
Differences between v5.3 and v5.4 of the
No Bullshit Guide to Math and Physics

Ivan Savov

2020-11-08



No bullshit guide to math and physics
by Ivan Savov

Copyright c�
:

Ivan Savov, 2014.
:

All rights reserved.

Published by Minireference Co.
Montréal, Québec, Canada
minireference.com | @minireference | fb.me/noBSguide

For inquiries, contact the author at ivan@minireference.com

Mathematics Subject Classifications (2010): 00A09, 70-01, 97I40, 97I50.

Library and Archives Canada Cataloguing in Publication

Savov, Ivan, 1982-, author

:
No bullshit guide to math & physics / Ivan Savov. — Fifth edition.

ISBN 978-0-9920010-0-1 (pbk.)

:
1. Mathematics–Textbooks. 2. Calculus–Textbooks.

3. Mechanics–Textbooks. I. Title. II. Title: No bullshit guide to math and
physics.
QA39.3.S28 2014 511’.07 C2014-905298-7

Fifth edition
v5.3

::
.4

::
git commit 1179:91e8d55

Previous editions: v1.0 2010, v2.0 2011, v3.0 2012, v4.0 2013, v5.0 2014.

ISBN 978-0-9920010-0-1



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE

http://minireference.com/
https://twitter.com/minireference
http://facebook.com/noBSguide
mailto:ivan@minireference.com


Contents

Preface vii

Introduction 1

1 Math fundamentals 5
1.1 Solving equations . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Number representations . . . . . . . . . . . . . . . . . . 13
1.4 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.5 Functions and their inverses . . . . . . . . . . . . . . . . 30
1.6 Basic rules of algebra . . . . . . . . . . . . . . . . . . . . 32
1.7 Solving quadratic equations . . . . . . . . . . . . . . . . 43
1.8 Exponents . . . . . . . . . . . . . . . . . . . . . . . . . . 49
1.9 Logarithms . . . . . . . . . . . . . . . . . . . . . . . . . . 53
1.10 The Cartesian plane . . . . . . . . . . . . . . . . . . . . . 57
1.11 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
1.12 Functions reference . . . . . . . . . . . . . . . . . . . . . 75

Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Square . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Square root . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Absolute value . . . . . . . . . . . . . . . . . . . . . . . . 81
Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . 83
Solving polynomial equations . . . . . . . . . . . . . . . 84
Sine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Cosine . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Tangent . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Exponential . . . . . . . . . . . . . . . . . . . . . . . . . 93
Natural logarithm . . . . . . . . . . . . . . . . . . . . . . 94

1.13 Function transformations . . . . . . . . . . . . . . . . . 95
1.14 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
1.15 Trigonometry . . . . . . . . . . . . . . . . . . . . . . . . 108
1.16 Trigonometric identities . . . . . . . . . . . . . . . . . . 116
1.17 Circle

::::::
Circles

::::
and

:::::
polar

:::::::::::
coordinates . . . . . . . . . . . . 119

i



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE

Ivan Savov


Ivan Savov
mostly new



1.18 Ellipse . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
1.19

:::::::
Parabola . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

1.20 Hyperbola . . . . . . . . . . . . . . . . . . . . . . . . . . 138
1.21 Solving systems of linear equations . . . . . . . . . . . . 145
1.22 Compound interest . . . . . . . . . . . . . . . . . . . . . 152
1.23 Set notation . . . . . . . . . . . . . . . . . . . . . . . . . 155
1.24 Math problems . . . . . . . . . . . . . . . . . . . . . . . 170

2 Introduction to physics 181
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 181
2.2 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . 184
2.3 Introduction to calculus . . . . . . . . . . . . . . . . . . 191
2.4 Kinematics with calculus . . . . . . . . . . . . . . . . . . 196
2.5 Kinematics problems . . . . . . . . . . . . . . . . . . . . 201

3 Vectors 207
3.1 Great outdoors . . . . . . . . . . . . . . . . . . . . . . . . 208
3.2 Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
3.3 Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
3.4 Vector products . . . . . . . . . . . . . . . . . . . . . . . 229
3.5 Complex numbers . . . . . . . . . . . . . . . . . . . . . . 232
3.6 Vectors problems . . . . . . . . . . . . . . . . . . . . . . 239

4 Mechanics 241
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 241
4.2 Projectile motion . . . . . . . . . . . . . . . . . . . . . . 245
4.3 Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
4.4 Force diagrams . . . . . . . . . . . . . . . . . . . . . . . 257
4.5 Momentum . . . . . . . . . . . . . . . . . . . . . . . . . 269
4.6 Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
4.7 Uniform circular motion . . . . . . . . . . . . . . . . . . 285
4.8 Angular motion . . . . . . . . . . . . . . . . . . . . . . . 293
4.9 Simple harmonic motion . . . . . . . . . . . . . . . . . . 303
4.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 317
4.11 Mechanics problems . . . . . . . . . . . . . . . . . . . . 318

5 Calculus 331
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 331
5.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
5.3 Infinity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
5.4 Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
5.5 Limit formulas . . . . . . . . . . . . . . . . . . . . . . . . 357
5.6 Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . 361
5.7 Derivative formulas . . . . . . . . . . . . . . . . . . . . . 364
5.8 Derivative rules . . . . . . . . . . . . . . . . . . . . . . . 365



DIFFCHANGE

Ivan Savov
new section

Ivan Savov




Concept map

Figure 1: This diagram shows the connections between the concepts, topics,
and subjects covered in the book. Seeing the connections between concepts
is key to understanding math and physics. Consult the index on page 551 to
find the exact location in the book where each concept is defined.
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vi

:::
You

::::
can

::::::::
annotate

::::
the

:::::::
concept

:::::
map

::::
with

:::::
your

:::::::
current

:::::::::::
knowledge

::
of

::::
each

:::::::
concept

:::
to

::::
keep

:::::
track

:::
of

::::
your

::::::::
progress

::::::::
through

:::
the

::::::
book.

–
::::
Add

:::
a

:::::
single

::::
dot

:::
(‚)

::::
next

::
to

:::
all

::::::::
concepts

:::::::
you’ve

:::::
heard

:::
of.

–
::::
Add

:::::
two

::::
dots

::::
(‚‚)

::::
next

:::
to

::::::::
concepts

::::
you

:::::
think

::::
you

::::::
know.

–
::::
Add

:::::
three

::::
dots

:::::
(‚‚‚)

:::::
next

::
to

::::::::
concepts

:::::::
you’ve

:::::
used

::
in

::::::::
exercises

:::
and

::::::::::
problems.

::
By

:::::::::
collecting

::::::
some

::::
dots

:::::
every

::::::
week,

::::::
you’ll

::
be

:::::
able

::
to

:::::
move

::::::::
through

:::
the

::::::::
material

::
in

:::
no

::::
time

::
at

:::
all.

:

:
If
::::

you
::::::

don’t
:::::
want

:::
to

:::::
mark

:::
up

:::::
your

::::::
book,

::::
you

::::
can

:::::::::
download

::
a

::::::::
printable

:::::::
version

::
of

::::
the

:::::::
concept

::::
map

:::::
here:

:
bit.ly/mathphyscmap.

:
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This is a new idea to "gamify" the reading.
 
The idea is for readers to actively mark up
concepts as unknown, known, and used and
observe the progress: from a giant map with
scary unknown terminology ...

 ... to a bunch of "completed levels" made
up of concepts the reader knows well.

Ivan Savov
Looking for feedback about this idea
from anyone who tries it out. 
Did it feel motivational or just a chore?

https://bit.ly/mathphyscmap


Preface

This book contains lessons on topics in math and physics, written in
a style that is jargon-free and to the point. Each lesson covers one
concept at the depth required for a first-year university-level course.
The main focus of this book is to highlight the intricate connections
between the concepts of math and physics. Seeing the similarities
and parallels between the concepts is the key to understanding.

Why?
The genesis of this book dates back to my student days when I was
required to purchase expensive textbooks for my courses. Not only
are these textbooks expensive, they are also tedious to read. Who
has the energy to go through thousands of pages of explanations? I
began to wonder, “What’s the deal with these thick books?” Later, I
realized mainstream textbooks are long because the textbook indus-
try wants to make more profits. You don’t need to read 1000 pages to
learn calculus; the numerous full-page colour pictures and the repet-
itive text that are used to “pad” calculus textbooks are there to make
the $200 price seem reasonable.

Looking at this situation, I said to myself, “Something must be
done,” and I sat down and wrote a modern textbook to explain math
and physics

::::::::
concepts clearly, concisely, and affordably. There was no

way I was going to let mainstream publishers ruin the learning expe-
rience of these beautiful subjects for the next generation of students.

How?
The sections in this book are self-contained tutorials. Each section
covers the definitions, formulas, and explanations associated with a
single topic. You can therefore read the sections in any order you find
logical. Along the way, you will learn about the connections between
the concepts of calculus and mechanics. Understanding mechanics is
much easier if you know the ideas of calculus. At the same time, the

vii
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Non-students, don’t worry: you don’t need to be taking a class
in order to learn math. Independent learners interested in learn-
ing university-level material will find this book very useful. Many
university graduates read this book to remember the calculus they
learned back in their university days.

In general, anyone interested in rekindling their relationship with
mathematics should consider this book as an opportunity to repair
the broken connection. Math is good stuff; you shouldn’t miss out on
it. People who think they absolutely hate math should read Chapter 1
as therapy.

About the author
I have been teaching

:::::::
tutoring

:
math and physics for more than 15

yearsas a private tutor. My tutoring experiencehas taught me how
to explain concepts that people find difficult

::
17

:::::::
years.

:::::::::
Through

:::
this

:::::::::::
experience,

::
I
:::::::
learned

:::
to

:::::
break

::::::::::::
complicated

:::::
ideas

::::
into

::::::::
smaller,

:::::::::::::
interconnected

:::::::
chunks

:::::
that

:::
are

:::::
easy

:
to understand. I ’ve had the

chance to experiment with different approaches for explaining
challenging material. Fundamentally, I’ve learned from teaching
that understanding connections between concepts is much more
important than memorizing facts

:::::
think

:::
the

::::
best

:::::
way

::
to

::::::
teach

:::::
math

:::
and

::::::::
physics

::
is

:::
to

::::::
clearly

:::::::
define

::::::::
concepts

::::
and

::::::
show

:::
the

::::::
paths

::::
that

:::::::
connect

:::::
them. It’s not about how many equations you know, but

about knowing how to get from one equation to another.
I completed my undergraduate studies at McGill University in

electrical engineering, then did a M.Sc. in physics, and recently com-
pleted a Ph.D. in computer science. In my career as a researcher, I’ve
been fortunate to learn from very inspirational teachers, who had
the ability to distill the essential ideas and explain things in simple
language. With my writing, I want to recreate the same learning ex-
perience for you. I founded the Minireference Co.

::::::::::::
Minireference

:::
Co. to revolutionize the textbook industry. We make textbooks that
don’t suck.

Ivan Savov
Montreal, 2014

::::
2020
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Introduction

The last two centuries have
:::::::
century

::::
has been marked by tremendous

technological advances. Every sector of the economy has been trans-
formed by the use of computers and the advent of the internet. There
is no doubt technology’s importance will continue to grow in the
coming years.

The best part is that you don’t need to know how technology
works to use it. You need not understand how internet protocols
operate to check your email and find original pirate material. You
don’t need to be a programmer to tell a computer

:::
use

::::::::::
computers

to automate repetitive tasks and increase your productivity. How-
ever, when it comes to building new things, understanding

::::
how

::::::::::
technology

::::::
works

::
becomes important. One particularly useful

skill is the ability to create mathematical models of real-world
situations

:::::
create

:::::::::::::
mathematical

:::::::
models

::
of

::::::::::
real-world

::::::::::
situations. The

techniques of mechanics and calculus are powerful building blocks
for understanding the world around us. This is why these courses
are taught in the first year of university studies: they contain keys
that unlock the rest of science and engineering.

Calculus and mechanics can be difficult subjects. Understand-
ing the material isn’t hard per se, but it takes patience and practice
::
to

:::::::
become

:::::::::::
comfortable

:::::
with

::::
the

::::
new

:::::
ideas. Calculus and mechan-

ics become much easier to absorb when you break down the ma-
terial into manageable chunks. It is most important you learn the
connections between concepts

:::
The

:::::::
concept

:::::
map

::
in

:::::::
Figure

:
1
::::::
(page

::
v)

::::::
shows

::
an

:::::::::
overview

::
of

:::
all

:::
the

::::::::
concepts

::::
and

::::::
topics

:::::
we’ll

:::::::
discuss

::
in

:::
the

:::::
book.

::::::
There

:::
are

::
a

::
lot

:::
of

::::
new

::::::
things

::
to

::::::
learn,

::::
but

:::::
don’t

::::::::::::
worry—we’ll

::::::::
navigate

:::
the

::::::::
material

::::
step

:::
by

:::::
step

::::
and

:
it
:::::

will
::
all

::::::
make

:::::
sense

:::
in

:::
the

:::
end.

Before we start with the equations, it’s worthwhile to preview the
material covered in this book. After all, you should know what kind
of trouble you’re getting yourself into.

Chapter 1 is a comprehensive review of math fundamentals in-
cluding algebra, equation solving, and functions

:::::::::
equations,

:::::::::
functions,

1
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2 INTRODUCTION

:::::::::
geometry,

::::
and

::::::::::::
trigonometry. The exposition of each topic is brief

to make for easy reading. This chapter is highly recommended for
readers who haven’t looked at math recently; if you need a refresher
on math, Chapter 1 is for you. It is extremely important to firmly
grasp the basics. What is sinp0q? What is sinpp{4q? What does the
graph of sinpxq look like? Arts students interested in enriching their
cultural insight with knowledge that is 2000+ years old can read this
:::::
Adult

::::::::
learners

:::
can

::::
use

:::
this

:::::::
review chapter as therapy to recover from

any damaging educational
::::::::::::
traumatizing

:::::
math

::::::::
learning

:
experiences

they may have encountered in high school.
In Chapter 2, we’ll look at how techniques of high school math

can be used to describe and model the world. We’ll learn about
the basic laws that govern the motion of objects in one dimension
and the mathematical equations that describe the motion. By the
end of this chapter, you’ll

::::::::::
understand

::::
the

::::::::
concepts

::
of

::::::::
velocity

::::
and

:::::::::::
acceleration,

::::
and be able to predict the flight time of a ball thrown in

the air.
In Chapter 3, we’ll learn about vectors. Vectors describe direc-

tional quantities like forces and velocities. We need vectors to prop-
erly understand the laws of physics. Vectors are used in many areas
of science and technology, so becoming comfortable with vector cal-
culations will pay dividends when learning other subjects.

Chapter 4 is all about mechanics. We’ll study the motion of ob-
jects, predict their future trajectories, and learn how to use abstract
concepts like momentum and energy. Science students who “hate”
physics can study this chapter to learn how to use the 20 main equa-
tions and laws of physics. You’ll see physics is actually quite simple.

Chapter 5 covers topics from differential calculus and integral
calculus. We’ll study limits, derivatives, integrals, sequences, and
series. You’ll find that 120

:::
130

:
pages are enough to cover all the

concepts in calculus, as well as illustrate them with examples and
practice exercises

:::::::::
including

::::::::
practical

:::::::::::
applications.

Figure 2: The prerequisite structure for the chapters in this book.

Calculus and mechanics are often taught as separate subjects. It
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3

shouldn’t be like that! If you learn calculus without mechanics, it
will be boring. If you learn physics without calculus, you won’t truly
understand. The exposition in this book covers both subjects in an
integrated manner and aims to highlight

:::::::::
highlights the connections

between them.
:::
Are

::::
you

::::::
ready

:::
for

::::
this?

:
Let’s dig in.

:
!
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8 MATH FUNDAMENTALS

These categories of numbers should be somewhat familiar to you.
Think of them as neat classification labels for everything that you
would normally call a number. Each group in the above list is a set.
A set is a collection of items of the same kind. Each collection has
a name and a precise definition for which items belong in that col-
lection. Note also that each of the sets in the list contains all the sets
above it, as illustrated in Figure 1.2. For now, we don’t need to go
into the details of sets and set notation, but we do need to be aware
of the different sets of numbers.

N Z Q R C

Figure 1.2: An illustration of the nested containment structure of the dif-
ferent number sets. The set of natural numbers is contained in the set of
integers, which in turn is contained in the set of rational numbers. The set of
rational numbers is contained in the set of real numbers, which is contained
in the set of complex numbers.

Why do we need so many different sets of numbers? The answer
is partly historical and partly mathematical. Each set of numbers is
associated with more and more advanced mathematical problems.

The simplest numbers are the natural numbers N, which are suf-
ficient for all your math needs if all you’re going to do is count things.
How many goats? Five goats here and six goats there so the total is
11 goats. The sum of any two natural numbers is also a natural num-
ber.

As soon as you start using subtraction (the inverse operation of
addition), you start running into negative numbers, which are num-
bers outside the set of natural numbers. If the only mathematical op-
erations you will ever use are addition and subtraction, then the set of
integers Z “ t. . . , ´2, ´1, 0, 1, 2, . . .u will be sufficient. Think about
it. Any integer plus or minus any other integer is still an integer.

You can do a lot of interesting math with integers. There is an en-
tire field in math called number theory that deals with integers. How-
ever, to restrict yourself solely to integers is somewhat limiting. You
can’t use the notion of 2.5 goats for example. The menu at Rotisserie
Romados, which offers 1

4 ::::::::::
limiting—a

::::::::
rotisserie

::::::
menu

::::
that

:::::
offers

::

1
2 of

a chicken , would be completely
::::::
would

::
be

::::::
totally

:
confusing.

If you want to use division in your mathematical calculations,
you’ll need the rationals Q. The rationals are the set of

:::
set

::
of

:::::::
rational

::::::::
numbers

:::::::::::
corresponds

:::
to

:::
all

::::::::
numbers

::::
that

::::
can

:::
be

:::::::::
expressed

:::
as frac-
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1.2 NUMBERS 9

tions of integers:

Q “

"
all z such that z “

x
y

where x and y are in Z, and y ‰ 0
*

.

:::
the

:::::
form

::

m
n:::::::

where
::
m

::::
and

::
n

:::
are

:::::::::
integers,

::::
and

::::::
n ‰ 0.

:
You can add,

subtract, multiply, and divide rational numbers, and the result will
always be a rational number. However, even the rationals are not
enough for all of math!

In geometry, we can obtain irrational quantities like
?

2 (the di-
agonal of a square with side 1) and p (the ratio between a circle’s
circumference and its diameter). There are no integers x and y such
that

?

2 “
x
y . Therefore,

?

2 is not part of the set Q, and
:
,
::::::::
therefore

we say that
?

2 is irrational
::::
(not

::
in

::::
the

:::
set

:::
Q). An irrational number

has an infinitely long decimal expansion that doesn’t repeat. For ex-
ample, p “ 3.141592653589793 . . . where the dots indicate that the
decimal expansion of p continues all the way to infinity.

Combining the irrational numbers with the rationals gives us all
the useful numbers, which we call the set of real numbers R. The set
R contains the integers, the fractions

:::::::
rational

::::::::
numbers

:
Q, as well as

irrational numbers like
?

2 “ 1.4142135 . . .. By using the reals you
can compute pretty much anything you want. From here on in the
text, when I say number, I mean an element of the set of real numbers
R.

The only thing you can’t do with the reals is to take the square
root of a negative number—you need the complex numbers C for
that. We defer the discussion on C until the end of Chapter 3.

Operations on numbers
Addition

You can add and subtract numbers. Iwill assume youare
::
’ll

:::::::
assume

::::::
you’re familiar with this kind of stuff:

::::
stuff:

:

2 ` 3 “ 5, : 45 ` 56 “ 101, 65 ´ 66 “ ´1, : 9 999 ` 1 “ 10 000.

You can visualize numbers as sticks of different length. Adding num-
bers is like adding sticks together: the resulting stick has a length
equal to the sum of the lengths of the constituent sticks, as illustrated
in Figure 1.3.

` “

Figure 1.3: The addition of numbers corresponds to adding lengths.
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10 MATH FUNDAMENTALS

Addition is commutative, which means that a ` b “ b ` a.
::
In

:::::
other

::::::
words,

:::
the

::::::
order

::
of

:::
the

::::::::
numbers

:::
in

:
a
:::::::::::
summation

:::::::
doesn’t

::::::
matter.

:
It is

also associative, which means that if you have a long summation like
a ` b ` c you can compute it in any order pa ` bq ` c or a ` pb ` cq,
and you’ll get the same answer.

:::::::::::
Subtraction

Subtraction is the inverse operation of addition:
:

2 ´ 3 “ ´1, 45 ´ 56 “ ´11, 999 ´ 1 “ 998.
::::::::::::::::::::::::::::::::::::::::

::::::
Unlike

:::::::::
addition,

:::::::::::
subtraction

::
is

:::
not

::
a
:::::::::::::
commutative

:::::::::
operation.

:::::
The

:::::::::
expression

::::::
a ´ b

::
is

::::
not

::::::
equal

:::
to

:::
the

:::::::::::
expression

::::::
b ´ a,

:::
or

:::::::
written

::::::::::::::
mathematically:

:

a ´ b ‰ b ´ a.
:::::::::::

:::::::
Instead

:::
we

:::::
have

::::::::::::::::
b ´ a “ ´pa ´ bq,

::::::
which

::::::
shows

:::::
that

:::::::::
changing

:::
the

:::::
order

::
of

::
a

:::
and

::
b
::
in

:::
the

::::::::::
expression

::::::::
changes

:::
its

::::
sign.

:

::::::::::
Subtraction

::
is

::::
not

::::::::::
associative

::::::
either:

pa ´ bq ´ c ‰ a ´ pb ´ cq.
:::::::::::::::::::::

:::
For

::::::::
example

:::::::::::::
p7 ´ 2q ´ 3 “ 2

::::::
while

:::::::::::::
7 ´ p2 ´ 3q “ 8.

Multiplication

The visual way to think about multiplication is as an area calculation.
The area of a rectangle of width a and height b is equal to ab. A
rectangle with a height equal to its width is a square, and this is why
we call aa “ a2 “a squared.”

“

Figure 1.4: The area of a rectangle with width 3 m and height 2 m is equal to
6 m2, which is equivalent to six squares with area 1 m2 each.

Multiplication of numbers is also commutative, ab “ ba; ,
:
and asso-

ciative, abc “ pabqc “ apbcq. In modern
:::::
math

:
notation, no special

symbol is used
:::::::
required

:
to denote multiplication; we simply put the

two factors next to each other and say the multiplication is implicit.
Some other ways to denote multiplication are a ¨ b, a ˆ b, and, on
computer systems, a ˚ b.
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1.2 NUMBERS 11

Division

Division is the inverse operation of multiplication.
::::::::
Division

::
is

:::
not

::
a
:::::::::::::
commutative

:::::::::
operation

:::::
since

::::
a{b

::
is

::::
not

:::::
equal

::
to

::::
b{a.

:::::::::
Division

::
is

::::
not

::::::::::
associative

:::::::
either:

::::::::::::::::::::::
pa ˜ bq ˜ c ‰ a ˜ pb ˜ cq.

:::
For

:::::::::
example,

:::::
when

::::::
a “ 6,

:::::
b “ 3,

::::
and

::::::
c “ 2,

:::
we

:::
get

:::::::::::
p6{3q{2 “ 1

:::::
while

::::::::::
6{p3{2q “ 4.

:

Note that you cannot divide by 0. Try it on your calculator or
computer. It will say “error divide by zero” because this action
simply doesn’t make sense. After all, what would it mean to divide
something into zero equal parts?

Exponentiation

The act of multiplying a number by itself many times is called expo-
nentiation.

To visualize how exponents work, we can draw a connection be-
tween the value of exponents and the dimensions of geometric ob-
jects. Figure 1.5 illustrates how the same length 2 corresponds to
different geometric objects when raised to different exponents. The
number 2 corresponds to a line segment of length two, which is a ge-
ometric object in a one-dimensional space. If we add a line segment
of length two in a second dimension, we obtain a square with area 22

in a two-dimensional space. Adding a third dimension, we obtain a
cube with volume 23 in a three-dimensional space. Indeed, raising a
base a to the exponent 2 is commonly called “a squared,” and raising
a to the power of 3 is called “a cubed.”

The geometrical analogy about one-dimensional quantities as
lengths, two dimensional

:::::::::::::::
two-dimensional

:
quantities as areas, and

three dimensional
::::::::::::::::
three-dimensional quantities as volumes is good

to keep in mind.

