Linear algebra is the extension
of these ideas to many dimensions: instead of “doing math ”

:::::
doing

:::::
math with numbers and functions, in linear algebra we’ll be “doing
math ”

:::::
doing

:::::
math with vectors and linear transformations.

Figure 1.1: A concept map showing the mathematical topics covered in this
chapter. We’ll learn how to solve equations using algebra, how to model the
world using functions, and some important facts about geometry. The mate-
rial in this chapter is required for your understanding of the more advanced
topics in this book.

11
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Chapter 2

Intro to linear algebra

The first chapter reviewed core ideas of mathematics. Now that
we’re done with the prerequisites, we can begin the main discussion
of linear algebra: the study of vectors and matrices.

2.1 Definitions
Vectors and matrices are the objects of study in linear algebra, and in
this chapter we’ll define them and learn the basic operations we can
perform on them.

We denote the set of n-dimensional vectors
::::
with

::::
real

::::::::::
coefficients

as Rn. A vector ~v P Rn is an n-tuple of real numbers.1 For example, a
three-dimensional vector is

::::::
defined

:::
as a triple of the form

:::::::::
numbers:

~v“
def
“ pv1, v2, v3q P pR, R, Rq ” R3.

To specify the vector ~v, we must specify the values for its three
components:

:
,
:
v1, v2, and v3.

:::::
We’ll

:::
use

::::
the

::::::
terms

::::::::::
components

:::
and

:::::::::
coordinates

::::::::::::::
interchangeably

::::::::::
throughout

::::
the

:::::
book.

:

A matrix A P Rmˆn is a rectangular array of real numbers with
m rows and n columns. For example, a 3 ˆ 2 matrix looks

::
is

:::::::
defined

like this:

A“
def
“

»

–
a11 a12
a21 a22
a31 a32

fi

fl P ” R3ˆ2 .

To specify the matrix A, we need to specify the values of its six
components,

:::::
entries

:
: a11, a12, . . . ,

:::
a21,

::::
a22,

::::
a31,

::::
and a32.

1The notation “s PS” is read “s is an element of S” or “s in S.”

13
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20 INTRO TO LINEAR ALGEBRA

E2.2 Given the matrices A “
“ 1 3

4 5
‰

and B “
“ ´1 0

3 3
‰
, and the vectors

~v “
“

1
2

‰
and ~w “

”
´3
´4

ı
, compute the following expressions.

a) A~v
:

b) B~v
:

c) ApB~vq
:

d) BpA~vq
:

e) A~w
f) B~w

2.2 a) A~v “
“ 7

14
‰
; b) B~v “

“ ´1
9

‰
; c) ApB~vq “

“ 26
41

‰
; d) BpA~vq “

“ ´7
63

‰
;

e) A~w “

”
´15
´32

ı
; f) B~w “

“ 3
´21

‰
.

E2.3 Find the coefficients
::::::::::
components

:
v1 and v2 of the vector ~v ““ v1

v2

‰
so that E~v “ 3~e2 ´ 2~e1, where E is the following matrix:

E “

»

–
| |

~e1 ~e2
| |

fi

fl.

2.3 v1 “ ´2, v2 “ 3.

What next?
We won’t bring geometry, vector spaces, algorithms, and the appli-
cations of linear algebra into the mix all at once. Instead, let’s start
with the basics. Since linear algebra is about vectors and matrices,
let’s define vectors and matrices precisely, and describe the math op-
erations we can perform on them.

2.2 Vector operations
Section ?? introduced some basic notions about vectors. Under-
standing vectors is so important for linear algebra that it’s worth
going beyond the rudimentary understanding of vectors as “direc-
tional quantities,” and so we took the time to describe vectors more
abstractly—as math objects. With vectors defined, our next step is
to specify their properties and the operations we can perform on
vectors. This is what this section is all about.

Operations
:::::::::::::
Definitions

Consider the vectors ~u “ pu1, u2, u3q and ~v “ pv1, v2, v3q, and an
arbitrary constant a P R. Vector algebra can be summarized as the
following operations:

• Addition: ~u `~v ” pu1 ` v1, u2 ` v2, u3 ` v3q
::::::::::::::::::::::::::::::
~u `~v def

“ pu1 ` v1, u2 ` v2, u3 ` v3q
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22 INTRO TO LINEAR ALGEBRA

Scaling by a constant
Scaling is an operation that takes a number and a vector as inputs
and produces a vector output:

scalar-mult : R ˆ Rn
Ñ Rn.

There is no symbol to denote scalar multiplication—we just write
the scaling

::::
scale

:
factor in front of the vector and the multiplication is

implicit.
Multiplying the vector ~u by the scaling

::::
scale

:
factor a is equivalent

to multiplying each component of the vector by a:

~w “ a~u ô wi “ aui.

For example, choosing a “ 2, we obtain the vector ~w “ 2~u, which is
two times longer than the vector ~u:

~w “ pw1, w2, w3q “ p2u1, 2u2, 2u3q “ 2pu1, u2, u3q “ 2~u.

x

y

~w “ p3, 2q

~u “ p1.5, 1q

Figure 2.1: Vectors ~u and ~w are related by the equation ~w “ 2~u.

Vector products
We’ll now define the dot product and the cross product: two geometric
operations useful for working with three-dimensional vectors.

Dot product

The dot product takes two vectors as inputs and produces a single,
real number as an output:

¨ : R3
ˆ R3

Ñ R.
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2.2 VECTOR OPERATIONS 27

Division by the length squared transforms the two appearances of
the vector ~d into the unit vectors d̂ needed for the projection formula:

Pd̂p~vq “ p~v ¨ d̂qloomoon
}~v} cos q

d̂ “

˜
~v ¨

~d
}~d}

¸
~d

}~d}

“

˜
~v ¨ ~d
}~d}2

¸
~d “ P~dp~vq.

Remember these projection formulas well because we’ll need them
later: when computing projections onto planes (Section 4.2), when
computing

::::::
vector coordinates (Section 4.3), and when describing

:::
the

change-of-basis operations
:::::::::
operation (Section 5.3).

Discussion
This section elaborated on the properties of n-dimensional vectors,
which are ordered tuples (lists) of n coefficients

:::::::::::
components. It’s im-

portant to think of vectors as whole mathematical objects, rather than
as coefficients

:::::::::::
components. Although vector operations boil down to

manipulations of their coefficients
:::::::::::
components, vectors are most use-

ful (and best understood) when you think of them as whole objects
that have components, rather than focussing on their components.

Links
[ Nice illustration of the cross product ]
http://1ucasvb.tumblr.com/post/76812811092/

[ Vectors explained by 3Blue1Brown ]
https://youtube.com/watch?v=fNk_zzaMoSs

[ Cross products explained by 3Blue1Brown ]
https://youtube.com/watch?v=eu6i7WJeinw

Exercises
E2.4 Given the vectors ~u “ p1, 1, 0q and ~v “ p0, 0, 3q, compute the
following vector expressions:

a) ~u `~v b) ~u ´~v c) 3~u `~v d) }~u}

2.4 a) p1, 1, 3q; b) p1, 1, ´3q; c) p3, 3, 3q; d)
?

2.

E2.5 Given ~v “ p1, 2, 3q and ~w “ p0, 1, 1q, compute the following
vector products: a) ~v ¨ ~w;

:
b) ~v ˆ ~w;

:
c) ~w ˆ~v;

:
d) ~w ˆ ~w.

2.5 a) 5; b) p´1, ´1, 1q; c) p1, 1, ´1q; d) p0, 0, 0q.
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Multiplication by a constant
Recall that scaling is another word for multiplication by a constant.
Given a number a and a matrix A, we can scale A by a as follows:

aA “ a

»

–
a11 a12
a21 a22
a31 a32

fi

fl “

»

–
aa11 aa12
aa21 aa22
aa31 aa32

fi

fl.

Matrix-vector multiplication
The result of the matrix-vector product between a matrix A P Rmˆn

and a vector ~v P Rn is an m-dimensional vector:

matrix-vector product : Rmˆn
ˆ Rn

Ñ Rm.

The formula for the matrix-vector product is

~w “ A~v ô wi “

nÿ

j“1
aijvj, @i P r1, . . . , ms.

For example, the product of a 3 ˆ 2 matrix A and the 2 ˆ 1 column
vector ~v results in a 3 ˆ 1 vector:

A~v “

»

–
a11 a12
a21 a22
a31 a32

fi

fl
„

v1
v2

⇢
“ v1

»

–
a11
a21
a31

fi

fl ` v2

»

–
a12
a22
a32

fi

fl

looooooooooomooooooooooon
column picture

“

»

–
pa11, a12q ¨~v
pa21, a22q ¨~v
pa31, a32q ¨~v

fi

fl
:

,
.

- row picture

“

»

–
a11v1 ` a12v2
a21v1 ` a22v2
a31v1 ` a32v2

fi

fl P R3ˆ1.

Note the two equivalent ways to understand the matrix-vector prod-
uct: the column picture and the row picturecolumn picture

:::
and

:::
the

:
row

picture. In the column picture, the multiplication of the matrix A by
the vector ~v produces a linear combination of the columns of the
matrix. In the row picture, multiplication of the matrix A by the vec-
tor ~v produces a column vector with coefficients

:::::::::::
components equal

to the dot products of the rows of the matrix A with the vector ~v.
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30 INTRO TO LINEAR ALGEBRA

Matrix-matrix multiplication

The matrix product AB of matrices A P Rmˆ` and B P R`ˆn results
in an m ˆ n matrix:

matrix-product : Rmˆ`
ˆ R`ˆn

Ñ Rmˆn.

The formula for the matrix product
::::::
matrix

:::::::::::::
multiplication

:
computes

the dot product between each row of A and each column of B:

C “ AB ô cij “

ÿ̀

k“1
aikbkj, @i P r1, . . . , ms, j P r1, . . . , ns.

»

—–
a11 a12

a21 a22

a31 a32

fi

�fl

«
b11 b12

b21 b22

�
“

»

—–
a11b11 ` a12b21 a11b12 ` a12b22

a21b11 ` a22b21 a21b12 ` a22b22

a31b11 ` a32b21 a31b12 ` a32b22

fi

�fl P R3ˆ2.

Transpose

The transpose matrix AT is defined by the formula aTij “ aji. We
obtain the transpose by “flipping” the matrix through its diagonal:

T : Rmˆn
Ñ Rnˆm

„
a1 a2 a3
b1 b2 b3

⇢T
“

»

–
a1 b1
a2 b2
a3 b3

fi

fl.

Note that entries on the diagonal of the matrix do not change when
we apply the transpose operation.

Properties of the transpose operation

• pA ` Bq
T

“ AT
` BT

• pABq
T

“ BTAT

• pABCq
T

“ CTBTAT

• pAT
q
´1

“ pA´1
q
T

Vectors as matrices
A vector is a special type of matrix. You can treat a vector ~v P Rn

either as a column vector (n ˆ 1 matrix) or as a row vector (1 ˆ n matrix).
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Inner product

Recall the definition of the dot product or inner product for vectors:

¨ : Rn
ˆ Rn

Ñ R ô ~u ¨~v”“:

nÿ

i“1
uivi.

If we think of vectors as column vectors, we can write the dot product
in terms of the matrix transpose operation T and the standard rules
of matrix multiplication:

~u ¨~v”“:~u
T~v “

“
u1 u2 u3

‰
»

–
v1
v2
v3

fi

fl “ u1v1 ` u2v2 ` u3v3.

The dot product for vectors is thus a special case of matrix multi-
plication. Alternatively, we could say that matrix multiplication is
defined in terms of the dot product.

Outer product

Consider again two column vectors ~u and ~v (n ˆ 1 matrices). We ob-
tain the inner product by applying the transpose to the first vector in
the product: ~uT~v ” ~u ¨~v

:::::::::
~uT~v “ ~u ¨~v. Instead, if we apply the trans-

pose to the second vector, we’ll obtain the outer product outer product
of ~u and ~v. The outer product operation takes pairs of vectors as
inputs and produces matrices as outputs:

outer-product : Rn
ˆ Rn

Ñ Rnˆn.

For example, the outer product of two vectors in R3 is

~u~vT “

»

–
u1
u2
u3

fi

fl“
v1 v2 v3

‰
“

»

–
u1v1 u1v2 u1v3
u2v1 u2v2 u2v3
u3v1 u3v2 u3v3

fi

fl P R3ˆ3.

Observe that the matrix-matrix product between
::
of a 3 ˆ 1 matrix

and a 1 ˆ 3 matrix results in a 3 ˆ 3 matrix.
In Section 4.2 we’ll see how the outer product is used to build

projection matrices. For example, the matrix that corresponds to the
projection onto the x-axis is Mx ” ı̂ı̂T P R3ˆ3

:::::::::::::::
Mx “ ı̂ı̂T P R3ˆ3. The

x-projection of any vector ~v is computed as the matrix-vector prod-
uct, Mx~v “ ı̂ı̂T~v “ ı̂pı̂ ¨~vq “ vxı̂. More on that later.
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2.4 LINEARITY 35

value 100mx. This input-output proportionality does not hold for
nonlinear terms.

In this section we’ll discuss the special properties of expressions
and equations containing only linear terms.

Introduction
A single-variable function takes as its input a real number x and out-
puts a real number y. The

:::::
f pxq.

::::
The

:::::
type signature of this class of

functions
:::::::
function

:
is

f : R Ñ R.

The most general linear function from R to R looks like this:

y ” f pxq “ mx,

where m P R is called the coefficient of x. The action of a linear func-
tion is to multiply the input by the constant m. So far, so good.

Example of composition of linear functions Given the linear func-
tions f pxq “ 2x and gpyq “ 3y

::::::::
gpxq “ 3x, what is the equation of the

function hpxq ” g ˝ f pxq “ gp f pxqq
:::::::::::::::::::::::
hpxq

def
“ g ˝ f pxq “ gp f pxqq? The

composition of f pxq “ 2x and gpyq “ 3y
::::::::
gpxq “ 3x

:
is the function

hpxq “ gp f pxqq “ 3p2xq “ 6x. Note the composition of two linear
functions is also a linear function. The coefficient of h is equal to the
product of the coefficients of f and g.

Definition
Linear functions map any linear combination of inputs to the same
linear combination of outputs. A function f is linear if it satisfies the
equation

f pax1 ` bx2q “ a f px1q ` b f px2q,

for any two inputs x1 and x2, and for all constants a and b.

Lines are not linear functions!
Consider the equation of a line:

lpxq “ mx ` b,

where the constant m corresponds to the slope of the line, and the
constant b ” f p0q is the y-intercept of the line

:::::::
b “ f p0q

::
is
:::

its
::::::

initial
:::::
value. A line lpxq “ mx ` b with b ‰ 0 is not a linear function. This
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2.5 OVERVIEW OF LINEAR ALGEBRA 41

Theoretical linear algebra
Linear algebra will teach you how to reason about vectors and ma-
trices in an abstract way. By thinking abstractly, you’ll be able to
extend your geometric intuition of two and three-dimensional prob-
lems to problems in higher dimensions. Much knowledge buzz awaits
as you learn about new mathematical ideas and develop new ways
of thinking.

You’re no doubt familiar with the normal coordinate system
made of two orthogonal axes: the x-axis and the y-axis. A vector
~v P R2 is specified in terms of its coordinates pvx, vyq with respect
to these axes. When we say ~v “ pvx, vyq, what we really mean is
~v “ vxı̂ ` vy ‚̂, where ı̂ and ‚̂ are unit vectors that point along the
x- and y-axes. As it turns out, we can use many other kinds of
coordinate systems to represent vectors. A basis for R2 is any set of
two vectors tê1, ê2u that allows us to express all vectors ~v P R2 as
linear combinations of the basis vectors: ~v “ v1 ê1 ` v2 ê2. The same
vector ~v corresponds to two different coordinate pairs, depending
on which basis is used for the description: ~v “ pvx, vyq in the basis
tı̂, ‚̂u and ~v “ pv1, v2q in the basis tê1, ê2u. We’ll learn about bases and
their properties

:::
the

::::::::::
properties

::
of

:::::
bases

:
in great detail in the coming

chapters. The choice of basis plays a fundamental role in all aspects
of linear algebra. Bases relate the real-world to its mathematical
representation in terms of vector and matrix components.

In the text above, I explained that computing the product be-
tween a matrix and a vector A~x “ ~y can be thought of as a linear
transformation, with input ~x and output ~y. Any linear transforma-
tion (Section 5.1) can be represented (Section 5.2) as a multiplication
by a matrix A. Conversely, every m ˆ n matrix A P Rmˆn can be
thought of as performing a linear transformation TA : Rn

Ñ Rm. The
equivalence between matrices and linear transformations allows us
to identify certain matrix properties with properties of linear trans-
formations. For example, the column space CpAq of the matrix A (the
set of vectors that can be written as a combination of the columns of
A) corresponds to the image space of the linear transformation TA
(the set of possible outputs of TA).

The eigenvalues and eigenvectors of matrices (Section 6.1) allow
us to describe the actions of matrices in a natural way. The set of
eigenvectors of a matrix are special input vectors for which the ac-
tion of the matrix is described as a scaling. When a matrix acts on
one of its eigenvectors, the output is a vector in the same direction
as the input vector scaled by a constant. The scaling constant is the
eigenvalue (own value) associated with this eigenvector. By specify-
ing all the eigenvectors and eigenvalues of a matrix, it is possible to
obtain a complete description of what the matrix does. Thinking of
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42 INTRO TO LINEAR ALGEBRA

matrices in terms of their eigenvalues and eigenvectors is a powerful
technique for describing their properties and has many applications.

Linear algebra is useful because linear algebra techniques can be
applied to all kinds of “vector-like” objects. The abstract concept
of a vector space (Section 6.3) captures precisely what it means for
some class of mathematical objects to be “vector-like.” For example,
the set of polynomials of degree at most two, denoted P2pxq, con-
sists of all functions of the form f pxq “ a0 ` a1x ` a2x2. Polynomials
are vector-like because it’s possible to describe each polynomial in
terms of its coefficients pa0, a1, a2q. Furthermore, the sum of two poly-
nomials and the multiplication of a polynomial by a constant both
correspond to vector-like calculations of coefficients. Once you real-
ize polynomials are vector-like, you’ll be able to use linear algebra
concepts

:::::::
notions

:
like linear independence, dimension, and basis when

working with polynomials.

Useful linear algebra
One of the most useful skills you’ll learn in linear algebra is the abil-
ity to solve systems of linear equations. Many real-world problems
are expressed as linear equations in multiple unknown quantities.
You can solve for n unknowns simultaneously if you have a set of
n linear equations that relate the unknowns. To solve this system of
equations, eliminate the variables one by one using basic techniques
such as substitution and subtraction (see Section ??); however, the
procedure will be slow and tedious for many unknowns. If the sys-
tem of equations is linear, it can be expressed as an augmented ma-
trix built from the coefficients in the equations. You can then use
the Gauss–Jordan elimination algorithm to solve for the n unknowns
(Section 3.1). The key benefit of the augmented matrix approach is
that it allows you to focus on the coefficients without worrying about
the variable names. This saves time when you must solve for many
unknowns. Another approach for solving n linear equations in n un-
knowns is to express the system of equations as a matrix equation
(Section 3.2) and then solve the matrix equation by computing the
matrix inverse (Section 3.5).

In Section 6.6 you’ll learn how to decompose a matrix into a prod-
uct of simpler matrices. Matrix decompositions are often performed
for computational reasons: certain problems are easier to solve on a
computer when the matrix is expressed in terms of its simpler con-
stituents. Other decompositions, like the decomposition of a matrix
into its eigenvalues and eigenvectors, give you valuable information
about the properties of the matrix. Google’s original PageRank al-
gorithm for ranking webpages by “importance” can be explained as
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2.12 Using the definition of the matrix vector product, we can imitate the
action of each linear transformation T by choosing appropriate coefficients

:::::
entries

:
in the matrix. The top row corresponds to the first coefficient

:::::::::
component

:
of the output; the bottom row corresponds to the second

coefficient
:::::::::
component

:
of the output. Observe that BA “ C. The com-

posite transformation of applying TA followed by TB (denoted TB ˝ TA), is
equivalent to the transformation TC. Note AB ‰ BA: the matrix product AB
corresponds to compositing the composition of the linear transformations
in the opposite order TA ˝ TB.

P2.13 Use the determinant properties to simplify these expressions:

a)detpABA´1q b) detpABq
detpBq c)detpABq ´ detpBAq

2.13 a) detpBq; b) det A; c) 0.

P2.14 Suppose A, B, and C are unknown 3 ˆ 3 matrices such that |A| “ 2,
|B| “ 3, and |C| “ 5. Determine the values of the following expressions:

a) |AB| b) |A´1B| c) |BC| d) |ABC| |2C|

Hint: Use the properties of the determinant operation.

2.14 a) 6; b) 3
2 ; c) 15; d) 30; 40.



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



48 COMPUTATIONAL LINEAR ALGEBRA

If we add a-times the first equation to the second equation, we obtain
an equivalent system of equations:

ax ` : by “ c

pd ` aaqx ` pe ` abqy “ f ` ac.

This is called a row operation: we added a-times the first row to the
second row. Row operations change the coefficients of the system of
equations, but leave the solution unchanged. Gauss–Jordan elimina-
tion is a systematic procedure for solving systems of linear equations
using row operations.

Matrix product
:::::::::::::
multiplication The product AB between matrices

A P Rmˆ` and B P R`ˆn is the matrix C P Rmˆn whose coefficients

::::::
entries

:
cij are defined by the formula cij “

∞`
k“1 aikbkj for all i P

r1, . . . , ms and j P r1, . . . , ns. In Section 3.3, we’ll unpack this formula
and learn about its intuitive interpretation: that computing C “ AB
is computing all the dot products between the rows of A and the
columns of B.

Determinant The determinant of a matrix A, denoted detpAq, is an
operation that gives us useful information about the linear indepen-
dence of the rows of the matrix. The determinant is connected to
many notions of linear algebra: linear independence, geometry of
vectors, solving systems of equations, and matrix invertibility. We’ll
discuss these aspects of determinants in Section 3.4.

Matrix inverse In Section 3.5, we’ll build upon our knowledge of
Gauss–Jordan elimination, matrix products, and determinants to de-
rive three different procedures for computing

::::::
finding

:
the matrix in-

verse A´1.

3.1 Reduced row echelon form
In this section we’ll learn to solve systems of linear equations using
the Gauss–Jordan elimination procedure. A system of equations can
be represented as a matrix of coefficients. The Gauss–Jordan elimi-
nation procedure converts any matrix into its reduced row echelon form
(RREF). We can use the RREF to easily find the solution (or solutions)
of the system of equations.

Heads up: the material covered in this section requires your full-
on, caffeinated attention, as the procedures you’ll learn are some-
what tedious. Gauss–Jordan elimination involves many repetitive
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3.3 MATRIX MULTIPLICATION 65

:

.

Again, we must do the same to both sides of the equation. To cancel
A, we need to multiply by A´1 from the left:

:

.

When A´1 cancels with A, we obtain the final result

.

* * *

This completes our lightning tour of matrix equations. There is re-
ally nothing new to learn here; just make sure you’re aware that the
order in which matrices are multiplied matters, and remember the
general principle of “doing the same thing to both sides of the equa-
tion.” Acting according to this principle is essential in all of math,
and particularly important when manipulating non-commutative
:::::::::::::::
noncommutative

:
operations as in matrix equations.

In the next section, we’ll “zoom in” on matrix equations by ex-
amining the arithmetic operations performed on coefficients during
matrix

::::::
matrix

:::::::
entries

::::::
during

:
multiplication.

Exercises
E3.4 Solve for X in the following matrix equations: a) XA “ B,
b) ABCXD “ E, and c) AC “ XDC. You can assume the matrices A,
B, C, D, and E are all invertible.

3.4 a) X “ BA´1; b) X “ C´1B´1 A´1ED´1; c) X “ AD´1.

3.3 Matrix multiplication
Suppose we’re given the matrices

A “

„
a b
c d

⇢
and B “

„
e f
g h

⇢
,



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



3.4 DETERMINANTS 75

Properties
Let A and B be two square matrices of the same dimension. The
determinant operation has the following properties:

• detpABq “ detpAq detpBq “ detpBq detpAq “ detpBAq

• If detpAq ‰ 0, the matrix is invertible and detpA´1
q “

1
detpAq

• det
´

AT
¯

“ detpAq

• detpaAq “ an detpAq, for an n ˆ n matrix A
• detpAq “

±n
i“1 li, where tliu “ eigpAq are the eigenvalues

of A

The effects of row operations on determinants
Recall the three row operations we used for the Gauss–Jordan elimi-
nation procedure:

• Add a multiple of one row to another row
• Swap two rows
• Multiply a row by a constant

We’ll now describe the effects of these row operations on the value
of the matrix determinant. In each case, we’ll connect the effects of
the row operation to the geometric interpretation of the determinant
operation.

Add a multiple of one row to another row

Adding a multiple of one row of a matrix to another row does not
change the determinant of the matrix.

Figure 3.10: Row operations of the form Ra : Ri – Ri ` aRj do not change
the value of the matrix determinant.

This property follows from the fact that parallelepipeds with equal
base enclosed between two parallel planes have the same volume
even if they have different slants. This is known as

:::::
called

:
Cavalieri’s

principle.
It is easier to visualize Cavalieri’s principle in two dimensions

by considering two parallelograms with base b and different slants,
enclosed between two parallel lines. The area of both parallelograms
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Invertibility

Not all matrices are invertible. Keep this in mind, since teachers
might try to trick you by asking you to find the inverse of a non-
invertible matrix. Let’s analyze how each procedure for computing
the inverse fails when applied to a non-invertible matrix D. The
inverse formula based on the determinant and the adjugate matrix
is D´1

“
1

detpDq adjpDq. However, if the matrix D is not invertible,
then detpDq “ 0 and the formula fails due to a divide-by-zero error.
The row operations approach to computing the inverse will also fail.
Starting from the extended array r D | s

:::::::
r D | s, you can apply all

the row operations you want, but you’ll never be able to obtain the
identity matrix in the left half of the extended array. This is because
the reduced row echelon form of a non-invertible matrix D has at
least one row of zeros: rrefpDq ‰ . We’ll discuss invertible matrices
and their properties in Section 5.4. For now, be sure to remember the
determinant

::::::::::
invertibility

:
testfor invertibility:

:
: if detpAq “ 0, then A is

non-invertible, and if detpAq ‰ 0, then A is invertible.

Exercises
E3.9 For what values of a is the matrix A “

“ 2 3
4 a

‰
invertible?

3.9 A´1 exists for all a ‰ 6.

E3.10 Compute A´1 where A “
“

1 1
1 2

‰
.

3.10 A´1
“

”
2 ´1

´1 1

ı
.

E3.11 Solve for x and y in the equation
”

1 3
´1 ´2

ı”
x
y

ı
“

”
1
2

ı
.

3.11 x “ ´8 and y “ 3.

3.11 We can solve the equation A
“ x

y
‰

“~b by multiplying the equation
by the inverse A´1. We find A´1

“
“ ´2 ´3

1 1
‰

and
“ x

y
‰

“ A´1~b “
“ ´8

3
‰
.

E3.12 Show that for an n ˆ n invertible matrix A, the determinant of
the adjugate matrix is |adjpAq| “ p|A|q

n´1.

Hint: Recall that |A´1
| “

1
|A| and |aA| “ an

|A|.
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3.6 Computational problems
We’ve reached the problem section where you’re supposed to prac-
tice all the computational techniques of linear algebra. This is not
going to be the most exciting three hours of your life, but you’ll get
through it. You need to know how to solve computational problems
by hand and apply the Gauss–Jordan elimination procedure; and
you need to know how to multiply matrices, calculate determinants,
and find matrix inverses. These computational techniques enable all
the advanced procedures we’ll develop later in the book. If you skip
these practice problems, you’ll have trouble later when it comes to
mastering more advanced topics that rely on these basic matrix op-
erations as building blocks. Do this important work now, and you’ll
be on your way to becoming fluent in linear algebra computations...
plus, the rest of the book will be much more pleasant.

P3.1 Find the solution sets for the augmented matrices.

a)

»

–
1 ´1 ´2 1

´2 2 4 ´2
3 ´3 ´6 3

fi

fl b)

»

——–

2 ´2 3 2 2
0 0 5 3 3
6 ´6 ´1 0 0
6 ´6 9 6 6

fi

��fl

3.1 a) tp1, 0, 0q ` sp1, 1, 0q ` tp2, 0, 1q, @s, t P Ru; b) tp 1
10 , 3

5 , 0, 0q
:::::::::
tp 1

10 , 0, 3
5 , 0q

` ap1, 1, 0, 0q ` bp´ 1
10 , 0, ´ 3

5 , 1q, @a, b P Ru.

P3.2 Find the solutions to the systems of equations.

a)

»

–
2 1 ´1 0
0 1 1 0
4 2 ´2 0

fi

fl b)

»

–
2 0 1 5
1 4 2 2
0 2 1 1

fi

fl c)

»

–
1 1 2 2
2 2 4 ´8
3 ´3 ´6 3

fi

fl
::::::::::::::::

»

–
1 1 2 2
4 ´2 ´4 5
3 ´3 ´6 3

fi

fl

3.2 a)
” x1

x2
x3

ı
P

"” 0
0
0

ı
` t

„
1

´1
1

⇢
, @t P R

*

:::::::::::::::::::

"” 0
0
0

ı
` t

„
1

´1
1

⇢
, @t P R

*
. b)

” x1
x2
x3

ı
=

„
0

´2
5

⇢
. c)

” x1
x2
x3

ı
=

!” 0
0
1

ı
` t

„
0

´2
1

⇢
, @t P R

)
:::::

!«
3
2
1
2
0

�

:::::::::::::::
` t

„
0

´2
1

⇢
, @t P R

)
.

P3.3 Consider an unknown matrix A P R5ˆ5. You’re told the system of
linear equations A~x “ ~b has an infinite number of solutions. What is the
maximum rank of the matrix A?

3.3 rankpAq § 4.

3.3 Since the system of equations A~x “~b has an infinite number of solutions,
the RREF of A must contain at least one row of zeros. Therefore, the rank of
A can be at most 5 ´ 1 “ 4.

P3.4 Solve for C in the matrix equation ABCD “ AD.
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3.4 C “ B´1.

3.4 First simplify the equation by multiplying with A´1 from the left, and
with D´1 from the right, to obtain BC “ . Now we can isolate C by multi-
plying with B´1 from the left. We obtain B´1 “ C.

P3.5 Solve for the following matrix equations problems:

a) Simplify the expression MNB´1BK´1KN´1 M´2L´1S´1SMK2.
b) Simplify J´3K2G´1GK´3 J2.
c) Solve for A in the equation A´1BNK “ 2B2B´1NK.
d) Solve for Y in SUNNY “ SUN.

You can assume all matrices are invertible.

3.5 a) M´1L´1 MK
:::::::::::
M´1L´1 MK2; b) J´3K´1 J2; c) A “ 1

2 ; d) Y “ N´1.

P3.6 Solve for ~x in A~x “~b, where A “
„

1 0 ´3
2 ´1 1
0 0 ´1

⇢
and~b “ p2, 2, 3qT.

Hint: Express the equation A~x “~b as an augmented matrix.

3.6 ~x “ p´7, ´19, ´3qT.

P3.7 Solve for ~x in the equation ~x “ ~d ` A~x, where A “
” 0 0.05 0.3

0.01 0 0.01
0.1 0 0

ı
, and

~d “ p25, 10, 14qT. Use live.sympy.org to perform the calculations.

Hint: Rewrite as ~x “ ~d ` A~x, then bring all the ~xs to one side.

3.7 ~x “ p30.64, 10.48, 17.06q.

3.7 Start by rewriting the matrix equations as p ´ Aq~x “ ~d, then solve for
~x by hitting the equation with the appropriate inverse: ~x “ p ´ Aq´1~d. See
bit.ly/1hg44Ys for the details of the calculation.

P3.8 Compute the product of three matrices:

„
2 10 ´5 0
0 0 1 3

⇢
»

——–

1 3
0 2
5 1

´3 ´4

fi

��fl

„
1 1
1 1

⇢
.

3.8
”

´2 ´2
´15 ´15

ı
.

P3.9 Consider the following three matrices:

X “
«

0 1
1 0

�
, Z “

«
1 0
0 ´1

�
, and H “

« 1?
2

1?
2

1?
2

´ 1?
2

�
.

Show that HXH “ Z and that HZH “ X.
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3.9 First rewrite H as 1?
2

”
1 1
1 ´1

ı
to simplify calculations. Then comput-

ing HXH gives us HXH “ 1
2

´”
1 1
1 ´1

ı”
0 1
1 0

ı¯”
1 1
1 ´1

ı
“ 1

2

”
1 1

´1 1

ı”
1 1
1 ´1

ı
“

1
2

“ 2 0
0 ´2

‰ “ Z. The calculation for HZH is similar and it leads to X.

P3.10 Given an unknown variable a P R and the matrices

A“
„

cospaq 1

´1 ´ sinpaq

⇢
; B“

„
sinpaq 0

0 ´ sinpaq

⇢
; C “

„
1 ´ cospaq

sinpaq 1

⇢
,

compute the value of a) A2 ` B2, b) A2 ` C, and c) A2 ` C ´ B2. Give your
answer in terms of a and use the double-angle formulas as needed.

P3.11 Find the determinants of the following matrices.

a)
„

2 1
3 0

⇢

b)

»

–
0 5 3
0 1 1
0 1 0

fi

fl c)

»

–
1 2 0
3 1 1
4 ´2 0

fi

fl

3.11 a) ´3; b) 0; c) 10.

P3.12 Find the determinants of the matrices.

A “

»

——–

3 ´1 5 2
0 2 2 ´3
0 0 4 0
0 0 0 ´2

fi

��fl B “

»

———–

2 ´1 0 ´3 2
0 1 1 3 0
1 4 0 0 ´1
3 ´2 3 1 0

´1 0 ´1 0 2

fi

���fl

3.12 detpAq “ ´48; detpBq “ 13.

P3.13 Determine if the following sets of vectors are linearly dependent or
linearly independent.

a)tp1, 1, 0q, p1, 0, 1q, p0, 1, 1qu b)tp1, 1, 0q, p1, 0, 1q, p1, 3, ´2qu
c)tp1, 2, 3, 4q, p´1, ´2, 1, 0q, p0, 0, 1, 1q, p1, 0, 0, 1qu

3.13 a) Independent; b) Dependent; c) Dependent.

3.13 We can determine if the sets of vectors are linearly independent by com-
bining them to form a matrix then computing this matrix’s determinant. If
the determinant of the matrix is nonzero, the vectors are linearly indepen-
dent.

P3.14 Find the area of a parallelogram that has vectors ~v “ p3, ´5q and
~w “ p1, ´1q as its sides.

Hint: Use the formula from Section 3.4 (page 73).

3.14 Area “ 2.

P3.15 Find the volume of the parallelepiped that has the vectors ~u “
p2, 0, 1q, ~v “ p1, ´1, 1q, and ~w “ p0, 2, 3q as sides.

:::
See

:::::
Figure

:::
3.9

:::
for

:::
an

:::::::::
illustration.

:

3.15 Volume “ 8.

P3.16 Suppose M and N are unknown 4 ˆ 4 matrices with |M| “ ´2 and
|N| “ 7. Compute the values of these determinant expressions:
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3.21 a) The inverse doesn’t exist; b)
”

5 ´2
´2 1

ı
; c)

”
2 ´ 3

2
´1 1

ı
.

P3.22 Given the matrix equation AB “ C, where A and C are 2 ˆ 2 matrices,
find the matrix B.

A “
„

1 4
2 7

⇢
C “

„
3 2
1 ´4

⇢

3.22 B “ “ ´17 ´30
5 8

‰
.

P3.23 Find the inverses of the matrices A “
„

1 4 3
2 1 1
0 ´2 ´1

⇢
and B “

«
0 ´3 2 4
1 ´1 1 ´1
2 4 0 ´2
3 0 1 0

�
.

3.23 A´1 “
« ´ 1

3
2
3 ´ 1

3
´ 2

3
1
3 ´ 5

3
4
3 ´ 2

3
7
3

�
and B´1 “ 1

21

»

–
´3 ´5 ´21

6 11
3 ´2 7 ´4
9 15 21

2 ´12
3 ´9 0 3

fi

fl.

P3.24 Prove that the zero matrix A has no inverse.

3.24 Zero matrix has the detpAq “ 0. We have A´1 “ 1
detpAq adjpAq. We

cannot divide by zero, so the zero matrix has no inverse.

P3.25 Obtain the matrices of cofactors for the following matrices.

A“
„

1 4 3
2 1 1
0 ´2 ´1

⇢
B “

„
5 0 1
3 ´1 ´3
0 ´4 ´2

⇢
C “

«
1 1 1 1
2 0 ´2 0

´1 2 1 ´2
1 ´1 ´1 1

�

3.25 CA “
„

1 2 ´4
´2 ´1 2
1 5 ´7

⇢
; CB “

„ ´10 6 ´12
´4 ´10 20
1 18 ´5

⇢
; CC “

«
0 0 0 0
2 ´2 2 ´2

´4 4 ´4 4
´8 8 ´8 8

�
.

P3.26 Implement the formula A´1 “ 1
detpAq adjpAq for the case of 3 ˆ 3

matrices using a spreadsheet application like
::::::::::
LibreOffice, OpenOffice, Ex-

cel, or Google Docs
::::::
Sheets. Assume the coefficients

:::::
entries

:
of the matrix are

specified in the top right corner of the spreadsheet: A1:C3. Start by writing
the formula for computing the determinant and the matrix of cofactors, then
combine these partial calculations to obtain the nine coefficients

:::::
entries

:
of

the matrix inverse. Test that your formula is correct by finding the inverse of

A “
„

1 4 3
2 0 1
0 ´2 ´1

⇢
. Compare your formula’s output with the built-in function

=MINVERSE(A1:C3).

3.26 A´1 “
„ ´1 1 ´2

´1 1
2 ´ 5

2
2 ´1 4

⇢
.

3.26 See bit.ly/matinvxls for the solution.

P3.27 Find the values a, b, c, and d that satisfy the equation
„

1 3
´2 ´1

⇢ „
a b
c d

⇢
“

„
3 ´5
4 0

⇢
.
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3.27 a “ ´3, b “ 1, c “ 2, d “ ´2.

3.27 Find the inverse of
”

1 3
´2 ´1

ı
, then multiply both sides of the equation

by the inverse to isolate the matrix of unknowns
“ a b

c d
‰
.

P3.28 Given the constraints a “ g, e “ b “ f , and c “ d “ h, find a choice
of the variables a, b, c, d, e, f , g, h that satisfies the matrix equation:

„
a b
c d

⇢ „
e f
g h

⇢
“

„´2 ´3
0 2

⇢
.

3.28
“ 1 ´1

2 2
‰”

´1 ´1
1 2

ı
“ “ ´2 ´3

0 2
‰
.

3.28 First we calculate
”

a b
c d

ı”
e f
g h

ı
“

”
ae`bg a f `bh
ce`dg d f `dh

ı
“

”
2ae ae`ec

ce`ca c2`ec

ı
. We

proceed by comparing the two matrices component by component
:::::
entry

::
by

::::
entry. Observe 2ae “ ´2, which implies ae “ ´1, which allows us to sim-
plify ae ` ec “ ´3 to ec “ ´2. The equation ec ` ca “ 0 implies ca “ 2. Fi-
nally, using ce ` c2 “ 2 and ec “ ´2, we find c “ 2. Therefore c “ d “ h “ 2,
a “ g “ 1, and e “ b “ f “ ´1.

P3.29 Given the matrix A “ “ a11 a12
a21 a22

‰
, explain how you can obtain the ma-

trices B “
”

aa11 aa12
ba21 ba22

ı
and C “

”
aa11 ba12
aa21 ba22

ı
.

Hint: Use matrix multiplication (from the left and from the right).

3.29 B “ SA and C “ AS, where S “
”

a 0
0 b

ı
.
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x

y

z

O

dpP, Oq

P

Figure 4.9: The closest distance between the plane P and the origin.

new math operations are required. Instead, we’ll learn how to use a
combination of vector subtraction, vector length, and the dot product
to compute distances. Each distance function dp¨, ¨q corresponds to
an abstract procedure with one or two steps which can be described
using a vector diagram. Projections play a key role in projective ge-
ometry, so we’ll learn about them in detail in the next section.

Exercises
E4.1 Find the distance between the plane P with geometric equation
p1, 1, 1q ¨ rpx, y, zq ´ p4, 5, 6qs “ 0 and the origin.

4.1 dpP, Oq “ 5
?

3 « 8.66.

E4.2 Find the general equation of the line that passes through the
points p0, 5q and p6, ´7q in R2.

4.2 2x ` y “ 5.

E4.3 Given the point r “p1, 3, 0q, the line ` :tp0, 0, 2q ` tp1, 1, 0q, tP Ru

::::::::::::::::::::::::::
` :tp0, 0, 2q ` tp1, ´1, 0q, tP Ru, the plane P : x ` y ` z “ 1, and the
origin O “ p0, 0, 0q, compute the following closest distances:

a)dpr, Oq b)dp`, Oq c)dpP, Oq d)dpr, `q e)dpr, Pq f)dp`, Pq

Hint: Draw a diagram and find the closest distances visually. Label
the point p` “ p0, 0, 2q, which is an arbitrary point in the line, and the
point pP “ p1, 0, 0q, which is an arbitrary point in the plane. Don’t
look for a one-size-fits-all formula for the different cases; derive the
appropriate formula for each case starting from the basic projection
operations P` and PP.

4.3 a)
?

10; b) 2; c)
?

3
3 ; d)

?