21
“2 22

“4 23
“8

Figure 1.5: Geometric interpretation for exponents 1, 2, and 3. A length
raised to exponent 2 corresponds to the area of a square. The same length
raised to exponent 3 corresponds to the volume of a cube.

Our visual intuition works very well up to three dimensions, but
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1.3 NUMBER REPRESENTATIONS 13

and the associated mnemonic “Please Excuse My Dear Aunt Sally,”
might help you remember the order of operations.

For instance, the expression 5 ¨ 32
` 13 is interpreted as “First find

the square of 3, then multiply it by 5, and then add 13.” Parentheses
are needed to carry out the operations in a different order: to multi-
ply 5 times 3 first and then take the square, the equation should read
p5 ¨ 3q

2
` 13, where parentheses indicate that the square acts on p5 ¨ 3q

as a whole and not on 3 alone.

Exercises
E1.1 Solve for the unknown x in the following equations:

a) 3x ` 2 ´ 5 “ 4 ` 2 b) 1
2 x ´ 3 “

?

3 ` 12 ´

?

3

c) 7x´4
2 ` 1 “ 8 ´ 2 d) 5x ´ 2 ` 3 “ 3x ´ 5

E1.2 Indicate all the number sets the following numbers belong to.

a) ´2
b)

?
´3

c) 8
1
3

::::
8 ˜ 4

:
d) 5

3
e) p

2

E1.3 Calculate the values of the following expressions:

a) 233 ´ 3 b) 23
p3 ´ 3q c) 4´2

33 p6 ¨ 7 ´ 41q

1.3 Number representations
We use the letters “a, b, c, . . . ” to write words. In a similar fashion,
we use the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 to write numbers in the
language of math. You can think of the digits 0 through 9 as the “let-
ters” used to write numbers. For example, the number 334 consists
of the digits 3, 3, and 4. Note that the same digit 3 denotes two dif-
ferent quantities depending on its position within the number. The
first digit 3 corresponds to the value three hundred, while the second
digit 3 corresponds to the value thirty.

Concepts
In this section, we’ll review three important number representations:

• The decimal notation for integers, rationals, and real numbers
consists of an integer part and a fractional part separated by
a decimal point. For example, the decimal 32.17 consists of the
integer 32 and the fractional part 0.17.

• The fraction notation for integers and rational numbers consists
of a numerator divided by a denominator. Here are some sam-
ple math expressions with fractions: 1

2 , 3
4 , 3

2 “ 1 1
2 , and 17

100 .
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14 MATH FUNDAMENTALS

• The number line is a graphical representation for numbers that
allows us to visualize numbers as geometric points on a line.

The same number a can be represented in multiple equivalent ways.
It is often convenient to convert from one representation to another
depending on the calculations we need to perform. For example, the
number three can be expressed as the numeral 3, the decimal 3.0,
the fraction 3

1 , or as the point that lies three units to the right of the
origin on the number line. All these representations refer to the same
quantity, but each representation is useful in different contexts.

The goal of this section is to get you comfortable working with
all the number representations. The decimal representation for
numbers is very common in everyday life; you’re likely already
familiar with decimals, so we won’t spend too much time on them.
Instead we’ll focus on reviewing fractions, as well as fraction
operations like addition and multiplication. It’s important to
understand fractions because many math concepts like ratios,
percents, and proportionality are best described in the language
of fractions.

Positional notation for numbers
The Hindu–Arabic numeral system is the most widely used system
for writing numbers today. It is a decimal positional system. The term
decimal refers to the fact that it uses 10 unique symbols (the digits
0 through 9) to represent numbers. The system is positional because
the value of each digit depends on its position within the number.
Positional number systems are also called place-value systems.

a0

ones

1

a1

ten
s

10

a2

hundred
s

102

a3

thousands

103

a “

Figure 1.7: The place-value representation of the number a “ a3a2a1a0.

Note the terminology used to refer to the individual digits of the
numeral: we call a3 the thousands, a2 the hundreds, a1 the tens, and
a0 the units.

Any natural number a P N, no matter how large, can be written
as a sequence of digits:

a”“
:

an ¨ ¨ ¨ a2a1a0

“ an ¨ 10n
` ¨ ¨ ¨ ` a2 ¨ 102

` a1 ¨ 10 ` a0 ¨ 1,



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



1.3 NUMBER REPRESENTATIONS 15

where the digits a0, a1, . . . come from the set t0, 1, 2, 3, 4, 5, 6, 7, 8, 9u.
For example, the numeral 4235 corresponds to this calculation:

4235 “ 4 ¨ 103
` 2 ¨ 102

` 3 ¨ 10 ` 5 ¨ 1
“ 4 ¨ 1000 ` 2 ¨ 100 ` 3 ¨ 10 ` 5 ¨ 1
“ 4000 ` 200 ` 30 ` 5.

Note how the English pronunciation of the number, “four thousand,
two hundred and thirty-five,” literally walks you through the calcu-
lation.

When reading the digits of a number from left to right, each
“step” we take to the right brings us to a digit that has a place value
10 times smaller than the previous digit. In the next section we’ll
learn how to extend this pattern one step further to the right in order
to describe numbers smaller than one.

Decimal representation
We can use

:::
Any

::::::::
number

::
a

::::
less

::::
than

::::
one

::::
can

::
be

:::::::
written

:::
as

:
a
:

decimal
notation

::::
point to represent integers, rationals, and approximations to

real numbers. The decimal point
::::::::
followed

:::
by

::
a

::::::::
sequence

:::
of

::::::
digits,

::
as

:::::::::
illustrated

::
in

:::::::
Figure

:::
1.8.

:

a“ 0 . a´1a´2a´3 ¨ ¨ ¨
::::::::::::::::

“ 0 `
a´1
101 `

a´2
102 `

a´3
103 ` ¨ ¨ ¨ .

:::::::::::::::::::::::::::

:::
The

::::::::
decimal

:::::
point

:
indicates the beginning of the fractional part of

a number. The place values of
:::
the digits to the right of the decimal

point correspond to different decimal fractions. For example0.7 “
7

101 “ 7 ˆ 10´1,
0.07 “

7
100 “ 7 ˆ 10´2, and 0.007 “

7
1000 “ 7 ˆ 10´3. Note the

positional logic used for decimals is the same as the positional logic
used for integers: the place value of each digit decreases by a factor
of 10 each time we take a “step” to the right.

::::
digit

:
7
::::::::::::
corresponds

::
to

::::
three

:::::::::
different

::::::::
decimal

::::::::
fractions

:::::::::::
depending

:::
on

:::
its

::::::::
position

::::::
within

:::
the

::::::::
number:

0.7 “
7

10
, 0.07 “

7
100

, and 0.007 “
7

1000
.

:::::::::::::::::::::::::::::::::::::::::::::::::

Any number a less than one can be written using a decimal point
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16 MATH FUNDAMENTALS

.

decimal point

0a “ a´1

one-t
en

ths

1
10

a´2

one-h
undred

ths

1
102

a´3

one-t
housandths

1
103

¨ ¨ ¨

Figure 1.8: The decimal representation of a number smaller than one.

followed by a sequence of digits, as illustrated in Figure 1.8.

a“ 0 . a´1a´2a´3 ¨ ¨ ¨

“ 0 `
a´1
101 `

a´2
102 `

a´3
103 ` ¨ ¨ ¨ .

The first digit to the right of the decimal point a´1 represents the
tenths, the second digit a´2 represents the hundredths, the third the
thousandths, and so on. We can use decimal notation to describe
fractions like one-half (0.5), one-quarter (0.25), and three-quarters
(0.75).

In general, a number written in decimal notation has
::::
both

:
an in-

teger part and a fractional part:

a “ an ¨ ¨ ¨ a2a1a0 . a´1a´2a´3 ¨ ¨ ¨

“ an ¨ 10n
` ¨ ¨ ¨ ` a2 ¨ 102

` a1 ¨ 10 ` a0 `
a´1
101 `

a´2
102 `

a´3
103 ` ¨ ¨ ¨

The decimal point appears in the middle of the digits and acts as a
separator. The digits to the left of the decimal point, an ¨ ¨ ¨ a2a1a0,
correspond to the integer part of the number, while the digits to the
right of the decimal, 0.a´1a´2a´3 ¨ ¨ ¨ , correspond to the fractional
part of the number.

.

decimal point

a0

ones

1

a1

ten
s

10

a2

hundred
s

102

a3

thousands

103

a “ a´1

one-t
en

ths

1
10

a´2

one-h
undred

ths

1
102

a´3

one-t
housandths

1
103

¨ ¨ ¨

Figure 1.9: The decimal number a consists of an integer part a3a2a1a0 and a
fractional part 0.a´1a´2 ¨ ¨ ¨ separated by the decimal point.

Note the names for the different digits in the fractional part of the
decimal in Figure 1.9. These names are used when we describe the
fractional part of a decimal in words:
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1.3 NUMBER REPRESENTATIONS 17

• “1.4” is read “one and four tenths,” or you could informally
describe the decimal as you see it written: “one point four.”

• “45.37” is read “forty-five and thirty-seven hundredths,” or
sometimes “forty-five point three seven.”

• A length measurement like “0.345 in
::
in” is read “three-hundred

forty-five thousandths of an inch.”

We can write approximations for irrational numbersusing decimal
notation

:::
use

::::::::
decimal

:::::::::
notation

:::
to

:::::::::
represent

::::::::
rational

:::::::::
numbers

::::
like

:::::::
one-half

::::::
(0.5),

:::::::::::
one-quarter

:::::::
(0.25),

::::
and

::::::::::::::
three-quarters

::::::
(0.75).

:::::
We

:::
can

::::
also

::::
use

::::::::
decimal

::::::::
notation

::
to

:::::
write

:::::::::::::::
approximations

::
to

:::::::::
irrational

::::::::
numbers. For example, the irrational number

?

2 (the diagonal of
a square with length one) is approximatively

:::::::::::::
approximately equal

to 1.41421. We say the approximation 1.41421 is “accurate to five
decimals,” because this is how many digits there are in its fractional
part.

* * *

So far we ’ve discussed number representations that you are familiar
with from your

::::::::
reviewed

::::
the

:::::::
decimal

::::::::::::::
representation

:::
for

:::::::::
numbers,

:::::
which

::
is
:::::
very

:::::::
familiar

::
to

:::
us

:::::
from everyday life. Perhaps you’re start-

ing to think that math isn’t so bad after all? Some of you must be say-
ing, “Wonderful, I’m becoming friends with numbers while avoiding
uncomfortable topics like fractions.” Sorry, but you’re not getting off
so easily because this is exactly what’s coming up next. That’s right,
we’re about to make friends with fractions, too.

Fractions
First let’s review the definition of the set of rational numbers Q.
Every rational number can be written as a fraction of two integers:

Q ”

"
m
n

ˇ̌
ˇ̌ m and n are in Z and n ‰ 0

*
,

where Z denotes the set of integers Z ” t. . . , ´3, ´2, ´1, 0, 1, 2, 3, . . .u.

Fractions describe what happens when a whole is cut into n equal
parts and we are given m of those parts. For example, the fraction

:

3
8

describes having three parts out of a whole cut into eight parts, hence
the name “three-eighths.”

:::
It’s

::::::::::
important

:::
to

::::::::::::
understand

:::::::::
fractions

::::::::
because

::::::
many

::::::
math

::::::::
concepts

:::
like

::::::::
rational

::::::::
numbers

::::
(Q),

::::::
ratios,

::::::::
percents,

::::
and

:::::::::::
probabilities

:::
are

::::
best

:::::::::
described

::
in

:::
the

:::::::::
language

::
of

:::::::::
fractions.

:
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18 MATH FUNDAMENTALS

Figure 1.10: The fraction 3
8 can be visualized as three slices from a pizza that

has been cut into eight equal slices.

Definitions

The fraction “a over b” can be written three different ways:

a{b”“: a ˜ b”“:

a
b

.

The top and bottom parts of a fraction
:::
the

:::::::
fraction

::

a
b:

have special
names:

• b is called the denominator of the fraction. It tells us how many
parts make up the whole.

• a is called the numerator. It tells us the number of parts we have.

Fractions are the most natural way to represent rational numbers.
Why natural? Check out these simple fractions:

1
1 “ 1.0
1
2 “ 0.5
1
3 “ 0.33333 . . . “ 0.3
1
4 “ 0.25
1
5 “ 0.2
1
6 “ 0.166666 . . . “ 0.16
1
7 “ 0.14285714285714285 . . . “ 0.142857

Note that a line above some numbers means the digits underneath
the line are repeated infinitely many times. The fractional notation
on the left is preferable because it shows the underlying structure
of the number while avoiding the need to write infinitely long
decimals

:::::::::::
complicated

:::::::::
decimals.
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1.3 NUMBER REPRESENTATIONS 19

:::::
When

:::::::
written

::
as

::::::::
decimal

::::::::
numbers,

:::::::
certain

::::::::
fractions

:::::
have

::::::::
infinitely

::::
long

::::::::
decimal

:::::::::::
expansions.

::::
We

:::
use

::::
the

::::::::
overline

::::::::
notation

::
to

::::::::
indicate

:::
the

:::::::
digit(s)

::::
that

::::::
repeat

::::::::
infinitely

:::
in

:::
the

::::::::
decimal,

::
as

:::
in

:::
the

::::
case

:::
of

:::
0.3,

::::
0.16,

::::
and

::::::::
0.142857

::::::
shown

::::::
above.

Fractions allow us to carry out precise mathematical calculations eas-
ily with pen and paper, without the need for a calculator.

Example Calculate the sum of 1
7 and 1

3 .
Let’s say we decide, for reasons unknown, that it’s a great day for

decimal notation—we’d have to write our calculation as Wow that
was complicated! This calculation is much simpler if we use frac-
tions: Want to know how we did that? We multiplied the first term
by 3

3 “ 1 and the second term by 7
7 “ 1 in order to obtain two equiva-

lent fractions with the same denominator. This is one of the standard
strategies when performing fraction addition

:::::::::
operations: rewriting

them as equivalent fractions that have the same denominator. Let’s
look at the procedure for adding fractionsin more detail

::::::::::
Equivalent

::::::::
fractions

:::
The

::::::::
fractions

:::

3
8 ,

:::

6
16 ,

:::
and

:::

12
32 :::

all
::::::::::
correspond

::
to

:::
the

:::::
same

::::::::
number.

::::::
Think

:::::
about

:::::
it—if

:::::
you

:::
cut

::
a
::::::

pizza
:::
in

::
8

::::::
pieces

::::
and

:::::
take

::
3

::
of

::::::
them

::::
(see

::::::
Figure

:::::
1.10),

::
or

::::
you

:::
cut

::
a

:::::
pizza

::
in

:::
16

:::::
equal

::::::
pieces

::::
and

::::
take

:
6
:::
of

:::::
them,

:::::
you’ll

:::
get

::::
the

:::::
same

::::::::
amount

::
of

:::::
pizza

:::
in

:::
the

::::
end.

::::
All

::::::::
fractions

:::
of

:::
the

::::
form

:::

3k
8k :::

are
:::::::::
equivalent

:
to

::::
the

:::::::
fraction

::

3
8 ,
:::::::::

meaning
::::
they

:::::::::::
correspond

::
to

:::
the

:::::
same

::::::::
number.

:::::::::::
Reciprocals

:::
The

:::::::::::::
mathematical

::::::
term

:
reciprocal

:
is

:::::
used

:::
to

:::::::::
describe

:::
the

:::::::
notion

::
of

::::::::::
“flipping”

::
a

::::::::
number.

:::::
The

::::::::::
reciprocal

::
of

::
y
:::

is
::

1
y ,
:::::::

which
::
is
:::::

read

::::
“one

:::::
over

::::
y.”

:::::::::::::::
Multiplication

::::
by

::::
the

:::::::::
reciprocal

:::

1
y ::

is
::::

the
::::::

same

::
as

::::::::
division

:::
by

:::
y.

:::::
The

::::::::
product

::
of

::::
any

::::::::
number

:::::
and

:::
its

:::::::::
reciprocal

::::::
equals

::::
one:

::::::::::::::
y ˆ

1
y “

y
y “ 1.

:::::
The

:::::::::
reciprocal

:::
of

:::
the

::::::::
fraction

::

m
n:::

is
:::
the

::::::::
“flipped”

::::::::
fraction

::

n
m .

::::
The

::::::::
product

::
of

::

m
n::::

and
:::
its

:::::::::
reciprocal

::::::
equals

::::
one:

:::::::::::::::

m
n ˆ

n
m “

mn
nm “ 1.

:

:::::::
Another

:::::
way

::
to

::::::
denote

:::
the

::::::
notion

:::
of

:::::::::
“flipping”

:
a
::::::::
number

::
is

::
to

:::
use

:::
the

::::::::
exponent

::::::::
negative

::::
one.

::::
The

:::::::::
reciprocal

:::
of

:::
the

:::::::
number

::
y

:
is
::::::::
denoted

:::
y´1

::::
and

::::::
equals

:::

1
y .

::::
The

:::::::::
reciprocal

::
of

::::
the

:::::::
fraction

::

m
n::

is
::::::::
denoted

::::::
p

m
n q

´1

:::
and

:::::::
equals

::

n
m .

::::::
Using

::::
the

::::::::
negative

:::::::::
exponent

:::::::
notation

::::
for

::::::::::
reciprocals,

:::
we

:::
can

::::::
write

:::
the

:::::
“flip

::::
and

:::::::::
multiply”

:::::
rule

:::
for

::::::::
dividing

:::::::::
fractions

::
as
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20 MATH FUNDAMENTALS

:::::::::::::::::::::::::::::

a
b ˜

c
d “

a
b ˆ

` c
d

˘´1
“

a
b ˆ

d
c “

ad
bc .

::::::
We’ll

:::::::
discuss

::::::::
negative

::::::::::
exponents

:::::
more

::::::::
generally

:::
in

::::::
Section

:::
1.8.

Adding fractions

Suppose we are asked to find the sum of the two fractions a
b and c

d .
If the denominators are the same, then we can add just the top parts:
1
5 `

2
5 “

3
5 . It makes sense to add the numerators since they refer to

parts of the same whole.
However, if the denominators are different, we cannot add the

numerators directly since they refer to parts of different wholes. Be-
fore we can add the numerators, we must rewrite the fractions so
they have the same denominator, called a common denominator. We
can obtain a common denominator by multiplying the first fraction
by d

d “ 1 and the second fraction by b
b “ 1 in order to make the

denominator of both fractions the same:

a
b

`
c
d : “ :

a
b

ˆ
d
d

˙
`

c
d

ˆ
b
b

˙
: “ :

ad
bd

`
bc
bd

.

Now that we have fractions with the same denominator, we can add
their numerators. Note it’s okay to change the denominator of a frac-
tion as long as we also change the numerator in the same way. Mul-
tiplying the tops and bottoms of the fractions

:::
top

::::
and

:::
the

:::::::
bottom

::
of

:
a
::::::::
fraction by the same number (in this case d

d or b
b ) is the same as

multiplying by 1. So while the numbers of the fractions change, their
equivalency is preserved:

a
b

`
c
d : “ :

ad
bd

`
bc
bd : “ :

ad ` bc
bd

.
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Finding the least common denominator To add fractions they
must share a common denominator. If you play around with the
math, you’ll quickly realize that two fractions can share many
possible common denominators. Although any common denominator
will do, generally you can make your life simpler by using the least
common denominator—the smallest possible common denominator.
The least common denominator of two fractions is the least common
multiple of the two denominators LCMpb, dq. The LCM of two
numbers can be obtained using this formula:

LCMpb, dq “
bd

GCDpb, dq
,

where GCDpb, dq is the greatest common divisor of b and d—the largest
number that divides both b and d.

Example To add 1
6 and 1

15 , we could
:::
can

:
use the product of the

two denominators as the common denominator:
:
,
:
6 ˆ 15 “ 90.

Or, we could find the least common denominator by breaking each
denominator into its smallest factors 6 “ 3 ˆ 2 and 15 “ 3 ˆ 5; then
recognizing that 3 is the greatest common divisor of 6 ,

:
and 15. We

find the least common multiple is LCMp6, 15q “
6ˆ15

3 “ 30, then use
common denominator 30 when performing the addition:

:::::::
perform

:::
the

:::::::
fraction

::::::::
addition

::
as

::::::::
follows:

:

1
6

`
1

15
“

5 ˆ 1
5 ˆ 6

1
6

ˆ
15
15

::::::

`
1 ˆ 2

15 ˆ 2
1
15

ˆ
6
6

::::::

“
5

30
15
90

:::

`
2

30
6

90
:::

“
21
90

“
7 ˆ �3

30 ˆ �3
“

:::::::::::::::

7
30

.

Note that using the least common denominator is not required—but
it is the most efficient way to add fractions without having to deal
with excessively large numbers. If you skip all this GCD and LCM
business and use the larger common denominator6 ˆ 15 “ 90, you’ll
arrive at the same answer after simplifying the result:

1
6

`
1
15

“
15 ˆ 1
15 ˆ 6

`
1 ˆ 6

15 ˆ 6
“

15
90

`
6

90
“

21
90

“
7

30
.
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Whole-and-fraction notation

A fraction greater than 1 like 5
3 can also be denoted 1 2

3 , which is read
as “one and two-thirds.” Similarly, 22

7 “ 3 1
7 .

::
We

::::::
write

:::
the

:::::::
integer

::::
part

::
of

:::
the

::::::::
number

::::
first,

:::::::::
followed

::
by

::::
the

::::::::
fractional

:::::
part.

:

There is nothing wrong with writing fractions like 5
3 and 22

7 .
However, some teachers call these fractions improper and demand
that all fractions are written in the whole-and-fraction way, as in 1 2

3
and 3 1

7 . At the end of the day, both notations are correct.

Repeating decimals

When written as decimal numbers, certain fractions have infinitely
long decimal expansions. We use the overline notation to indicate
the digit(s) that repeat infinitely in the decimal:

1
3

“ 0.3̄ “ 0.333 . . . ;
1
7

“ 0.142857 “ 0.14285714285714 . . . .

Exercises

Compute the value of the following expressions:
a) 1

2 `
1
3

b) 1
2 `

1
3 `

1
4

c) 3 1
2 ` 2 ´

1
3

a) 5
6 ; b) 13

12 “ 1 1
12 ; c) 31

6 “ 5 1
6 .

a) To compute 1
2 `

1
3 , we rewrite both fractions using the common

denominator 6, then compute the sum: 1
2 `

1
3 “

3
6 `

2
6 “

5
6 . b) You

can use the answer from part (a), or compute the triple sum
directly by setting all three fractions to a common denominator:
1
2 `

1
3 `

1
4 “

6
12 `

4
12 `

3
12 “

13
12 . c) Here we first rewrite 3 1

2 as
7
2 , then use the common denominator 6 for the computation:
7
2 ` 2 ´

1
3 “

21
6 `

12
6 ´

2
6 “

31
6 .

Number line
The number line is a very useful visual representation for numbers.
Every number from the sets N, Z, Q, and R corresponds to some
point on the number line. Developing a visual representation for
numbers allows us to instantly compare the numbers’ sizes based on
their positions on the number line.
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Figure 1.11 shows the natural numbers represented as equally
spaced notches

::::::
points on the number line. We can construct the en-

tire set of natural numbers by starting from 0 and taking steps of
length one to the right on the number line. That’s what counting
is—we just keep adding one.

Note that natural numbers never end. We can always keep
adding one to every number and obtain a larger number. The
number line therefore extends to the right to infinity.

0 1 2 3 4 5

Figure 1.11: The natural numbers N.

Numbers to the left of zero are negative, while numbers to the right
of zero are positive. The number line extends indefinitely on both
sides, going to negative infinity on the left side and positive infinity
on the rightside.

´5 ´4 ´3 ´2 ´1 0 1 2 3 4 5

Figure 1.12: The integers Z.

The set of integers corresponds to a discrete set of
:::
set

::
of

:::::::::::::
equally-spaced

points on the number line . Observe there are
:::::
with gaps of empty

space between each integer. The rational numbers Q and
:::
We

:::::
need

the real numbers R
:
to

:
fill these gaps.

Recall that the set of rational numbers Q consists of all numbers
that can be written as a fraction of two integers. Rational numbers
allow us to refer to points between the integers. To find the location
of the rational number a m

n :::
The

:::
set

::
of

::::
real

::::::::
numbers

::
R

::
is
::::
the

::::::::
complete

:::::::::::::
representation

::
of

:::
all

::::::::
possible

::::::
points

:
on the number line, go to the

integer a and then continue
` m

n
˘th of the way to the next integer.