6
::::
2
?

3; e)
?

3; f)
?

3
3 .

4.3 a) This is the norm of }r}. b) To find a vector from the origin to the
closest point on the line `, find a vector to any point on the line and
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subtract the part of the vector that is parallel to the line. The length of
this perpendicular-only vector is the closest distance dp`, Oq. c) Start
with an arbitrary point in the plane, say pP “ p1, 0, 0q. Then compute
the length of the projection of pP in the normal direction to obtain
a vector to the point closest to the origin in the plane P. The length
of this vector is equal to dpP, Oq. d) The procedure is analogous to
part (b), but we’ll use a vector ~u “ p0, 0, 2q ´ p1, 3, 0q, which starts at
r and ends on a point on the line `. The part of the vector ~u that is
perpendicular to the line ` is computed as P`K p~uq “ ~u ´ P`p~uq. The
closest distance between r and ` is the length of this vector, }P`K p~uq}.
e) The procedure is analogous to part (c), but we start with the vector
~v “ p1, 0, 0q ´ p1, 3, 0q, which starts at r and ends on a point in the
plane P. The closest distance between r and P is }P~nP p~vq}. f)

:::
The

::::
line

:̀::
is

:::::::
parallel

::
to

::::
the

:::::
plane

:::
P.

:
Define a vector that starts at some point

on the line and ends at some point in the plane ~w “ p1, 0, 0q ´ p0, 0, 2q;
then compute }P~nP p~wq}. See for calculations.

4.2 Projections
In this section we’ll learn to compute projections of vectors onto
lines and planes. Given an arbitrary vector, we’ll find how much
of this vector points in a given direction (projection onto a line).
We’ll also find the part of the vector that lies in some plane (pro-
jection onto a plane). The dot product, ~u ¨~v ” u1v1 ` u2v2 ` u3v3,
:::::::::::::::::::::::
~u ¨~v “ u1v1 ` u2v2 ` u3v3,

:
will play a central role in these calcula-

tions.
Each projection formula corresponds to a vector diagram. Vec-

tor diagrams, also known as “picture proofs,” are used to describe
the precise sequence of operations for computing a projection. Fo-
cussing on vector diagrams makes it much easier to understand pro-
jection and distance formulas. Indeed, the pictures in this section are
a heck of a lot more important than the formulas. Be sure you un-
derstand each vector diagram, and don’t worry about memorizing
the corresponding formula. You can easily reproduce the formula by
starting from the vector diagram.

Concepts
• S Ñ Rn: S is a vector subspace of Rn. In this chapter

::
In

::::
this

::::::
section, we assume S Ñ R3. The subspaces of R3 are lines `
and planes P that pass through the origin.

• SK: the orthogonal space
:::::::::::
complement

:
to S, SK

” t~w P Rn
| ~w ¨ S “ 0u

:::::::::::::::::::::
SK def

“ t~wPRn
| ~w ¨ S “ 0u. The symbol K stands for perpendicular
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4.2 PROJECTIONS 107

to.
• PS: the projection onto the subspace S.
• PSK : the projection onto the orthogonal space

::::::::
subspace

:
SK.

Definitions
Let S be a vector subspace of Rn, denoted S Ñ Rn. In this section,
we’ll focus on the subspaces of the

::::::
vector space R3

:::::::
because

::::
they

:::
are

::::
easy

::
to

:::::::::
visualize

::::
and

:::::::::::
understand

::::::::::
intuitively. The vector subspaces

of R3 are lines and planes that pass through the origin.
:::
We

:::::
defer

:::
the

:::::::
general

:::::::::
discussion

:::
of

:::::::::
subspaces

::
in

::
n

:::::::::::
dimensions

::::
until

:::::::
Section

::::
4.4.

The projection operation onto the subspace S is a linear transfor-
mation that takes as inputs vectors in R3, and produces outputs in
the subspace S:

PS : R3
Ñ S.

The transformation PS, pronounced “projection onto S,” cuts off all
parts of the input that do not lie within the subspace S. We can un-
derstand PS by analyzing its action for different inputs:

• If ~v P S, then PSp~vq “ ~v.
• If ~w P SK, then PSp~wq “~0.
• Linearity and the above two conditions imply that, for any vec-

tor ~u “ a~v ` b~w with ~v P S and ~w P SK, we have

PSp~uq “ PSpa~v ` b~wq “ a~v.

The orthogonal subspace to S is the set of vectors that are perpendicular
to all vectors in S:

SK
”

def
“ t ~w P R3

| ~w ¨~s “ 0, @~s P S u.

The transformation PS “projects” to the space S in the sense that,
no matter which vector ~u you start from, applying the projection PS
results in a vector that is in S:

@~u P R3, PSp~uq P S.

All parts of ~u in the perp-space SK were killed by PS. Meet PS—the
S-perp killer.

We can split the set of all vectors R3 into two disjoint sets: vectors
entirely contained in S and vectors perpendicular to S. We say R3

decomposes into the direct sum of the subspaces S and SK:

R3
“ S ‘ SK.
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Any vector ~u P R3 can be split into an S-part ~v “ PSp~uq and a SK-
part ~w “ PSK p~uq, such that

~u “ ~v ` ~w.

A defining property of projections is that they are idempotent opera-
tions, meaning it doesn’t matter if you project a vector once, twice, or
a million times; the result will always be the same:

PSp~uq “ PSpPSp~uqq “ PSpPSpPSp~uqqq “ . . . .

Once you project a vector onto the subspace S, any further projec-
tions to S have no effect.

In the remainder of this section, we’ll derive formulas for projections
onto lines and planes that pass through the origin.

Projection onto a line
Consider the line ` passing through the origin with direction vec-
tor ~v:

` : tpx, y, zq P R3
| px, y, zq “~0 ` t~v, t P Ru.

The projection onto ` for an arbitrary vector ~u P R3 is given by the
formula

P`p~uq “
~u ¨~v
}~v}2~v.

`~u
~v

P`p~uq

P`Kp~uq

Figure 4.10: The vector ~u can be decomposed into the sum of two projections
defined with respect to the line `. The projection P`p~uq is parallel to the line
`, while the projection P`Kp~uq is perpendicular to the line `.

The orthogonal space
:::::::::::
complement

:
to the line ` consists of all vec-

tors perpendicular to the direction vector ~v. Mathematically speak-
ing,

`K : :tpx, y, zq P R3
| px, y, zq ¨~v “ 0u.

Recognize that the equation px, y, zq ¨~v “ 0 defines a plane. The or-
thogonal space

:::::::::::
complement

:
for a line ` with direction vector ~v is a

plane with normal vector ~v. Makes sense, yes?
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4.4 VECTOR SPACES 119

4.4 Vector spaces
We’re about to shift our attention from individual vectors to entire
sets of vectors. We’re entering the territory of vector spaces. For in-
stance, the set of all possible three-dimensional vectors is denoted
R3, and is a type of vector space. A vector space consists of a set of
vectors and all linear combinations of these vectors. This means if
the vectors ~v1 and ~v2 are part of some vector space, then so is the
vector a~v1 ` b~v2 for any a and b. A vector subspace consists of a sub-
set of all possible vectors. The vector subspaces of R3 are lines and
planes that pass through the origin.

Since vector spaces and subspaces play a central role in many
areas of linear algebra, you’ll want to learn about the properties of
vector spaces and develop your vocabulary for describing them.

By using the language of vector spaces, you’ll be able to describe
certain key properties of matrices. The

::::
four fundamental subspaces

associated with a matrix A are its column space CpAq, its row space
RpAq, its null space N pAq, and its left null space N pAT

q. Let’s now
define these vector spaces and discuss how they help us understand
the solutions to the matrix equation A~x “ ~b, and the properties of
the linear transformation TAp~xq ” A~x

:::::::::::
TAp~xq “ A~x.

Definitions
• V: a vector space
• ~v: a vector. We use the notation ~v P V to indicate the vector ~v is

part of the vector space V.
• W: a vector subspace. We use the notation W Ñ V to indicate the

vector space W is a subspace of the vector space V.
• span: the span of a set of vectors is the set of vectors that can be

constructed as linear combinations of these vectors:

spanp~v1, . . . ,~vnq ”
def
“ t~v P V | ~v “ a1~v1 ` ¨ ¨ ¨ ` an~vn, ai P Ru.

For every matrix M P Rmˆn, we define the following fundamental
vector spaces

::::::::
subspaces associated with the matrix M:

• RpMq Ñ Rn: the row space of the matrix M consists of all possi-
ble linear combinations of the rows of the matrix M.

• CpMq Ñ Rm: the column space of the matrix M consists of all
possible linear combinations of the columns of the matrix M.

• N pMq Ñ Rn: the null space of M is the set of vectors that
go to the zero vector when multiplying M from the right:
N pMq ” t~v P Rn

| M~v “~0 u
:::::::::::::::::::::::::
N pMq

def
“ t~v P Rn

| M~v “~0 u.
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4.4 VECTOR SPACES 123

A real-life situation

You walk into class one day and are caught completely off guard
by a surprise quiz—wait, let’s make it a mini-exam for emotional ef-
fect. Although you’ve read a chapter or two in the book, you’ve been
“busy” and are totally unprepared for this exam. The first question
asks you to “find the solution of the homogeneous system of equa-
tions and the non-homogeneous system of equations.” You rack your
brain, but the only association with homogeny that comes to mind
is the homogenized milk you had for breakfast. Oh, there’s more:
the question also asks you to “state whether each of the solutions
obtained is a vector space.” As you stare at the page, the words and
equations begin to blur and panic sets in.

Don’t fear! Look at the problem again. You don’t know what the
heck a homogeneous system of equations is, but you sure as heck
know how to solve systems of equations. You solve the given system
of equations A~x “ ~b by building the augmented matrix r A |~b s and
computing its reduced row echelon form using row operations. You
obtain the solution set ~x “ t~v P V |~v “ ~c ` t~vn, @t P Ru, where ~c
is the particular solution and ~vn is a vector that spans the null space
of A.

Next, you ponder the “vector space” part of the question. You no-
tice the solution set to the system of equations A~x “ ~b isn’t a vector
space since it doesn’t pass through the origin. However, the solution
set to the equation A~x “ ~0 is a vector space t~v P V |~v “ t~vn, @t P

Ru “ spanp~vnq. Suddenly it clicks: a homogeneous system of equa-
tions must be the system of equations A~x “~0, in which the constants
on the right side of the equation are all zero. The term homogeneous
kind of makes sense; all the constants of the right side have the same
value b1 “ b2 “ ¨ ¨ ¨ “ 0. The solution to the non-homogeneous sys-
tem of equations A~x “ ~b is the set t~c ` s~vn, @s P Ru, which is not a
vector space. The solution to the homogeneous system of equations
A~x “ ~0 is t~v P V |~v “ t~vn, @t P Ru, which is a vector space. Well
done!

Matrix fundamental spaces
:::::::::::
subspaces

We now define four fundamental vector spaces
::::::::
subspaces associated

with a matrix M P Rmˆn.

• The column space CpMq is the span of the columns of the ma-
trix. The column space consists of all possible output vectors
the matrix can produce when multiplied by a vector from the
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right:

CpMq”
def
“ t~w P Rm

| ~w “ M~v for some ~v P Rn
u.

• The null space N pMq of a matrix M P Rmˆn consists of all
vectors the matrix M sends to the zero vector:

N pMq”
def
“ t~v P Rn

| M~v “~0u.

The null space is sometimes called the kernel of the matrix.
• The row space RpMq is the span of the rows of the matrix. We

obtain linear combinations of the rows by multiplying the ma-
trix with an m-dimensional vector from the left:

RpMq”
def
“ t~v P Rn

| ~v “ ~wTM for some ~w P Rm
u.

Note, we used the transpose T to transform ~w to a row vector.
• The left null space N pMT

q of a matrix M P Rmˆn consists of all
vectors the matrix M sends to the zero vector when multiplied
from the left:

N pMT
q”

def
“ t~w P Rm

| ~wTM “~0Tu.

These vector spaces are called fundamental because they describe im-
portant properties of the matrix M. Recall that matrix equations can
be used to represent systems of linear equations, as well as linear
transformations. A solid understanding of fundamental spaces of a
matrix

:::
the

::::::::::::
fundamental

:::::::::
subspaces

:
leads to a solid understanding of

linear equations and linear transformations.

Matrices and systems of linear equations
The null space N pMq corresponds to the solution set of the matrix
equation M~x “~0. If a matrix has a nonempty null space, the system
of equations corresponding to M~x “ ~b has an infinite solution set.
Indeed, we can write the solution of M~x “~b as a particular solution~c
plus all possible vectors in the null space of M:

~x “~c ` spanp~v1, . . . ,~vkq, where spanp~v1, . . . ,~vkq”“:N pMq.

We can verify this claim as follows. Suppose~x “~c is a solution to the
equation M~x “~b. Consider the vector~x ”~c ` a1~v1 ` ¨ ¨ ¨ ` ak~vk::::::::::::::::::::::

~x “~c ` a1~v1 ` ¨ ¨ ¨ ` ak~vk,
which contains ~c and some arbitrary linear combination of vectors
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linearly independent, the same vector ~v can be represented by many
different linear combinations of the form

~v “ v1
1~u1 ` v1

2~u2 ` ¨ ¨ ¨ ` v1
m~um.

We cannot identify ~v with a unique set of coefficients v1
1, v1

2, . . . , v1
m,

therefore vectors are not represented faithfully by their coefficients
:::
the

::::::::::
coefficients

::
in

::::
the

:::::
linear

::::::::::::
combination.

Another reason we prefer to describe V in terms of a basis is be-
cause we can immediately see the vector space V is n-dimensional,
since there are n vectors in the basis for V.

Definitions
• B “ t~e1,~e2, . . . ,~enu. A basis for an n-dimensional vector space

S is a set of n linearly independent vectors that span S. Any
vector ~v P S can be written as a linear combination of the basis
vectors:

~v “ v1~e1 ` v2~e2 ` ¨ ¨ ¨ ` vn~en.

A basis for an n-dimensional vector space contains exactly n
vectors.

• dimpSq: the dimension of the vector space S is equal to the
number of vectors in a basis for S.

Recall the four fundamental spaces
::::::::
subspaces of a matrix M P Rmˆn we

defined in the previous section:

• RpMq Ñ Rn: the row space of the matrix M that consists of all
possible linear combinations of the rows of the matrix M.

• N pMq Ñ Rn: the null space of the matrix contains all the vectors
that become the zero vector when multiplied by M:

N pMq”
def
“ t~v P Rn

| M~v “~0 u.

• CpMq Ñ Rm: the column space of the matrix M that consists of all
possible linear combinations of the columns of the matrix M.

• N pMT
q Ñ Rm: the left null space of the matrix contains all the

vectors that become the zero vector when multiplying M from
the left:

N pMT
q”

def
“ t~w P Rm

| ~wTM “~0Tu.
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4.5 VECTOR SPACE TECHNIQUES 133

Bases for the fundamental spaces
:::::::::::
subspaces of matrices

Performing the Gauss–Jordan elimination procedure on a matrix A
has the effect of distilling a basis for its row space RpAq. How do
we find bases for the other fundamental spaces

:::::::::
subspaces

:
of a ma-

trix? In this section, we’ll learn about a useful shortcut for computing
bases for the column space CpAq and the null space N pAq of a ma-
trix, starting from the reduced row echelon form of the matrix. Sorry,
there is no shortcut for finding the left null space—we’ll have to use
the transpose operation to obtain AT and then find its null space
N pAT

q.
Pay careful attention to the locations of the pivots (leading ones)

in the RREF of A, because they play an important role in the proce-
dures described below.

Basis for the row space

The row space RpAq of a matrix A is defined as the space of all vec-
tors that can be written as linear combinations of the rows of A. To
find a basis for RpAq, we use the Gauss–Jordan elimination proce-
dure:

1. Perform row operations to find the RREF of A.

2. The nonzero rows in the RREF of A form a basis for RpAq.

Basis for the column space

To find a basis for the column space CpAq of a matrix A, we need to
determine which columns of A are linearly independent. To find the
linearly independent columns of A, follow these steps:

1. Perform row operations to find the RREF of A.

2. Identify the columns that contain pivots (leading ones).

3. The corresponding columns in the original matrix A form a ba-
sis for the column space of A.

This procedure works because elementary row operations do not
change the independence relations between the columns of the ma-
trix. If two columns are linearly independent in the RREF of A, then
these columns are also linearly independent in the original matrix A.

Note that the column space of the matrix A corresponds to the
row space of the matrix transposed AT. From this fact, we derive an-
other procedure for finding a basis for the column space of a matrix
A: we can use the find-a-basis-for-the-row-space procedure on AT.
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4. We now clear the entry below the pivot using R3 – R3 ` 4R2:
»

–
1 ´1 0
0 1 ´1
0 0 0

fi

fl.

5. The final simplification step is to clear the ´1 in the first row
using R1 – R1 ` R2:

»

–
1 0 ´1
0 1 ´1
0 0 0

fi

fl.

Now that we have the RREF of the matrix, we can answer the ques-
tions like professionals.

Before we find bases for the fundamental spaces
:::::::::
subspaces

:
of A,

let’s first do some basic dimension counting. Observe that the matrix
has just two pivots. We say rankpAq “ 2. This means both the row
space and the column spaces are two-dimensional.

Recall the equation n “ rankpAq ` nullitypAq, which we saw in
the previous section. The right space R3 splits into two types of vec-
tors: those in the row space of A and those in the null space. Since we
know the row space is two-dimensional, we can deduce the dimen-
sion of the null space: nullitypAq ” dimpN pAqq “ n ´ rankpAq “ 3 ´ 2 “ 1

::::::::::::::::::::::::::::::::::::::::::::::
nullitypAq “ dimpN pAqq “ n ´ rankpAq “ 3 ´ 2 “ 1.

Now let’s answer the questions posed in the problem. The row
space of A consists of the two nonzero vectors in the RREF of A:

RpAq “ spanpp1, 0, ´1q, p0, 1, ´1qq.

To find the column space of A, observe that the first and second
columns contain the pivots in the RREF of A. If they do, then the
first two columns of the original matrix A form a basis for the col-
umn space of A:

CpAq “ span

¨

˝

»

–
4
1
2

fi

fl,

»

–
´4
1

´6

fi

fl

˛

‚.

Let’s now find an expression for the null space of A. First, observe
that the third column does not contain a pivot. No pivot indicates
that the third column corresponds to a free variable; it can take on
any value, which we write x3 “ t, t P R. We want to give a descrip-
tion of all vectors px1, x2, tqT that satisfy the system of equations:

»

–
1 0 ´1
0 1 ´1
0 0 0

fi

fl

»

–
x1
x2
t

fi

fl “

»

–
0
0
0

fi

fl ñ

1x1 ´ 1t “ 0
1x2 ´ 1t “ 0

0 “ 0 .
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We find the values of x1, x2, and x4 in terms of t and obtain

N pBq “

$
’’&

’’%

»

——–

2t
´t
t
0

fi

��fl, t P R

,
//.

//-
“ span

¨

˚̊
˝

»

——–

2
´1
1
0

fi

��fl

˛

‹‹‚.

Discussion
Dimensions

For an m ˆ n matrix M P Rmˆn the row space and the column
:::
null

space consist of vectors with n components, while the column space
and the left null space consist of vectors with m components.

Don’t confuse the number of components of vectors in a vector
space with the dimension of the space. Suppose we’re given a matrix
M P R5ˆ10 with five rows and 10 columns, and the RREF of M con-
tains three pivots. We say the rank of the matrix is 3, which means the
row space of M is three-dimensional. A basis for the row space of M
contains three vectors, each vector having 10 components. The null
space of the matrix is seven-dimensional p10 ´ 3 “ 7q and consist of
vectors with 10 components. The column space of the matrix is also
three-dimensional (dimpRpMqq “ dimpCpMqq). A basis for the col-
umn space of M consists of three vectors with five components. The
left null space of M is two-dimensional p5 ´ 3 “ 2q and is spanned
by vectors with five components.

Importance of bases

The procedures for identifying bases are somewhat technical and po-
tentially boring, but they are of great practical importance. To illus-
trate the importance of a basis, consider a scenario in which you’re
given a description of the xy-plane Pxy as the span of three vectors:

Pxy “ spanpp1, 0, 0q, p0, 1, 0q, p1, 1, 0qq.

The above definition of Pxy says that any point p P Pxy can be written
as a linear combination of the form

p “ ap1, 0, 0q ` bp0, 1, 0q ` cp1, 1, 0q,

for some coefficients a, b, and c. This representation of Pxy is mis-
leading. It might make us think (erroneously) that Pxy is three-
dimensional, since it takes three coefficients to describe points in
Pxy.
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Chapter 5

Linear transformations

Linear transformations are a central idea of linear algebra—they
form the cornerstone that connects all the seemingly unrelated
concepts we’ve studied so far. We previously introduced linear
transformations, informally describing them as “vector functions.”
In this chapter, we’ll formally define linear transformations, describe
their properties, and discuss their applications.

In Section 5.2, we’ll learn how matrices can be used to represent
linear transformations. We’ll show the matrix representations of im-
portant types of linear transformations like projections, reflections,
and rotations. Section 5.3 discusses the relation between bases and
matrix representations. We’ll learn how the bases chosen for the in-
put and output spaces determine the coefficients

::::::
entries

:
of matrix

representations. A single linear transformation can correspond to
many different matrix representations, depending on the choice of
bases for the input and output spaces.

Section 5.4 discusses and characterizes the class of invertible linear
transformations. This section serves to connect several topics we cov-
ered previously: linear transformations, matrix representations, and
the fundamental vector spaces

:::::::::
subspaces

:
of matrices.

5.1 Linear transformations
Linear transformations take vectors as inputs and produce vectors
as outputs. A transformation T that takes n-dimensional vectors as
inputs and produces m-dimensional vectors as outputs is denoted
T : Rn

Ñ Rm.
The class of linear transformations includes most of the useful

transformations of analytical geometry: stretchings, projections,
reflections, rotations, and combinations of these. Since linear trans-

149
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Linear transformations as black boxes

Suppose someone gives you a black box that implements the linear
transformation T. While you can’t look inside the box to see how
T acts, you can probe the transformation by choosing various input
vectors and observing what comes out.

Assume the linear transformation T is of the form T : Rn
Ñ Rm.

By probing this transformation with n vectors of a basis for the input
space and observing the outputs, you can characterize the transfor-
mation T completely.

To see why this is true, consider a basis t~e1,~e2, . . . ,~enu for the n-
dimensional input space V ” Rn

:::::::
V “ Rn. To characterize T, input

each of the n basis vectors~ei into the black box and record the Tp~eiq
that comes out.

Any input vector ~v can be written as a linear combination of the
basis vectors:

~v “ v1~e1 ` v2~e2 ` ¨ ¨ ¨ ` vn~en.

Using these observations and the linearity of T, we can predict the
output of T for this vector:

Tp~vq “ v1Tp~e1q ` v2Tp~e2q ` ¨ ¨ ¨ ` vnTp~enq.

This black box model of probing is used in many areas of science
and is one of the most important ideas in linear algebra. The trans-
formation T could be the description of a chemical process, an elec-
trical circuit, or some phenomenon in biology. As long as we know
that T is (or can be approximated by) a linear transformation, we
can describe it completely by probing it with a small number of in-
puts. This is in contrast to characterizing nonlinear transformations,
which correspond to arbitrarily complex input-output relationships
and require significantly more probing.

Input and output spaces
Consider the linear transformation T from n-vectors to m-vectors:

T : Rn
Ñ Rm.

The domain of the function input space
::
of

:::
the

:::::
linear

::::::::::::::
transformation

:
T

is Rn and its codomain output space is Rm.
::::
The

::::::
output

::::::
space

::
is

::::
also

:::::
called

::::
the

:::::
target

:::::
space

:::
and

::
it

::
is

:::::::
similar

::
to

::::
the

::::::
notion

::
of

::::
the

:::::
target

:::
set

:::
for

:::::::::
functions.

::::
The

:::::
input

::::::
space

::
is

::::::::
identical

::
to

:::
the

:::::::
domain

::
of

::::
the

:::::
linear

::::::::::::::
transformation,

:::::
since

::::
Tp~vq

::
is

:::::::
defined

:::
for

:::
all

::::::
inputs

:::::::
~v P Rn.

:

The image space ImpTq consists of all possible outputs of the trans-
formation T. The image space

::
of

::
a

:::::
linear

::::::::::::::
transformation is a subset of
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154 LINEAR TRANSFORMATIONS

the
::
its

:
output space, ImpTq Ñ Rm. A linear transformation T whose

image space is equal to its codomain
::::::
output

::::::
space (ImpTq “ Rm) is

called surjective surjective or onto. Recall that a function is surjective
if it covers the entire output set.

The kernel of T is the subspace of the domain Rn that is mapped to
the zero vector by T: KerpTq ” t~v P Rn

| Tp~vq “~0u
::::::::::::::::::::::::::
KerpTq

def
“ t~v P Rn

| Tp~vq “~0u.
A linear transformation with an empty kernel KerpTq “ t~0u is called
injectiveinjective. Injective transformations map different inputs to
different outputs.

If a linear transformation T is both injective and surjective, it is
called bijectivebijective. In this case, T is a one-to-one correspondence
between the input vector space and the output vector space.

Note the terminology used to characterize linear transformations
(injective, surjective, and bijective) is the same as the terminology
used to characterize functions in Section ??. Indeed, we can use the
same terminology since linear transformations are functions. The
concepts of image space and kernel are illustrated in Figure 5.4.

ImpTq

T

Rn Rm

T

~0
KerpTq

Rn Rm

Figure 5.4: Pictorial representations of the image space ImpTq and the kernel
KerpTq of a linear transformation T : Rn Ñ Rm. The image space is the set
of all possible outputs of T. The kernel of T is the set of inputs that T maps
to the zero vector.

Observation The dimensions of the input space and the output
space of a bijective linear transformation must be the same. Indeed,
if T : Rn

Ñ Rm is bijective, then it is both injective and surjective.
Since T is surjective, the input space must be at least as large as the
output space; n • m. Since T is injective, the output space must be
larger or equal to the input space; m • n. Combining these observa-
tions, we find that if T : Rn

Ñ Rm is bijective then m “ n.

Example 2 Consider the linear transformation T : R3
Ñ R2 de-

fined by the equation Tpx, y, zq “ px, zq. Find the kernel and the
image space of T. Is T injective? Is T surjective?

The action of T is to delete the y-components of inputs. Any vec-
tor that has only a y-component will be sent to the zero vector. We
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have KerpTq “ spanpp0, 1, 0qq. The image space is ImpTq “ R2. The
transformation T is not injective. As an explicit example proving T is
not injective, observe that Tp0, 1, 0q “ Tp0, 2, 0q but p0, 1, 0q ‰ p0, 2, 0q.
Since ImpTq is equal to the codomain

::::::
output

::::::
space R2, T is surjective.

Linear transformations as matrix multiplications
An important relationship exists between linear transformations and
matrices. If you fix a basis for the input vector space and a basis for
the output vector space, a linear transformation Tp~vq “ ~w can be
represented as matrix multiplication MT~v “ ~w for some matrix MT :

~w “ Tp~vq ô ~w “ MT~v.

Using this equivalence, we can re-interpret several properties of ma-
trices as properties of linear transformations. The equivalence is use-
ful in the other direction too, since it allows us to use the language of
linear transformations to talk about the properties of matrices.

The idea of representing the action of a linear transformation as a
matrix product

:::::::::::::
multiplication is extremely important since it trans-

forms the abstract, mathematical description of the linear transfor-
mation T into a concrete, computational one: “take the input vector
~v and multiply it from the right by the matrix MT .” Borrowing an
idea from the field of software engineering, we can understand the
relationship between a linear transformation and its matrix represen-
tation as analogous to the relationship between the abstract software
specification of a computer program, and the program’s concrete im-
plementation as code that runs on a computer.

Example 3 We’ll now illustrate the “linear transformation ô

matrix-product” equivalence with an example. Define PPxy to be
the orthogonal projection onto the xy-plane Pxy. In words, the action of
this projection is to zero-out the z-component of input vectors. The
matrix that corresponds to this projection is

T

¨

˝

»

–
vx
vy
vz

fi

fl

˛

‚“

»

–
vx
vy
0

fi

fl ô MT~v “

»

–
1 0 0
0 1 0
0 0 0

fi

fl

»

–
vx
vy
vz

fi

fl “

»

–
vx
vy
0

fi

fl.

Finding the matrix

In order to find the matrix representation of any linear transforma-
tion T : Rn

Ñ Rm, it is sufficient to probe T with the n vectors in the
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a) T1px, y, zq “ px ` 2y ` 3zq b) T2px, yq “ p1, x, yq

c) T3px, yq “ px ` 2y, y ` x2
q

::
d) T4px, y, zq “ pz, y, xq

If the transformation is linear, find its matrix representation. If the
transformation is nonlinear, show an example where linearity fails.

5.1 a) T1 is linear, MT1 “ r 1 2 3 s; b) T2 is not linear, T2p2, 0q ‰ 2T2p1, 0q;

c) T3 is not linear, T3p2, 0q ‰ 2T3p1, 0q; d) T4 is linear, MT4 “

” 0 0 1
0 1 0
1 0 0

ı
.

E5.2 Consider the transformation Tpx, y, zq “ py ` z, x ` z, x ` yq.
Find the domain, codomain,

:::::
input

::::::
space,

:::
the

:::::::
output

::::::
space,

:::
the

:
ker-

nel, and image space of
::
the

::::::
image

:::
of

:::
the

::::::
linear

:::::::::::::
transformation

:
T. Is

T injective, surjective, or bijective?

5.2 DompTq “ R3, CopTq “ R3
:::::::::::
T : R3

Ñ R3, KerpTq “ t~0u, ImpTq “

R3. T is injective and surjective; therefore it is bijective.

E5.3 Consider the matrix M “
“ 1 0 0

0 0 1
‰

and the linear transformations
TM and TMT defined through left and right multiplication by M:
TMp~vq ” M~v and TMTp~uq ” ~uTM

:::::::::::
TMp~vq “ M~v

::::
and

:::::::::::::::
TMTp~uq “ ~uTM.

Find the domain, codomain
:::::
input,

:::::::
output, kernel, and image spaces

of the
:::::
linear transformations TM and TMT .

5.3 DompTMq “ R3, CopTMq “ R2
:::::::::::::
TM : R3

Ñ R2, KerpTMq “ spanpp0, 1, 0qq,
ImpTMq “ R2. DompTMTq “ R2, CopTMTq “ R3

::::::::::::::
TMT : R2

Ñ R3,
KerpTMTq “ t~0u, ImpTMTq “ spanpp1, 0, 0q, p0, 0, 1qq.

E5.4 What linear transformation T : R2
Ñ R3 takes the vector p1, 0q

to the vector p1, 2, 3q, and the vector p0, 1q to the vector p4, 5, 6q? Ex-
press your answer as a function Tpx, yq “ . . . and as a matrix MT .

5.4 Tpx, yq “ px ` 4y, 2x ` 5y, 3x ` 6yq and MT “

” 1 4
2 5
3 6

ı
.

5.2 Finding matrix representations
Every linear transformation T : Rn

Ñ Rm can be represented as a
matrix MT P Rmˆn. Suppose you’re given the following description
of a linear transformation: “T is the counterclockwise rotation of all
points in the xy-plane by 30˝,” and you want to find the matrix MT
that corresponds to this transformation.

Do you know how to find the matrix representation of T? This
section describes a simple and intuitive probing procedure for find-
ing matrix representations. Don’t worry; no alien technology is in-
volved, and we won’t be probing any humans—only linear transfor-
mations! As you read, try to bridge your understanding between the
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176 LINEAR TRANSFORMATIONS

Matrix components

:::::::
Matrix

::::::::
entries

Every linear transformation T can be represented as a matrix MT .
Consider the linear transformation T : V Ñ W. Assume the input
vector space V is n-dimensional and let BV “ tê1, ê2, . . . , ênu be a
basis for V. Assume the output space W is m-dimensional and let
BW “ t~b1,~b2, . . . ,~bmu be a basis for output space of T. The coefficients

::::::
entries

:
of the matrix MT P Rmˆn depend on the bases BV and BW .

We’ll now analyze this dependence in detail.
To compute the matrix representation of T with respect to the

input basis BV “ tê1, ê2, . . . , ênu, we probe T with each of the vectors
in the basis and record the outputs as the columns of a matrix:

rMTsBV
“

»

——–

| | |

Tpê1q Tpê2q ¨ ¨ ¨ Tpênq

| | |

fi

��fl

BV

.

The subscript BV indicates the columns are built from outputs of the
basis BV . We can use the matrix rMTsBV

to compute Tp~vq for a vector
~v expressed in the basis BV : ~v “ pv1, v2, . . . , vnq

T
BV

. The matrix-vector
product produces the correct linear combination of outputs:

rMTsBV
r~vsBV

“

»

—–

| | |

Tpê1q Tpê2q ¨ ¨ ¨ Tpênq

| | |

fi

�fl

BV

»

———–

v1
v2
...

vn

fi

���fl

BV

“ v1Tpê1q ` v2Tpê2q ` ¨ ¨ ¨ ` vnTpênq

“ Tpv1 ê1 ` v2 ê2 ` ¨ ¨ ¨ ` vnênq

“ Tp~vq.

So far we’ve treated the outputs of T as abstract vectors Tpêjq P W.
Like all vectors in the space W, each output of T can be expressed as
a vector of coefficients

:::::::::::
components with respect to the basis BW . For

example, the output Tpê1q can be expressed as

Tpê1q “

»

———–

c11
c21
...

cm1

fi

���fl

BW

“ c11~b1 ` c21~b2 ` ¨ ¨ ¨ ` cm1~bm
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5.3 CHANGE OF BASIS FOR MATRICES 177

for some coefficients c11, c21, . . . , cm1. Similarly, the other output vec-
tors Tpêjq can be expressed as coefficients

:::::::::::
components with respect

to the basis BW , Tpêjq “ pc1j, c2j, . . . , cmjq
T
BW

.
We’re now in a position to find the matrix representation
rMTsBW BV

of the linear transformation T, with respect to the in-
put basis BV and the output basis BW :

rMTsBW BV
“

»

———–

c11 c12 ¨ ¨ ¨ c1n
c21 c22 ¨ ¨ ¨ c2n
...

...
cm1 cm2 ¨ ¨ ¨ cmn

fi

���fl

BW BV

P Rmˆn.

The action of T on a vector ~v is the same as the product of rMTsBW BV

and the vector of coefficients
:::::::::::
components r~vsBV

“ pv1, v2, . . . , vnq
T
BV

:

rTp~vqsBW
“ rMTsBW BV

r~vsBV
.

You may feel this example has stretched the limits of your attention
span, but bear in mind, these nitty-gritty details hold the meaning
of matrix coefficients

::::::
entries. If you can see how the positions of the

coefficients
::::::
entries

:
in the matrix encode the information about T and

the choice of bases BV and BW , you’re well on your way to getting
it. The coefficient

::::
entry

:
cij in the ith row and jth column in the matrix

rMTsBW BV
is the ith component (with respect to BW) of the output of

T when the input is êj.
Verify

::::
Let’s

::::::
verify

:
that the matrix representation rMTsBW BV

correctly predicts the output of T for the input ~v “ 5ê1 ` 6ê2 “

p5, 6, 0, . . .qTBV
. Using the linearity of T, we know the correct output

is Tp~vq “ Tp5ê1 ` 6ê2q “ 5Tpê1q ` 6Tpê2q. We can verify that the
matrix-vector product rMTsBW BV

r~vsBV
leads to the same answer:

»

———–

c11 c12 ¨ ¨ ¨ c1n
c21 c22 ¨ ¨ ¨ c2n
...

...
cm1 cm2 ¨ ¨ ¨ cmn

fi

���fl

»

———–

5
6
0
...

fi

���fl“ 5

»

———–

c11
c21
...

cm1

fi

���fl ` 6

»

———–

c12
c22
...

cm1

fi

���fl“ 5Tpê1q ` 6Tpê2q.

Change of basis for matrices
Given the matrix representation rMTsBW BV

of the linear transforma-
tion T : V Ñ W, you’re asked to find the matrix representation of T
with respect to different bases B1

V and B1
W . This is the change-of-basis

task for matrices.
We’ll discuss the important special case where the input space

and the output space of the linear transformation are the same. Let
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178 LINEAR TRANSFORMATIONS

T : V Ñ V be a linear transformation, and let B “ tê1, ê2, . . . , ênu and
B1

“ tê1
1, ê1

2, . . . , ê1
nu be two bases for the vector space V.

Recall the change-of-basis matrix r sB1 B that converts vectors
from B coordinates to B1 coordinates, and its inverse r sB B1 , which
converts vectors from B1 coordinates to B coordinates:

r~vsB1 “ r sB1 Br~vsB and r~vsB “ r sB B1 r~vsB1 .

A clarification of notation is in order. The change-of-basis matrix
r sB1 B is not equal to the identity matrix n. However, the change-

of-basis operation is logically equivalent to an identity transforma-
tion: the vector ~v doesn’t change—only its coefficients

::::::::::
coordinates

::::::
change. If you don’t remember the change-of-basis operation for
vectors, now’s the time to flip back to Section 4.3 (page 116) and re-
view before continuing.

Given the matrix representation rMTsB B of the linear transforma-
tion T with respect to B, we want to find the matrix rMTsB1 B1 , which
is the representation of T with respect to the basis B1. The compu-
tation is straightforward. Perform the change-of-basis operation on
the input and output vectors:

rMTsB1 B1 “ r sB1 B rMTsB B r sB B1 .

This group of three matrices is interpreted as follows. Imagine an in-
put vector r~vsB1 multiplying the three matrices r sB1 B rMTsB B r sB B1
from the right. In the first step, r sB B1 converts the vector from the
basis B1 to the basis B so the matrix rMTsB B can be applied. In the
last step, the matrix B1 r sB converts the output of rMTsB B to the basis
B1. The combined effect of multiplying by this specific arrangement
of three matrices is the same as applying T to the input vector ~v:

r sB1 B rMTsB B r sB B1 r~vsB1 “ rTp~vqsB1 ,

which means

rMTsB1 B1 ”“: r sB1 B rMTsB B r sB B1 .

This formula makes sense intuitively: to obtain a matrix with respect
to a different basis, we must surround it by appropriate change-of-
basis matrices.

Note the touching dimensions of the matrices are expressed with
respect to the same basis. Indeed, we can think of the change-of-basis
matrices as adaptors we use to express vectors in different bases. The
change-of-basis operation for matrices requires two adaptors; one for
the input space and one for the output space.
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182 LINEAR TRANSFORMATIONS

Proofs by contradiction

Since our arrival at the invertible matrix theorem marks an impor-
tant step, we’ll first quickly review some handy proof techniques,
just to make sure everyone’s ready. A proof by contradiction starts by
assuming the opposite of the fact we want to prove, and after several
derivation steps arrives at a contradiction—a mathematical incon-
sistency. Arriving at a contradiction implies our original premise is
false, which means the fact we want to prove is true. Thus, to show
that (A) implies (B)—denoted (A)ñ(B)—we can show that not-(B)
implies not-(A). An example of a proof by contradiction is the proof
of

?

2 R Q (see page ??).

Review of definitions

To really make sure we’re all on board before the train leaves the
station, it’s wise to review some definitions from previous chapters.
The matrix A P Rnˆn is invertible if there exists a matrix A´1 such
that AA´1

“ n “ A´1 A. The null space of A is the set of vectors
that become the zero vector when multiplying A from the right: t~v P

Rn
| A~v “ ~0u. The column space CpAq Ñ Rn consists of all possible

linear combinations of the columns of the matrix A. Similarly, the
row space RpAq Ñ Rn consists of all possible linear combinations of
the rows of A. The rank of a matrix, denoted rankpAq, is equal to
the dimension of the row space and the column space rankpAq “

dimpCpAqq “ dimpRpAqq. If any of the columns of the matrix A are
linearly dependent, the determinant |A| will be zero.

Now tell me, do you feel ready to board the train? Don’t worry
too much if some of the above definitions about matrices and vector
spaces are still unclear for you. The whole point of this theorem is
to solidify your understanding by demonstrating how the concepts
you understand less are connected to the concepts you understand
well.

* * *

Proof of the invertible matrix theorem. The moment has arrived: we’ll
prove the equivalence of the 10 statements in the theorem by show-
ing a closed chain of implications between statements p1q through
p7q. We’ll separately show the equivalences p1q ô p8q ô p9q and
p5q ô p10q. Figure 5.12 shows an outline of the proof.
(1)ñ(2): Assume A is invertible so there exists an inverse matrix
A´1 such that A´1 A “ n. Therefore, for all~b P Rn, the expression
~x “ A´1~b is a solution to the equation A~x “ ~b. We must show the
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Kernel and null space

The kernel of the linear transformation T is the same as the null space
of its matrix representation MT . Recall statement p3q of the invertible
matrix theorem: a matrix A is invertible if and only if its null space
contains only the zero vector N pAq “ t~0u. The equivalent condi-
tion for linear transformations is the zero kernel condition. A linear
transformation T is invertible if and only if its kernel contains only
the zero vector:

T is invertible ô KerpTq “ t~0u.

In contrast, a non-invertible linear transformation S sends all vec-
tors~x P KerpSq ‰ t~0u to the zero vector Sp~xq “~0. When this happens,
there is no way to undo the action of S, since we can’t determine the
input ~x that S sent to~0.

Linear transformations as functions

In Section ??, we discussed the notion of invertibility for functions of
a real variable, f : R Ñ R. In particular, we used the terms injec-
tive, surjective, and bijective to describe how a function maps differ-
ent inputs from its domain to outputs in its codomain

:::::
target

:::
set

:
(see

page ??). Since linear transformations are functions, we can apply
the general terminology for functions to describe how linear trans-
formations map different inputs to outputs.