For example, the rational number ´3
2 “ ´1.5 “ ´1 1

2 corresponds to
going to the point ´1, then continuing halfway of the distance to the
integer ´2.

It is instructive to study the rational numbers in the interval
between 0 and 1, which correspond to the fractions m

n where m § n.
There are infinitely many rational numbers between 0 and 1. The
number lineis packed with them! For example, the infinite sequence
of fractions 1

2 , 1
3 , 1

4 , 1
5 , . . . consists of distinct rational numbers that all

live in the interval between 0 :
::::::

every
::::
real

::::::::
number

::::::::::::
corresponds

::
to

:::::
some

:::::
point

:::
on

:::
the

::::::::
number

::::
line,

:
and 1. The rational numbers 1

n get
closer and closer to 0 as n becomes larger and larger. The numbers
of this sequence are densely packed next to each other, filling all the
space near 0.
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The rational numbers have the same structure everywhere
:::::
every

:::::
point

:
on the number line . No matter which interval of the

numberline you look at, you’ll find it densely packed with rational
numbers. In order to represent this density of numbers visually, we
use a thick line to fill in

::::::::::
corresponds

:::
to

:::::
some

::::
real

::::::::
number.

::::::::
Visually,

:::
the

:::
set

::
of

::::
real

:::::::::
numbers

::::
fills the entire number line as illustrated

::
in

::::
bold

:
,
::
as

::::::
shown

:
in Figure 1.13. Basically, the rationals are represented

by points
::
In

:::::
other

::::::
words,

:::::
there

::::
are

:::
real

:::::::::
numbers everywhere!

´5 ´4 ´3 ´2 ´1 0 1 2 3 4 5

´
3
2

1
2

?
2 e p

9
2

Figure 1.13: The rationals Q and the reals
:::
real

:::::::
numbers

:
R densely fill

::::
cover

the
:::::
entire number line.

The
:::::
Recall

:::::
that

:::
the

:
set of real numbers R includes all the rationals

Q and also
:::::::
rational

:::::::::
numbers

::::
like

::::
´

3
2 ,

:::

1
2 ,

::::
and

:::

9
2 ,

:::
as

:::::
well

::
as

:
irra-

tional numbers like
?

2 “ 1.414213562 . . ., e “ 2.7182818 . . ., and
p “ 3.14159265 . . .. The visual representation for the reals is identical
to the rationals: they also fill the entire

::::

?

2,
:
e,
::::
and

:::
p.

::::
This

::::::
means

::::
any

:::::::
number

::::
you

:::
are

::::::
likely

::
to

::::
run

::::
into

:::::
when

:::::::
solving

::::::
math

:::::::::
problems

:::
can

::
be

::::::::::
visualized

::
as

:
a
:::::
point

:::
on

:::
the

:
number line.

::::
The

:::::::
number

::::
line

:::
can

::::
also

::
be

:::::
used

::
to

:::::::::
represent

::::::::
subsets

::
of

::::
the

::::
real

:::::::::
numbers.

:::::
We’ll

::::
talk

::::::
about

:::
that

:::
in

:::::::
Section

:::::
1.23.

::::
For

:::::::::
example,

:::
the

:::::::
subset

::
of

::::
real

:::::::::
numbers

::::
that

:::
are

:::::::
greater

::::
than

::::
two

::::
and

::::::::
smaller

::::
than

:::::
four

::
is

::::::
shown

:::
in

::::::
Figure

::::
1.81

:::::
(page

:::::
159).

Discussion
Since we’re still on the topic of number representations, I want to
add some footnotes with “bonus material” related to the ideas we’ve
covered in this section. Feel free to skip to the next section if you’re
in a hurry, because this is definitely not going to be on the exam!
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Integers and divisibility

Recall the concepts of greatest common divisor (GCD) and least common
multiple (LCM) we used to add fractions. The GCD and LCM are
related to the notion of divisibility for natural numbers. For example,
3 divides 12 since 12{3 “ 4 and 4 is an integer, but 3 does not divide
7 since 7{3 is not an integer. We say “b divides a” whenever a{b is an
integer. In other words, if b divides a, then a “ kb for some integer k.
If a{b is not an integer, we say “b does not divide a.”

The divisors of the number x is the set of numbers that divide x.
Every number can be written as a product of its divisors. For
example, 12 “ 3 ˆ 4 since 3 and 4 are divisors of 12. The number 4
can be subdivided further as 2 ˆ 2, so another expression for 12 in
terms of its divisors is 12 “ 3 ˆ 2 ˆ 2. This procedure of splitting a
number into smaller and smaller divisors terminates when we write
the number in terms of its prime divisors. The set of prime numbers
is the set of numbers that cannot be subdivided any further:

t2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, . . .u

A number p is prime if it has no divisors other than 1 and itself.
All other numbers are called composite numbers, meaning they can
be written as a product of prime numbers.

The greatest common divisor of a and b, denoted GCDpa, bq, is
the largest number that divides both a and b. For example, let’s
calculate GCDp12, 20q. Writing 12 as a product of its divisors, we
find 12 “ 3 ˆ 2 ˆ 2. Similarly, 20 “ 5 ˆ 2 ˆ 2. By comparing the two
expressions, we see that 2 ˆ 2 is common to both expressions, so
GCDp12, 20q “ 4.

The least common multiple of two numbers, denoted LCMpa, bq,
represents the smallest integer that has both a and b as divisors. We
can calculate the LCMpa, bq using the following formula:

LCMpa, bq “
ab

GCDpa, bq
.

Continuing the above example, we find LCMp12, 20q “
12ˆ20

GCDp12,20q
“

240
4 “ 60.

Observe that 12 divides 60 and also 20 divides 60.
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Elementary arithmetic procedures

The four basic arithmetic operations are addition, subtraction, mul-
tiplication, and division. We can perform these operations for nu-
merals a and b of any size using only pen and paper. It is sufficient
to follow one of the well-defined procedures (called algorithms) for
manipulating the individual digits that make up the numbers. The
Wikipedia articles on elementary arithmetic and long division offer
an excellent discussion of these procedures.

[ Algorithms for performing elementary arithmetic ]
https://en.wikipedia.org/wiki/Elementary_arithmetic
https://en.wikipedia.org/wiki/Long_division

Computer representations

Whenever you want to store a number on a computer, you must
choose an appropriate computer representation for this number. The
two most commonly used types of numbers in the computer world
are integers (int) and floating point numbers (float). Computer in-
tegers can accurately describe the set of mathematical integers Z, but
there are limitations on the maximum size of numbers that comput-
ers can store. We can use floating point numbers to store decimals
with up to 15 digits of precision. The int and float numbers that
computers provide are sufficient for most practical computations,
and you probably shouldn’t worry about the limited precision of
computer number representations. Still, I want you to be aware of
the distinction between the abstract mathematical concept of a num-
ber and its computer representation. The real number

?

2 is irrational
and has an infinite number of digits in its decimal expansion. On a
computer,

?

2 is represented as the approximation 1.41421356237310
(a float). For most purposes the approximation is okay, but some-
times the limited precision can show up in calculations. For example,
float(sqrt(2))*float(sqrt(2)) = 2.0000000000000004 ‰ 2 and
float(0.1)+float(0.2) = 0.30000000000000004 ‰ 0.3. The result
of the computer’s calculation is only accurate up to the 15th digit.
That’s pretty good if you ask me.

Scientific notation

In science we often work with very large numbers like the speed of
light (c “ 299 792 458m/s

::::::::::
299 792 458), and very small numbers like

the permeability of free space (µ0 “ 0.000001256637 . . .N/A2
:::::::::::::
0.000001256637).

It can be difficult to judge the magnitude of such numbers and to
carry out calculations on them using the usual decimal notation.
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Dealing with such numbers is much easier if we use scientific
notation. For example, the

:::
The

:
speed of light can be written as

c “ 2.99792458 ˆ 108m/s
:::::::::::::::
2.99792458 ˆ 108, and the permeability of

free space is denoted as µ0 “ 1.256637 ˆ 10´6N/A2
::::::::::::::
1.256637 ˆ 10´6.

In both cases, we express the number as a decimal number be-
tween 1.0 and 9.9999 . . . followed by the number 10 raised to some
power

::::::::
exponent. The effect of multiplying by 108 is to move the dec-

imal point eight steps to the right, making the number bigger. Mul-
tiplying by 10´6 has the opposite effect, moving the decimal point to
the left by six steps and making the number smaller. Scientific nota-
tion is useful because it allows us to clearly see the size of numbers:
1.23 ˆ 106 is 1 230 000 whereas 1.23 ˆ 10´10 is 0.000 000 000 123. With
scientific notation you don’t need to count the zeros!

The number of decimal places we use when specifying a certain
physical quantity is usually an indicator of the precision with which
we are able to measure this quantity. Taking into account the pre-
cision of the measurements we make is an important aspect of all
quantitative research. Since elaborating further would be a digres-
sion, we won’t go into a full discussion about the topic of significant
figures here. Feel free to read the Wikipedia article on the subject to
learn more.

Computer systems represent numbers using scientific notation,
too. When entering a floating point number into the computer, sep-
arate the decimal part from the exponent by the character e, which
stands for “exponent.” For example, the speed of light is written as
2.99792458e8 and the permeability of free space is 1.256637e-6.

Links
::::::::::
Exercises

E1.4
::::::::
Compute

:::
the

::::::
value

::
of

:::
the

:::::::::
following

::::::::::::
expressions:

::
a)

:::::

1
2 `

1
3 ::

b)
:::::::::

1
2 `

1
3 `

1
4 ::

c)
:::::::::
3 1

2 ` 2 ´
1
3:

::::::
Links

Numbers and number representations are fascinating topics connected
to hundreds of other topics in math. I encourage you to check the
Wikipedia links provided below for interesting historical context

::
to

::::
learn

::::::
more

:::::
about

::::::::
numbers

::::
and

::::::::
number

::::::::::::::
representations.

[ History of the Hindu–Arabic system for representing numbers ]
https://en.wikipedia.org/wiki/Hindu–Arabic_numeral_system

[ Positional number representation systems ]
https://en.wikipedia.org/wiki/Positional_notation
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[ Decimal representation ]
https://en.wikipedia.org/wiki/Decimal_representation

[ More general number representation systems
::::::
details

:::
on

::::::::
scientific

:::::::
notation

:
]

https://en.wikipedia.org/wiki/Numeral
::::::::::
Scientific_system

::::::::
notation

[
::::
Info

:::::
about

::::::::::
significant

:::::::
figures

:::::::::::
calculations ]

:::::::::::::::::::::::::::::::::::::::::::::::::::
https://en.wikipedia.org/wiki/Significant_figures

1.4 Variables
In math we use a lot of variables and constants, which are placeholder
names for any number or unknown. Variables allow us to perform
calculations without knowing all the details.

Example You’re having tacos for lunch today and wondering how
many you can eat without going over your caloric budget. Your goal
is to eat 800 calories for lunch and you want to do the calculation
before getting to the restaurant because you fear your math abilities
might be affected in the presence of tacos. You’re not sure how many
calories each taco contains, so you invent the variable c to denote this
unknown. You also define the variable x to represent the number
of tacos you will eat, and come up with the equation 800 “ cx to
represent the total number of calories of your lunch. Solving for x,
you find the total number of tacos you should order is x “

800
c . If the

restaurant serves tacos that contain c “ 200 calories each, then you
should order x “

800
200 “ 4 of them. If the restaurant serves only giant

tacos worth c “ 400 calories each, then you can only eat x “
800
400 “ 2

of them. Observe we were able to solve for x even before knowing
the value of c.

Variable names
There are common naming patterns for variables:

• x: general name
:::::
name

::::
used

:
for the unknown in equations(also

used to denote a function ’s input, as well as an object’s
position in physics)

• v: velocity in physics problems
• xi, x f : denote an object’s initial and final positions in physics.

:::
We

::::
also

::::
use

::
x

::
to

:::::::
denote

::::::::
function

:::::::
inputs

::::
and

::::
the

::::::::
position

::
of

::::::
objects

::
in

::::::::
physics.

:

• i, j, k, m, n: common names for integer variables
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• a, b, c, d: letters near the beginning of the alphabet are often
used to denote constants (fixed quantities that do not change)

:
.

• q, f: the Greek letters theta and phi are used to denote angles
• C: costs in business

:
, along with P for profit,

:
and R for revenue

• X: a random variable
::::::
capital

::::::
letters

:::
are

:::::
used

::
to

:::::::
denote

:::::::
random

::::::::
variables in probability theory

Variable substitution
We can often change variables and replace one unknown variable with
another to simplify an equation. For example, say you don’t feel
comfortable around square roots. Every time you see a square root,
you freak out until one day you find yourself taking an exam trying
to solve for x in the following equation:

6
5 ´

?
x

“
?

x.

Don’t freak out! In crucial moments like this, substitution can help
with your root phobia. Just write, “Let u “

?
x” on your exam, and

voila, you can rewrite the equation in terms of the variable u:

6
5 ´ u

“ u,

which contains no square roots.
The next step to solve for u is to undo the division operation.

Multiply both sides of the equation by p5 ´ uq to obtain

6
5 ´ u

p5 ´ uq “ up5 ´ uq,

which simplifies to

6 “ 5u ´ u2.

This can be rewritten
::
as

:
the equation u2

´ 5u ` 6 “ 0, which in tern
::::
turn

:
can be rewritten as pu ´ 2qpu ´ 3q “ 0 .

::::
using

::::
the

::::::::::
techniques

::::
we’ll

:::::
learn

:::
in

::::::
Section

::::
1.7.

:

We now see that
:::
the

:::::::::
solutions

:::
are

:
u1 “ 2 and u2 “ 3are the

solutions. The last step is to convert our u-answers into x-answers
by using u “

?
x, which is equivalent to x “ u2. The final answers

are x1 “ 22
“ 4 and x2 “ 32

“ 9. Try plugging these x values into
the original square root equation to verify that they satisfy it.
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30 MATH FUNDAMENTALS

Compact notation
Symbolic manipulation is a powerful tool because it allows us to
manage complexity. Say you’re solving a physics problem in which
you’re told the mass of an object is m “ 140 kg. If there are many
steps in the calculation, would you rather use the number 140 kg in
each step, or the shorter symbol m? It’s much easier in the long run
to use m throughout your calculation, and wait until the last step
to substitute the value 140 kg when computing the final numerical
answer.

1.5 Functions and their inverses
As we saw in the section on solving equations, the ability to “undo”
functions is a key skill for solving equations.

Example Suppose we’re solving for x in the equation

f pxq “ c,

where f is some function and c is some constant. We’re looking for
the unknown x such that f pxq equals c. Our goal is to isolate x on
one side of the equation, but the function f stands in our way.

By using the inverse function
::::::
inverse

::::::::
function (denoted f ´1) we

“undo” the effects of f . We apply the inverse function f ´1 to both
sides of the equation to obtain

f ´1
p f pxqq “ x “ f ´1

pcq .

By definition, the inverse function f ´1 performs the opposite action
of the function f , so together the two functions cancel each other out.
We have f ´1

p f pxqq “ x for any number x.
Provided everything is kosher (the function f ´1 must be defined

for the input c), the manipulation we made above is valid and we
have obtained the answer x “ f ´1

pcq
:::::::::
x “ f ´1

pcq.

The above example introduces the notation f ´1 for denoting
the function’s inverse

:::::::
inverse

::::::::
function. This notation is borrowed

from the notion of inverse numbers:
:::::::
inspired

:::
by

::::
the

::::::::
notation

:::
for

::::::::::
reciprocals.

:::::::
Recall

:::::
that

:
multiplication by the

:::::::::
reciprocal

:
number

a´1 is the inverse operation of multiplication by the number
:
a:

a´1ax “ 1x “ x. In the case of functions, however, the negative-one
exponent does not refer to “one over- f pxq” as in 1

f pxq
“ p f pxqq

´1;
rather, it refers to the function’s inverse

::::::
inverse

::::::::
function. In other
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1.5 FUNCTIONS AND THEIR INVERSES 31

words, the number f ´1
pyq is equal to the number x such that

f pxq “ y.
Be careful: sometimes applying the inverse leads to

::
an

::::::::
equation

:::
can

:::::
have

:
multiple solutions. For example, the function f pxq “ x2

maps two input values (x and ´x) to the same output value x2
“

f pxq “ f p´xq. The inverse function of f pxq “ x2 is f ´1
pxq “

?
x
::::::::::::
f ´1

pyq “
?y,

but both x “ `
?

c and x “ ´
?

c are solutions to the equation x2
“ c.

In this case, this equation’s solutions can be indicated in shorthand
notation as x “ ˘

?
c.

Formulas
Here is a list of common functions and their inverses:

function f pxq : ô :inverse f ´1
pxq

x ` 2 : ô :x ´ 2

2x : ô :
1
2 x

´1x : ô : ´ 1x

x2
: ô : ˘

?
x

2x
: ô : log2pxq

3x ` 5 : ô :
1
3 px ´ 5q

ax
: ô : logapxq

exppxq”“: ex
: ô : lnpxq”“: logepxq

sinpxq
:

ô
:

sin´1
pxq”“

:
arcsinpxq

cospxq
:

ô
:

cos´1
pxq”“

:
arccospxq

The function-inverse relationship is symmetric—if you see a function
on one side of the above table (pick a side, any side), you’ll find its
inverse on the opposite side.

:::::
Don’t

:::
be

:::::::::
surprised

:::
to

::::
see

::::::::::::
´1x ô ´1x

:::
in

:::
the

::::
list

:::
of

::::::::
function

::::::::
inverses.

:::::::
Indeed,

::::
the

::::::::
opposite

:::::::::
operation

:::
of

:::::::::::
multiplying

:::
by

:::
´1

::
is

::
to

::::::::
multiply

::
by

:::
´1

:::::
once

::::::
more:

::::::::::::
(´p´xq “ x).

Example
:
1

:
If
::::
you

:::::
want

::
to

:::::
solve

:::
the

::::::::
equation

:::::::::
x ´ 4 “ 5,

::::
you

::::
can

:::::
apply

:::
the

:::::::
inverse

:::::::
function

:::
of

:::::
x ´ 4,

::::::
which

::
is
::::::

x ` 4.
::::::
After

::::::
adding

:::::
four

::
to

:::::
both

:::::
sides

::
of
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32 MATH FUNDAMENTALS

:::
the

:::::::::
equation,

:::::::::::::::
x ´ 4 ` 4 “ 5 ` 4,

:::
we

:::::::
obtain

:::
the

:::::::
answer

::::::
x “ 9.

Discussion
The recipe I have outlined above is not universally applicable. Some-
times x isn’t alone on one side. Sometimes x appears in several places
in the same equation. In these cases, you can’t effortlessly work your
way, Bruce Lee-style, clearing bad guys and digging toward x—you
need other techniques.

The bad news is there’s no general formula for solving compli-
cated equations. The good news is the above technique of “digging
toward the x” is sufficient for 80% of what you are going to be do-
ing. You can get another 15% if you learn how to solve the quadratic
equation:

ax2
` bx ` c “ 0.

Solving third-degree polynomial
:::::
We’ll

:::::
show

::
a
::::::::
formula

:::
for

:::::::
solving

::::::::
quadratic

:::::::::
equations

:::
in

::::::
Section

::::
1.7.

:::::::
Solving

:::::
cubic

:
equations like ax3

`

bx2
` cx ` d “ 0 with pen and paper

:::::
using

::
a

:::::::
formula

:
is also possible,

but at this point you might as well start using a computer to solve
for the unknowns.

:::
See

:::::
page

:::
524

::
in

::::::::::
Appendix

::
D.

:

There are all kinds of other equations you can learn how to solve:
equations with multiple variables, equations with logarithms, equa-
tions with exponentials, and equations with trigonometric functions.
The principle of “digging” toward the unknown by applying inverse
functions is the key for solving all these types of equations, so be sure
to practice using it.

Exercises
E1.5 Solve for x in the following equations:

a) 3x “ 6 b) log5pxq “ 2 c) log10p
?

xq “ 1

E1.6 Find the function inverse and use it to solve the problems.

1.6 Basic rules of algebra
It’s important that you know the general rules for manipulating
numbers and variables, a process otherwise known as—you guessed
it—algebra. This little refresher will cover these concepts to make
sure you’re comfortable on the algebra front. We’ll also review some
important algebraic tricks, like factoring and completing the square,
which are useful when solving equations.
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1.6 BASIC RULES OF ALGEBRA 33

Let’s define some terminology for referring to different parts of
math expressions. When an expression contains multiple things
added together, we call those things terms. Furthermore, terms are
usually composed of many things multiplied together. When a num-
ber x is obtained as the product of other numbers like x “ abc, we
say “x factors into a, b, and c.” We call a, b, and c the factors of x.

`c
facto

r

b
facto

r

a
facto

r

d
facto

r

e
facto

r

“ 0
term term

expression

equation

Figure 1.14: Diagram showing the names used to describe the different parts
of the equation abc ` de “ 0.

Given any four numbers a, b, c, and d
::::
three

:::::::::
numbers

::
a,

::
b,

::::
and

::
c,

we can apply the following algebraic properties:

1. Associative property: a ` b ` c “ pa ` bq ` c “ a ` pb ` cq and
abc “ pabqc “ apbcq

2. Commutative property: a ` b “ b ` a and ab “ ba

3. Distributive property: apb ` cq “ ab ` ac

We use the distributive property every time we expand brackets. For
example apb ` c ` dq “ ab ` ac ` ad. The brackets, also known as
parentheses, indicate the expression pb ` c ` dq must be treated as a
whole; as a factor consisting of three terms. Multiplying this expres-
sion by a is the same as multiplying each term by a.

The opposite operation of expanding is called
:::::::
factoring, which

consists of rewriting the expression with the common parts taken
out in front of a bracket: ab ` ac “ apb ` cq. In this section, we’ll dis-
cuss both of these

::
all

:::::::
algebra operations and illustrate what they’re

capable of.

Expanding brackets

The distributive property is useful when dealing with polynomials.
For instance,

px ` 3qpx ` 2q “ xpx ` 2q ` 3px ` 2q “ x2
` x2 ` 3x ` 6.
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We see t is contained in both terms on the right-hand side, so we can
rewrite

::::::
“factor

::
it

::::
out”

:::
by

:::::::::
rewriting the equation as

21 ` 44 “ tp66 ´ 28qt.

The answer is within close reach: t “
21`44
66´28 “

65
38 .

::::::::::::
Expanding

::::::::::
brackets

::
To

:::::::
expand

:
a
:::::::
bracket

:::
is

:::
to

::::::::
multiply

:::::
each

:::::
term

:::::::
inside

::::
the

:::::::
bracket

::
by

::::
the

::::::
factor

::::::::
outside

::::
the

::::::::
bracket.

:::::
The

:::::
key

:::::
thing

:::
to

::::::::::
remember

:::::
when

:::::::::::
expanding

::::::::
brackets

:::
is

:::
to

::::::
apply

::::
the

:::::::::::
distributive

::::::::
property:

:::::::::::::::::
apx ` yq “ ax ` ay.

::::
For

::::::
longer

::::::::::::
expressions,

:::
we

:::::
may

:::::
need

::
to

::::::
apply

:::
the

:::::::::::
distributive

:::::::::
property

:::::::
several

:::::::
times,

:::::
until

:::::
there

::::
are

::::
no

:::::
more

:::::::
brackets

::::
left:

:

pa ` bqpx ` y ` zq
:::::::::::::::

“ apx ` y ` zq ` bpx ` y ` zq
:::::::::::::::::::::::::

“ ax ` ay ` az ` bx ` by ` bz.
::::::::::::::::::::::::::

:::::
After

::::::::::
expanding

::::
the

::::::::
brackets

::
in

::::
this

:::::::::::
expression,

::::
we

::::
end

:::
up

:::::
with

::
six

::::::::::::
terms—one

:::::
term

:::
for

:::::
each

:::
of

:::
the

::::
six

::::::::
possible

:::::::::::::
combinations

::
of

::::::::
products

::::::::
between

:::
the

::::::
terms

::
in

::::::
pa ` bq

::::
and

:::
the

::::::
terms

::
in

::::::::::
px ` y ` zq.

:

:::
The

:::::::::::
distributive

::::::::
property

::
is

:::::
often

:::::
used

::
to

::::::::::
manipulate

:::::::::::
expressions

:::::::::
containing

::::::::
different

::::::::
powers

::
of

:::
the

::::::::
variable

::
x.