A linear transformation is injective if it maps different inputs to
different outputs:

Tp~v1q ‰ Tp~v2q for all ~v1 ‰ ~v2 ô T is injective.

A linear transformation T : Rn
Ñ Rm is surjective if its image space

equals its codomain:
::::::
output

::::::
space:

ImpTq “ Rm
ô T is surjective.

All bijective functions are invertible since each output ~y in the
output space corresponds to exactly one ~x in the input space.

Interestingly, for a linear transformation T : Rn
Ñ Rn to be in-

vertible, the presence of either the injective or surjective property is
sufficient. If T is injective, it must have a KerpTq “ t~0u so it is invert-
ible. If T is surjective, its matrix representation MT has rank n.

Links
[ Nice writeup about the invertible matrix theorem with proofs ]
http://bit.ly/InvMatThmProofs

:::::::::::::::::
InvMatThmProofs2
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Chapter 6

Theoretical linear algebra

Let’s take a trip down memory lane: 150
:::
170

:
pages ago, we em-

barked on a mind-expanding journey through the land of linear alge-
bra. We encountered vector and matrix operations. We studied sys-
tems of linear equations, solving them with row operations. We cov-
ered miles of linear transformations and their matrix representations.
With the skills you’ve acquired to reach this point, you’re ready to
delve into the abstract, theoretical aspects of linear algebra—that is,
since you know all the useful stuff, you can officially move on to the
cool stuff.

In math, we often use abstraction to find the commonalities
between different mathematical objects. These parallels give us a
deeper understanding of the mathematical structures we compare.
This chapter extends what we know about the vector space Rn to
the realm of abstract vector spaces of vector-like mathematical ob-
jects (Section 6.3). We’ll discuss linear independence, find bases,
and count dimensions for these abstract vector spaces. We’ll define
abstract inner product operations and use them to generalize the
concept of orthogonality for abstract vectors (Section 6.4). We’ll ex-
plore the Gram–Schmidt orthogonalization procedure for distilling
orthonormal bases from non-orthonormal bases (Section 6.5). Fi-
nally, we’ll introduce vectors and matrices with complex coefficients
::::::
entries (Section 6.7). This section

:::::::
Section

:::
6.7 also reviews everything

we’ve learned in this book, so be sure to read it even if complex
numbers are not required for your course. Along the way, we’ll
develop a taxonomy for the different types of matrices according
to their properties and applications (Section 6.2). We’ll also investi-
gate matrix decompositions—techniques for splitting matrices into
products of simpler matrices (Section 6.6). The chapter begins by
discussing the most important decomposition technique of them all:
the eigendecomposition, which is a way to uncover the “natural basis”

191
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6.3 ABSTRACT VECTOR SPACES 215

Examples
Matrices, polynomials, and functions are vector-like math objects.
The following examples demonstrate how we can treat these math
objects as abstract vector spaces pV, F, `, ¨q.

Matrices

Consider the vector space of m ˆ n matrices over the real numbers
Rmˆn. The addition operation for two matrices A, B P Rmˆn is the
usual rule of matrix addition: pA ` Bqij “ aij ` bij.

This vector space is mn-dimensional, which can be seen by con-
structing a basis for the space. The standard basis for Rmˆn consists
of

:::
mn

:
matrices with zero entries everywhere except for a single 1 in

the ith row and the jth column. Any matrix A P Rmˆn can be written
as a linear combination of the matrices in the standard basis.

Example The standard basis Bs for the vector space R2ˆ2 is

e1 “

„
1 0
0 0

⇢
, :e2 “

„
0 1
0 0

⇢
, :e3 “

„
0 0
1 0

⇢
, :e4 “

„
0 0
0 1

⇢
.

Any matrix A P R2ˆ2 can be written as a linear combination of the
elements of

::::::
vectors

::
in

:
Bs:

A “

„
a11 a12
a21 a22

⇢
“ a11

„
1 0
0 0

⇢
` a12

„
0 1
0 0

⇢
` a21

„
0 0
1 0

⇢
` a22

„
0 0
0 1

⇢

“ a11e1 ` a12e2 ` a21e3 ` a22e4.

In other words, A can be expressed as a vector of coefficients
::::::::::
coordinates

:
with respect to the basis Bs: A “ pa11, a12, a21, a22qBs .

The abstract concept of a matrix A P R2ˆ2 can be expressed as
two equivalent representations. We can think of A either as an ar-
ray of coefficients

:::::::
numbers

:
with two columns and two rows, or as

a four-dimensional vector of coefficients
::::::::::
coordinates

:
with respect to

the basis Bs:

” A ” “::

„
a11 a12
a21 a22

⇢
“:: pa11, a12, a21, a22qBs .

We’ve arrived at a major knowledge buzz milestone: matrices are vec-
tors! In precise mathematical terms, we just demonstrated the exis-
tence of an isomorphism between the set of 2 ˆ 2 matrices and the set
of four-dimensional vectors. We can add, subtract, and scale 2 ˆ 2
matrices in their R4 representations. In the following exercises, we’ll
see how to compute the matrix trace operation TrpAq in terms of the
vector representation.
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216 THEORETICAL LINEAR ALGEBRA

Symmetric 2x2 matrices

Define the vector space consisting of 2 ˆ 2 symmetric matrices

Sp2, 2q”
def
“ tA P R2ˆ2

| A “ AT
u

in combination with the usual matrix addition and scalar multiplica-
tion operations. We obtain an explicit basis for this space as follows:

v1 “

„
1 0
0 0

⇢
, :v2 “

„
0 1
1 0

⇢
, :v3 “

„
0 0
0 1

⇢
.

Any element of the vector space S P Sp2, 2q can be written as a linear
combination of the basis elements:

:::::::
vectors:

S “

„
a b
b c

⇢
“ a

„
1 0
0 0

⇢
` b

„
0 1
1 0

⇢
` c

„
0 0
0 1

⇢

“ av1 ` bv2 ` cv3.

Since there are three vectors in a basis for Sp2, 2q, the vector space
Sp2, 2q is three-dimensional.

Note how we count the dimensions in this case. The space of 2 ˆ 2
matrices is four-dimensional in general, but imposing the symmetry
constraint a12 “ a21 eliminates one parameter, so we’re left with a
three-dimensional space.

Polynomials of degree n

Define the vector space Pnptq of polynomials with real coefficients
and degree less than or equal to n. The “vectors” in this space are
polynomials of the form

p “ a0 ` a1x ` a2x2
` ¨ ¨ ¨ ` anxn,.

where a0, a1, . . . , an are the coefficients of the polynomial
::::
The

::::::::::
coefficients

::
of

:::
the

:::::::::::
polynomial

::::::::::::::
a0, a1, a2, . . . , an:::

are
::::
the

:::::::::::
components

:::
of

:::
the

::::::
vector

p.
The addition of vectors p, q P Pnptq is performed component-

wise:

p ` q “ pa0 ` a1x ` ¨ ¨ ¨ ` anxn
q ` pb0 ` b1x ` ¨ ¨ ¨ ` bnxn

q

“ pa0 ` b0q ` pa1 ` b1qx ` ¨ ¨ ¨ ` pan ` bnqxn.

Similarly, scalar multiplication acts as you’d expect:

ap “ a ¨ pa0 ` a1x ` . . . anxn
q “ paa0q ` paa1qx ` . . . paanqxn.

The space Pnpxq is pn ` 1q-dimensional since each “vector” in this
space has n ` 1 coefficients

:::::::::::
components.
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6.3 ABSTRACT VECTOR SPACES 217

Functions

Another interesting vector space is the set of functions f : R Ñ R in
combination with the point-wise addition and scaler

:::::
scalar multipli-

cation operations:

f ` g “ p f ` gqpxq “ f pxq ` gpxq, af “ pa f qpxq “ a f pxq.

The space of functions is infinite-dimensional.

Discussion
We’ve talked about bases, components, and dimensions of abstract
vector spaces. Indeed, these notions are well-defined for any vector-
like object. Though this section only discussed vector spaces with
real coefficients

:::::::::::
components, we can apply the same techniques to

vectors with coefficients
:::::::::::
components from any field. The notion of a

field describes any number-like object for which the operations of ad-
dition, subtraction, multiplication, and division are defined. An ex-
ample of another field is the set of complex numbers C. We’ll discuss
the linear algebra of vectors and matrices with complex coefficients
::::
with

::::::::
complex

:::::::::::
components

:
in Section 6.7.

In the next section, we’ll define an abstract inner product operation
and use this definition to discuss concepts like orthogonality, length,
and distance in abstract vector spaces.

Links
[ Further discussion and examples on Wikipedia ]
http://en.wikipedia.org/wiki/Vector_space

[ Examples of vector spaces ]
http://wikibooks.org/wiki/Linear_Algebra/Definition_and_Examples_of_Vector_Spaces

[ Abstract vector spaces explained by 3Blue1Brown ]
https://youtube.com/watch?v=TgKwz5Ikpc8

Exercises
E6.11 Find a basis for the space of 2 ˆ 2 upper triangular matrices.

6.11
 

e1 “
“ 1 0

0 0
‰
, e2 “

“ 0 1
0 0

‰
, e3 “

“ 0 0
0 1

‰(
.

6.11 First of all we must determine dimensionality of the vector
space in question. The general vector space of 2 ˆ 2 matrices has four
dimensions, but an upper triangular matrix A satisfies aij “ 0 for all
i ° j, which corresponds to the constraint a21 “ 0. The space of 2 ˆ 2



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE

http://en.wikipedia.org/wiki/Vector_space
http://en.wikibooks.org/wiki/Linear_Algebra/Definition_and_Examples_of_Vector_Spaces
https://youtube.com/watch?v=TgKwz5Ikpc8


6.7 LINEAR ALGEBRA WITH COMPLEX NUMBERS 235

• argpzq “
1 tan´1

p
b
a q

::::::::::::::::
argpzq “ tan´1

p
b
a q: the phase or argument of

z “ a ` bi
:
.
:::::
Note

::::
that

::::::::
tan´1

p
b
a q

::::
and

::::::
argpzq

:::::::
coincide

:::::
only

::
if

:::::
a • 0.

::
A

:::::::::
correction

::
is

:::::::::
necessary

::
to

:::
the

:::::::
output

::
of

::::::::
tan´1

p
b
a q

::::::
when

:::::
a † 0.

:::
The

::::::::::
computer

::::::::
function

:::::::::::
atan2(b,a)

::::::
returns

::::
the

::::::
correct

::::::
phase

:::
for

::
all

::::::::::
z “ a ` bi.

Complex vectors

A complex vector ~v P Cn is an array of n complex numbers:

~v “ pv1, v2, . . . , vnq : P pC, C, . . . , Cq ”:Cn.

Complex matrices

A complex matrix A P Cmˆn is a table of numbers with m rows and
n columns. An example of a 3 ˆ 2 matrix with complex entries is

A “

»

–
a11 a12
a21 a22
a31 a32

fi

fl
:

P ”
:

C3ˆ2.

Hermitian transpose

The Hermitian transpose Hermitian transpose operation, denoted :, con-
sists of the combination of the regular transpose (A Ñ AT) and the
complex conjugation of each entry in the matrix (aij Ñ aij):

A:
”

def
“ pATq “ pAq

T.

Expressed in terms of the entries of the matrix aij, the Hermitian
transpose corresponds to the transformation aij Ñ aji. There are
many mathematical terms that refer to this operation, including
Hermitian conjugate, complex transpose, “dagger” operation, conjugate
transpose, and adjoint.

The term adjoint is preferred by mathematicians and the notation
A˚ is used consistently in mathematics research papers. The dag-
ger notation : is preferred by physicists and engineers, but shunned
by mathematicians. Mathematicians prefer to stick with the star su-
perscript because they feel they invented the concept. We use the
notation : in this book because at some point the author had to make
an allegiance with one of the two camps, and because the symbol :
looks a bit like the transpose symbol T.
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6.7 LINEAR ALGEBRA WITH COMPLEX NUMBERS 237

Linear transformations are functions of the form T : Rm
Ñ Rn. We

can represent these linear transformations as m ˆ n matrices with re-
spect to some choice of input and output bases.

These linear algebra ideas also apply to complex vectors and
complex matrices. For example, a linear transformation from
T : C2

Ñ C2 can be represented in terms of the matrix product
::
as

:::
the

::::::
matrix

:::::::::::::
multiplication

:

„
w1
w2

⇢
“

„
a b
g d

⇢„
v1
v2

⇢
.

Each linear transformation T : C2
Ñ C2 corresponds to some 2 ˆ 2

matrix
»

–a b
g d

fi

fl with coefficients
::::::
entries a, b, g, d P C.

The change from real coefficients to complex coefficients
::::::
entires

::
to

::::::::
complex

::::::
entires

:
has the effect of doubling the number of parame-

ters required to describe the transformation. A 2 ˆ 2 complex matrix
has eight parameters, not four. Where are those eight parameters,
you ask? Here:

„
a b
g d

⇢
“

„
Retau Retbu

Retgu Retdu

⇢
`

„
Imtau Imtbu

Imtgu Imtdu

⇢
i.

Each of the four coefficients
::::::
entries

:
of the matrix has a real part and

an imaginary part, making for a total of eight parameters to pick
when specifying the matrix.

Similarly, to specify a vector ~v “ C2 you need to specify four
parameters: „

v1
v2

⇢
“

„
Retv1u

Retv2u

⇢
`

„
Imtv1u

Imtv2u

⇢
i.

In practice, this doubling of dimensions doesn’t play a role in calcu-
lations because we usually perform algebra steps with the complex
coefficients

::::::
entries and rarely split the matrices into their real and

imaginary parts.
All the linear algebra techniques you’ve learned also work with

complex numbers, as you’ll see in the following examples.

Example 1: Solving systems of equations Suppose you’re solving
a problem that involves complex numbers and a system of two linear
equations in two unknowns:

z1 ` 2z2 “ 3 ` i
3z1 ` p9 ` iqz2 “ 6 ` 2i.

You’re asked to find the values of the unknowns z1 and z2.
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6.7 LINEAR ALGEBRA WITH COMPLEX NUMBERS 241

This is not a coincidence: complex exponentials are in many ways
the natural way to talk about rotations, periodic motion, and waves.
If you pursue a career in math, physics, or engineering, you’ll use
complex numbers and Euler’s equation

:::::::
formula

:
on a daily basis.

Special types of matrices
We’ll now define a few special types of matrices with complex
coefficients

::::::
entries. These matrices are analogous to the special ma-

trices we defined in Section 6.2, but their definitions are adapted to
use the Hermitian conjugate

:::::::::
transpose

:
operation :.

Unitary matrices

A matrix U is unitary if it obeys U:U “ . The norm of the determi-
nant of a unitary matrix is 1, | detpUq| “ 1. For an n ˆ n matrix U, the
following statements are equivalent:

• U is unitary.
• The columns of U form an orthonormal basis.
• The rows of U form an orthonormal basis.
• The inverse of U is U:.

Unitary matrices are the complex analogues of orthogonal matrices.
Indeed, if a unitary matrix U has real coefficients

::::::
entries, then U:

“

UT and we have UTU “ , which is the definition of an orthogonal
matrix.

Hermitian matrices

A Hermitian matrix H is equal to its own Hermitian transpose:

H:
“ H ô hij “ hji, : for all i, j.

Hermitian matrices are complex-number analogues of symmetric
matrices.

A Hermitian matrix H can be freely moved from one side to the
other in a complex inner product:

xH~x,~yy “ pH~xq
:~y “ ~x:H:~y “ ~x:

pH~yq “ x~x, H~yy.

The eigenvalues of Hermitian matrices are real numbers.
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Normal matrices

Previously, we defined the set of real normal matrices to be matrices
that satisfy ATA “ AAT. For matrices with complex coefficients

::::::
entries,

the definition of a normal matrix uses the dagger: A: A “ AA:.

* * *

Consulting the concept map in Figure 6.1 on page 212 will help you
see the parallels between the different types of special matrices. I
realize there’s a lot of new terminology to absorb all at once, so don’t
worry about remembering everything. The main idea is to know that
these special types of matrices exist—not to know everything about
them.

Inner product for complex vectors
The complex inner product is an operation of the form

x¨, ¨y : Cn
ˆ Cn

Ñ C.

The inner product x~u,~vy for real vectors is equivalent to the matrix
product

::::::::::::
multiplication

:
between the row vector ~uT and the column

vector ~v. Extending the notion of inner product to work with com-
plex vectors requires a modification to the inner product formula.
The inner product for vectors ~u,~v P Cn is defined as

x~u,~vy”
def
“

nÿ

i“1
uivi”“:~u

:~v.

The formula is similar to the inner product formula for real vectors,
but uses the Hermitian transpose : instead of the regular transpose T.
The inner product of two vectors ~u,~v P C3 is

x~u,~vy “ u1v1 ` u2v2 ` u3v3 “
“
u1 u2 u3

‰
»

–
v1
v2
v3

fi

fl “ ~u:~v.

This dagger thing is very important. Using the definition of the in-
ner product with a dagger on the first entry

::::
input

:
ensures the com-

plex inner product will obey the positive semidefinite criterion (see
page 218). The inner product of a vector ~v P C3 with itself is

x~v,~vy”“:~v
:~v “

“
v1 v2 v3

‰
»

–
v1
v2
v3

fi

fl “ |v1|
2

` |v2|
2

` |v3|
2,
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6.7 LINEAR ALGEBRA WITH COMPLEX NUMBERS 247

Properties of the Hermitian transpose operation

The Hermitian transpose obeys the following properties:

• pA ` Bq
:

“ A:
` B:

• pABq
:

“ B: A:

• pABCq
:

“ C:B: A:

• pA:
q
´1

“ pA´1
q
:

Note these are the same properties as the regular transpose operation
from Section 2.3 (see page 30).

Conjugate linearity in the first input

The complex inner product we defined is linear in the second entry
and conjugate-linear

::::
input

::::
and

:
conjugate-linear in the first entry

::::
input:

x~v, a~a ` b~by “ ax~v,~ay ` bx~v,~by,

xa~a ` b~b, ~wy “ ax~a, ~wy ` bx~b, ~wy.

Keep this in mind every time you deal with complex inner products.
The complex inner product is not symmetric since it requires that
the complex conjugation be performed on the first input. Remember,
instead of x~v, ~wy ‰ x~w,~vy, we have x~v, ~wy “ x~w,~vy.

The choice of complex conjugation in the first entry
:::::
input

:
is a

matter of convention. In this text, we defined the inner product x¨, ¨y

with the : operation on the first entry
:::::
input, which is known as the

physics convention. Some old mathematics texts define the inner prod-
uct of complex vectors using the complex conjugation on the second
entry

::::
input, which makes the inner product linear in the first entry

:::::
input

:
and conjugate-linear in the second entry

:::::
input. This conven-

tion is fine, too. The choice of convention doesn’t matter, as long as
one of the entries

::::::
inputs

:
is conjugated to ensure the inner product

obeys the positive semidefinite requirement x~u,~uy • 0.

Function inner product

In the section on inner product spaces, we discussed the notion of the
vector space of all real-valued functions of a real variable f : R Ñ R,
and defined an inner product between functions:

x f , gy “

ª 8

´8
f pxqgpxq dx.

Suppose we have two complex-valued functions f pxq and gpxq:

f : R Ñ C, g : R Ñ C.
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Exercises
E7.6 Recall the Fibonacci sequence an “p0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . .q.
Describe what happens to the ratio an`1

an
as n Ñ 8.

Hint: Compare the size of pl1q
n and pl2q

n for large values of n.

7.6 limnÑ8
an`1

an
“ l1 “ j “

1`?
5

2 .

7.6 Since |l2| † 1, as n increases the number l2
2 tends to zero, and

only the effects of ln
1 remain. The ratio an`1

an
approaches l1 as n Ñ 8.

7.6 Linear programming
In the early days of computing, computers were primarily used to
solve optimization problems, so the term “programming” is often
used to describe optimization problems. Linear programming is the
study of linear optimization problems that involve linear constraints.
These types of optimization problems play an important role in busi-
ness: the whole point of corporations is to constantly optimize profits
subject to time, energy, and legal constraints.

Many optimization problems can be expressed as linear programs.
To solve an optimization problem is to find the optimal value, which
is either the maximum or the minimum of some function, called the
objective function. A linear programis an optimization problem where
::
In

:
a
::::::

linear
:::::::::
program,

:
the objective function is a multivariable linear

function gpx1, x2, . . . , xnq and the constraints on the variables of the
problem are also linear. A linear program with n variables and m
constraints is expressed as a maximization problem,

max
x1,x2,...,xn

gpx1, x2, . . . , xnq “ c1x1 ` c2x2 ` ¨ ¨ ¨ ` cnxn,

subject to m linear constraints,

a11x1 ` a12x2 ` ¨ ¨ ¨ ` a1nxn § b1,

a21x1 ` a22x2 ` ¨ ¨ ¨ ` a2nxn § b2,

:

...

am1x1 ` am2x2 ` ¨ ¨ ¨ ` amnxn § bm.