:::
For

:::::::::
instance,

px ` 3qpx ` 2q “ xpx ` 2q ` 3px ` 2q “ x2
` x2 ` 3x ` 6.

::::::::::::::::::::::::::::::::::::::::::::::::

:::
We

:::
can

::::
use

::::
the

::::::::::::
commutative

::::::::
property

:::
on

::::
the

::::::
second

:::::
term

::::::::
x2 “ 2x,

::::
then

::::::::
combine

:::
the

::::
two

::
x

:::::
terms

::::
into

::
a

::::::
single

::::
term

::
to

:::::::
obtain

px ` 3qpx ` 2q “ x2
` 5x ` 6.

::::::::::::::::::::::::

:::
The

::::::::::::::::::
bracket-expanding

:::
and

:::::::::::::
simplification

::::::::::
techniques

:::::::::::::
demonstrated

:::::
above

::::
are

::::
very

::::::::
common

:::
in

:::::
math,

::::
and

::
I
:::::::::::
recommend

::::
you

:::::
solve

:::::
some

:::::::
algebra

:::::::
practice

::::::::::
problems

::
to

::::
get

::::
the

:::::
hang

:::
of

::::::
them.

:::::::
Most

:::::
math

:::::::::
textbooks

::::
skip

:::::::::::::
simplification

:::::
steps

::::
and

:::::
jump

:::::::
straight

::
to

::::
the

:::::::
answer,

::::
since

:::::
they

::::::::
assume

::::::::
readers

::::
are

::::::::
capable

:::
of

::::::
doing

::::::::::::::
simplifications

::
on

:::::
their

::::::
own.

:::
It

::::::
would

:::
be

::::
too

:::::
long

::::
(and

::::::::::
annoying)

:::
to

::::::
show

:::
the

:::::::::::::
simplifications

:::
for

:::::
each

::::::::::
expression.

::::
For

:::::::::
example,

::::
the

::::::::
sentence

::::
“We

:::
can

:::::::
rewrite

:::::::::::::
px ` 3qpx ` 2q

::
as

::::::::::::
x2

` 5x ` 6,”
::
is

:::
the

:::::
short

:::::::
version

:::
of

:::
the

::::::
longer

:::::::::
sentence,

::::
“We

::::
can

::::::
apply

:::
the

:::::::::::
distributive

:::::::::
property

:::::
twice

:::
on

::::::::::::
px ` 3qpx ` 2q

:::::
then

::::::::
combine

:::
the

::::::
terms

:::::
with

:::
the

:::::
same

:::::::
power

::
of

::
x

::
to

:::
get

:::::::::::
x2

` 5x ` 6.”
:
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:::
It’s

:::
not

::::::::
unusual

:::
for

::::::
people

::
to

:::::
make

:::::
math

::::::::
mistakes

::::::
when

::::::::::
expanding

:::::::
brackets

:::::
and

:::::::::::::
manipulating

:::::
long

::::::::
algebra

:::::::::::
expressions.

:::::
To

::::::
avoid

::::::::
mistakes,

::::
use

:
a
::::::::::::
step-by-step

::::::::
approach

::::
and

::::::
apply

::::
only

::::
one

:::::::::
operation

::
in

::::
each

:::::
step.

:::::
Write

:::::::
legibly

:::
and

:::::
keep

:::
the

:::::::::
equations

::::::::::::
“organized”

::
so

:::
it’s

::::
easy

::
to

::::::
check

:::
the

:::::::::::
calculations

::::::::::
performed

::
in

:::::
each

:::::
step.

::::::::
Consider

::::
this

:::::::::::::::::::::::
slightly-more-complicated

:::::::::
algebraic

::::::::::
expression

::::
and

::
its

::::::::::
expansion:

:

px ` aqpbx2
` cx ` dq

::::::::::::::::::
“ xpbx2

` cx ` dq ` apbx2
` cx ` dq

::::::::::::::::::::::::::::::

“ bx3
` cx2

` dx ` abx2
` acx ` ad

:::::::::::::::::::::::::::::::

“ bx3
` pc ` abqx2

` pd ` acqx ` ad.
:::::::::::::::::::::::::::::::

::::
Note

:::::
how

:::
we

::::::
sorted

:::
the

:::::
terms

::
in

::::
the

::::
final

::::::::::
expression

:::::::::
according

::
to

:::
the

::::::::
different

:::::::
powers

::
of

::
x,

::::
with

:::
the

::::::
terms

::::::::::
containing

::
x2

::::::::
grouped

::::::::
together,

:::
and

::::
the

:::::
terms

:::::::::::
containing

:
x
::::::::
grouped

:::::::::
together.

:::::
This

:::::::::
approach

:::::
helps

::::
keep

:::::::
things

:::::::::
organized

::::::
when

::::::::
dealing

:::::
with

:::::::::::
expressions

::::::::::
containing

:::::
many

::::::
terms.

:

Factoring
Factoring involves “taking out” the common parts of a complicated
expression in order to make the expression more compact. Suppose
we’re given the expression 6x2y ` 15x. We can simplify this expres-
sion by taking out the common factors and writing

:::::::
moving them in

front of a bracket. Let’s see how this is done
:
to

:::
do

:::::
this, step by step.

The expression

:::
The

:::::::::::
expression

::::::::::
6x2y ` 15x

:
has two termsand each term can be

split
:
.
:::::
Let’s

::::
split

:::::
each

::::
term

:
into its constituent factors:

6x2y ` 15x “ p3qp2qpxqpxqy ` p5qp3qx.

Since factors x and 3 appear in both terms, we can factor them out to
the front like this:

6x2y ` 15x “ 3xp2xy ` 5q.

The expression on the right shows 3x is common to both terms.
Here’s another example where factoring is used

::
of

::::::::::::::::
factoring—notice

:::
the

::::::::
common

::::::
factors

::::
are

:::::
taken

::::
out

:::
and

:::::::
moved

::
in

:::::
front

::
of

::::
the

:::::::
bracket:

2x2y ` 2x ` 4x “ 2xpxy ` 1 ` 2q “ 2xpxy ` 3q.
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Quadratic factoring
:::::::::::
Factoring

:::::::::::
quadratic

:::::::::::::
expressions

::
A

::::::::
quadratic

::::::::::
expression

:
is
:::

an
:::::::::::

expression
:::

of
::::
the

:::::
form

::::::::::::
ax2

` bx ` c.
When dealing with a quadratic function, it is often useful to rewrite
the function as a product of two factors

:::
The

:::::::::::
expression

::::::::
contains

:
a
::::::::
quadratic

:::::
term

:::
ax2,

::
a
::::::

linear
::::
term

:::
bx,

::::
and

::
a

::::::::
constant

:::::
term

::
c.
:::::

The
::::::::
numbers

::
a,

::
b,

::::
and

:
c
:::
are

::::::
called

::::::::::
coefficients:

::::
the

:::::::::
quadratic

:::::::::
coefficient

::
is

:
a,
::::
the

:::::
linear

::::::::::
coefficient

::
is

::
b,

::::
and

:::
the

::::::::
constant

:::::::::
coefficient

::
is

:
c. Suppose

you’re given the quadratic function f pxq “ x2
´ 5x ` 6

::
To

:::::
factor

:::
the

:::::::::
quadratic

::::::::::
expression

:::::::::::
ax2

` bx ` c
::
is
:::
to

:::::::
rewrite

::
it

::
as

:::
the

:::::::
product

:::
of

:
a
::::::::
constant

::::
and

::::
two

::::::
factors

::::
like

:::::::
px ` pq and

::::::
px ` qq:

:

ax2
` bx ` c “ apx ` pqpx ` qq.

::::::::::::::::::::::::::

:::::::::
Rewriting

:::::::::
quadratic

:::::::::::
expressions

:::
in

::::::::
factored

:::::
form

::::::
helps

:::
us

::::::
better

::::::::::
understand

::::
and

::::::::
describe

:::::
their

::::::::::
properties.

::::::::
Example

:::::::
Suppose

::::::
we’re asked to describe its properties. What are

the roots of this function ? In other words, for what values of x is this
function equal to zero? For which values of x is the functionpositive,
and for which

::
the

::::::::::
properties

:::
of

::::
the

::::::::
function

::::::::::::::::::
f pxq “ x2

´ 5x ` 6.
::::::::::
Specifically,

::::::
we’re

::::::
asked

::
to

:::::
find

:::
the

::::::::::
function’s

::::
roots

:
,
::::::
which

::::
are

:::
the

values of x is the function negative?
::
for

::::::
which

::::
the

::::::::
function

::::::
equals

::::
zero.

:

Factoring the expression x2
´ 5x ` 6 will help us see the properties

of the function more clearly. To factor a
::::
helps

:::
us

::::
see

::
its

::::::::::
properties

:::::
more

::::::
clearly,

:::::
and

::::::
makes

::::
our

:::
job

::
of

::::::::
finding

:::
the

:::::
roots

:::
of

::::
f pxq

::::::
easier.

:::
The

::::::::
factored

:::::
form

::
of

::::
this

:
quadratic expression is to express it as the

product of two factors:

f pxq “ x2
´ 5x ` 6 “ px ´ 2qpx ´ 3q.

We now
::::
Now

::::
we

:::
can

:
see at a glance

:::
that

:::
the

:::::::
values

::
of

::
x
:::
for

::::::
which

:::::::
f pxq “ 0

::::
are

:::::
x “ 2

::::
and

::::::
x “ 3.

::::::
When

::::::
x “ 2,

:::
the

::::::
factor

:::::::
px ´ 2q

::
is

::::
zero

:::
and

::::::
hence

:::::::::
f pxq “ 0.

:::::::::
Similarly,

:::::
when

::::::
x “ 3,

:
the solutions (the roots)

are x1 “ 2 and x2 “ 3. We can also see for which x values the function
will be overall positive: for x ° 3, both factors will be positive, and
for x † 2 both factors will be negative, and a negative times a
negative gives a positive. For values of x such that 2 † x † 3, the
first factor will be positive, and the second factor negative, making
the overall function negative

:::::
factor

:::::::
px ´ 3q

::
is

::::
zero

:::
so

::::::::
f pxq “ 0.

For certain
:::::
How

:::
did

::::
we

:::::
know

::::
that

::::
the

::::::
factors

::
of

:::::::::::
x2

´ 5x ` 6
:::
are

::::::
px ´ 2q

::::
and

::::::
px ´ 3q

:::
in

:::
the

::::::
above

:::::::::
example?

:::
For

:
simple quadratics like

the one above, you
::
we

:
can simply guess what the factors will be

:::
the
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::::::
values

::
of

::
p

:::
and

::
q
::
in

:::
the

::::::::
equation

::::::::::::::::::::::::::
x2

´ 5x ` 6 “ px ` pqpx ` qq.
::::::
Before

:::
we

::::
start

:::::::::
guessing,

::::
let’s

:::::
look

::
at

:::
the

::::::::::
expanded

:::::::
version

::
of

::::
the

:::::::
product

:::::::
between

:::::::
px ` pq

::::
and

:::::::
px ` qq:

:

px ` pqpx ` qq “ x2
` pp ` qqx ` pq.

:::::::::::::::::::::::::::::::

::::
Note

::::
the

:::::
linear

:::::
term

:::
on

:::
the

::::::::::
right-hand

:::::
side

::::::::
contains

:::
the

::::
sum

:::
of

:::
the

:::::::::
unknowns

::::::::
pp ` qq,

::::::
while

:::
the

::::::::
constant

:::::
term

::::::::
contains

:::::
their

::::::::
product

:::
pq.

::
If

:::
we

:::::
want

:::
the

::::::::
equation

:::::::::::::::::::::::::::::
x2

´ 5x ` 6 “ x2
` pp ` qqx ` pq

::
to

:::::
hold,

:::
we

:::::
must

::::
find

:::
two

:::::::::
numbers

:
p
::::
and

::
q

::::::
whose

::::
sum

::::::
equals

:::
´5

::::
and

::::::
whose

:::::::
product

::::::
equals

:::
6.

::::::
After

:
a
:::::::

couple
:::
of

::::::::
attempts

::::
we

::::
find

:::::::
p “ ´2

::::
and

:::::::
q “ ´3.

::::
This

:::::::::
guessing

:::::::::
approach

::
is

::
an

::::::::
effective

::::::::
strategy

:::
for

::::::
many

::
of

:::
the

::::::::
factoring

:::::::::
problems

::::
we

::::
will

:::::
likely

:::
be

::::::
asked

::
to

::::::
solve,

:::::
since

:::::
math

:::::::
teachers

::::::
often

::::::
choose

:::::::
simple

:::::::::
numbers

::::
like

::::
˘1,

::::
˘2,

::::
˘3,

::
or

::::
˘4

:::
for

:::
the

:::::::::
constants

:
p
::::
and

::
q. For more complicated quadratic expressions,

you
:::
we’ll need to use the , which will be the subject of the next

section. For now let us continue with more algebra tricks
::::::::
quadratic

::::::::
formula,

::::::
which

::::
we’ll

::::
talk

::::::
about

::
in

:::::::
Section

:::
1.7.

:

::::::::
Common

::::::::::
quadratic

:::::
forms

::::
Let’s

:::::
look

::
at

:::::
some

:::::::::
common

:::::::::
variations

::
of

:::::::::
quadratic

:::::::::::
expressions

::::
you

:::::
might

::::::::::
encounter

:::::
when

::::::
doing

:::::::
algebra

:::::::::::
calculations.

:

:::
The

::::::::::
quadratic

::::::::::
expression

:::::::
x2

´ p2
::
is

::::::
called

:
a
:::::::::

difference
::
of

:::::::
squares,

:::
and

::
it
::::
can

::
be

::::::::
obtained

:::
by

:::::::::::
multiplying

:::
the

:::::::
factors

::::::
px ` pq

::::
and

:::::::
px ´ pq:

px ` pqpx ´ pq “ x2
���´xp ���`px ´ p2

“ x2
´ p2.

::::::::::::::::::::::::::::::::::::::::

::::::
There’s

:::
no

::::::
linear

:::::
term

:::::::
because

::::
the

::::
´xp

:::::
term

:::::::
cancels

:::
the

:::::
`px

:::::
term.

::::
Any

::::
time

::::
you

::::
see

::
an

::::::::::
expression

::::
like

:::::::
x2

´ p2,
::::
you

::::
can

:::::
know

::
it
::::::
comes

::::
from

::
a

:::::::
product

:::
of

:::
the

:::::
form

:::::::::::::
px ` pqpx ´ pq.

:

::
A

::::::
perfect

::::::
square

::
is

:
a
::::::::::

quadratic
::::::::::
expression

::::
that

::::
can

::
be

::::::::
written

::
as

:::
the

:::::::
product

:::
of

::::::::
repeated

::::::
factors

:::::::
px ` pq:

:

x2
` 2px ` p2

“ px ` pqpx ` pq “ px ` pq
2.

:::::::::::::::::::::::::::::::::::::

::::
Note

::::::::::::::::::::::
x2

´ 2qx ` q2
“ px ´ qq

2
::
is

::::
also

:
a
:::::::
perfect

::::::
square.

Completing the square
Any quadratic expression Ax2

` Bx ` C can be rewritten in the form
Apx ´ hq

2
` k for some constants h and k. This process is called due

to the reasoning we follow to find the value of k. The constants
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h
::
In

::::
this

:::::::
section

::::::
we’ll

:::::
learn

::::::
about

:::
an

::::::::
ancient

:::::::
algebra

::::::::::
technique

:::::
called

::::::::::
completing

:::
the

:::::
square

:
,
::::::
which

::::::
allows

:::
us

::
to

:::::::
rewrite

:::
any

::::::::
quadratic

:::::::::
expression

:::
of

::::
the

:::::
form

:::::::::::
x2

` Bx ` C
:::
as

:
a
:::::::

perfect
:::::::

square
:::::
plus

:::::
some

:::::::
constant

::::::::::
correction

::::::
factor

:::::::::::
px ` pq

2
` k.

:::::
This

::::::::
algebra

:::::::::
technique

::::
was

:::::::::
described

::
in

::::
one

:::
of

:::
the

:::::
first

::::::
books

:::
on

::::::
al-jabr

:::::::::
(algebra),

:::::::
written

:::
by

:::::::::::::
Al-Khwarizmi

:::::::
around

:::
the

:::::
year

::::
800

:::
CE.

::::
The

::::::
name

::::::::::::
“completing

:::
the

:::::::
square”

::::::
comes

:::::
from

::::
the

:::::::::
ingenious

::::::::::
geometric

:::::::::::
construction

:::::
used

:::
by

:::
this

::::::::::
procedure.

::::
Yes,

:::
we

::::
can

:::
use

:::::::::
geometry

:::
to

:::::
solve

:::::::
algebra

:::::::::
problems!

:::
We

:::::::
assume

::::
the

:::::::
starting

::::::
point

:::
for

::::
the

::::::::::
procedure

::
is

::
a
:::::::::
quadratic

:::::::::
expression

:::::::
whose

::::::::::
quadratic

::::::::::
coefficient

::
is

:::::
one,

:::::::::::::
1x2

` Bx ` C,
::::
and

:::
use

:::::::
capital

::::::
letters

::
B

:
and k can be interpreted geometrically as the

horizontal and vertical shifts in the graph of the basic quadratic
function. The graph of the function f pxq “ Apx ´ hq

2
` k is the same

as the graph of the function f pxq “ Ax2 except it is shifted h units to
the right and k units upward. We will discuss the geometric meaning
of h

::
C

::
to

:::::::
denote

::::
the

::::::
linear

::::
and

::::::::
constant

:::::::::::
coefficients.

:::::
The

:::::::
capital

:::::
letters

::::
are

:::
to

::::::
avoid

::::
any

::::::::::
confusion

:::::
with

:::
the

::::::::::
quadratic

::::::::::
expression

:::::::::::
ax2

` bx ` c,
:::
for

::::::
which

::::::
a ‰ 1.

:::::
Note

:::
we

:::
can

:::::::
always

:::::
write

:::::::::::
ax2

` bx ` c

::
as

:::::::::::::
apx2

`
b
a x `

c
a q

::::
and

::::::
apply

:::
the

::::::::::
procedure

:::
to

:::
the

::::::::::
expression

::::::
inside

:::
the

::::::::
brackets,

::::::::::
identifying

::

b
a :::::

with
:
B
:
and k in more detail in Section 1.13

(page 95). For now, let’s focus on the algebra steps.
::

c
a ::::

with
:::
C.

Let’s try to find the values of k and h in the expression px ´ hq
2

` k
needed to complete the square in the expression x2

` 5x ` 6. Assume
the two expressions are equal, and then expand the bracket

::::
First

::::
let’s

::::::
rewrite

::::
the

:::::::::
quadratic

::::::::::
expression

:::::::::::
x2

` Bx ` C
:::
by

::::::::
splitting

:::
the

::::::
linear

::::
term

::::
into

::::
two

:::::
equal

::::::
parts:

:

x2
`

B
2 x `

B
2 x ` C.

::::::::::::::::

:::
We

:::
can

::::::::
interpret

::::
the

::::
first

:::::
three

:::::
terms

:::::::::::::
geometrically

::
as

:::::::
follows:

::::
the

::
x2

::::
term

::::::::::::
corresponds

::
to

::
a

::::::
square

:::::
with

::::
side

:::::::
length

::
x,

:::::
while

::::
the

::::
two

:::

B
2 x

:::::
terms

:::::::::::
correspond

::
to

:::::::::
rectangles

:::::
with

:::::
sides

::

B
2::::

and
::
x.

::::
See

::::
the

:::
left

::::
side

::
of

::::::
Figure

::::
1.15

:::
for

:::
an

::::::::::
illustration.

:
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x

x

B
2

x

B
2

` C “ x

x

B
2

x

B
2

B
2

B
2

´

B
2

B
2 ` C

Figure 1.15:
::
To

::::::::
complete

:::
the

:::::
square

:::
in

:::
the

::::::::
expression

:::::::::::
x2

` Bx ` C,
:::
we

::::
need

::
to

:::
add

:::
the

::::::::
quantity

::::
p

B
2 q

2,
::::::
which

::::::::::
corresponds

::
to

::
a
::::::
square

::::::
(shown

::
in

::::::
darker

::::::
colour)

::::
with

:::::
sides

:::::
equal

::
to

::::
half

:::
the

::::::::
coefficient

:::
of

:::
the

:::::
linear

:::::
term.

:::
We

::::
also

::::::
subtract

:::::
p

B
2 q

2
::
so

:::
the

::::::
overall

::::
value

::
of
:::

the
:::::::::
expression

:::::::
remains

::::::::::
unchanged.

:::
The

:::::::
square

::::
with

:::::
area

::
x2

::::
and

:::
the

::::
two

::::::::::
rectangles

:::
can

:::
be

::::::::::
positioned

::
to

::::
form

::
a
::::::
larger

::::::
square

:::::
with

::::
side

::::::
length

::::::::

`
x `

B
2

˘
.
::::::

Note
::::::
there’s

::
a

:::::
small

:::::
piece

::
of

:::::
sides

::

B
2 :::

by
::

B
2 :::::::

missing
:::::
from

:::
the

:::::::
corner.

::
To

::::::::
complete

:::
the

::::::
square,

:::
we

:::
can

::::
add

::
a

::::
term

:::::

` B
2

˘2
::
to

::::
this

:::::::::::
expression.

:::
To

::::::::
preserve

:::
the

::::::::
equality,

:::
we

::::
also

:::::::
subtract

:::::

` B
2

˘2
:::::
from

:::
the

::::::::::
expression to obtain

x2
` 5x ` 6“ Apx ´ hq

2
` k

“ Apx2
´ 2hx ` h2

q ` k

“ Ax2
´ 2Ahx ` Ah2

` k.

Observe the structure in the above equation . On both sides of the
equality there is one term which contains x2 (

::::::
obtain:

:

x2
`

B
2 x `

B
2 x ` C

::::::::::::::::
“ x2

`
B
2 x `

B
2 x `

` B
2

˘2
loooooooooooomoooooooooooon ´

` B
2

˘2
` C

::::::::::::::::::::::::::::::::::

“
`
x `

B
2

2̆
´

` B
2

˘2
` C.

::::::::::::::::::::::::::::::::::

:::
The

::::::::::
right-hand

:::::
side

::
of

::::
this

::::::::
equation

:::::::::
describes

:::
the

::::
area

::
of

::::
the

::::::
square

::::
with

::::
side

:::::::
length

::::::::

`
x `

B
2

˘
,
::::::
minus

:::
the

:::::
area

::
of

::::
the

:::::
small

:::::::
square

:::::

` B
2

˘2,
::::
plus

:::
the

::::::::
constant

::
C,

:::
as

:::::::::
illustrated

:::
on

:::
the

:::::
right

::::
side

:::
of

::::::
Figure

::::
1.15.

:

:::
We

:::
can

:::::::::::
summarize

:::
the

::::::
entire

:::::::::
procedure

::
in

::::
one

:::::::::
equation:

x2
` Bx ` C “

`
x `

B
2loomoon

p1q

˘2
` C ´

` B
2

˘2
loomoon

p2q

.

::::::::::::::::::::::::::::::::::::

:::::
There

::::
are

::::
two

::::::
things

:::
to

::::::::::
remember

::::::
when

::::
you

::::::
want

::
to

::::::
apply

::::
the

::::::::::::::::::
complete-the-square

:::::
trick:

:::
(1)

:::::::
choose

:::
the

::::::::
constant

::::::
inside

:::
the

:::::::
bracket

::
to

::
be

:::

B
2 ::::

(half
:::
of

:::
the

::::::
linear

::::::::::
coefficient),

::::
and

:::
(2)

::::::::
subtract

:::::

` B
2

˘2
:::::::
outside

:::
the

:::::::
bracket

::
in

:::::
order

:::
to

::::
keep

::::
the

::::::::
equation

:::::::::
balanced.
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:::::::
Solving

:::::::::
quadratic

::::::::::
equations

::::::::
Suppose

:::
we

:::::
want

::
to

::::::
solve

:::
the

:::::::::
quadratic

:::::::::
equation

:::::::::::::::
x2

` Bx ` C “ 0.
:::
It’s

:::
not

::::::::
possible

::
to

:::::
solve

::::
this

::::::::
equation

::::
with

::::
the

:::::::::::::::::::
digging-toward-the-x

::::::::
approach

:::::
from

::::::::
Section

:::
1.1

::::::
(since

::
x
::::::::
appears

::
in

:::::
both

:
the quadratic

term ), one term that contains x1 (
::
x2

::::
and

:
the linear term ), and

constant terms. If the expressions are equal, then the coefficient of
all the terms must be equal. By focusing on the quadratic terms
in the equation (they are underlined) we see A “ 1

:::
Bx).