The solution to this linear program is the vector px1, x2, . . . , xnq that
makes gpx1, x2, . . . , xnq as large as possible, and also satisfies all the
constraints. For example, the variables x1, x2, . . . , xn could represent
the production rates of n different products made by a company. If
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The least squares approximate solution to this equation is chosen so as
to minimize the total squared error function:

min
~m

Sp~mq “ min
~m

›››A~m ´~b
›››

2
.

In other words, of all the possible approximate solutions ~m, we must
pick the one that makes the length of the vector A~m ´~b the smallest.

Finding the least squares approximate solution
There are two possible approaches for finding the least squares so-
lution, denoted ~m˚. We can either use calculus techniques to mini-
mize the total squared error Sp~mq, or geometry techniques to find the
shortest vector pA~m ´~bq.

Regardless of the approach chosen, the trick to finding the least
squares approximate solution to A~m «~b is to multiply the equation
by AT to obtain

ATA ~m “ AT~b.

The matrix ATA will be invertible if the columns of A are linearly
independent, which is the case for most tall-and-skinny matrices.
We can therefore solve for ~m by multiplying both sides of the above
equation by the matrix pATAq

´1:

~m “ pATAq
´1 AT~b.

Indeed, this expression is the least squares solution to the optimization
problem we set out to solve in the beginning of this section:

~m˚
“ argmin

~m
Sp~mq “ argmin

~m

›››A~m ´~b
›››

2
“ pATAq

´1 AT~b.

We can refer to the linear model y~m˚ as the best fit for the dataset
tA,~bu since it minimizes the sum of the prediction errors.

Pseudoinverse
:::::::::::::::
Moore–Penrose

:::::::
inverse Together, when

:::::
When

:
we

combine the particular combination of A, its transpose AT, and the
inverse operation that we used to find the approximate solution
~m˚, we get what’s called the Moore–Penrose pseudoinverse

:::::
inverse

::
or

:::::::::::
pseudoinverse of the matrix A. We use the shorthand notation A`

(not to be confused with A:), for the entire expression:

A`
”

def
“ pATAq

´1 AT.
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Geometric interpretation
The solution to the least squares optimization problem,

~m˚
“ argmin

~m
}A~m ´~b}

2,

can be understood geometrically as the search for the vector in the
column space of A that is closest to the vector~b, as illustrated in Fig-
ure 7.5. As we vary the parameter vector ~m, we obtain different vec-
tors A~m P CpAq. Of all the points A~m in the column space of A, the
point A~m˚ is the closest to the point~b.

Let’s define the error vector that corresponds to the difference be-
tween the model prediction A~m and the actual value~b:

~e ” :

def
“ :A~m ´~b.

Using the geometric intuition and looking at Figure 7.5, we see that
the optimal solution A~m˚ occurs when the error vector is perpendic-
ular to the column space of A. Recall the left fundamental spaces
:::::::::
subspaces of the matrix A: its column space CpAq and its orthogonal
complement, the left null space N pAT

q. Thus, if we want an error
vector that is perpendicular to CpAq, we must find an error vector
that lies in the left null space of A: ~e ˚

P N pAT
q. Using the definition

of the left null space,

N pAT
q”“

:
t~w P RN

| ~wTM “~0Tu,

we obtain the following equation that defines ~m˚:

p~e ˚
q
TA “ 0 ñ pA~m˚

´~bq
TA “ 0.

Taking the transpose of the last equation, we obtain AT
pA~m˚

´~bq “

0, which is equivalent to condition ATA~m˚
“ AT~b used to find ~m˚.

Using geometric intuition about vector spaces and orthogo-
nality proves helpful in solving this complex optimization prob-
lem. Choosing ~e ˚ orthogonal to CpAq leads to the shortest vector,
A~m˚

´~b, and produces the smallest total squared error, Sp~m˚
q “

}A~m˚
´~b}

2.

Affine models
We can also apply the Moore–Penrose pseudoinverse

::::::
inverse

:
for-

mula to more complicated models. A simple extension of a linear
model is the affine model y~m,cp~xq “ ~m ¨~x ` c, which adds a constant
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yap~xq “ m0 ` m1x1 ` ¨ ¨ ¨ ` mnxn, or a quadratic model, yqp~xq “

m0 ` m1x1 ` ¨ ¨ ¨ ` mnxn ` mn`1x1x1 ` mn`2x1x2 ` ¨ ¨ ¨ , for the dataset.
To fit an affine model, you’ll need to preprocess A P RNˆ1000

into A1
P RNˆ1001, and then find the inverse of pA1TA1

q P R1001ˆ1001.
That’s totally doable.

In contrast, the number of parameters in a quadratic model with
n “ 1000 dimensions is 1

2 p1000 ` 1qp1000 ` 2q “ 501501. To fit a
quadratic model, you’ll need to preprocess the data matrix to obtain
A1

P RNˆ501501, and then find the inverse of pA1TA1
q P R501501ˆ501501.

That’s a big matrix. You’ll need one terabyte of memory just to store
all the entries of the matrix A1TA1, and computing its inverse will
take a really long time.

So the choice is made; affine model it is. The affine model may
be less accurate than a quadratic model, but if it works and provides
value, you can use it. This is the reason why scientists, engineers,
statisticians, and business folk are so crazy about building linear
models, even though more advanced models are available. Linear
models are a sweet spot for prediction applications: they have great
modelling power, they’re easy to implement, and they lead to com-
putational problems that are easy to solve.

Links
[ Further discussion about least squares problems on Wikipedia ]
https://en.wikipedia.org/wiki/Linear_regression
https://en.wikipedia.org/wiki/Linear_least_squares_(mathematics)

[ More about the Moore–Penrose pseudoinverse
::::::
inverse

:
]

https://en.wikipedia.org/wiki/Moore-Penrose_pseudoinverse
:::::::
inverse

Exercises
E7.7 You want to determine whether a coin is fair, so you toss it
repeatedly and record the number of times it lands heads. On the
first trial, you flip the coin eight times and obtain four heads, which
is a heads-to-flips ratio of 4

8 . On subsequent trials you obtain heads-
to-flips ratios of 9

16 , 13
24 , 17

32 , and 20
40 . Find the best-fitting linear model

hpxq “ mx to describe the number of heads in a trial with x flips.

7.7 hpxq “ 0.52x.

7.7 The data you’re given consists of pairs pai, biq, where ai is the
total number of flips in the trial and bi is the number of heads. We
represent the data as a matrix of flip counts A P R5ˆ1 and a vector
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of heads counts~b P R5. Applying the standard approach for finding
the Moore–Penrose inverse, we find pA1TA1

q
´1

“ r
1

3520 s. Next we
find the least squares approximate solution to A~m “~b by computing
~m “ pA1TA1

q
´1 AT~b “ r0.52s. The slope of the line of best fit is 0.52.

E7.8 Find the best-fitting affine model y “ b ` mx to the px, yq data
points p0, 3.9q, p1, 3.2q, and p2, 1.9q. Perform all the calculations by
hand.

Hint: Find the Moore–Penrose pseudoinverse
:::::::
inverse.

7.8 y “ 4 ´ x.

7.8 The dataset consists of a matrix of inputs x, A “ p0, 1, 2q
T, and

a vector of outputs y, ~b “ p3.9, 3.2, 1.9q
T. Since we’re interested in

fitting an affine model y “ b ` mx, we must augment the matrix A
with a column of ones to obtain A1, and then compute A1TA1 and its
inverse:

A1
“

” 1 0
1 1
1 2

ı
, A1TA1

“

”
3 3
3 5

ı
ñ pA1TA1

q
´1

“

„
5
6 ´ 1

2
´ 1

2
1
2

⇢
.

We can now compute the Moore–Penrose pseudoinverse
::::::
inverse

:
A1`

and obtain the approximate solution as follows:

A1`
“ pA1TA1

q
´1 A1T

“

„
5
6

1
3 ´ 1

6
´ 1

2 0 1
2

⇢
ñ A1 ~̀b “

“ 4
´1

‰
.

Thus the best-fitting affine model for the dataset is y “ 4 ´ x.

E7.9 Calculate the total squared error Spm˚
q “ }Am˚

´~b}
2 of the

best-fit linear model obtained in Example 1 (page 286). Use the SymPy
calculation at bit.ly/leastsq_ex1 as your starting point.

Hint: The Matrix method .norm() might come in handy.

7.9 Spm˚
q “ 4704.63.

E7.10 Revisit Example 2 (page 288) and find the total squared error
of the best-fit affine model Sp~m1˚

q “ }A~m1˚
´~b}

2. You can start from
the calculation provided here bit.ly/leastsq_ex2 and extend it.

7.10 Sp~m1˚
q “ 433.54.
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If ~v is an n-dimensional vector, then its representation in homoge-
neous coordinates ~V is an pn ` 1q-dimensional vector. The pn ` 1q ˆ

pn ` 1q matrix A contains the combined information about both the
linear transformation T and the translation ~d.

Homogeneous coordinates
Instead of using a triple of Cartesian coordinates to represent points
p “ px, y, zqc P R3, we’ll use the quadruple P “ px, y, z, 1qh P

R4, which is a representation of the same point in homogeneous
coordinates. homogeneous coordinates

:
.
::

Similarly, the vector ~v “

pvx, vy, vzqc P R3 in Cartesian coordinates corresponds to the vector
~V “ pvx, vy, vz, 1qh P R4 in homogeneous coordinates. Though there
is no mathematical difference between points and vectors, we’ll stick
to the language of points as it is more natural for graphics problems.

An interesting property of homogeneous coordinates is that
they’re not unique: the vector ~v “ pvx, vy, vzqc corresponds to a
whole set of points

:::
set

:::
of

::::::
points

:
in homogeneous coordinates, :

~V “ tpavx, avy, avz, aqhu, for a P R. This makes homogeneous
coordinates invariant to scaling:

»

–
a
b
c

fi

fl

c

ô

»

——–

a
b
c
1

fi

��fl

h

“

»

——–

5a
5b
5c
5

fi

��fl

h

“

»

——–

500a
500b
500c
500

fi

��fl

h

.

This is kind of weird, but this extra freedom to rescale vectors arbi-
trarily leads to many useful applications.

To convert from homogeneous coordinates pX, Y, Z, Wqh “

pa, b, c, dqh to Cartesian coordinates, we divide each component
by the W-component to obtain the equivalent vector pX, Y, Z, Wqh “

p
a
d , b

d , c
d , 1qh, which corresponds to the point px, y, zqc “

´
a
d , b

d , c
d

¯

c
P

R3.
In the case when

::::::
When

:
the underlying Cartesian space is

two-dimensional, the point p “ px, yqc P R2 is written as P “

pX, Y, Wqh “ px, y, 1qh in homogeneous coordinates. The homoge-
neous coordinates pX, Y, Wqh “ pa, b, dqh (where d ‰ 0) represent the
point px, yqc “

´
a
d , b

d

¯

c
P R2.

This conversion between homogeneous coordinates and Carte-
sian coordinates can also be understood geometrically, as illustrated
in Figure 7.7. The point pX, Y, Wqh in homogeneous coordinates
corresponds to an infinite line in the three-dimensional XYW-
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whether Alice sent ~ma or ~mb. We want to compare an Eve that has ac-
cess to~c, with a “control Eve” that only has access to a random string
~r that is completely uncorrelated with the message or the ciphertext.
A cryptosystem is secure, according to the indistinguishability under
chosen-plaintext security definition, if the Eve with access to ~c is no
better at distinguishing between messages ~ma and ~mb than she is at
guessing randomly (which is the best that “control Eve” can do).

We won’t go into the formal details of the math, but we need to
specify exactly what we mean by “with a probability greater than
guessing randomly.” Control Eve has a completely random string~r,
which contains no information about the message ~m, so control Eve
must guess randomly and her probability of success is 1

2 . An Eve
that can distinguishing the ciphertext ~ca ” Encp~maq

::::::::::
distinguish

:::
the

:::::::::
ciphertext

::::::::::::
~ca “ Encp~maq from the ciphertext~cb ” Encp~mbq

::::::::::::
~cb “ Encp~mbq

with a probability significantly greater than 1
2 is considered to have

an advantage in distinguishing the ciphertext. Any such scheme is
not considered secure in terms of IND-CPA. Intuitively, the IND-
CPA definition of security captures the notion that Eve should learn
no information about the message ~m after seeing its ciphertext~c.

Sketch of security proof The one-time pad encryption system is
secure according to IND-CPA because of the assumption we make
about the shared, secret key~k—namely that it is generated randomly.
Each bit ki P~k takes on the binary value 1 with probability 50%, and
the value 0 with probability 50%.

Eve knows the plaintext of the two possible messages ma and mb,
but she can’t tell which message was sent from the ciphertext~c since
she can’t distinguish between two equally likely alternative scenar-
ios. In Scenario 1, Alice sent ~ma, and the secret key is ~ka, where
~c “ ~ma ‘~ka. In Scenario 2, Alice sent ~mb, and the secret key is ~kb,
where~c “ ~mb ‘~kb. The XOR operation combines the randomness of
~m with the randomness in the secret key~k, so trying to distinguish
whether ~ma or ~mb was sent is just as difficult as distinguishing~ka and
~kb. Since~k is completely random, Eve is forced to guess randomly.
Thus the probability of determining the correct message is no better
than guessing, which is precisely the requirement for the definition
of security.

The randomness of the shared secret key is crucial to the security
of the one-time pad encryption scheme. In general, we can think of
shared randomness (shared secret key) as a communication resource
that allows for mathematically-secure private communication be-
tween two parties. But what if Alice and Bob don’t have access
to shared randomness (that is, to some shared secret)? In the next
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Encryption

Bob uses Alice’s public encryption key whenever he wants to send
Alice a secret message. To encrypt message ~m, Bob uses the function
Enc and Alice’s public encryption key e~k as follows:

~c “ Encp~m, e~kq.

When Alice receives the ciphertext~c, she uses her private key d~k (that
only she knows) to decrypt the message:

~m “ Enc
:::
Decp~c, d~kq.

Observe that public-key cryptosystems are inherently many-to-one:
anyone who knows Alice’s public key e~k can create encrypted mes-
sages that only she can decode.

Digital signatures

Alice can also use her public-private key pair to broadcast one-to-
many authenticated statements ~s, meaning receivers can be sure the
statements they receive were sent by Alice. The math is the same; we
just use the keys in the opposite order. Alice encrypts the statement
~s to produce a ciphertext,

~c “ Encp~s, d~kq,

then publishes the encrypted post ~c to her blog or a public forum.
Everyone who knows Alice’s public key e~k can decrypt the post~c to
obtain the statement~s:

~s “ Enc
:::
Decp~c, e~kq.

The interesting property here is that we can be sure the statement
~s was sent by Alice, since only she controls the private key d~k. This
digital signature scheme makes it difficult for any third parties to im-
personate Alice, since they don’t know Alice’s private key d~k. This is
the principle behind digital signatures used in the delivery of software
updates.

We don’t have space in this section to delve deeper into public-
key cryptography, but we’ll illustrate the main ideas through an ex-
ample.

Example: ssh keys for remote logins

The secure shell protocol allows users to login to remote hosts. To
login as user on the server remotehost.com, run the command ssh
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Chapter 8 covers the basics of probability theory, Markov chains,
and the idea behind Google’s PageRank algorithm for classifying
web pages. Probability theory is not directly related to linear algebra,
but the applications we’ll discuss make heavy use of linear algebra
concepts.

The laws of quantum mechanics govern physics phenomena at
the femto-scale—think individual atoms. It’s a common misconcep-
tion to assume quantum laws are somehow mysterious or counter-
intuitive, and that perhaps they can only be understood by people
with a solid math background. Chapter 9 contains a concise intro-
duction to the principles of quantum mechanics specifically tailored
to people who know linear algebra. The material is adapted from lec-
tures the author prepared for a graduate-level introductory course,
so there will be no dumbing down or oversimplification. With your
background in linear algebra, you can handle the real stuff.

More linear algebra applications
You’ll find the following resources useful if you want to learn more
about linear algebra applications.

[ Three compilations of linear algebra applications ]
http://aix1.uottawa.ca/~jkhoury/app.htm
https://medium.com/@jeremyjkun/633383d4153f
http://isites

:::::::::
people.math.harvard.edu/fs

:::::
~knill/docs

:::::::
teaching/icb.topic1011412.files

:::::::::
math21b2018/applications

::::::::::
handouts/use.pdf

[ A document that describes many applications in detail ]
http://gwu

:::
www.geverstine.com/

::::::::::::::::::
reprints/Everstine_linearalgebra.pdf

[ 33 miniatures: algorithmic applications of linear algebra ]
http://kam.mff.cuni.cz/~matousek/stml-53-matousek-1.pdf

[ A book about linear algebra applications to data science ]
http://amazon.com/Data-Science-from-Scratch/dp/149190142X

7.12 Applications problems
It would be easy to think of all the applications of linear algebra pre-
sented in this chapter as a TV program, designed to entertain rather
than teach. Certainly you can continue to the next chapter without
solving any problems, but do you really want to do that to yourself?

Presented next are a number of practice problems that will test
your understanding of the new concepts and give you a great op-
portunity to practice your linear algebra skills. The linear algebra
techniques we learned in previous chapters are key building blocks
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for applications. So don’t sit on your laurels thinking, “Yay, I’m in
Chapter 7 and I know linear algebra now, I’m so good.” Prove it.

P7.1 Check out this circuit containing two batteries and five resistors:

V1

B
R1

I1

C I3
R3 D

I4

R4

GHA

I2

R2

F

V2

E

R5

I5

a) Label the polarity of each resistor in the circuit.
b) Write three KVL equations and two KCL equations.
c) Rewrite the equations in the form R~I “ ~V, where R is a 5 ˆ 5 matrix,

~I “ pI1, I2, I3, I4, I5qT, and ~V is a vector of constants.
d) Find the value of the currents I1 and I5 given V1 “ 15[V], V3 “ 10

::::::
V2 “ 10[V],

R1 “ 1[W], R2 “ 1[W], R3 “ 4[W], R4 “ 2[W], R5 “ 2[W].
Hint: The direction of the voltage drop across a resistor depends on the di-
rection of the current flowing through it.

7.1 I1 “ 5
::::::::::
I1 “ 85

11 « 7.7[A] and I5 “ 20
:::::::::::
I5 “ 25

11 « 2.27[A].

7.1 The KVL equation for the clockwise loop starting at junction B
:
A
:
is V1 ´

R1 I1 ´ R2 I2 “ 0. The equation for the loop starting at C is ´R3 I3 ´ R4 I4 `
R2 I2 “ 0. The equation starting at D is `R5 I5 ´ V2 ` R4 I4 “ 0. The KCL
equation for junction C is I1 “ I2 ` I3 and that for D is I3 ` I5 “ I4. After
combining the equations, we obtain the matrix equation R~I “ ~V, where

~V “
»

–
15
0

10
0
0

fi

fl

P7.2 You just moved to a new city and you’re looking for a new place to
live. To get an idea of the rent prices per square foot, you check out the
classifieds and find the following offers: a 200 sq ft mini-studio for $500, a
300 sq ft studio for $620, a 400 sq ft small apartment for $750, a 500 sq ft one
bedroom condo for $890, a 900 sq ft two bedroom aparment for $1250, and
a 1000 sq ft apartment for $1300. Find the best-fitting curve ppxq “ b ` mx
to the above data, where ppxq represents the price for x square feet. What is
the estimated price for a 700 sq ft apartment?

Hint: Use a computer algebra system like SymPy for the calculations. To get
you started, I set up the problem data here: bit.ly/apt_rent_data.

7.2 ppxq “ 334 ` 1.001x; pp700q “ $1035.

7.2 This is a standard least squares problem with an affine model. Visit this
link to see the calculations, bit.ly/apt_rent_affine; and this link to see
the graph of the best-fitting affine model, bit.ly/apt_rent_fits.
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The system’s next state Xt`1 depends only on its current state Xt,
and not on its prior history: Xt´1, Xt´2, . . ., X0. Markov chains for-
get everything that happened in the past, which is why we refer to
them as memoryless random processes. A Markov chain is fully de-
scribed by the conditional probability distribution pXt`1|Xt

pxt`1|xtq,
which describes the probability of the system’s next state, given its
current state. We also refer to pXt`1|Xt

as the transition matrix, since
it describes the probabilities that the system will transition from one
state to another.

Markov chains are extremely versatile models for analyzing
many real-world systems. We don’t have the space to cover the topic
in full, but I’ll introduce the basic notions for your general knowl-
edge. First, we’ll look at the connection between a Markov chain and
the matrix product

:::::::
Markov

::::::
chains

::::
and

:::::::
matrix

:::::::::::::
multiplication. Then,

we’ll see how your eigenvalue-finding skills can help compute
an important property of Markov chains. Understanding Markov
chains is also necessary background material for understanding
Google’s PageRank algorithm, which we’ll discuss in Section 8.3.