:::::::
Enter

:::
the

::::::::::::::::::::
completing-the-square

:::::
trick!

:

::::::::
Example

::::
Let’s

::::
find

::::
the

:::::::::
solutions

::
of

::::
the

::::::::
equation

:::::::::::::::
x2

` 5x ` 6 “ 0.
:::
The

::::::::::
coefficient

::
of

:::
the

::::::
linear

::::
term

::
is
::::::
B “ 5, so we rewrite the equation

as
::::::
choose

::::::

B
2 “

5
2 :::

for
::::

the
::::::::
constant

::::::
inside

::::
the

::::::::
bracket,

::::
and

::::::::
subtract

:::::::::::

` B
2

˘2
“

` 5
2

˘2
:::::::
outside

::::
the

::::::::
bracket

:::
to

:::::
keep

::::
the

:::::::::
equation

:::::::::
balanced.

:::::::::::
Completing

:::
the

::::::
square

:::::
gives

:

x2
` 5x5x

::
` 6 “

ˆ
x2

´2hx ` h 5
2

˙2
` k.6´

::

` 5
2

˘2
“ 0.

:::::

Next we look at the linear terms (underlined) and infer that h “ ´2.5.
After rewriting, we obtain an equation in which k is the only
unknown:

x2
` 5x ` 6 “ x2

´ 2p´2.5qx ` p´2.5q
2

` k.

Wemust pick a value of k that makes the constant terms equal:

k “ 6 ´ p´2.5q
2

“ 6 ´ p2.5q
2

“ 6 ´
` 5

2
˘2

“ 6 ˆ
4
4 ´

25
4 “

24´25
4 “

´1
4 .

After completing the square we obtain

x2
` 5x ` 6 “ px ` 2.5q

2
´

1
4 .

The
:::
use

::::::::
fraction

::::::::::
arithmetic

:::
to

::::::::
simplify

::::
the

::::::::
constant

::::::
terms

::
in

::::
the

::::::::::
expression:

:::::::::::::::::::::::::::::::::::::::
6 ´

` 5
2

˘2
“ 6 ¨

4
4 ´

25
4 “

24´25
4 “

´1
4 “ ´0.25.

:

:::::
We’re

:::
left

:::::
with

:::
the

:::::::::
equation

px ` 2.5q
2

´ 0.25 “ 0,
::::::::::::::::::

:::::
which

::::
we

::::
can

::::
now

::::::
solve

::
by

::::::::
digging

:::::::
toward

:::
x.

:::::
First

:::::
move

:::::
0.25

::
to

:::
the

:
right-hand side of the expression above tells us our function
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is equivalent to the basic function x2, shifted 2.5 units to the left
and 1

4 units down. This would be very useful information if you
ever had to draw the graph of this function—you could simply
plot the basic graph of x2 and then shift it appropriately.

::
to

:::
get

::::::::::::::::
px ` 2.5q

2
“ 0.25.

::::::
Then

::::
take

::::
the

:::::::
square

::::
root

:::
on

:::::
both

::::::
sides

::
to

::::::
obtain

:::::::::::::::
px ` 2.5q “ ˘0.5,

::::::
which

:::::::::
simplifies

::
to

::::::::::::::
x “ ´2.5 ˘ 0.5.

::::
The

::::
two

::::::::
solutions

::::
are

:::::::::::::::::::
x “ ´2.5 ` 0.5 “ ´2

::::
and

::::::::::::::::::::
x “ ´2.5 ´ 0.5 “ ´3.

:::::
You

:::
can

::::::
verify

:::::
these

:::::::::
solutions

:::
by

:::::::::::
substituting

:::
the

:::::::
values

::
in

::::
the

:::::::
original

::::::::
equation

::::::::::::::::::::
p´2q

2
` 5p´2q ` 6 “ 0

:::
and

:::::::::
similarly

::::::::::::::::::::
p´3q

2
` 5p´3q ` 6 “ 0.

:::::::::::::::
Congratulations,

:::::
you

::::
just

:::::::
solved

::
a
::::::::::

quadratic
:::::::::

equation
::::::

using
::

a
::::::::::::
1200-year-old

:::::::
algebra

::::::::::
technique!

It is important you become comfortable with this procedure for
completing the square. It is not extra difficult, but it does require you
to think carefully about the unknowns h and k and to choose their
values appropriately. There is no general formula for finding k, but
you can remember the following simple shortcut for finding h. Given
an equation Ax2

` Bx ` C “ Apx ´ hq
2

` k, wehave h “
´B
2A . Using

this shortcut will save you some time, but you will still have to go
through the algebra steps to find k

::
In

:::
the

::::
next

:::::::
section,

:::::
we’ll

:::::
learn

::::
how

::
to

::::::::
leverage

:::
the

::::::::::::::::::
complete-the-square

:::::
trick

::
to

::::::
obtain

:
a
:::::::::::::::
general-purpose

:::::::
formula

:::
for

:::::::
quickly

:::::::
solving

:::::::::
quadratic

:::::::::
equations.

Take out a pen and a piece of paper now (yes, right now!)
and verify that you can correctly complete the square in these
expressions: x2

´ 6x ` 13 “ px ´ 3q
2

` 4 and x2
` 4x ` 1 “ px ` 2q

2
´ 3.

Exercises
E1.7 Factor the following

:::::::::
quadratic expressions:

a) x2
´ 8x ` 7 b) x2

` 4x ` 4
::
c)

:::::
x2

´ 9
:

Hint:
::::::
Guess

:::
the

::::::
values

::
p

::::
and

:
q
::
in

::::
the

::::::::::
expression

:::::::::::::
px ` pqpx ` qq.

E1.8 Expand the following expressions:
::::
Solve

::::
the

::::::::::
equations

:::
by

::::::::::
completing

:::
the

:::::::
square.

:

a) pa ` bq
2
:::::::::::::::
x2

` 2x ´ 15 “ 0
b) pa ` bq

3

c) pa ` bq
4

d) pa ` bq
5

Can you spot a pattern in
the coefficients of the different
expressions? Do you think there
is a general formula for pa ` bq

n?
:::::::::::::
x2

` 4x ` 1 “ 0
:

The coefficients of the expression of pa ` bq
n for different values

of n correspond to the rows in Pascal’s triangle. Check out the to learn
the general formula and see an interesting animation of how it can
be constructed.



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



1.7 SOLVING QUADRATIC EQUATIONS 43

1.7 Solving quadratic equations
What would you do if asked to solve for x in the quadratic equation
x2

“ 45x ` 23
:::::::::::
2x2

“ 4x ` 6? This is called a quadratic equation since it
contains the unknown variable x squared. The name comes from the
Latin quadratus, which means square. Quadratic equations appear
often, so mathematicians created a general formula for solving them.
In this section, we’ll learn about this formula and use it to put some
quadratic equations in their place.

Before we can apply the formula, we need to rewrite the equation
we are trying to solve in the following form:

ax2
` bx ` c “ 0.

We reach
::::
This

::
is

::::::
called

:::
the

::::::::
standard

::::
form

::
of

:::
the

:::::::::
quadratic

:::::::::
equation.

:::
We

::::::
obtain

:
this form by moving all the numbers and xs to one side

and leaving only 0 on the other side. This is called the standard form
of the quadratic equation. For example, to transform the quadratic
equation x2

“ 45x ` 23
:::::::::::
2x2

“ 4x ` 6
:
into standard form, subtract

45x ` 23
:::
we

:::::::
subtract

::::::
4x ` 6

:
from both sides of the equation to obtain

x2
´ 45x ´ 23 “ 0

:::::::::::::::
2x2

´ 4x ´ 6 “ 0. What are the values of x that
satisfy this equation?

:::::::::
Quadratic

::::::::
formula

Claim

:
The solutions to the equation ax2

` bx ` c “ 0 are
:::
for

:::::
a ‰ 0

:::
are

:

x1 “
´b `

?

b2 ´ 4ac
2a

and
:

x2 “
´b ´

?

b2 ´ 4ac
2a

.

This result is called the quadratic formula, and
::::
The

:::::::::
quadratic

:::::::
formula

is usually abbreviated x “
´b˘

?
b2´4ac

2a , where the sign “˘” stands
for both “`” and “´.” The notation “˘” allows us to express both
solutions x1 and x2 in one equation, but you should keep in mind
there are really two solutions.

Let’s see how the quadratic formula is used to solve the equa-
tion x2

´ 45x ´ 23 “ 0
:::::::::::::::
2x2

´ 4x ´ 6 “ 0. Finding the two solutions re-
quires the simple mechanical task of identifying a “ 1, b “ ´45, and
c “ ´23

:::::
a “ 2,

::::::::
b “ ´4,

::::
and

::::::
c “ ´6, then plugging these values into
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the two parts of the formula:

x1 “
45 `

a
452 ´ 4p1qp´23q

2
4 `

a
42 ´ 4p2qp´6q

4
:::::::::::::::::

“ 45.5054 . . .
4 `

?
16 ` 48
4

“
4 `

?

64
4

“ 3
:::::::::::::::::::::::::

,

x2 “
45 ´

a
452 ´ 4p1qp´23q

2
4 ´

a
42 ´ 4p2qp´6q

4
:::::::::::::::::

“ ´0.5054 . . . .
4 ´

?
16 ` 48
4

“
4 ´

?

64
4

“ ´1.
:::::::::::::::::::::::::::

Verify using your calculator that both of the values above
:::
We

:::
can

:::::
easily

::::::
verify

::::
that

:::::
value

:::::::
x1 “ 3

::::
and

:::::::
x2 “ ´1

:::::
both

:
satisfy the original

equation x2
“ 45x ` 23

:::::::::::
2x2

“ 4x ` 6.

Proof of claim
:::
the

:::::::::
quadratic

::::::::
formula

Understanding proofs is an important aspect of learning mathematics.
Every claim made by a mathematician comes with a proof

::::
proof,

which is a step-by-step argument that shows why the claim is true.
It’s not necessary to know the proofs of all math statements, but the
more proofs you know the more solid your understanding of math
will become. It’s easy to spot

::::
easy

:::
to

:::
see

:
where a proof starts and

where a proof ends
::
in

:::::::::::::
mathematical

:::::
texts. Each proof begins with

the heading Proof (usually in italics) and has the symbol “˝
:

” at its
end.

::::
The

::::::::
purpose

::
of

:::::
these

::::::::::::
demarcations

::
is

::
to

:::::
give

:::::::
readers

:::
the

::::::
option

::
to

::::
skip

::::
the

::::::
proof.

:
It’s usually okay to skip proofs when reading a

math book, but if you really want to hang with the mathematicians,
you have to read the proofs

::
not

::::::::::
necessary

::
to

:::::
read

::::
and

:::::::::::
understand

:::
the

::::::
proofs

::
of

:::
all

:::::
math

:::::::::::
statements,

:::
but

::::::::
reading

::::::
proofs

::::
can

:::::
often

::::
lead

:::
you

:::
to

:
a
:::::
more

:::::
solid

::::::::::::::
understanding

::
of

:::
the

::::::::
material.

I want you to see the proof of the quadratic formula because
it’s an important result

::::
that

::::::
you’ll

::::
use

:::::
very

:::::
often

:::
to

::::::
solve

:::::
math

:::::::::
problems.

::::::::
Reading

::::
the

::::::
proof

::::
will

::::
help

::::
you

:::::::::::
understand

:::::::
where

:::
the

::::::::
quadratic

:::::::::
formula

::::::
comes

:::::
from. This proof is an example of an

argument fromfirst principles, which means it uses only basic rules
of math and doesn’t depend on any advanced math knowledge.
You can totally handle this! The proof uses

:::
The

:::::
proof

::::::
relies

:::
on the

completing-the-square technique from the previous section.
:
,
::::
and

:::::
some

:::::
basic

:::::::
algebra

::::::::::
operations.

::::
You

::::
can

::::::
totally

::::::
handle

:::::
this!

Proof. Starting
:::::
We’re

::::::::
starting from the quadratic equation ax2

` bx `

c “ 0, we
:::
and

::::::
we’re

:::::::
making

:::
the

::::::::::
additional

:::::::::::
assumption

::::
that

::::::
a ‰ 0.

:::
We

:::::
want

::
to

::::
find

:::
the

::::::
value

::
or

::::::
values

:::
of

:
x
::::
that

::::::
satisfy

::::
this

:::::::::
equation.

:

:::
The

:::::
first

::::::
thing

:::
we

::::::
want

:::
to

:::
do

:::
is

:
divide by a to obtain the

:::::::::
equivalent

:
equation

x2
`

b
a

x `
c
a

“ 0.
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Next we ’ll complete the square by asking, “What are the values of
h and k that satisfy the equation

px ´ hq
2

` k “ x2
`

b
a

x `
c
a

?”

To find the values for h and k, let’s expand the bracket on the
left-hand side to obtain

x2
´ 2hx ` h2

` k “ x2
`

b
a

x `
c
a

.

We can identify h by looking at the coefficients in front of x on both
sides of the equation. We have ´2h “

b
a and hence h “ ´

b
2a :::

We
:::
are

:::::::
allowed

::
to

:::::::
divide

::
by

::
a
:::::
since

:::
we

::::::::
assumed

::::
that

:::::
a ‰ 0.

Let’s now substitute the value h “ ´
b

2a into the above equation
and see what we have so far:

x2
`

b
a

x `
b2

4a2 ` k “ x2
`

b
a

x `
c
a

.

To determine the value of k, we need to ensure the constant terms on
both sides of the equation are equal, and then isolate k

:::::
Next

:::
we

:::::
apply

:::
the

:::::::
complete

:::
the

::::::
square

::::
trick

::
to

:::
the

:::::::::
quadratic

:::::::::::
expression,

::
to

::::::
obtain

:::
an

:::::::::
equivalent

::::::::::
expression

:::
of

:::
the

:::::
form

:::::::::
px`?q

2
`?.

::::::
Recall

::::
that

::::
the

::::
trick

:::
for

::::::::::
completing

:::
the

:::::::
square

::
is

::
to

:::::::
choose

:::
the

::::::::
number

:::::
inside

::::
the

:::::::
bracket

::
to

::
be

::::
half

:::
the

::::::::::
coefficient

::
of

::::
the

:::::
linear

:::::
term

::
of

::::
the

:::::::::
quadratic

::::::::::
expression,

:::::
which

:::
is

::

b
2a:::

in
::::
this

:::::
case.

::::
We

:::::
must

:::::
also

:::::::
subtract

::::
the

:::::::
square

::
of

::::
this

::::
term

::::::::
outside

:::
the

:::::::
bracket

:::
in

::::::
order

::
to

:::::::::
maintain

::::
the

::::::::
equality.

::::::
After

::::::::::
completing

:::
the

:::::::
square,

::::::
we’re

:::
left

::::
with

::::
the

:::::::::
following

::::::::
equation:

b2

4a2 ` k “
c
a

ñ k “
c
a

´
b2

4a2 .

Having found the values of both h and k, wecan write the
equation ax2

` bx ` c “ 0 in the form px ´ hq
2

` k “ 0 as follows:
ˆ

x `
b

2a

˙
22

`
c
a

´
b2

4a2 “ 0.

From hereon, we can
:
,
:::
we use the standard procedure for “digging”

toward the
::::::::::::::::::
digging-toward-the-x , which we saw in Section 1.1

::::::::::
procedure.

Move all constants to the right-hand side:
ˆ

x `
b

2a

˙2
“ ´

c
a

`
b2

4a2 .
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Next,
:
,

ˆ
x `

b
2a

2̇
“

b2

4a2 ´
c
a

,
:::::::::::::::::::::

:::
and

:
take the square root of both sides to undo the square function.

Since the square function maps both positive and negative numbers
to the same value, this step yields two solutions:

x `
b

2a
“ ˘

c
´

c
a

`
b2

4a2 .

Let’s take a moment to

x `
b

2a
“ ˘

c
b2

4a2 ´
c
a

.
::::::::::::::::::::::::::::

:::::
Since

:::
any

::::::::
number

::::
and

::
its

:::::::::
opposite

::::
have

::::
the

:::::
same

:::::::
square,

::::::
taking

:::
the

::::::
square

::::
root

:::::
gives

:::
us

::::
two

::::::::
possible

:::::::::
solutions,

::::::
which

:::
we

:::::::
denote

:::::
using

:::
the

::::
“˘”

:::::::
symbol.

:

::::
Next

::::
we

::::::::
subtract

::

b
2a:::::

from
:::::

both
:::::

sides
:::

of
::::
the

::::::::
equation

:::
to

::::::
isolate

:
x
::::
and

:::::::
obtain

:::::::::::::::::::
x “ ´

b
2a ˘

b
b2

4a2 ´
c
a .

::::
We tidy up the mess under the

square root:

c
´

c
a

`
b2

4a2 “

d

´
p4aqc
p4aqa

`
b2

4a2 “

c
´4ac ` b2

4a2 “

?

b2 ´ 4ac
2a

.

We obtain

x `
b

2a
“ ˘

?

b2 ´ 4ac
2a

,

which is just one step from the final answer,
:
,
::::::::::::::::::::::::::::::::::::::::::

b
b2

4a2 ´
c
a “

b
b2

4a2 ´
4a ¨ c
4a ¨ a “

b
b2´4ac

4a2 “

?
b2´4ac

2a ,

:::
and

::::
add

:::
the

::::::::
fractions

:::
on

:::
the

::::::::::
right-hand

::::
side

::
to

::::::
obtain

:::::::::::::::
x “

´b˘
?

b2´4ac
2a .

:::
The

:::::::::
solutions

::
to

:::
the

:::::::::
quadratic

:::::::::
equation

::::::::::::::
ax2

` bx ` c “ 0
::::
are

x1 “
´b
2a

?

b2 ´ 4ac
2a

´b `

?

b2 ´ 4ac
2a

::::::::::::::
:::
and x2

:
“

´b ˘

?

b2 ´ 4ac
2a

´b ´

?

b2 ´ 4ac
2a

::::::::::::::

.

This completes the proof
::
of

:::
the

:::::::::
quadratic

::::::::
formula.

:::
The

::::::::::
expression

::::::::
b2

´ 4ac
::
is

::::::
called

:::
the

:::::::::::
discriminant

::
of

:::
the

:::::::::
equation.

:::
The

::::::::::::
discriminant

::::
tells

:::
us

:::::::::
important

::::::::::::
information

:::::
about

::::
the

::::::::
solutions
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::
of

:::
the

::::::::
equation

:::::::::::::::
ax2

` bx ` c “ 0.
::::

The
:::::::::
solutions

::
x1::::

and
:::
x2 ::::::::::

correspond

::
to

::::
real

::::::::
numbers

::
if

:::
the

::::::::::::
discriminant

::
is

::::::::
positive

::
or

:::::
zero:

::::::::::::
b2

´ 4ac • 0.

:::::
When

::::
the

::::::::::::
discriminant

::
is

::::
zero

:::::::::::::
(b2

´ 4ac “ 0),
::::
the

::::::::
equation

::::
has

::::
only

:::
one

::::::::
solution

::::::
since

:::::::::::::
x1 “ x2 “

´b
2a .

:::
If

::::
the

::::::::::::
discriminant

::
is

:::::::::
negative,

:::::::::::
b2

´ 4ac † 0,
::::
the

:::::::::
quadratic

::::::::
formula

::::::::
requires

::::::::::
computing

::::
the

::::::
square

::::
root

::
of

:
a
::::::::
negative

::::::::
number,

::::::
which

::
is

::::
not

:::::::
allowed

:::
for

::::
real

:::::::::
numbers.

Alternative proofof claim

To have a proof
::::::
prove

:::
the

:::::::::
quadratic

::::::::
formula, we don’t necessarily

need to show the derivation of
:::::::
algebra

:::::
steps

:::
we

:::::::::
followed

::
to

::::::
obtain

the formula as outlined above. The claim
:::::::::
quadratic

::::::::
formula states

that x1 and x2 are solutions. To prove the claim
:::::::
formula

::
is
:::::::

correct
we can simply plug x1 and x2 into the quadratic equation and verify
that the answers are zero

:::::::
equation

:::::::::::::::
ax2

` bx ` c “ 0
:::
to

:::::
verify

:::::
that

::
x1

:::
and

:::
x2 :::

are
:::::::::
solutions. Verify this on your own.

Applications
The golden ratio

The golden ratio is an essential proportion in geometry, art, aesthet-
ics, biology, and mysticism, and is usually denoted as j “

1`
?

5
2 “

1.6180339 . . .. This ratio is determined as the positive solution to the
quadratic equation

x2
´ x ´ 1 “ 0.

Applying the quadratic formula to this equation yields two solu-
tions,

x1 “
1 `

?

5
2

“ j and x2 “
1 ´

?

5
2

“ ´
1
j

.

You can learn more about the various contexts in which the golden
ratio appears from the Wikipedia article on the subject. We’ll discuss
the golden ratio again on page 447 in Chapter 5.

Explanations
Multiple solutions

Often, we are interested in only one of the two solutions to the
quadratic equation. It will usually be obvious from the context
of the problem which of the two solutions should be kept and
which should be discarded. For example, the time of flight of a ball
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thrown in the air from a height of 3 metres with an initial veloc-
ity of 12 metres per second is obtained by solving the equation
p´4.9qt2

` 12t ` 3 “ 0. The two solutions of the quadratic equation
are t1 “ ´0.229 and t2 “ 2.678. The first answer t1 corresponds to
a time in the past so we reject it as invalid. The correct answer is t2.
The ball will hit the ground after t “ 2.678 seconds.

Relation to factoring

In the previous section we discussed the quadratic factoring opera-
tion by which we could rewrite a quadratic function as the product
of two terms f pxq “ ax2

` bx ` c “ px ´ x1qpx ´ x2q.
:
a
::::::::
constant

::::
and

:::
two

:::::::
factors:

:

f pxq “ ax2
` bx ` c “ apx ´ x1qpx ´ x2q.

:::::::::::::::::::::::::::::::::::

The two numbers x1 and x2 are called the roots of the function: these
points are where the function f pxq touches the x-axis.

You now have the ability to factor any quadratic equation. Use :
:::
use

:
the quadratic formula to find the two solutions, x1 and x2, then

rewrite the expression as px ´ x1qpx ´ x2q
:::::::::::::::
apx ´ x1qpx ´ x2q.

Some quadratic expressions cannot be factored, however. These
“unfactorable” expressions correspond to quadratic functions whose
graphs do not touch the x-axis. They have no

:::
real

:
solutions (no

roots). There is a quick test you can use to check if a quadratic func-
tion f pxq “ ax2

` bx ` c has roots (touches or crosses the x-axis) or
doesn’t have roots (never touches the x-axis). If b2

´ 4ac ° 0 then
the function f has two roots. If b2

´ 4ac “ 0, the function has only
one root, indicating the special case when the function touches the
x-axis at only one point. If b2

´ 4ac † 0, the function has no roots.
In this case, the quadratic formula fails because it requires taking
the square root of a negative number, which is not allowed . Think
about it—how could you square a number and obtain a negative
number?

:::
(for

::::::
now).

::::::
We’ll

:::::
come

:::::
back

:::
to

:::
the

:::::
idea

::
of

:::::::
taking

::::::
square

::::
roots

:::
of

::::::::
negative

::::::::
numbers

::
in

:::::::
Section

:::
3.5

::::
(see

:::::
page

:::::
232).

Links
[ Intuitive visual derivation

:::::::
Algebra

::::::::::::
explanation

::
of

::::
the

:::::::::
quadratic

:::::::
formula

:
]

:::::::::::::::::::::::::::::::::::::::::::::
https://www.youtube.com/watch?v=r3SEkdtpobo

[
::::::
Visual

:::::::::::
explanation of the quadratic formula derivation ]

:::::::::::::::::::::::::::::::::::::::::::::
https://www.youtube.com/watch?v=EBbtoFMJvFc
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Formulas
The following properties follow from the definition of exponentia-
tion as repeated multiplication.

Property 1 Multiplying together two exponential expressions that
have the same base is the same as adding the exponents:

bmbn
“ bbb ¨ ¨ ¨ bbloooomoooon

m times

bbb ¨ ¨ ¨ bbloooomoooon
n times

“ bbbbbbb ¨ ¨ ¨ bblooooooomooooooon
m`n times

“ bm`n.

Property 2 Division by a number can be expressed as an exponent
of minus one:

b´1
”“:

1
b

.

::::
Any

:::::::
number

:::::
times

:::
its

:::::::::
reciprocal

:::::
gives

::::
one:

:::::::::::::
bb´1

“
b
b “ 1.

:
A negative

exponent corresponds to a division:

b´n
“

1
bn .

Property 3 By combining Property 1 and Property 2 we obtain the
following rule:

bm

bn “ bm´n.

In particular we have bnb´n
“ bn´n

“ b0
“ 1. Multiplication by the

number b´n is the inverse operation of multiplication by the number
bn. The net effect of the combination of both operations is the same
as multiplying by one, i.e., the identity operation.

Property 4 When an exponential expression is exponentiated, the
inner exponent and the outer exponent multiply:

pbm
q

n
“ pbbb ¨ ¨ ¨ bbloooomoooon

m times

qpbbb ¨ ¨ ¨ bbloooomoooon
m times

q ¨ ¨ ¨ pbbb ¨ ¨ ¨ bbloooomoooon
m times

q

looooooooooooooooooooooomooooooooooooooooooooooon
n times

“ bmn.

Property 5.1

pabq
n

“ pabqpabqpabq ¨ ¨ ¨ pabqpabqloooooooooooooomoooooooooooooon
n times

“ aaa ¨ ¨ ¨ aaloooomoooon
n times

bbb ¨ ¨ ¨ bbloooomoooon
n times

“ anbn.
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Property 1

The first property states that the sum of two logarithms
:::
the

::::::::::
logarithms

::
of

::::
two

:::::::::
numbers

:
is equal to the logarithm of the product of the

arguments
:::::::
numbers:

logpxq ` logpyq “ logpxyq.

From this property, we can derive two other useful ones:

logpxk
q “ k logpxq,

and

logpxq ´ logpyq “ log
ˆ

x
y

˙
.

Proof: For all three equations above, we

Proof.
:::
We need to show that the expression on the left is equal to

the expression on the right. We met logarithms a very short time
ago

::::
very

::::::::
recently, so we don’t know each other too well yet. In fact,

the only thing we know about logs is the inverse relationship with
the exponential function. The only way to prove this property is to
use this relationship.

The following statement is true for any base b:

bmbn
“ bm`n.

This follows from first principles. Recall that exponentiation is noth-
ing more than repeated multiplication. If you count the total number
of bs multiplied on the left side, you’ll find a total of m ` n of them,
which is what we have on the right.

If we define some new variables x and y such that bm
“ x and

bn
“ y, then we can rewrite the equation bmbn

“ bm`n as

xy “ bm`n.

Taking the logarithm of both sides gives us

logbpxyq “ logb
`
bm`n˘

“ m ` n “ logbpxq ` logbpyq.

The last step above uses the definition of the log function again,
which states that

bm
“ x : ô :m “ logbpxq and bn

“ y : ô :n “ logbpyq.

:::
We

:::::
have

::::
thus

::::::
shown

::::
that

::::::::::::::::::::::::
logpxq ` logpyq “ logpxyq.

:



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE
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:::::
Using

::::
this

:::::::::
property,

:::
we

:::
can

::::::
derive

::::
two

:::::
other

::::::
useful

:::::::::
formulas:

:

logpxk
q “ k logpxq,

::::::::::::::::

:::
and

:

logpxq ´ logpyq “ log
ˆ

x
y

˙
.

:::::::::::::::::::::::

Property 2

This property helps us change from one base to another.
We can express the logarithm in any base B in terms of a ratio of

logarithms in another base b. The general formula is

logBpxq “
logbpxq

logbpBq
.

For example, the logarithm base 10 of a number S can be expressed
as a logarithm base 2 or base e as follows:

log10pSq “
log10pSq

1
“

log10pSq

log10p10q
“

log2pSq

log2p10q
“

lnpSq

lnp10q
.

This property is helpful when you need to compute a logarithm in a
base that is not available on your calculator. Suppose you’re asked to
compute log7pSq, but your calculator only has a

:::::::
log10 :

button. You
can simulate log7pSq by computing log10pSq and dividing by log10p7q.

Exercises
E1.16 Use the properties of logarithms to simplify the expressions

a) logpxq ` logp2yq b) logpzq ´ logpz2
q c) logpxq ` logpy{xq

d) log2p8q e) log3p
1
27 q f) log10p10000q

1.10 The Cartesian plane
The Cartesian plane, named after famous philosopher and mathe-
matician René Descartes, is used to visualize pairs of numbers px, yq.

Recall the number line representation for numbers that we intro-
duced in Section 1.3.
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´4 ´3 ´2 ´1 1 2 3 40

´2

´1

1

2
P“p´3, 2q

~v1 “p3, 1q

~v2 “p´1, ´2q~v3 “p´1, ´2q

x

y

Figure 1.18: A Cartesian plane which shows the point P “ p´3, 2q and the
vectors ~v1 “ p3, 1q and ~v2 “ ~v3 “ p´1, ´2q.

mark where the vector starts and where it ends. Note that vectors
~v2 and ~v3 illustrated in Figure 1.18 are actually the same vector—the
“displace left by 1 and down by 2” vector. It doesn’t matter where
you draw this vector, it will always be the same whether it begins at
the plane’s origin or elsewhere.

Graphs of functions
The Cartesian plane is great for visualizing functions. You can think
of a function as a set of input-output pairs px, f pxqq. You can

:::::
draw

:::
the graph

::
of

:
a function by letting the y-coordinate represent the func-

tion’s output value:
px, yq “ px, f pxqq.

For example, with the function f pxq “ x2, we can pass a line through
the set of points

px, yq “ px, x2
q,

and obtain the graph shown in Figure 1.19.
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´4 ´3 ´2 ´1 1 2 3 40

1

2

3

4

5

f pxq “ x2

x

y

Figure 1.19:
:::
The

:::::
graph

::
of

:::
the

:::::::
function

::::::::
f pxq “ x2

::::::
consists

::
of

:::
all

::::
pairs

::
of

:::::
points

::::
px, yq

::
in

:::
the

::::::::
Cartesian

:::::
plane

::::
that

:::::
satisfy

::::::
y “ x2.

When plotting functions by setting y “ f pxq, we use a special
terminology for the two axes. The x-axis represents the independent
variable (the one that varies freely), and the y-axis represents the de-
pendent variable f pxq, since f pxq depends on x.

The graph of the function f pxq “ x2 consists of all pairs of points
px, yq in the Cartesian plane that satisfy y “ x2.
To draw the graph of any function f pxq, use the following procedure.
Imagine making a sweep over all of the possible input values for the
function. For each input x, put a point at the coordinates px, yq “

px, f pxqq in the Cartesian plane. Using the graph of a function, you
can literally see what the function does: the “height” y of the graph
at a given x-coordinate tells you the value of the function f pxq.

Dimensions
The number line is one dimensional

::::::::::::::
one-dimensional. Every number

x can be visualized as a point on the number line. The Cartesian
plane has two dimensions: the x dimension and the y dimension.
If we need to visualize math concepts in 3D, we can use a three-
dimensional coordinate system with x, y, and z axes

::::
(see

::::::
Figure

::::
3.10

::
on

:::::
page

::::
223).
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1.11 Functions
We need to have a relationship talk. We need to talk about functions.
We use functions to describe the relationships between variables. In
particular, functions describe how one variable depends on another.

For example, the revenue R from a music concert depends on the
number of tickets sold n. If each ticket costs $25, the revenue from
the concert can be written as a function of n as follows: Rpnq “ 25n.
Solving for n in the equation Rpnq “ 7000 tells us the number of
ticket sales needed to generate $7000 in revenue. This is a simple
model of a function; as your knowledge of functions builds, you’ll
learn how to build more detailed models of reality. For instance, if
you need to include a 5% processing charge for issuing the tickets,
you can update the revenue model to Rpnq “ 0.95 ¨ 25 ¨ n. If the
estimated cost of hosting the concert is C “ $2000, then the profit
from the concert P can be modelled as

Ppnq “ Rpnq ´ C

“ 0.95 ¨ $25 ¨ n ´ $2000

The function Ppnq “ 23.75n ´ 2000 models the profit from the concert
as a function of the number of tickets sold. This is a pretty good
model already, and you can always update it later as you learn more
information.

The more functions you know, the more tools you have for mod-
elling reality. To “know” a function, you must be able to understand
and connect several of its aspects. First you need to know the func-
tion’s mathematical definition, which describes exactly what the
function does. Starting from the function’s definition, you can use
your existing math skills to find the function’s domain, its image,
and its inverse function

::::::::::
properties. You must also know the graph

of the function; what the function looks like if you plot x versus f pxq

in the Cartesian plane. It’s also a good idea to remember the values
of the function for some important inputs. Finally—and this is the
part that takes time—you must learn about the function’s relations
to other functions.

Definitions
A function is a mathematical object that takes numbers as inputs and
produces numbers as outputs. We use the notation

f : A Ñ B
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to denote a function from the input set A to the output set B. In this
book, we mostly study functions that take real numbers as inputs
and give real numbers as outputs: f : R Ñ R.

x y “ f pxq

A B

f

Figure 1.20:
::
An

:::::::
abstract

::::::::::::
representation

::
of

::
a

:::::::
function

:
f
:::::
from

:::
the

::
set

::
A
::
to

:::
the

::
set

::
B.

::::
The

:::::::
function

:
f
::
is
:::
the

:::::
arrow

::::::
which

::::
maps

::::
each

:::::
input

:
x
::
in

::
A

::
to

::
an

::::::
output

:::
f pxq

::
in
:::

B.
:::
The

::::::
output

::
of

:::
the

:::::::
function

::::
f pxq

::
is

:::
also

:::::::
denoted

::
y.

::
A

::::::::
function

::
is

:::
not

::
a

::::::::
number;

::::::
rather,

::
it
::
is

::
a

:::::::
mapping

::::
from

:::::::::
numbers

::
to

::::::::
numbers.

::::
We

::::
say

:::
“ f

:::::
maps

::
x
::
to

::::::
f pxq.”

::::
For

::::
any

::::::
input

::
x,

:::
the

:::::::
output

:::::
value

::
of

::
f
:::
for

::::
that

:::::
input

::
is

::::::::
denoted

:::::
f pxq,

::::::
which

:
is
:::::
read

::
as

:::
“ f

::
of

:::
x.”

:

We’ll now define some fancy technical terms used to describe the
input and output sets of functions.

• The
::
A:

::::
the

:
source set

::
of

::::
the

::::::::
function

:::::::::
describes

::::
the

::::::
types

::
of

::::::::
numbers

::::
that

:::
the

::::::::
function

:::::
takes

::
as

:::::::
inputs.

:

•
::::::::
Domp f q:

:::
the

:
domain of a function is the set of allowed input

values
:::
for

:::
the

::::::::
function.

:

•
::
B:

:::
the

:
target set

::
of

:
a
::::::::
function

:::::::::
describes

::::
the

::::
type

::
of

::::::::
outputs

:::
the

:::::::
function

::::
has.

::::
The

::::::
target

:::
set

::
is

::::::::::
sometimes

::::::
called

:::
the

::::::::
codomain.

• The
::::::
Imp f q:

:::
the

:
image or range of the function f is the set of all

possible output values of the function.
• The

:::
The

::::::
image

::
is

::::::::::
sometimes

::::::
called

:::
the

:::::
range

:
.

:::
See

::::::
Figure

:::::
1.21

:::
for

:::
an

::::::::::
illustration

:::
of

:::::
these

:::::::::
concepts.

:::::
The

::::::::
purpose

::
of

:::::::::::
introducing

:::
all

::::
this

::::::
math

::::::::::::
terminology

::
is

:::
so

:::::
we’ll

::::::
have

::::::
words

::
to

:::::::::::
distinguish

::::
the

::::::::
general

::::::
types

:::
of

:::::::
inputs

::::
and

::::::::
outputs

:::
of

::::
the

:::::::
function

:::::
(real

:::::::::
numbers,

::::::::
complex

:::::::::
numbers,

:::::::
vectors)

:::::
from

:::
the

:::::::
specific

:::::::::
properties

::
of

::::
the

:::::::
function

::::
like

:::
its

:::::::
domain

::::
and

::::::
image.

:

::::
Let’s

:::::
look

:::
at

:::
an

::::::::
example

:::
to

:::::::::
illustrate

::::
the

::::::::::
difference

::::::::
between

:::
the

::::::
source

::::
set

::::
and

::::
the

:::::::
domain

:
of a functiondescribes the type of

outputs the function has. .
::::::::::

Consider
::::

the
:::::::

square
:::::

root
::::::::
function

:::::::::
f : R Ñ R

:::::::
defined

:::
as

::::::::::
f pxq “

?
x,

::::::
which

::
is

::::::
shown

::
in

:::::::
Figure

::::
1.22.

::::
The

::::::
source

:::
set

::
of

::
f
::
is

:::
the

:::
set

::
of

::::
real

:::::::::::::
numbers—yet

:::::
only

:::::::::::
nonnegative

::::
real

::::::::
numbers

:::
are

::::::::
allowed

::
as

:::::::
inputs,

:::::
since

:::

?
x
::
is

::::
not

:::::::
defined

:::
for

::::::::
negative
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A B

Domp f q Imp f q

x f pxq

f

Figure 1.21:
:::::::::
Illustration

::
of

:::
the

::::
input

::::
and

::::::
output

:::
sets

::
of

:
a
:::::::
function

:::::::::
f : A Ñ B.

:::
The

:::::
source

::
set

:
is
:::::::
denoted

::
A

:::
and

:::
the

::::::
domain

:
is

:::::::
denoted

:::::::
Domp f q.

:::::
Note

:::
that

:::
the

::::::::
function’s

::::::
domain

::
is
:
a
::::::
subset

::
of

::
its

::::::
source

:::
set.

:::
The

:::::
target

::
set

:
is
:::::::
denoted

::
B

:::
and

::
the

:::::
image

:
is

:::::::
denoted

::::::
Imp f q.

:::
The

:::::
image

::
is
::
a

:::::
subset

::
of

:::
the

:::::
target

:::
set.

::::::::
numbers.

::::::::::
Therefore,

::::
the

:::::::
domain

::
of

::::
the

::::::
square

:::::
root

::::::::
function

::
is

::::
only

:::
the

::::::::::::
nonnegative

::::
real

::::::::::
numbers:

:::::::::::::::::::::::::::::::
Domp f q “ R` “ tx P R | x • 0u.

::::::::
Knowing

::::
the

:::::::
domain

::
of

::
a
::::::::
function

::
is

::::::::
essential

::
to

::::::
using

:::
the

::::::::
function

::::::::
correctly.

:::
In

::::
this

:::::
case,

:::::::::
whenever

:::::
you

:::
use

::::
the

::::::
square

:::::
root

::::::::
function,

:::
you

:::::
need

::
to

:::::
make

:::::
sure

:::
that

::::
the

::::::
inputs

::
to

:::
the

::::::::
function

:::
are

:::::::::::
nonnegative

::::::::
numbers.

:

:::
The

:::::::::::::::::::
complicated-looking

::::::::::
expression

::::::::
between

::::
the

:::::
curly

::::::::
brackets

::::
uses

:::
set

::::::::
notation

::
to

::::::
define

::::
the

::::
set

:::
of

::::::::::::
nonnegative

:::::::::
numbers

::::
R`.

::
In

:::::::
words,

::::
the

::::::::::
expression

::::::::::::::::::::
R` “ tx P R | x • 0u

::::::
states

::::
that

:::::
“R` ::

is
:::::::
defined

::
as

::::
the

:::
set

::
of

:::
all

::::
real

:::::::::
numbers

::
x

::::
such

:::::
that

:
x
:::

is
::::::
greater

:::::
than

::
or

::::::
equal

:::
to

::::::
zero.”

:::::::
We’ll

:::::::
discuss

::::
set

::::::::
notation

:::
in

:::::
more

::::::
detail

:::
in

::::::
Section

:::::
1.23.

:::
For

:::::
now,

::::
you

::::
can

:::
just

::::::::::
remember

::::
that

:::
R

:̀:::::::::
represents

:::
the

::
set

:::
of

:::::::::::
nonnegative

::::
real

:::::::::
numbers.

f pxq “
?

x
R R

R` R`

x
?

x

f

Figure 1.22:
:::
The

:::::
input

::::
and

::::::
output

::::
sets

::
of

:::
the

::::::::
function

::::::::::
f pxq “

?
x.

::::
The

::::::
domain

::
of

::
f
:
is
:::
the

:::
set

::
of

::::::::::
nonnegative

::::
real

:::::::
numbers

::::
R` :::

and
::
its

::::::
image

:
is
::::
R`.

To illustrate the subtle difference between the image of a func-
tion and its codomain, consider

:::::
target

::::
set,

::::
let’s

::::
look

:::
at the function

f pxq “ x2
::::::
shown

::
in

::::::
Figure

::::
1.23. The quadratic function is of the form
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f : R Ñ R. The function’s domain
:::::
source

:::
set

:
is R (it takes real num-

bers as inputs) and its codomain
::::::
target

:::
set is R (the outputs are real

numbers too); however, not all outputs are possible
::::
real

::::::::
numbers

:::
are

:::::::
possible

::::::::
outputs. The image of the function f pxq “ x2 consists only

of the nonnegative real numbers r0, 8q ” ty P R | y • 0u.
A function is not a number; rather, it is a mapping from numbers

to numbers. For any input x, the output value of f for that input is
denoted f pxq

:::::::::::::::::::
R` “ ty P R | y • 0u,

:::::
since

::::::::
f pxq • 0

:::
for

::
all

::
x.

An abstract representation of a function f from the set A to the set
B. The function f is the arrow which maps each input x in A to an

output f pxq in B. The output of the function f pxq is also denoted y.
f pxq “ x2

R RR

R`

x2

x f

´x
f

Figure 1.23:
:::
The

:::::::
function

::::::::
f pxq “ x2

:
is
:::::::
defined

:::
for

::
all

::::
reals:

::::::::::::
Domp f q “ R.

:::
The

:::::
image

::
of

:::
the

:::::::
function

::
is

:::
the

::
set

::
of

:::::::::::
nonnegative

:::
real

::::::::
numbers:

:::::::::::
Imp f q “ R`.

We say “ f maps x to f pxq, ” and use the following terminology to
classify the type of mapping that a function performs:

::::::::::
Function

::::::::::::
properties

::::
We’ll

:::::
now

::::::::::
introduce

:::::
some

:::::::::::
additional

:::::::::::
terminology

::::
for

::::::::::
describing

::::
three

::::::::::
important

::::::::
function

:::::::::::
properties.

::::::
Every

::::::::
function

:::
is

:
a
:::::::::

mapping
::::
from

::
a

::::::
source

:::
set

::
to

::
a

:::::
target

::::
set,

:::
but

:::::
what

:::::
kind

::
of

:::::::::
mapping

::
is

::
it?

:

• A function is one-to-one or
::
A

::::::::
function

::
is
:

injective if it maps
different inputs to different outputs

:
if

::
it

::::::
maps

::::
two

::::::::
different

::::::
inputs

::
to

::::
two

:::::::::
different

::::::::
outputs.

:::
If

:::
x1 ::::

and
:::
x2 :::

are
:::::

two
:::::
input

::::::
values

::::
that

:::
are

:::
not

::::::
equal

:::::::
x1 ‰ x2,

:::::
then

:::
the

:::::::
output

::::::
values

::
of

:::
an

:::::::
injective

::::::::
function

::::
will

::::
also

::::
not

::
be

::::::
equal

::::::::::::
f px1q ‰ f px2q.

•
::
A

:::::::
function

::
is
:
surjective

::
if

::
its

::::::
image

::
is

:::::
equal

:::
to

::
its

::::::
target

:::
set.

::::
For

:::::
every

::::::
output

::
y
::
in

::::
the

:::::
target

:::
set

::
of

::
a
:::::::::
surjective

::::::::
function,

:::::
there

::
is

::
at

::::
least

::::
one

:::::
input

::
x

::
in

:::
its

:::::::
domain

:::::
such

::::
that

::::::::
f pxq “ y.

:

•
::
A

:::::::
function

::
is
:
bijective

:
if
::
it

::
is

::::
both

::::::::
injective

::::
and

::::::::::
surjective.

:
I
:::::
know

::::
this

::::::
seems

::::
like

::
a
:::
lot

::
of

::::::::::::
terminology

::
to

:::
get

:::::::::::
acquainted

:::::
with,

:::
but

:::
it’s

::::::::::
important

::
to

:::::
have

::::::
names

:::
for

:::::
these

::::::::
function

::::::::::
properties.

:::::
We’ll
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1.11 FUNCTIONS 65

::::
need

:::::
this

:::::::::::
terminology

:::
to

:::::
give

::
a
:::::::

precise
::::::::::

definition
:::
of

:::
the

:::::::
inverse

:::::::
function

::
in

:::
the

:::::
next

:::::::
section.

::::::::
Injective

:::::::::
property

:::
We

::::
can

:::::
think

:::
of

::::::::
injective

::::::::
functions

:::
as

::::::
pipes

:::
that

::::::::::
transport

::::::
fluids

::::::::
between

:::::::::::
containers.

::::::
Since

::::::
fluids

:::::::
cannot

:::
be

:::::::::::
compressed,

::::
the

::::::::
“output

::::::::::
container”

::::::
must

:::
be

::
at

:::::
least

:::
as

:::::
large

:::
as

:::
the

::::::
“input

:::::::::::
container.”

:::
If

:::::
there

::::
are

::::
two

::::::::
distinct

::::::
points

:::
x1::::

and
:::

x2

::
in

:::
the

::::::
input

:::::::::
container

:::
of

:::
an

::::::::
injective

:::::::::
function,

:::::
then

:::::
there

::::
will

:::
be

:::
two

::::::::
distinct

::::::
points

::::::
f px1q

::::
and

:::::
f px2q

:::
in

:::
the

:::::::
output

:::::::::
container

:::
of

:::
the

:::::::
function

:::
as

:::::
well.

:::
In

:::::
other

:::::::
words,

::::::::
injective

:::::::::
functions

::::::
don’t

:::::::
smoosh

::::::
things

::::::::
together.

::
In

::::::::
contrast,

:
a
::::::::
function

::::
that

:::::::
doesn’t

:::::
have

:::
the

::::::::
injective

::::::::
property

:::
can

::::
map

:::::::
several

::::::::
different

::::::
inputs

::
to

::::
the

:::::
same

::::::
output

::::::
value.

::::
The

::::::::
function

::::::::
f pxq “ x2

::
is
::::
not

::::::::
injective

:::::
since

::
it

:::::
sends

::::::
inputs

::
x
::::
and

:::
´x

:::
to

:::
the

:::::
same

::::::
output

:::::
value

::::::::::::::::::
f pxq “ f p´xq “ x2,

::
as

::::::::::
illustrated

::
in

::::::
Figure

:::::
1.23.

:::
The

::::::::::::::::::::::::::::::::::::
maps-distinct-inputs-to-distinct-outputs

::::::::
property

:::
of

:::::::
injective

::::::::
functions

::::
has

:::
an

::::::::::
important

:::::::::::::
consequence:

::::::
given

::::
the

::::::
output

:::
of

:::
an

:::::::
injective

:::::::::
function

::
y,

:::::
there

:::
is

::::
only

::::
one

::::::
input

::
x
:::::
such

::::
that

:::::::::
f pxq “ y.

:
If
::

a
::::::::

second
:::::
input

:::
x1

:::::::
existed

:::::
that

::::
also

::::::
leads

:::
to

::::
the

:::::
same

:::::::
output

:::::::::::::::
f pxq “ f px1

q “ y,
::::
then

::::
the

::::::::
function

:
f
:::::::::
wouldn’t

:::
be

::::::::
injective.

::::
For

::::
each

::
of

:::
the

::::::::
outputs

::
y

::
of

:::
an

::::::::
injective

:::::::::
function

::
f ,

:::::
there

::
is
::

a
:::::::
unique

:::::
input

:
x
:::::

such
::::

that
:::::::::

f pxq “ y.
::::

In
::::::
other

:::::::
words,

::::::::
injective

:::::::::
functions

:::::
have

::
a

::::::::::::::::::::::::::
unique-input-for-each-output

:::::::::
property.