Example
Three friends are kicking a football in the park: Alice, Bob, and Char-
lie. Whenever Alice gets the ball, she passes it to Bob 40% of the time,
passes it to Charlie 40% of the time, or holds onto the ball 20% of the
time. Bob is kind of a greedy dude: when he gets the ball, he holds
onto it 80% of the time, and is equally likely to pass it to Alice or
Charlie 20% of the time. When Charlie gets the ball, he’s equally
likely to pass the ball to Alice or Bob, or keep it for himself. Assume
these friends kick the ball around for a very long time (hundreds of
passes), and you observe them at some point. What is the probabil-
ity that each player will be in possession of the ball at the instant you
observe them?

We can model the ball possession as a Markov process with three
possible states, X “ tA, B, Cu, where each state describes moments
when Alice, Bob, or Charlie has the ball. The transition probabil-
ities pXt`1|Xt

pxt`1|xtq describe how the next state of the ball’s pos-
session xt`1 depends on the previous state of the ball’s possession
xt. The transition matrix of the Markov chain in our current ex-
ample is To maintain consistency with the notation for conditional
probability distributions, we refer to the coefficients

::::::
entries of M as

pXt`1|Xt
pxt`1|xtq. The “given” variable xt selects the column of the

matrix M, and the different entries in this column represent the tran-
sition probabilities for that state. Using the matrix M and some basic
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after 10 and 20 time steps of the Markov chain:

pX10
“ M10 pX0

“

»

—–
0.161 . . .
0.645 . . .
0.193 . . .

fi

�fl and pX20
“ M20 pX0

“

»

—–
0.1612903 . . .
0.6451612 . . .
0.193548 . . .

fi

�fl.

Observe how the coefficients
:::::::
weights

:
of the probability distribution

seem to change less and less as the Markov chain advances. Recall
we originally set out to calculate the probability that each player will
be in possession of the ball after a very long time. We seem to be on
the right track to find this long-term probability of ball possession.

Stationary distribution
If the evolution of a Markov chain continues for long enough, the
probability vector will converge to a stable distribution pX8

that re-
mains unchanged when multiplied by M:

MpX8
“ pX8

.

This is called the stationary distribution of the Markov chain. Observe
that pX8

is an eigenvector of the matrix M with eigenvalue l “ 1.
The convergence to a unique stationary distribution is a funda-

mental property of Markov chains. Assuming the Markov chain rep-
resented by M satisfies some technical conditions (which we won’t
go into), it will converge to a stationary distribution pX8

. Thus, if we
want to find pX8

, we just need to keep repeatedly multiplying by M
until the distribution stabilizes:

pX8
“

»

—–
0.161290322580645 . . .
0.645161290322581 . . .
0.193548387096774 . . .

fi

�fl “ M8 pX0
.

The Markov chain will converge to the same stationary distribution
pX8

regardless of the starting point pX0
. The ball could start with Bob

pX0
“ p0, 1, 0q

T or with Charlie pX0
“ p0, 0, 1q

T; and after running
the Markov chain for long enough, we’d still arrive at the stationary
distribution pX8

.
Since we know the stationary distribution is an eigenvector of

M with eigenvalue l “ 1, we can use the usual eigenvector-finding
techniques to obtain pX8

directly. We find the eigenvector by solving

:
:
:::
just

::::::
solve for ~v in pM ´ q~v “ ~0. The answer is pX8

“ p
5

31 , 20
31 , 6

31 q
T.

A nice benefit of this approach is that we obtain the
::::
This

:::::::::
approach
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:::::
gives

:::
us

:::
an

:
exact analytic expression for the answer.

:::::
Note

:::
we

::::
must

::::::::::
normalize

::::
the

:::::::::::
eigenvector

::
~v
:::

so
::::

the
:::::
sum

::
of

:::
its

::::::::::::
components

::::::
equals

::::
one.

:::::
The

:::::
final

::::::::
answer

::
is

::::::::::::::::::::::::
pX8

“
~v

}~v}1
“ p

5
31 , 20

31 , 6
31 q

T,
::::::
where

::::::::::::::::::::
}~v}1 “ |v1| ` |v2| ` |v3|

::
is

:::
the

::::::::
`1-norm

::
of

:::
the

::::::::::::
eigenvector.

Discussion
Markov chains have countless applications in physics, speech recog-
nition, information processing, machine learning, and many other
areas. Their simple, memoryless structure and their intuitive repre-
sentation as matrices make them easy to understand and easy to fit
to many situations.

In the next section, we’ll describe a Markov chain model for
people’s web browsing behaviour. The stationary distribution of
this Markov chain serves to quantify the relative importance of
webpages.

Links
[ Awesome visual representation of states and transitions ]
http://setosa.io/blog/2014/07/26/markov-chains/index.html

[ More details about Markov chain applications from Wikipedia ]
https://en.wikipedia.org/wiki/Markov_chain

Exercises
E8.3 After reading the section on Markov chains, you decide to re-
search the subject further by checking out a book on Markov chains
from the library. In the book’s notation, Markov chains are repre-
sented using right-multiplication of the state vector: ~v 1

“ ~vB, where
~v is the state of the system at time t, ~v 1 is the state at time t ` 1, and
the matrix B represents the Markov chain transition probabilities.

Find the matrix B that corresponds to the transition probabilities
discussed in the Markov chain example on page 359. How is this
matrix B related to the matrix M that we used in the Markov chain
example?

8.3 B “ MT.

E8.4 Go to https://live.sympy.org and create a Matrix object de-
scribing the passing-the-ball Markov chain transition probabilities.
Use the Matrix methods .eigenvects() and .nullspace() to con-
firm the stationary distribution of the Markov chain is

` 5
31 , 20

31 , 6
31

˘
.
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Hint: You can create a Matrix object using

>>> M = Matrix([[ 2/10, 1/10, 1/3 ],
[ 4/10, 8/10, 1/3 ],
[ 4/10, 1/10, 1/3 ]])

If you start from a matrix with exact rational coefficients
::::::
entries,

you’ll obtain the exact answer in terms of rational numbers. You can
also use the function S (short for sympify) to create rationals: S(1/3)
= 1

3 .

Hint: The eigenspace that corresponds to the eigenvalue l “ 1 is the
null space of the matrix pM ´ 3q. Use the SymPy command eye(3) to
create a 3 ˆ 3 identity matrix 3, then apply the nullspace method.

Hint:
::::
Use

::::::::::::
vec.norm(1)

::
to

::::::::
compute

:::
the

::::::::
`1-norm

::
of

::::
the

::::::
vector

:::
vec

:
.

8.4 pX8
“

` 5
31 , 20

31 , 6
31

˘
.

8.4 You can either use evec = M.eigenvects()[0][2][0] to ex-
tract the first eigenvector, or evec = (M-eye(3)).nullspace()[0],
which is more efficient. To obtain a probability distribution, nor-
malize the eigenvector by dividing it by its 1

::̀
1-norm pinf =

evec/evec.norm(1).

E8.5 Find the stationary distribution of the following Markov chain:

C “

»

—–
0.8 0.3 0.2
0.1 0.2 0.6
0.1 0.5 0.2

fi

�fl.

8.5 pX8
“

´
34
61 , 14

61 , 13
61

¯
.

8.5 Use evec = (C-eye(3)).nullspace()[0] to extract the eigen-
vector for l “ 1, then normalize the vector by its 1-norm to
make it a probability distribution pinf = evec/evec.norm(1) =´

34
61 , 14

61 , 13
61

¯
.

8.3 Google’s PageRank algorithm
Consider the information contained in the links between webpages.
Each link from Page A to Page B can be interpreted as a recommen-
dation by Page A’s author for the contents of Page B. In web-speak
we say links from Page A to Page B are “sending eyeballs” to Page B,
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Figure 8.2: A graph showing the links between the pages on the micro-web.
Page 5 seems to be an important page because many pages link to it. Since
Page 5 links to pages 6 and 7, these pages will probably get a lot of eyeballs,
too. Page 4 is the least important, since no links lead to it. Page 8 is an
example of the unlikely case of a webpage with no outbound links.

Page 1 corresponds to the first column of the matrix M1. The first
column of M1 must therefore contain the coefficient

:::::
value

:

1
2 in its

second and fifth rows. Similarly, the entries in the second column
of M1 correspond to the probabilities of Randy following links ran-
domly starting at Page 2. Since Page 2 links to Page 3 and Page 5,
the second column of M1 must contain 1

2 in its third and fifth rows.
Continuing with this approach, we find the rest of the entries in

the transition matrix for Strategy 1:

M1 “

»

——————————————–

0 0 1
2 0 0 0 0 1

8
1
2 0 0 0 0 0 0 1

8

0 1
2 0 0 0 1

2 0 1
8

0 0 0 0 0 0 0 1
8

1
2

1
2

1
2 1 0 0 1

3
1
8

0 0 0 0 1
2 0 1

3
1
8

0 0 0 0 1
2

1
2 0 1

8

0 0 0 0 0 0 1
3

1
8

fi

��������������fl

.

To convince yourself that M1 has the correct entries, compare the rest
of the columns

:::::::
columns

:::
of

:::
M1:with the link structure in Figure 8.2.

Recall that Strategy 1 handles the exceptional case of a page with
no outbound links by jumping to a random page. Since the micro-
web contains eight pages, the uniform distribution over all pages is
p

1
8 , 1

8 , 1
8 , 1

8 , 1
8 , 1

8 , 1
8 , 1

8 q
T.

Do you recall the adjacency matrix representation for graphs we
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8.7 Construct M1 by counting the outbound links for each webpage, then
mix in 0.9 of it with 0.1 of 1

5 J to obtain the Markov chain matrix M:

M1 “

»

———–

0 1
2 0 0 1

2
1
4 0 1

2 0 0
1
4

1
2 0 1

2 0
1
4 0 1

2 0 1
2

1
4 0 0 1

2 0

fi

���fl, M2 “ 1
5

J5, M “

»

———–

1
50

47
100

1
50

1
50

47
100

49
200

1
50

47
100

1
50

1
50

49
200

47
100

1
50

47
100

1
50

49
200

1
50

47
100

1
50

47
100

49
200

1
50

1
50

47
100

1
50

fi

���fl.

Solving pM ´ q~e “~0, we find pX8
“ p0.1721, 0.169, 0.245, 0.245, 0.169qT

::::::::::::::::::::::::::::::::::::::
pX8

“ ~e
}~e}1

“ p0.1721, 0.169, 0.245, 0.245, 0.169qT.
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a graduate-level quantum information course, so don’t think you’ll
be getting some watered-down, hand-wavy version of quantum me-
chanics. You’ll learn the real stuff, because I know you can handle
it.

In Section 9.6 we’ll apply the quantum formalism to the polariz-
ing lenses experiment, showing that a quantum model leads to the
correct qualitative and quantitative prediction for the observed out-
come. We’ll close the chapter with short explanations of different
applications of quantum mechanics with pointers for further explo-
ration about each topic.

Throughout the chapter, we’ll focus on matrix quantum me-
chanics and use computer science language to describe quantum
phenomena. A computer science approach allows us to discuss the
fundamental aspects of quantum theory without introducing all the
physics required to understands

::::::::::
understand

:
atoms. Finally, I just

might throw in a sample calculation using the wave function of the
hydrogen atom, to give you an idea of what that’s like.

9.2 Polarizing lenses experiment
Let’s run through a simple tabletop experiment that illustrates the
limitations of classical, deterministic reasoning. The outcome of the
experiment will highlight the need for careful consideration of the
measurements used in scientific experiments.

We’ll describe the experiment using words and diagrams, but
you can easily reproduce the experiment in your own “lab,” since
it requires only simple equipment. I encourage you to try it yourself.
You’ll need three polarizing lenses, a laser pointer, a piece of paper,
and three binder clips for holding the lenses upright. You can buy
polarizing lenses on the cheap from a second-hand camera shop—
any polarizing lens will do.

Background
In photography, polarizing lenses are used to filter out undesirable
light reflections, like reflections that occur from water surfaces or
glass windows. To better understand the experiment, we need to
introduce some basic notions about the physics of light, specifically
the concept of light polarization.

Light consists of photons. Photons are travelling pulses of elec-
tromagnetic energy. Electromagnetic energy can travel through
space in the form of a wave. Polarization refers to the orientation of
the electric field ~E of a propagating electromagnetic wave.
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Light is normally unpolarized, meaning it corresponds to a mix-
ture of photons that have electric and magnetic components of ran-
dom orientation. A light beam is polarized if all its photons have the
same orientation of their electric field.

Figure 9.1: A photon is a pulse of electromagnetic energy. The energy of a
photon travels in the form of a wave that has an electric component ~E and a
magnetic component ~B. The figure shows a photon travelling in the positive
x-direction with its electric component along the z-axis.

Light reflected from flat surfaces, like the surface of a lake or a glass
window, becomes polarized, which means the electric components
of all the reflected photons become aligned.

Photographers use this fact to selectively filter out light with a
particular polarization. A polarizing filter or polarizing lens polarizing
lens has a special coating which conducts electricity in one direction,
but not in the other. You can think of a polarizing filter

:::
lens

:
as a sur-

face covered by tiny conductive bands that interact with the electric
component of incoming light particles. Light rays that hit the filter
:::::::::
polarizing

::::
lens

:
will either pass through or be reflected depending on

their polarization. Light particles with a polarization perpendicular
to the conductive bands pass through the filter

:::
lens, while light parti-

cles with polarization parallel to the conductive bands are reflected.
This is because the filter’s surface

:::::::
surface

::
of

::::
the

::::
lens

:
has different

conductive properties in the parallel and perpendicular directions.
Note that horizontally polarizing lenses and vertically polarizing
lenses are complementary: vertically polarized light will not pass
through a horizontally polarizing lens. This situation is illustrated
in Figure ??.

The previous examples can familiarize you with the properties of
polarizing lenses, in case you don’t have actual lenses to play with. If
you do have polarizing lenses, you can shine a laser pointer through
them, observing when light passes through the filter and when light
is filtered out. Use binder clips to position the lenses on a flat surface,
and reproduce the setup in Figure ??. Don’t worry about finding the
exact orientation for “vertical.” Any orientation of the lenses will
do, as long as the first and the second polarizing lens have the same
orientation. Next, you can rotate the second lens by 90˝ to obtain the
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quantum theory models photons as discrete packets of energy, and
explains the outcome of the polarizing lenses experiment as the
probability p “

1
4 that a photon will pass through the circuit. For

this tabletop experiment, both the classical model of light (as a wave
that can be infinitely subdivided) and the quantum model of light
(as discrete particles) predict the same outcome. Therefore, the po-
larizing lenses experiment performed with a laser pointer does not
serve as proof for the necessity of a quantum mechanical description
of reality.

As we discussed in the introduction to this chapter, to really re-
veal quantum effects, we need to look at the very small-scale or very
low-power regimes. It’s possible to reproduce the polarizing lenses
experiment using a single photon source. A single photon source be-
haves like a super-weak laser pointer that emits only one photon at a
time. When discussing the single photon regime, the classical theory
of electromagnetic waves hits a wall, since a single photon cannot
subdivide into parts—it is a quantum of light; a small, indivisible
bundle of energy. Classical wave theory can correctly predict aver-
age optical power, but it can’t provide a clear picture of what exactly
happens when individual photons hit a polarizing lens.

The polarizing lenses experiment is inspired by the famous Stern–
Gerlach experiment, which is performed with the magnetic spin of sil-
ver atoms, and which involves a similar demonstration, comparable
observed outcomes, and analogous reasoning. I encourage you to
learn more about the original Stern–Gerlach experiment.

[ The Stern–Gerlach experiment ]
https://en.wikipedia.org/wiki/Stern-Gerlach_experiment
https://youtube.com/watch?v=rg4Fnag4V-E

9.7 Quantum physics
::::::::::::::
mechanics

:
is not that

weird
Without a doubt, you’ve heard that quantum mechanics is weird,
mysterious, and generally “magical.” Well, unless vector operations
count as magic, it’s not that magical. In this section, we’ll single out
three so-called “weird” aspects of quantum mechanics: superposi-
tion, interference, and the fact that quantum measurements affect
the states of systems being measured.

Quantum superposition
Classical binary variables (bits) can have one of two possible values:
0 or 1. Examples of physical systems that behave like bits are electric
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Interference
Unlike particles that bounce off each other, waves can co-exist in the
same place. The resulting wave pattern is the sum of the constituent
waves. Quantum particles behave similarly to waves in certain ex-
periments, and this can lead to interference between quantum sys-
tems.

The prototypical example of interference is Young’s double-split
:::::::::
double-slit

:
experiment, in which particles passing through two thin

slits interact with each other, causing an interference pattern of alter-
nating bright and dark spots on a screen. Classical physics models
assume particles behave like tiny point-like balls that bounce off each
other whenever they come in contact. A classical model predicts that
particles will appear on the screen in two bright peaks, directly fac-
ing the two slits.

In contrast, the quantum model of a particle describes it as a trav-
elling energy pulse that exhibits wave-like properties.2 In a quantum
model, the particles passing through the slits behave like waves and
can combine constructively or destructively, depending on the rela-
tive distances travelled by the particles. Similar interference patterns
occur whenever waves combine, as in the example of waves on the
surface of a liquid, or sound waves.

Performing Young’s double-split
:::::::::
double-slit

:
experiment reveals

a pattern of bright and dark stripes (called fringes) on the screen in
support of the quantum model. The locations of the dark fringes
correspond exactly to the places where particles passing through the
two slits arrive “out of sync,” and combine destructively:

|yy ´ |yy “ 0.

The locations where destructive interference occurs correspond to
the dark fringes on the screen, where no particles arrive.

The idea that one wave can cancel another wave is not new. What
is new is the observation that particles behave like waves that can in-
terfere with each other. That’s definitely new. Indeed, interference
was one of the first puzzling effects of quantum systems that was
observed. Observations from interference experiments forced physi-
cists to attribute wave-like properties to particles.

[ Video demonstration of Young’s double-split
:::::::::
double-slit

:
experi-

ment ]
https://youtube.com/watch?v=qCmtegdqOOA

2This is where the name wave function comes from.
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assume even the interactions between particles are quantized. You
can think of the basic quantum mechanics described in this chap-
ter as learning the alphabet, and quantum field theory as studying
Shakespeare, including the invention of new words. Studying quan-
tum field theory requires new math tools like path integrals, new in-
tuitions like symmetry observations, and new computational tricks
like renormalization.

The essential way of thinking about photons, electrons, and the
interactions between them can be obtained by reading Richard Feyn-
man’s short book titled QED, which stands for quantum electrodynam-
ics. In this tiny book, Feynman uses the analogy of a “tiny clock”
attached to each particle to explain the phase eiq of a wave func-
tion. From this simple analogy, the author builds to explain complex
concepts (path integrals, for instance) at the graduate level of quan-
tum field theory. I highly recommended this book; it’s a wonderful
chance to learn from one of the great scientists in the field and one of
the best physics teachers of all times.

[ The Standard Model of particle physics ]
https://en.wikipedia.org/wiki/Standard_Model

[Nuclear fusion is how energy is generated inside stars
https://en.wikipedia.org/wiki/Nuclear_fusion

BOOK] Richard P. Feynman. QED: The strange theory of light and
matter. Princeton University Press, 2006, ISBN 0691125759.

Solid state physics
Physicists have sought to understand the inner structure of materials
since the first days of physics. As they’ve learned, they’ve developed
numerous applications, from semiconductors to lasers, photovoltaic
batteries (solar panels), light emitting diodes (LEDs). These applica-
tions all depend on materials with specially engineered conductivity
properties. Indeed, working with the conductivity of materials gives
us insight into their other properties. We can classify materials into
the following general conductivity-type groups: insulators, metals,
and semi-conductors. These categories correspond to materials with
different energy band structures.

Insulators are the most boring type of material, because their en-
ergy band structure doesn’t permit any interesting chemical interac-
tions. Take glass, for instance—just a clump of silica (SiO2). The term
glass is used in physics to describe any material made of randomly
oriented molecules that lack a specific crystal structure.

Conductors are more interesting. A hand-wavy explanation of
conductivity would be to say the electrons in conductors like alu-
minum and copper are “free to move around.” Solid state physics
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allows for a more precise understanding of the phenomenon. Using
quantum mechanical models, we can determine the energy levels
that electrons can occupy, and predict how many electrons will be
available to conduct electricity.

Semiconductors are the most interesting type of material since
they can switch between conductive and non-conductive states. The
transistor, the invention that makes all electronics possible, consists
of a sandwich of three different types of semiconductors. The volt-
age applied to the middle section of a transistor is called the gate
voltage, and it controls the amount of current that can flow through
the transistor. If the gate voltage is set to ON (think 1 in binary), then
semiconducting material is biased; free electrons are available in its
conduction band, and current can flow through. If the gate voltage
is set to OFF (think 0 in binary), then the conduction band is depleted
and the transistor won’t conduct electricity. The improvements in
semiconductor technologies—specifically the ability to pack billions
of transistors into a tiny microprocessor chip—have been fuelling
the ongoing computer revolution pretty much since transistors were
first commercialized. In summary, no solid state physics = no mobile
phones.