:::::::::
Surjective

:::::::::
property A function is ontoor if it covers the entire output

set(in other words, if the image
::::::::
surjective

::
if

::
its

::::::::
outputs

:::::
cover

:::
the

::::::
entire

:::::
target

::::
set:

::::::
every

::::::::
number

:::
in

:::
the

::::::
target

::::
set

::
is

::
a

::::::::
possible

:::::::
output of

the function
::
for

::::::
some

::::::
input.

::::
For

:::::::::
example,

:::
the

::::::::
function

::::::::::
f : R Ñ R

:::::::
defined

:::
by

:::::::::
f pxq “ x3

::
is

:::::::::
surjective:

::::
for

:::::
every

::::::::
number

::
y

::
in

:::
the

::::::
target

::
set

::::
R,

:::::
there

:::
is

:::
an

::::::
input

::
x,
::::::::

namely
::::::::

x “ 3
?y,

::::::
such

::::
that

:::::::::
f pxq “ y.

:::
The

:::::::::
function

:::::::::
f pxq “ x3

:::
is

::::::::::
surjective

:::::
since

:::
its

:::::::
image

:
is equal to

the function’s codomain).
::
its

::::::
target

::::
set,

:::::::::::
Imp f q “ R,

:::
as

:::::::
shown

::
in

::::::
Figure

::::
1.24.

:

:::
On

::::
the

::::::
other

::::::
hand,

::::
the

:::::::::
function

::::::::::
f : R Ñ R

::::::::
defined

:::
by

::::
the

::::::::
equation

:::::::::
f pxq “ x2

:::
is

::::
not

:::::::::
surjective

::::::
since

:::
its

:::::::
image

::
is

:::::
only

::::
the

:::::::::::
nonnegative

:::::::::
numbers

::::
R` ::::

and
::::
not

:::
the

::::::
whole

::::
set

::
of

::::
real

:::::::::
numbers

:::
(see

:::::::
Figure

:::::
1.23).

:::::
The

::::::::
outputs

::
of

::::
this

::::::::
function

::::
do

:::
not

::::::::
include

:::
the

::::::::
negative

::::::::
numbers

::
of

::::
the

:::::
target

::::
set,

::::::::
because

:::::
there

::
is

:::
no

::::
real

:::::::
number

:
x
::::
that

::::
can

::
be

:::::
used

::
as

:::
an

:::::
input

::
to

:::::::
obtain

:
a
::::::::
negative

:::::::
output

::::::
value.

::::::::
Bijective

::::::::
property A function is

:::::::
bijective

:
if it is both injective and

surjective. In this case, f is
:::::
When

::
a

::::::::
function

:::::::::
f : A Ñ B

::::
has

:::::
both
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66 MATH FUNDAMENTALS

f pxq “ x3
R RR R

x3x

f

Figure 1.24:
:::
For

:::
the

:::::::
function

::::::::
f pxq “ x3

:::
the

:::::
image

::
is

:::::
equal

::
to

::
the

:::::
target

:::
set

::
of

::
the

::::::::
function,

:::::::::
Imp f q “ R,

::::::::
therefore

:::
the

:::::::
function

:
f
::
is

::::::::
surjective.

::::
The

:::::::
function

:
f

::::
maps

::::
two

:::::::
different

::::::
inputs

::::::
x1 ‰ x2::

to
:::
two

::::::::
different

::::::
outputs

::::::::::::
f px1q ‰ f px2q,

::
so

:
f
::
is

:::::::
injective.

:::::
Since

::
f

:
is
::::
both

:::::::
injective

::::
and

::::::::
surjective,

::
it
::
is

:
a
::::::
bijective

:::::::
function.

:::
the

::::::::
injective

::::
and

::::::::::
surjective

::::::::::
properties,

:::
it

:::::::
defines

:
a one-to-one cor-

respondence between the input set and the output set: for each of
the possible outputs y P Y (surjective part), there exists exactly one
input x P X,

::::::::
numbers

::
of

::::
the

::::::
source

:::
set

:::
A

::::
and

:::
the

:::::::::
numbers

:::
of

:::
the

:::::
target

:::
set

::
B.

:::::
This

::::::
means

:::
for

::::::
every

:::::
input

::::::
value

::
x,

:::::
there

::
is

::::::
exactly

::::
one

:::::::::::::
corresponding

:::::::
output

:::::
value

::
y,
:::::

and
:::
for

:::::
every

:::::::
output

::::::
value

::
y,

:::::
there

:
is
:::::::

exactly
::::
one

:::::
input

::::::
value

::
x such that f pxq “ y(injective part).

:
.
:::
An

:::::::
example

:::
of

:
a
::::::::
bijective

::::::::
function

::
is
::::
the

::::::::
function

:::::::::
f : R Ñ R

:::::::
defined

:::
by

::::::::
f pxq “ x3

::::
(see

:::::::
Figure

:::::
1.24).

:::
For

::::::
every

:::::
input

::
x

::
in

:::
the

::::::
source

:::
set

:::
R,

:::
the

:::::::::::::
corresponding

::::::
output

::
y
::
is

:::::
given

:::
by

:::::::::::::
y “ f pxq “ x3.

::::
For

::::::
every

::::::
output

:::::
value

:
y
:::

in
:::
the

::::::
target

:::
set

::
R,

::::
the

:::::::::::::
corresponding

::::::
input

:::::
value

::
x

::
is

:::::
given

::
by

::::::::
x “ 3

?y.
The term injective is an allusion from the 1940s inviting us to

picture the actions of injective functions as pipes through which
numbers flow like fluids. Since a fluid cannot be compressed, the
output space must be at least as large as the input space. A modern
synonym for injective functions is to say they are . If we imagine
two specks of paint floating around in the “input fluid, ” an injective
function will contain two distinct specks of paint in the “output
fluid. ” In contrast, non-injective functions can map several different
inputs to

:
A
:::::::::

function
::
is

::::
not

::::::::
bijective

::
if

::
it

:::::
lacks

::::
one

::
of

::::
the

::::::::
required

::::::::::
properties.

:::::::::::
Examples

:::
of

::::::::::::
non-bijective

:::::::::
functions

::::
are

:::::::::::
f pxq “

?
x,

:::::
which

::
is
::::

not
:::::::::
surjective

::::
and

::::::::::
f pxq “ x2,

::::::
which

::
is

:::::::
neither

::::::::
injective

:::
nor

:::::::::
surjective.

:

:::::::::
Counting

:::::::::
solutions

::::::::
Another

:::::
way

:::
to

:::::::::::
understand

::::
the

:::::::::
injective,

:::::::::
surjective,

::::
and

::::::::
bijective

:::::::::
properties

:::
of

:::::::::
functions

::
is

::
to

:::::
think

::::::
about

:::
the

::::::::
solutions

::
to

::::
the

::::::::
equation

::::::::
f pxq “ b,

::::::
where

::
b
::
is

:
a
::::::::
number

::
in

:::
the

::::::
target

::
set

:::
B.

::::
The

::::::::
function

::
f

::
is

::::::::
injective

:
if
::::
the

::::::::
equation

::::::::
f pxq “ b

::::
has

::
at

::::
most
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:::
one

::::::::
solution

:::
for

:::::
every

::::::::
number

::
b.
:::::

The
::::::::
function

::
f

::
is

:::::::::
surjective

::
if

:::
the

::::::::
equation

::::::::
f pxq “ b

:::
has

::
at
:::::
least

:::
one

::::::::
solution

:::
for

:::::
every

::::::::
number

::
b.

::
If

:::
the

:::::::
function

::
f
::
is
::::::::
bijective

:::::
then

::
it

::
is

::::
both

::::::::
injective

::::
and

::::::::::
surjective,

::::::
which

::::::
means

:::
the

::::::::
equation

::::::::
f pxq “ b

::::
has

::::::
exactly

:::
one

:::::::
solution.

:

::::::::
Inverse

::::::::::
function

:::
We

::::
used

:::::::
inverse

:::::::::
functions

::::::::::
repeatedly

::
in

::::::::
previous

::::::::
chapters,

:::::
each

::::
time

:::::::::
describing

::::
the

:::::::
inverse

::::::::
function

::::::::::
informally

::
as

:::
an

:::::::
“undo”

::::::::::
operation.

::::
Now

:::::
that

:::
we

:::::
have

:::::::
learned

::::::
about

::::::::
bijective

:::::::::
functions,

:::
we

::::
can

:::::
give

:
a

:::
the

::::::
precise

::::::::::
definition

::
of

:::
the

:::::::
inverse

::::::::
function

::::
and

:::::::
explain

:::::
some

::
of

:::
the

::::::
details

:::
we

:::::::
glossed

:::::
over

::::::::::
previously.

:::::
Recall

::::
that

::
a

:::::::
bijective

:::::::
function

::::::::::
f : A Ñ B

:
is
::
a

:::::::::
one-to-one

::::::::::::
correspondence

:::::::
between

::::
the

::::::::
numbers

:::
in

:::
the

::::::
source

:::
set

::
A
::::
and

:::::::::
numbers

::
in

:::
the

::::::
target

::
set

:::
B:

:::
for

::::::
every

:::::::
output

::
y,

:::::
there

::
is
:::::::

exactly
::::
one

::::::::::::::
corresponding

:::::
input

:::::
value

::
x

::::
such

::::
that

:::::::::
f pxq “ y.

::::
The

:::::::
inverse

:::::::
function,

::::::::
denoted

:::::
f ´1,

::
is

:::
the

:::::::
function

:::::
that

:::::
takes

::::
any

:::::::
output

::::::
value

::
y

::
in

::::
the

:::
set

::
B
::::
and

::::::
finds

:::
the

:::::::::::::
corresponding

:::::
input

::::::
value

:
x
::::
that

:::::::::
produced

::
it

:::::::::::
f ´1

pyq “ x.

x f pxq

A B
f

f ´1

Figure 1.25:
:::
The

::::::
inverse

::::
f ´1

::::::
undoes

:::
the

::::::::
operation

::
of

:::
the

:::::::
function

::
f .

:::
For

::::::
every

::::::::
bijective

::::::::
function

:::::::::::
f : A Ñ B,

:::::
there

::::::
exists

:::
an

:::::::
inverse

:::::::
function

::::::::::::
f ´1 : B Ñ A

::::
that

:::::::::
performs

:::
the

:::::::
inverse

::::::::
mapping

::
of

::
f .
:::

If
:::
we

::::
start

:::::
from

:::::
some

:::
x,

::::::
apply

::
f ,

::::
and

:::::
then

:::::
apply

:::::
f ´1,

:::::
we’ll

:::::::::::
arrive—full

:::::::::::
circle—back

::
to

:::
the

::::::::
original

:::::
input

::
x:

:

f ´1̀ f pxq
˘

“ x.
:::::::::::::

::
In

::::::
Figure

::::
1.25

::::
the

::::::::
function

:
f
::
is
:::::::::::
represented

:::
as

:
a
::::::::
forward

::::::
arrow,

::::
and

:::
the

:::::::
inverse

::::::::
function

::::
f ´1

:::
is

:::::::::::
represented

::
as

::
a
::::::::::

backward
::::::
arrow

::::
that

::::
puts

:::
the

::::::
value

::::
f pxq

::::
back

:::
to the same output

:
x
::
it

:::::
came

:::::
from.

:

::::::::
Similarly,

::::
we

::::
can

::::
start

::::::
from

::::
any

:
y
:::

in
::::
the

:::
set

::
B

::::
and

::::::
apply

::::
f ´1

::::::::
followed

:::
by

:
f
::
to

::::
get

::::
back

:::
to

:::
the

:::::::
original

::
y

:::
we

:::::::
started

:::::
from:

f
`

f ´1
pyq

˘
“ y.

:::::::::::::
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::
In

::::::
words,

::::
this

::::::::
equation

::::
tells

:::
us

::::
that

::
f

:
is
::::
the

:::::::
“undo”

:::::::::
operation

:::
for

:::
the

:::::::
function

:::::
f ´1,

:::
the

:::::
same

:::::
way

::::
f ´1

::
is

:::
the

::::::::
“undo”

:::::::::
operation

:::
for

::
f . For

example f pxq “ x2 is not injective since the
:
If
::

a
::::::::
function

:::
is

:::::::
missing

::::
the

::::::::
injective

:::::::::
property

::
or

::::
the

:::::::::
surjective

::::::::
property

::::
then

::
it

::::
isn’t

::::::::
bijective

:::
and

::
it

:::::::
doesn’t

::::
have

:::
an

:::::::
inverse.

::::::::
Without

:::
the

::::::::
injective

::::::::
property,

::::::
there

:::::
could

:::
be

::::
two

:
inputs 2 and ´2 are both

mapped to the output value 4
:
x
::::
and

:::
x1

::::
that

::::
both

::::::::
produce

::::
the

:::::
same

::::::
output

::::::::::::::::
f pxq “ f px1

q “ y.
:::

In
::::
this

:::::
case,

::::::::::
computing

:::::::
f ´1

pyq
::::::
would

:::
be

::::::::::
impossible

:::::
since

:::
we

::::::
don’t

:::::
know

:::::::
which

::
of

::::
the

::::
two

::::::::
possible

::::::
inputs

:
x
:::
or

::
x1

::::
was

:::::
used

:::
to

::::::::
produce

::::
the

::::::
output

:::
y.

::::::::
Without

::::
the

:::::::::
surjective

::::::::
property,

:::::
there

::::::
could

:::
be

:::::
some

:::::::
output

::
y1

::
in

::
B
:::
for

:::::::
which

:::
the

:::::::
inverse

:::::::
function

:::::
f ´1

::
is

:::
not

::::::::
defined,

:::
so

::::
the

::::::::
equation

::::::::::::::
f p f ´1

pyqq “ y
::::::
would

:::
not

::::
hold

:::
for

:::
all

::
y

::
in

::
B.

::::
The

:::::::
inverse

::::::::
function

::::
f ´1

:::::
exists

::::
only

::::::
when

:::
the

:::::::
function

::
f
::
is

::::::::
bijective.

:

::::
Wait

::
a

:::::::
minute!

::::
We

::::::
know

:::
the

::::::::
function

:::::::::
f pxq “ x2

:::
is

:::
not

::::::::
bijective

:::
and

:::::::::
therefore

:::::::
doesn’t

:::::
have

:::
an

::::::::
inverse,

::::
but

::::::
we’ve

::::::::::
repeatedly

:::::
used

:::
the

::::::
square

::::
root

::::::::
function

::
as

:::
an

:::::::
inverse

::::::::
function

:::
for

:::::::::
f pxq “ x2.

:::::::
What’s

:::::
going

:::
on

:::::
here?

::::
Are

:::
we

::::::
using

:
a
:::::::
double

::::::::
standard

::::
like

:
a
:::::::::
politician

::::
that

::::::::
espouses

::::
one

:::
set

::
of

:::::
rules

::::::::
publicly,

:::
but

:::::::
follows

::
a
::::::::
different

:::
set

::
of

:::::
rules

::
in

::::
their

:::::::
private

:::::::::
dealings?

::
Is

::::::::::::
mathematics

::::::::
corrupt?

:

:::::
Don’t

::::::
worry,

:::::::::::::
mathematics

::
is

:::
not

::::::::::::
corrupt—it’s

:::
all

:::::
legit.

::::
We

::::
can

:::
use

::::::::
inverses

:::
for

::::::::::::
non-bijective

:::::::::
functions

:::
by

:::::::::
imposing

::::::::::
restrictions

::
on

:::
the

::::::
source

::::
and

::::::
target

:::::
sets.

:::::
The

::::::::
function

:::::::::
f pxq “ x2

::
is
::::

not
::::::::
bijective

:::::
when

:::::::
defined

:::
as

:
a
::::::::
function

::::::::::
f : R Ñ R,

::::
but

:
it
::

is
:::::::
bijective

::
if

:::
we

::::::
define

:
it
:::
as

::
a

::::::::
function

:::::
from

:::
the

::::
set

::
of

::::::::::::
nonnegative

::::::::
numbers

:::
to

:::
the

::::
set

::
of

:::::::::::
nonnegative

:::::::::
numbers,

:::::::::::::
f : R` Ñ R`.

:::::::::::
Restricting

::::
the

::::::
source

::::
set

::
to

:::::::::::::::::::
R` “ tx P R | x • 0u

::::::
makes

::::
the

::::::::
function

:::::::::
injective,

::::
and

::::::::::
restricting

:::
the

:::::
target

:::
set

:::
to

:::
R`::::

also
::::::
makes

::::
the

::::::::
function

:::::::::
surjective.

::::
The

::::::::
function

::::::::::::
f : R` Ñ R`:::::::

defined
:::

by
::::
the

::::::::
equation

:::::::::
f pxq “ x2

::
is
::::::::

bijective
::::

and
:::

its

::::::
inverse

::
is
:::::::::::::

f ´1
pyq “

?y.
:::
It’s

:::::::::
important

::
to

:::::
keep

:::::
track

:::
the

::
of

::::::::::
restrictions

:::
on

:::
the

::::::
source

:::
set

:::
we

:::::::
applied

:::::
when

:::::::
solving

::::::::::
equations.

::::
For

::::::::
example,

:::::::
solving

::::
the

::::::::
equation

:::::
x2

“ c
:::

by
::::::::::
restricting

:::
the

::::::::
solution

:::::
space

::
to

::::::::::::
nonnegative

::::::::
numbers

::::
will

::::
give

:::
us

::::
only

::::
the

::::::::
positive

::::::::
solution

::::::::
x “

?
c.

::::
We

:::::
have

:::
to

:::::::::
manually

:::
add

::::
the

::::::::
negative

::::::::
solution

::::::::
x “ ´

?
c
:::

in
:::::
order

:::
to

::::::
obtain

:::
the

:::::::::
complete

:::::::::
solutions:

:::::::
x “

?
c
:::
or

:::::::::
x “ ´

?
c,

::::::
which

::
is
::::::::

usually
:::::::
written

:::::::::
x “ ˘

?
c.

:::
The

::::::::::
possibility

:::
of

::::::::
multiple

:::::::::
solutions

::
is

:::::::
present

::::::::::
whenever

:::
we

:::::
solve

:::::::::
equations

:::::::::
involving

::::::::::::
non-injective

::::::::
functions.

Function composition
We can combine two simple functions by chaining them together to
build a more complicated function. This act of applying one function
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1.11 FUNCTIONS 69

after another is called function composition. Consider for example the
composition:

f ˝g pxq”“: f p gpxq q “ z.

A

B

Cf og

fg

x

y“ gpxq

z“ f pgpxqq

Figure 1.26: The function composition f ˝ g describes the combina-
tion of first applying the function g, followed by the function f :
f ˝ g pxq ” f pgpxqq

::::::::::::::
f ˝ g pxq “ f pgpxqq.

Figure 1.26 illustrates this concept
:::
the

:::::::
concept

::
of

::::::::
function

:::::::::::
composition.

First, the function g : A Ñ B acts on some input x to produce
an intermediary value y “ gpxq in the set B. The intermediary
value y is then passed through the function f : B Ñ C to pro-
duce the final output value z “ f pyq “ f pgpxqq in the set C. We
can think of the composite function f ˝ g as a function in its own
right. The function f ˝ g : A Ñ C is defined through the formula
f ˝ g pxq ” f pgpxqq

::::::::::::::::
f ˝ g pxq “ f pgpxqq.

Don’t worry too much about the
:
“˝

:
”
:
symbol—it’s just a conve-

nient math notation I wanted you to know about. Writing f ˝ g is just
as good

::
the

:::::
same

:
as writing f pgpxqq. The important takeaway from

Figure 1.26 is that functions can be combined by using the outputs
of one function as the inputs to the next. This is a very useful idea
for building math models. You can understand many complicated
input-output transformations by describing them as compositions of
simple functions.

Inverse function

Recall that a bijective function is a one-to-one correspondence
between a set of input values and a set of output values. For
every input value x, there is exactly one corresponding output value
y. This means that we can start from any output value y and find the
corresponding input value x that produced it.

The inverse f ´1 undoes the operation of the function f .
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70 MATH FUNDAMENTALS

::::::::
Example

:
1

::::::::
Consider

:::
the

::::::::
function

::::::::::::
g : R` Ñ R

:̀:::::
given

::
by

::::::::::
gpxq “

?
x,

:::
and

::::
the

::::::::
function

:::::::::::
f : R Ñ R`:::::::

defined
:::

by
::::::::::

f pxq “ x2.
::::

The
::::::::::

composite

:::::::
function

::::::::::::::::::::
f ˝ g pxq “ p

?
xq

2
“ x

::
is

::::::::
defined

:::
for

:::
all

::::::::::::
nonnegative

:::::
reals.

:::
The

::::::::::
composite

::::::::
function

::::
g ˝ f

::
is
::::::::
defined

:::
for

::
all

::::
real

:::::::::
numbers,

::::
and

:::
we

::::
have

:::::::::::::::::::
g ˝ f pxq “

?

x2 “ |x|.
:

Given a bijective function f : A Ñ B, there exists an inverse
function f ´1 : B Ñ A, which performs the inverse mapping of f . If
you start from some x, apply f ,

::::::::
Example

::
2

:::
The

::::::::::
composite

::::::::::
functions

:::::
f ˝ g

:
and then apply f ´1,

you’ll arrive—full circle—back to the original input x
::::
g ˝ f

::::::::
describe

::::::::
different

::::::::::
operations.

:::
If
::::::::::::

gpxq “ lnpxq
::::

and
::::::::::

f pxq “ x2,
::::

the
:::::::::
functions

:::::::::::::::
g ˝ f pxq “ lnpx2

q
::::
and

::::::::::::::::
f ˝ g pxq “ pln xq

2
:::::
have

::::::::
different

::::::::
domains

::::
and

:::::::
produce

::::::::
different

::::::::
outputs,

:::
as

::::
you

:::
can

::::::
verify

:::::
using

::
a

:::::::::
calculator.

:

:::::
Using

::::
the

::::::::
notation

::::
“˝”

::::
for

::::::::
function

:::::::::::::
composition,

:::
we

::::
can

:::::
give

::
a

::::::
concise

:::::::::::
description

::
of

:::
the

::::::::::
properties

::
of

:
a
::::::::
bijective

::::::::
function

:::::::::
f : A Ñ B

:::
and

:::
its

:::::::
inverse

::::::::
function

:::::::::::
f ´1 : B Ñ A:

f ´1̀ f pxq
˘

” f ´1
˝ f pxq “ x.

In Figure 1.25 the function f is represented as a forward arrow, and
the inverse function f ´1 is represented as a backward arrow that
puts the value f pxq back to the

p f ´1
˝ f qpxq “ x and p f ˝ f ´1

qpyq “ y,
::::::::::::::::::::::::::::::::::::::::

:::
for

::
all

:
x it came from

::
in

::
A
::::
and

:::
all

:
y
:::
in

:
B.

Function names
We use short symbols like `, ´, ˆ, and ˜ to denote most of the im-
portant functions used in everyday life. We also use the weird surd
notation to denote nth root n

?

:::::::
squiggle

::::::::
notation

::::

?

:::
for

::::::
square

:::::
roots

and superscripts to denote exponents. All other functions are identi-
fied and denoted by their name. If I want to compute the cosine of the
angle 60˝ (a function describing the ratio between the length of one
side of a right-angle triangle and the hypotenuse), I write cosp60˝

q,
which means I want the value of the cos function for the input 60˝.

Incidentally, the function cos has a nice output value for that
specific angle: cosp60˝

q ”
1
2::::::::::::
cosp60˝

q “
1
2 . Therefore, seeing cosp60˝

q

somewhere in an equation is the same as seeing 1
2 . To find other
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1.11 FUNCTIONS 71

values of the function, say cosp33.13˝
q, you’ll need a calculator. All

scientific calculators have a convenient little
:::::
cos

:
button for this

very purpose.

Handles on functions
When you learn about functions you learn about the different “han-
dles” by which you can “grab” these mathematical objects. The main
handle for a function is its definition: it tells you the precise way to
calculate the output when you know the input. The function defini-
tion is an important handle, but it is also important to “feel” what
the function does intuitively. How does one get a feel for a function?

Table of values

One simple way to represent a function is to look at a list of input-
output pairs:

 
tin “ x1, out “ f px1qu, tin “ x2, out “ f px2qu,

tin “ x3, out “ f px3qu, . . .
(

. A more compact notation for the input-
output pairs is tpx1, f px1qq, px2, f px2qq, px3, f px3qq, . . .u. You can make
your own little

:
,
::::::
where

:::
the

:::::
first

:::::::
number

:::
of

::::
each

:::::
pair

:::::::::
represents

:::
an

:::::
input

:::::
value

::::
and

:::
the

:::::::
second

::::::::::
represents

:::
the

::::::
output

::::::
value

:::::
given

:::
by

:::
the

::::::::
function.