Quantum mechanics is used so much in solid state physics that
we could suitably nickname the field “applied quantum physics.”

[ Simple explanation of energy band structure and conductivity ]
https://wikipedia

:
w.org/wiki/Electrical_resistivity_and_conductivity

:::
inQ

Superconductors
Certain materials exhibit surprising physical properties at very low
temperatures. By low temperatures, I mean really low, like ´272˝C;
a temperature close to absolute zero, the temperature at which all
molecules stop. You’d exhibit surprising properties too if your were
placed in an environment this cold! Take for example the proper-
ties of different metals, which are generally considered to have low
electric resistance. There are regular conductors like aluminum that
have low resistance, and high-end conductors like silver that have
even lower resistance, and then there are superconductors which have
zero resistance. Superconductors are an example of a purely quan-
tum phenomenon that cannot be explained by classical physics.

Some of the most iconic landmarks of modern scientific progress,
like magnetic resonance imaging (MRI) machines and magnetically
levitating bullet trains, are made possible by superconductor tech-
nology. Superconductors offer zero resistance to electric current,
which means they can support much stronger currents than reg-
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key~k in order to use the one-time pad encryption protocol. Indeed,
pre-shared entangled states are a prime resource in quantum infor-
mation science. The superdense coding protocol is another surprising
application of quantum entanglement. With this protocol, Alice can
communicate two bits of classical information to Bob by sending him
a single qubit and consuming one pre-shared entangled state.

Links

[ Quantum simulators and practical implementations ]
https://en.wikipedia.org/wiki/Quantum_simulator

[ Some data about the difficulty of RSA factoring ]
https://en.wikipedia.org/wiki/RSA_numbers

[ An introduction to quantum computing http://arxiv.org/abs/0708.0261v1/
Video tutorials on quantum computing by Michael Nielsen ]

http://michaelnielsen.org/blog/quantum-computing-for-the-determined/

[ Grover’s algorithm for unstructured search ]
https://en.wikipedia.org/wiki/Grover’s_algorithm

[ Shor’s algorithm for factoring products of prime integers ]
https://en.wikipedia.org/wiki/Shor’s_algorithm

[ Emerging insights on limitations of quantum computing ]
https://www

:::::::
archive.siam.org/pdf/news/100.pdf

Quantum error-correcting codes
Quantum states are finicky things. Every interaction of a qubit with
its environment corrupts the quantum information the qubit stores.
In the previous section we talked about quantum computing in the
abstract, assuming the existence of an ideal noiseless quantum com-
puter. Since the real world is a noisy place, constructing a practical
quantum computer is a much greater challenge.

Recall that errors caused by noise are also a problem for classi-
cal computers. If classical computers can be made robust to errors
using error-correcting codes, can we use error-correcting codes on
quantum computers too? Indeed it’s possible to use quantum error-
correcting codes to defend against the effects of quantum noise. Keep
in mind, quantum error-correcting codes are more complicated to
build than their classical counterparts, so it’s not an obvious thing to
do, but it can be done.

We won’t go into too much detail, but it’s worth pointing out the
following interesting fact about quantum error correction. Building
quantum error-correcting codes that can defend against a finite set of
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Classical to Quantum Shannon Theory by Mark M. Wilde is an excel-
lent guide to the field.

Recently, quantum theory has been applied to novel communica-
tion systems, and there is a growing interest from the communica-
tions industry to develop applications that push optical communi-
cation channels to the bounds of their theoretical efficiency. Essen-
tially, quantum networks are being invented in parallel with quan-
tum computers, so that when we finally build quantum computers,
we’ll be able to connect them together, presumably so they can share
funny cat videos. What else would we use them for?

[BOOK] Mark M. Wilde. From Classical to Quantum Shannon The-
ory, Cambridge University Press, Second edition, ISBN 1107176166,
:::::::::::::::::::::::::::::::
http://arxiv.org/abs/1106.1445.

Conclusion
With this chapter, I wanted to bring you closer to the fascinating
subject of quantum mechanics. I hope the material helped you un-
derstand the basic principles of quantum mechanics and clarified
some of the sensational mythology surrounding the “mysteries” of
the quantum world. While there’s still much to discover, there’s
nothing too counterintuitive about quantum mechanics; it’s just lin-
ear algebra, right?

One hundred years ago, quantum mechanics was seen as a for-
eign subject not to be trusted. In time, physicists developed good
models, found better ways to explain experiments, wrote good
books, and even started teaching the subject to undergraduate stu-
dents. This gives me hope for humanity that we can handle even the
most complex and uncertain topics when we put our minds to it.

Today we face many complex problems: consolidated corporate
control of innovation, cartels, corruption, eroding democratic gov-
ernment systems, the militarization of everything, and conflicting
ideologies. We have Sunni and Shia brothers shooting at each other
and red gang versus blue gang brothers shooting at each other, and
all of this for no good reason. We have all kinds of other bullshit
divisions between us.

Let’s hope that one hundred years from now, we’ll have learned
to limit the violent and corrupt aspects of human nature, so that we
can realize the potential of every child born anywhere in the world.
Right now it seems like it won’t be an easy change, but this is how
it seemed when people were trying to figure out quantum mechan-
ics, too. All it takes is a critical mass of people who realize and truly
internalize the fact we’re all on the same team, and all the divisions
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ponential probability distribution pXpxq “ le´lx.
To further develop your math modelling skills, the next step is

to generalize the concepts of inputs x, outputs y, and functions f
to other input-output relationships. In linear algebra, we studied
functions of the form T : Rn

Ñ Rm that obey the linear property:

Tpa~x1 ` b~x2q “ aTp~x1q ` bTp~x2q.

This linear structure enables us to study the properties of many func-
tions, solve equations involving linear transformations, and build
useful models for many applications (some of which we discussed
in Chapter 7). The mathematical structure of a linear transforma-
tion T : Rn

Ñ Rm can be represented
:::::::::
represented as multiplica-

tion by a matrix MT P Rmˆn. The notion of matrix representations
::::::::::::::
representations (T ô MT) was central throughout this book. Even
if you forget the computational procedures we learned, the idea of
representations should stick with you, and you should be able to rec-
ognize representations in many contexts. That’s a big deal, because
most advanced math topics involve studying the parallels between
different abstract notions. Understanding linear transformations and
their concrete representations as matrices

:::::::::::::
representations

:
is an im-

portant step in your math development
:::
first

:::::
step

:::::::
toward

:::::::::
advanced

:::::
math

:::::
topics.

The computational skills you learned in Chapter 3 are also useful;
though you probably won’t be solving any problems by hand using
row operations from this point forward, since computers outclass
humans on matrix arithmetic tasks. Good riddance. Until now, you
did all the work and used SymPy to check your answers. From now
on, you can let SymPy do all the calculations and your job will be to
chill.

If you didn’t skip the sections on abstract vector spaces, you
know about the parallels between the vector space R4 and the ab-
stract vector spaces of third-degree polynomials a0 ` a1x ` a2x2

`

a3x3 and 2 ˆ 2 matrices
“ a b

c d
‰
. This is another step up the ladder

of abstraction, as it deepens your understanding of all math objects
with vector-like structure.

It was my great pleasure to be your guide through the subject of
linear algebra. I hope you walk away from this book with a solid un-
derstanding of how the concepts of linear algebra fit together. In the
book’s introduction, I likened linear algebra to playing with LEGOs.
Indeed, if you feel comfortable manipulating vectors and matrices,
performing change-of-basis operations, and using the matrix decom-
position techniques to see inside matrices, you’ll be able to “play”
with all kinds of complex systems and problems. For example, con-
sider the linear transformation T that you want to apply to an in-
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put vector ~v. Suppose the linear transformation T is most easily de-
scribed in the basis B1, but the vector ~v is expressed with respect to
the basis B. “No problem,” you can say, and proceed to build the
following chain of matrices that compute the output vector ~w:

r~wsB “ r sB B1 rATsB1 B1 r sB1 Br~vsB.

Do you see how matrices and vectors fit together neatly like LEGOs?
I can’t tell you what the next step on your journey will be. With

your new linear algebra modelling skills, a thousand doors have
opened for you; now you must explore and choose. Will you learn
how to code and start a software company? Maybe you’ll use your
analytical skills to go to Wall Street and destroy the System from the
inside. Or perhaps you’ll apply your modelling skills to revolution-
ize energy generation, thus making human progress sustainable. Re-
gardless of your choice of career, I hope you’ll stay on good terms
with math and continue learning whenever you have the chance.
Good luck with your studies!

Social stuff
Be sure to contact me if you have any feedback about this book. It
helps to hear which parts of the book readers like, hate, or don’t
understand. I consider all feedback in updating and improving fu-
ture editions of this book. This is how the book got good in the first
place—lots of useful feedback from readers. You can reach me by
email at ivan@minireference.com.

Another appreciated thing you can do to help us is to write a
review of

::::::
review

:
the book on Amazon.com, Goodreads, Google

Books, or otherwise spread the word about the no bullshit
:::
No

:::::::
Bullshit

:::::::
Guide textbook series. Talk to your friends and let them in

on the math
::::::::::
knowledge buzz.

If you want to know what Minireference Co.
:::::::::::::
Minireference

:::
Co.

has been up to, check out our blog at minireference.com/blog/.
The blog is a mix of 30% publishing technology talk, 50% startup
business talk, and 20% announcements. Checking the blog is the
easiest way to follow the progress of our revolution in the textbook
industry. For real; we’re totally serious about making education ac-
cessible through affordable textbooks. You can also connect via Twit-
ter @minireference and Facebook fb.me/noBSguide.
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Cauchy–Schwarz inequality, 325
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for matrices, 282, 485

characteristic polynomial, 194,
301, 304, 345, 350

Cholesky decomposition, 336
ciphertext, 403, 407
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closed under

addition, 233, 234
scalar multiplication, 233

codomain, see output space
coefficients, 134, 165, 226, 321

Fourier, 425, 427
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column picture, 133, 137, 146, 290
column space, 136, 232, 236, 239,

246, 259, 264, 384
column vector, 134, 147, 238, 341
commutative, 14, 24, 141, 319
completing the square, 28, 31
complex conjugate, 97, 340, 480
complex number, 13, 96, 112
complex transpose, see Hermitian

transpose
components, 76, 82, 95, 131, 225,

323, see also coordinates
complex, 339, 480

cone, 70
conjugate, 97, 340, 480
conjugate transpose, see

Hermitian transpose
conjugate-linear, 352
coordinate system, see also basis

Cartesian, 35, 82, 92
polar, 97

coordinates, 3, 83, 93, 131, 210,
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225, 245, 264, 329, 481,
see also components

homogeneous, 390
cosine, 20, 62, 72
cosine rule, 67
Cramer’s rule, 193
cross product, 83, 141, 192, 215
cryptography, 402
cylinder, 69

dagger, see Hermitian transpose
De Moivre’s formula, 102
decryption, 403, 406, 409
degenerate eigenvalue, 301, 304
determinant, 150, 164, 185, 188,

196, 286, 288, 301, 306
determinant test, 191, 194, 288
diagonalization, 300, 303, 308
digital signature, 409
dimension, 172, 232, 239, 241,

245, 251, 265, 304, 318
Dirac notation, 479, 483
direction vector, 170, 211, 273
distance, 216, 223, 325, 397

Hamming, 413, 416
distributive, 24
domain, 39, 123, 261, 292, 421
dot product, 83, 140, 146, 181,

214, 219, 225, 323, 327

eigenbasis, 298, 302, 304, 306, 333
eigendecomposition, 298, 301,

305, 307, 310, 332, 376
eigenspace, 280, 302, 304, 307,

316, 351, 458
eigenvalue, 190, 194, 298, 306,

334, 339, 345, 375, 454
eigenvector, 298, 301, 307, 333,

339, 350, 376, 454
encryption, 403, 406, 409
entries, see matrix entries
error-correcting code, 412, 528
Euler’s formula, 102, 345, 350
expand, 24, 25
expected value, 445
exponent, 15
exponential, 20, 64

factor, 15, 23, 26

factoring, 26, 34
field, 318, 322, 323, 339, 353, 354
finite field, 353, 404, 417, 468
Fourier basis, 421, 425, 427, 431
Fourier coefficients, 425, 427
Fourier series, 426
Fourier transformation, 421, 429
fraction, 13, 112
free variable, 170, 214, 238, 248
Frobenius inner prod., see inner

prod. for matrices
Frobenius norm, see

Hilbert–Schmidt norm
function, 38, 50

even, 59
odd, 59

fundamental subspace, 232, 236,
240, 261

basis, 246

Gauss–Jordan elimination, 168,
174, 194, 199, 214, 238,
243, 343, 365, 369

geometric multiplicity, 301, 308
golden ratio, 33
Gram–Schmidt

orthogonalization, 328, 337
graph, 373, 458
graphics processing unit, 398
Grover’s search algorithm, 525

Hadamard basis, 482, 485, 498
Hadamard gate, 494, 522
Hamming code, 416, 419
Hamming distance, 413, 416
Hermitian matrix, 346
Hermitian transpose, 340, 480
Hilbert–Schmidt norm, 326, 349
homogeneous coordinates, 390
homogeneous equations, 236

idempotence, 274
identity matrix, 135, 149, 178,

198, 313, 343, 393, 495
image, 39, 123, 136, 158, 258
image space, 136, 158, 258, 261,

264
imaginary number, see complex

number



INDEX 579

infinity, 170, 209, 321, 425, 448
information theory, 503, 529
injective, 41, 262, 293
inner product, 143, 148, 272, see

also dot product
abstract, 322, 329
complex, 341, 347, 352, 481
for functions, 326, 352, 424
for matrices, 325, 348

inner product space, 322, 348, 490
input set, see source set
input space, 261, 282, 293
intersection, 172, 213, 390
interval, 110, 121
inverse, 11

function, 14, 20, 43, 136
matrix, 134, 136, 149, 196,

202, 287, 305, 308, 343
Moore–Penrose, 382, 388
transformation, 5, 267, 292

invertibility test, 196, 203
invertible, 149, 185, 196, 203, 287

matrix, 185, 267, 287
transformation, 267, 292

isolate, 11, 20, 103

kernel, 5, 136, 237, 258, 262, 265,
292

ket, 480, 483, see also bra
Kirchhoff’s laws, 369

`1-norm, 455
`2-norm, 143
leading one, see pivot
least squares approximate

solution, 379
left null space, 232, 237, 239, 384
length, 13, 72, 84, 98
length preserving, see orthogonal

matrix
Leontief input-output model, 366
line, 154, 173, 209, 217, 221, 394

parametric equation, 211
symmetric equation, 211

linear, 2, 56, 152, 257, 323, 380
combination, 2, 134, 227,

231, 241, 320, 421, 511
equation, 103, 118, 153, 164

independence, 194, 227, 240,
243, 288, 301, 328

transformation, 3, 134, 183,
238, 257, 269, 282, 312

linear programming, 378
linear regression, 379
logarithm, 20, 65
low-rank approximation, 335
LU decomposition, 335

Markov chain, 450, 457
matrix, 131, 136, 145, 263, 269

diagonal, 179, 302, 312, 333
elementary, 184, 200, 291, see

also row operations
entries, 131, 134, 145, 165,

185, 196, 266, 283, 484
Hermitian, 346
identity, see identity matrix
invariant properties, 286
lower triangular, 313, 336
multiplication, 146, 147, 181,

263, 389, 414, 452, 492
normal, 316
operations, 133, 145
orthogonal, 313, 333, 346
permutation, 315, 336
positive definite, 316
positive semidefinite, 316,

327, 336
product, see matrix

multiplication
projection, 148, 263, 270, 316
rank, 167, 232, 240, 286, 288
reflection, 274, 280, 315, 392
representation, 136, 263,

269, 282, 392, 446, 484
rotation, 277, 314, 339, 392
symmetric, 313, 320, 325, see

also Hermitian matrix
trace, 149, 286, 306
transpose, 147, 238, 246, 382,

see also Hermitian tr.
unitary, 346, 492
upper triangular, 313, 336

matrix-vector product, 133, 146,
177, 183, 238, 269, 381,
389, 425, 447
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metric, 327
minor, 187, 197

nilpotent, 361
non-homogeneous, 236
noncommutative, 178, 182, 183
nonnegative, 39, 55, 110, 123
norm, 143, 324, 348, 467, 496

Euclidian, 143
Hilbert–Schmidt, 326, 349
`1-norm, 455
`2-norm, 143

normal vector, 210, 214, 277, 401
null space, 136, 232, 235, 237, 239,

242, 247, 259, 265, 274,
288, 292, 301, 415

nullity, 240, 242, 293
number line, 35

objective function, 378, 380
one-time pad, 406
one-to-one, see injective
one-to-one correspondence, see

bijective
onto, see surjective
origin, 36, 55, 73
orthogonal, 214, 227, 247, 265,

323, 328, 384, 415, 421
basis, see basis
complement, 219, 221, 274,

384, 415
matrix, 313, 333, 337, 346
projection, 228, 270, 392
subspace, 220, 331, 415
sum, 239, 265, 331

orthogonalization, 328, 330, 337
orthonormal basis, see basis
outer product, 148, 272, 483, 484
output set, see targe set
output space, 261, 282, 293

PageRank, 456, 459, 463
parabola, 53
parallelepiped, 185, 188
parallelogram, 150, 185, 188
parity check, 420
particular solution, 236, 237
permutation, 315, 336
perp, see orthogonal complement

perspective projection, 389, 394
pivot, 167, 168, 174, 246, 251
plaintext, 403, 407
plane, 154, 171, 173, 210, 214, 217,

222, 390, 401
general equation, 214, 401
geometric equation, 214
parametric equation, 215

point, 173, 209, 216, 384, 389
polar coordinates, 97, 207
polarizing lens, 473, 506
polynomial, 56, 101
probability distribution, 441, 496

conditional, 445, 451
projection, 148, 219, 263, 270, 495
pyramid, 70

QR decomposition, 337, 338
quadratic, 20, 26, 30, 53, 58, 381

formula, 31, 57
quantum, 465, 506

bit, see qubit
cryptography, 519
entanglement, 501, 522, 527
information theory, 504, 529
measurement, 495
mechanics, 465, 489, 510
operations, 492
state, 467, 490, 499, 523
superposition, 510, 511
teleportation, 526
wave function, 467, 469, 513

qubit, 468, 488, 491

radian, 68, 72, 77
random variable, 440
range, see image
rank, 167, 192, 232, 240, 286, 288
rank–nullity theorem, 240, 242
rational, 13, 112
reduced row echelon form, 164,

167, 171, 174, 194, 200,
238, 244, 289

reflection, 274, 280, 315, 392
relation, 49, 52, see also function
repetition code, 416
representation, 136, 165, 184, 263,

269, 392, 421, 446, 484
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Rivest–Shamir–Adleman (RSA)
cryptosystem, 409

roots, see solution set
rotation, 277, 314, 339, 392
row echelon form, 167, 336
row operations, 166, 174, 184,

190, 198, 238, 244, 336
row picture, 133, 137, 146
row space, 232, 237, 239, 242, 244,

246, 259, 265, 414
row vector, 147, 237, 341, 399, 415
RREF, see reduced row echelon

form
RSA cryptosystem, 409

sample space, 440
scalar product, see dot product
scale factor, 185, 207, 289
set, 12, 38, 97, 109

difference, 109, 331
intersection, 109, 119
subset, 12, 109
union, 109, 110

Shor’s factoring algorithm, 525
similarity transformation, 286
simplex algorithm, 378
sine, 20, 60, 72
sine rule, 67
singular value decomposition,

333, 338, 349
solution set, 11, 20, 31, 56, 118,

136, 172, 235, 237
solution space, 170, 173
source set, 39
source space, see input space
span, 227, 232, 233, 235, 288, 331
sphere, 69
spherical coordinates, 207, 514
squared error, 380, 387

stationary distribution, 454, 458
subset, 235, 441
substitution, 18, 59, 104
surjective, 41, 262, 293
SVD, 333, 338, 349
swap (row op.), 166, 175, 190

tangent, 63, 72
target set, 39, 261, 292
target space, see output space
Taylor series, 154, 309
term, 23, 56, 57
trace, 149, 286, 306
transition matrix, 451, 457
transpose, 147, 238, 246, 340, 382
trigonometric identities, 78

undo, see inverse
unit circle, 68, 73
unit vector, 87, 227, 272, 468

vector, 36, 80
direction, 170, 211, 273
linearly independent, see

linear independence
normal, 210, 214, 277, 401
operations, 132, 138
unit, see unit vector

vector product, see cross product
vector space, 225, 231, 243, 328

abstract, 318, 348
inner product, 322, 348, 490

vector subspace, 219, 231, 234
view frustum, 400
volume, 69, 188, 514

wave function, 467, 469, 513

XOR, 404