:

:::
We

::::
can

::::
also

::::::
build

:
a
:

table of values by picking some random
inputs

:::::::
writing

::::
the

:::::
input

:::::::
values

::
in

::::
one

::::::::
column

:
and recording the

output of the function in the second column:

input “ x Ñ f pxq “ output

0 Ñ f p0q

1 Ñ f p1q

55 Ñ f p55q

x4 Ñ f px4q.

In addition to choosing random numbers for your table, it’s also
generally a good idea to check the function’s values at x “ 0, x “ 1,
x “ 100, x “ ´1, and any other

::::::::::::
corresponding

:::::::
output

:::::::
values

::
in

::
a

::::::
second

::::::::
column.

:::::
You

::::
can

::::::
choose

:::::::
inputs

::
at

::::::::
random

::
or

::::::
focus

:::
on

:::
the

important-looking x value
:
x
::::::
values

::
in

::::
the

:::::::::
function’s

::::::::
domain.

:::
You

::::
can

::::::
create

::
a
:::::
table

:::
of

::::::
values

::::
for

::::
any

::::::::
function

::::
you

::::::
want

::
to

:::::
study.

:::::::
Follow

::::
the

::::::::
example

::::::
shown

::
in

::::::
Table

:::
1.1.

::::
Use

::::
the

:::::
input

::::::
values

:::
that

::::::::
interest

:::
you

::::
and

:::
fill

::::
out

:::
the

:::::
right

::::
side

::
of

:::
the

:::::
table

:::
by

::::::::::
calculating

:::
the

:::::
value

::
of

:::::
f pxq

:::
for

::::
each

::::::
input

:
x.
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72 MATH FUNDAMENTALS

input “ x
::::::::::::

Ñ f pxq “ output
:::::::::::::::::::

::::::::::::::::::::: :::::::::::::::::::::::

0
:::::

Ñ f p0q
::::::::::

1
:::::

Ñ f p1q
::::::::::

55
::::::

Ñ f p55q
:::::::::::

x4
:::::

Ñ f px4q
:::::::::::

Table 1.1:
::::
Table

::
of

:::::::::::
input-output

:::::
values

::
of

:::
the

:::::::
function

::::
f pxq.

::::
The

:::::
input

:::::
values

:::::
x “ 0,

:::::
x “ 1

:::
and

::::::
x “ 55

:::
are

::::::
chosen

::
to

:::::
“test”

::::
what

:::
the

:::::::
function

:::::
does.

Function graph

One of the best ways to feel a function is to look at its graph. A graph
is a line on a piece of paper that passes through all input-output pairs
of a function. Imagine you have a piece of paper, and on it you draw
a blank coordinate system as in Figure 1.27.

´4 ´3 ´2 ´1 1 2 3 4

´2

´1

0

1

2

x

y

Figure 1.27: An empty px, yq-coordinate system that you can use to plot the
graph of any

:::::
draw function f pxq

:::::
graphs. The graph of f pxq consists of all the

points for which px, yq “ px, f pxqq. See Figure 1.19 on page 60 for the graph
of f pxq “ x2.

The horizontal axis , sometimes called the abscissa, is used to mea-
sure x. The vertical axis is used to measure f pxq. Because writing out
f pxq every time is long and tedious, we use a short, single-letter alias
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to denote the output value of f as follows:

y”“: f pxq “ output.

Think of each input-output pair of the function f as a point px, yq in
the coordinate system. The graph of a function is a representational
drawing of everything the function does. If you understand how
to interpret this drawing, you can infer everything there is to know
about the function.

Facts and properties

Another way to feel a function is by knowing the function’s prop-
erties. This approach boils down to learning facts about the
function and its relation

:::::::::::
connections

:
to other functions. An ex-

ample of a mathematical fact is sinp30˝
q “

1
2 . An example of a

mathematical relation
::::::::::
connection is the equation sin2 x ` cos2 x “ 1,

which indicates
:::::::::::::::
logBpxq “

logbpxq

logbpBq
,
:::::::

which
:::::::::
describes

:
a link between

the sin function and the cos function
::::::::::
logarithmic

::::::::
function

:::::
base

::
B

:::
and

::::
the

::::::::::
logarithmic

::::::::
function

:::::
base

:
b.

The more you know about a function, the more “paths” your
brain builds to connect to that function. Real math knowledge
is not

:::::
about

:
memorization; it requires establishing a graph

:
is

:::::
about

::::::::::::
establishing

::
a
:::::::::

network
:

of associations between different
areas of information in your brain. Each concept is a node in this
graph, and each fact you know about this concept is an edge

:::
See

:::
the

::::::::
concept

:::::
maps

:::
on

::::::
page

::
v

:::
for

:::
an

:::::::::::
illustration

::
of

::::
the

::::::
paths

::::
that

:::
link

::::::
math

:::::::::
concepts. Mathematical thought is the usage of this

graph to produce calculations and mathematical arguments called
proofs

::::
these

::::::::::::
associations

:::
to

::::::
carry

::::
out

::::::::::::
calculations

:::::
and

::::::::
produce

::::::::::::
mathematical

::::::::::
arguments. For example, by connecting your knowledge

of the fact sinp30˝
q “

1
2 with the relation sin2 x ` cos2 x “ 1, you

can show that cosp30˝
q “

?
3

2 . Note the notation sin2
pxq means

psinpxqq
2
::::::::
knowing

:::::
about

:::
the

::::::::::
connection

::::::::
between

:::::::::::
logarithmic

::::::::
functions

:::
will

::::::
allow

::::
you

::::::::
compute

:::
the

:::::
value

::
of

::::::::
log7pe3

q,
:::::
even

::::::
though

::::::::::
calculators

:::::
don’t

::::
have

::
a

::::::
button

:::
for

::::::::::
logarithms

::::
base

::
7.

:::
We

::::
find

::::::::::::::::::::
log7pe3

q “
ln e3

ln 7 “
3

ln 7 ,

:::::
which

::::
can

:::
be

:::::::::
computed

:::::
using

::::
the

::::
ln

:::::::
button.

To develop mathematical skills, it is vital to practice path-
building between related concepts by solving exercisesand reading
and writing mathematical proofs. With this book, I will introduce
you to some of the many paths linking math concepts; ,

::::
but it’s up

to
:::
on you to reinforce these paths by using what you’ve learned to

practicesolving problems
:::::::
through

::::::::
practice.
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Example

::::::::
Example

::
3 Consider the function f from the real numbers to the

real numbers ( f : R Ñ R) defined by the quadratic expression,

f pxq “ x2
` 2x ` 3.

::
as

:::::::::::::::::
f pxq “ x2

` 2x ´ 3.
:
The value of f when x “ 1 is f p1q “ 12

` 2p1q ` 3 “ 1 ` 2 ` 3 “ 6
:::::::::::::::::::::
f p1q “ 12

` 2p1q ´ 3 “ 0.
When x “ 2, the output is f p2q “ 22

` 2p2q ` 3 “ 4 ` 4 ` 3 “ 11
:::::::::::::::::::::
f p2q “ 22

` 2p2q ´ 3 “ 5.
What is the value of f when x “ 0?

:::
You

::::
can

::::
use

:::::::
algebra

::
to

:::::::
rewrite

:::
this

::::::::
function

:::
as

::::::::::::::::::::
f pxq “ px ` 3qpx ´ 1q,

::::::
which

::::
tells

::::
you

::::
the

::::::
graph

::
of

:::
this

::::::::
function

:::::::
crosses

::::
the

::::::
x-axis

::
at

:::::::
x “ ´3

::::
and

::
at

::::::
x “ 1.

:::::
The

::::::
values

:::::
above

::::
will

:::::
help

::::
you

::::
plot

:::
the

::::::
graph

::
of

:::::
f pxq.

Example 2

::::::::
Example

:
4 Consider the exponential function with base 2 :

f pxq “ 2x.

:::::::
defined

:::
by

:::::::::
f pxq “ 2x.

:
This function is crucial to computer systems.

For instance, RAM memory chips come in powers of two because
the memory space is exponential in the number of “address lines”
used on the chip. When x “ 1, f p1q “ 21

“ 2. When x is 2 we have
f p2q “ 22

“ 4. The function is therefore described by the following
input-output pairs: p0, 1q, p1, 2q, p2, 4q, p3, 8q, p4, 16q, p5, 32q, p6, 64q,
p7, 128q, p8, 256q, p9, 512q, p10, 1024q, p11, 2048q, p12, 4096q, etc. Recall
that any number raised to exponent 0 gives 1. Thus, the exponential
function passes through the point p0, 1q. Recall also that negative
exponents lead to fractions: p´1, 1

21 “
1
2 q, p´2, 1

22 “
1
4 q, p´3, 1

23 “
1
8 q,

::
so

:::
we

:::::
have

:::
the

::::::
points

:::::::
p´1, 1

2 q,
:::::::
p´2, 1

4 q,
:::::::
p´3, 1

8 q, etc.
::::
You

:::
can

::::
plot

:::::
these

:::::::
px, f pxqq

:::::::::::
coordinates

::
in

:::
the

:::::::::
Cartesian

::::::
plane

::
to

::::::
obtain

:::
the

::::::
graph

::
of

:::
the

::::::::
function.

:

Discussion

::
To

::::::::
describe

:
a
::::::::
function

:::
we

:::::::
specify

::
its

:::::::
source

:::
and

::::::
target

::::
sets

:::::::::
f : A Ñ B,

::::
then

::::
give

:::
an

:::::::::
equation

::
of

::::
the

:::::
form

:::::::::::::::::::::::::::::
f pxq “ “expression involving x”

:::
that

:::::::
defines

:::
the

:::::::::
function.

:::::
Since

:::::::::
functions

:::
are

:::::::
defined

:::::
using

::::::::::
equations,

::::
does

::::
this

::::::
mean

::::
that

:::::::::
functions

:::::
and

:::::::::
equations

::::
are

:::
the

::::::
same

::::::
thing?

::::
Let’s

::::
take

::
a
::::::
closer

::::
look.

:

::
In

:::::::
general,

::::
any

::::::::
equation

::::::::::
containing

::::
two

::::::::
variables

:::::::::
describes

:
a
:
rela-

tion
:::::::
between

:::::
these

:::::::::
variables.

::::
For

::::::::
example,

:::
the

::::::::
equation

::::::::::::
x ´ 3 “ y ´ 4

::::::::
describes

::
a
:::::::
relation

:::::::::
between

:::
the

:::::::::
variables

::
x

::::
and

::
y.

::::
We

::::
can

::::::
isolate
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1.12 FUNCTIONS REFERENCE 75

:::
the

::::::::
variable

:
y
:::
in

:::
this

:::::::::
equation

::
to

::::::
obtain

:::::::::
y “ x ` 1

::::
and

:::::
thus

::::
find

:::
the

:::::
value

::
of

::
y
::::::
when

:::
the

::::::
value

:::
of

::
x

::
is

::::::
given.

::::
We

::::
can

::::
also

:::::::
isolate

::
x

::
to

::::::
obtain

::::::::
x “ y ´ 1

::::
and

::::
use

::::
this

:::::::::
equation

::
to

::::
find

::
x
::::::
when

:::
the

::::::
value

::
of

:
y
::
is

::::::
given.

:::
In

::::
the

:::::::
context

::
of

:::
an

:::::::::
equation,

::::
the

:::::::::::
relationship

::::::::
between

:::
the

::::::::
variables

::
x
::::

and
::

y
::
is
::::::::::::

symmetrical
::::
and

:::
no

:::::::
special

:::::::::::
significance

::
is

::::::::
attached

::
to

:::::
either

:::
of

:::
the

::::
two

:::::::::
variables.

:::
We

::::
also

::::
can

::::::::
describe

:::
the

::::::
same

:::::::::::
relationship

::::::::
between

::
x

::::
and

::
y

::
as

:
a
::::::::
function

::::::::::
f : R Ñ R.

::::
We

:::::::
choose

::
to

:::::::
identify

::
x
:::
as

:::
the

:::::
input

::::::::
variable

:::
and

::
y
:::
as

:::
the

:::::::
output

:::::::
variable

:::
of

:::
the

::::::::
function

:::
f .

:::::::
Having

:::::::::
identified

::
y

::::
with

:::
the

:::::::
output

::::::::
variable,

:::
we

::::
can

::::::::
interpret

::::
the

::::::::
equation

:::::::::
y “ x ` 1

::
as

:::
the

:::::::::
definition

::
of

:::
the

::::::::
function

::::::::::::
f pxq “ x ` 1.

:

::::
Note

::::
that

:::
the

:::::::::
equation

:::::::::::
x ´ 3 “ y ´ 4

::::
and

:::
the

::::::::
function

:::::::::::
f pxq “ x ` 1

:::::::
describe

::::
the

:::::
same

:::::::::::
relationship

:::::::::
between

:::
the

:::::::::
variables

::
x

::::
and

::
y.

::::
For

::::::::
example,

::
if
::::
we

:::
set

:::
the

::::::
value

::::::
x “ 5

:::
we

::::
can

::::
find

::::
the

::::::
value

::
of

::
y
:::
by

:::::::
solving

:::
the

::::::::
equation

::::::::::::
5 ´ 3 “ y ´ 4

:::
to

::::::
obtain

::::::
y “ 6,

::
or

:::
by

::::::::::
computing

:::
the

::::::
output

::
of

::::
the

:::::::
function

:::::
f pxq

:::
for

:::
the

:::::
input

::::::
x “ 5,

:::::
which

::::::
gives

::
us

:::
the

:::::
same

:::::::
answer

::::::::
f p5q “ 6.

:::
In

:::::
both

:::::
cases

:::
we

::::::
arrive

::
at

::::
the

:::::
same

:::::::
answer,

:::
but

::::::::::
modelling

:::
the

:::::::::::
relationship

::::::::
between

::
x

:::
and

::
y
::
as

::
a
::::::::
function

::::::
allows

::
us

::
to

::::
use

:::
the

::::::
whole

:::::::::
functions

:::::::
toolbox,

::::
like

::::::::
function

:::::::::::
composition

::::
and

:::::::
function

:::::::::
inverses.

* * *

In this section we talked a lot about functions in general but we
haven’t said much about any function specifically. There are many
useful functions out there, and we can’t discuss them all here. In the
next section, we’ll introduce 10 functions of strategic importance for
all of science. If you get a grip on these functions, you’ll be able to
understand all of physics and calculus and handle any problem your
teacher may throw at you.

To build mathematical intuition, it is essential you understand
functions’ graphs. Trying to memorize the definitions and the
properties of functions is a difficult task. Remembering what the
function “looks like” is comparatively easier.

1.12 Functions reference
Your function vocabulary determines how well you can express your-
self mathematically in the same way that your English vocabulary
determines how well you can express yourself in English. The fol-
lowing pages aim to embiggen your function vocabularyso you you,
::
so

::::
you’ll know how to handle the situation when a teacher tries to

pull some trick on you at the final.
If youare

:::
’re seeing these functions for the first time, don’t worry

about remembering all the facts and properties on the first reading.
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Wewill
:
’ll

:
use these functions throughout the rest of the bookso you

will ,
:::
so

:::::
you’ll

:
have plenty of time to become familiar with them. Just

remember
:::::::::
Remember

:
to return to this section if you ever get stuck

on a function.
::
To

::::::
build

:::::::::::::
mathematical

:::::::::
intuition,

:::
it’s

:::::::::
essential

::::
you

:::::::::::
understand

:::::::::
functions’

:::::::
graphs.

:::::::::::::
Memorizing

::::
the

::::::::::
definitions

:::::
and

:::::::::
properties

:::
of

::::::::
functions

:::::
gets

::
a
:::
lot

::::::
easier

:::::
with

:::::::
visual

:::::::::::::::
accompaniment.

:::::::::
Indeed,

::::::::::::
remembering

:::::
what

:::
the

::::::::
function

:::::::
“looks

:::::
like”

::
is

:
a
::::::

great
::::
way

::
to

:::::
train

:::::::
yourself

:::
to

:::::::::
recognize

:::::::
various

:::::
types

:::
of

:::::::::
functions.

:::::::
Figure

::::
1.28

::::::
shows

:::
the

::::::
graphs

:::
of

:::::
some

::
of

::::
the

::::
most

::::::::::
important

:::::::::
functions

:::::
we’ll

:::
use

::
in

::::
this

:::::
book.

:

1 2 3 4 5
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3
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y

(a) f pxq “ 2x ´ 3
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(b) f pxq “ x2

1 2 3 4 5 60

1

2

3

4

5

x

y
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(f) f pxq “ lnpxq
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(g) f pxq “ sinpxq
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(h) f pxq “ cospxq
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(i) f pxq “ tanpxq

Figure 1.28:
::::
We’ll

:::
see

:::::
many

:::::
types

::
of

:::::::
function

::::::
graphs

::
in

:::
the

::::
next

:::::
pages.
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Line
The equation of a line describes an input-output relationship where
the change in the output is proportional to the change in the input.
The equation of a line is

f pxq “ mx ` b.

The constant m describes the slope of the line. The constant b is called
the y-intercept and it corresponds to

:
is
:
the value of the function when

x “ 0.
The equation of the line f pxq “ mx ` b is so important that it’s

worth taking the time to contemplate it for a few seconds. Consider
what relationship the equation of f pxq describes for different values
of m and b. What happens when m is positive? What happens when
m is negative?

I’ll leave some blank space here to give you “pages-turned” credit
for taking the time.

Graph

´10 ´8 ´6 ´4 ´2 2 4 6 8 100

´4

´2

2

4

p0, ´3q

p1.5, 0q
x

y

Figure 1.29: The graph of the function f pxq “ 2x ´ 3. The slope is m “ 2.
The y-intercept of this line is at y “ ´3

:::::
b “ ´3. The x-intercept is at x “

3
2 .

Properties

• Domain: x P R.
::
R.

:
The function f pxq “ mx ` b is defined for

all inputs x P R
::::
reals.

• Image: x P R
:
R

:
if m ‰ 0. If m “ 0 the function is constant

f pxq “ b, so the image set contains only a single number tbu.
• x “ ´b{m: the x-intercept of f pxq “ mx ` b. The x-intercept is

obtained by solving f pxq “ 0.
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• A unique line passes through any two points px1, y1q and
px2, y2q if x1 ‰ x2.

• The inverse to the line f pxq “ mx ` b is f ´1
pxq “

1
m px ´ bq,

which is also a line.

General equation

A line can also be described in a more symmetric form as a relation:

Ax ` By “ C.

This is known as the general equation of a line. The general equation
for the line shown in Figure 1.29 is 2x ´ 1y “ 3.

Given the general equation of a line Ax ` By “ C
::::
with

::::::
B ‰ 0, you

can convert to the function form y “ f pxq “ mx ` b using b “
C
B and

::
by

::::::::::
computing

::::
the

:::::
slope m “

´A
B ::::

and
:::
the

::::::::::
y-intercept

:::::
b “

C
B .
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Square
The function x squared, is also called the quadratic function, or
parabola. The formula for the quadratic function is

f pxq “ x2.

The name “quadratic” comes from the Latin quadratus for square,
since the expression for the area of a square with side length x is x2.

´4 ´3 ´2 ´1 1 2 3 40

1

2

3

4

5

(-2, 4)

(-1, 1) (1, 1)

(2, 4)
f pxq “ x2

x

y

Figure 1.30: Plot of the quadratic function f pxq “ x2. The graph of the
function passes through the following px, yq coordinates: p´2, 4q, p´1, 1q,
p0, 0q, p1, 1q, p2, 4q, p3, 9q, etc.

Properties

• Domain: x P R.
::
R.

:
The function f pxq “ x2 is defined for all

input values x P R
::::::::
numbers.

• Image: f pxq P r0, 8q.
:::::::::::::::::::
R` “ ty P R | y • 0u.

::
The outputs are

never negative:
:::::::::::
nonnegative

:::::::::
numbers

:::::
since

:
x2

• 0, for all
x P R

:::
real

:::::::::
numbers

:
x.

• The function x2 is the inverse of the square root function
?

x.
• f pxq “ x2 is two-to-one: it sends both x and ´x to the same

output value x2
“ p´xq

2.
• The quadratic function is convex, meaning it curves upward.

:::
The

:::
set

::::::::::
expression

:::::::::::::
ty P R | y • 0u

::::
that

:::
we

::::
use

::
to

::::::
define

:::
the

:::::::::::
nonnegative

:::
real

:::::::::
numbers

:::::
(R`)

::
is

::::
read

:::::
“the

:::
set

::
of

::::
real

:::::::::
numbers

::::
that

:::
are

:::::::
greater

::::
than

::
or

::::::
equal

::
to

::::::
zero.”
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Square root
The square root function is denoted

f pxq “
?

x”“: x
1
2 .

The square root
?

x is the inverse function of the square function x2

for x • 0
:::::
when

:::
the

::::
two

:::::::::
functions

::::
are

:::::::
defined

:::
as

::::::::::::
f : R` Ñ R`. The

symbol
?

c refers to the positive solution of x2
“ c. Note that ´

?
c is

also a solution of x2
“ c.

Graph

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 160

1

2

3

4

5

p1, 1q

p4, 2q

p9, 3q

p16, 4q

f pxq “
?

x

x

y

Figure 1.31: The graph of the function f pxq “
?

x. The domain of the func-
tion is x P r0, 8q. You

:::
R`:::::::

because
:::
we can’t take the square root of a negative

number.

Properties

• Domain: x P r0, 8q .
::::::::::::::::::::
R` “ tx P R | x • 0u.

::
The function

f pxq “
?

x is only defined for nonnegative inputsx • 0. .
There is no real number y such that y2 is negative, hence the
function f pxq “

?
x is not defined for negative inputs x.

• Image: f pxq P r0, 8q .
:::::::::::::::::::
R` “ ty P R | y • 0u.

:
The outputs of the

function f pxq “
?

x are never negative:
:::::::::::
nonnegative

::::::::
numbers

::::
since

:

?
x • 0, for all x P r0, 8q .

In addition to square root, there is also cube root f pxq “
3

?
x ” x

1
3
::::::::::::::
f pxq “

3
?

x “ x
1
3 ,

which is the inverse function for the cubic function f pxq “ x3. We
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1.12 FUNCTIONS REFERENCE 81

have 3?8 “ 2 since 2 ˆ 2 ˆ 2 “ 8. More generally, we can define the
nth-root function n

?
x as the inverse function of xn.

Absolute value
The absolute value function tells us the size of numbers without pay-
ing attention to whether the number is positive or negative. We can
compute a number’s absolute value by ignoring the sign of the num-
ber. A number’s absolute value corresponds to its distance from the
origin of the number line.

Another way of thinking about the absolute value function is to
say it multiplies negative numbers by ´1 to “cancel” their negative
sign:

f pxq “ |x| “

"
x if x • 0,

´x if x † 0.

Graph

´4 ´3 ´2 ´1 1 2 3 40

1

2

3

4
f pxq“|x|

x

y

Figure 1.32: The graph of the absolute value function f pxq “ |x|.

Properties

• Always returns a nonnegative number
:::::::
Domain:

::::
R.

::::::
The

:::::::
function

::::::::::
f pxq “ |x|

::
is

:::::::
defined

:::
for

::
all

:::::::
inputs.

:

•
::::::
Image:

:::::::::::::::::::
R` “ ty P R | y • 0u

:

• The combination of squaring followed by square-root is equiv-
alent to the absolute value function:

a
x2”“

:
|x|,
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You can add two polynomials by adding together their coefficients:

f pxq ` gpxq “ panxn
` ¨ ¨ ¨ ` a1x ` a0q ` pbnxn

` ¨ ¨ ¨ ` b1x ` b0q

“ pan ` bnqxn
` ¨ ¨ ¨ ` pa1 ` b1qx ` pa0 ` b0q.

The subtraction of two polynomials works similarly. We can also
multiply polynomials together using the general algebra rules of for
expanding brackets. The notion of polynomial division also exists,
but that’s a more advanced topic that we won’t discuss for now.
Instead let’s focus on the basics.

Solving polynomial equations

:::::::::
Solving

:::::::::::::
polynomial

:::::::::::
equations

Very often in math, you will have to solve polynomial equations of
the form

Apxq “ Bpxq,

where Apxq and Bpxq are both polynomials. Recall from earlier that
to solve, we must find the value

::::::
values

:
of x that makes

:::::
make the

equality true.
Say the revenue of your company is a function of the number of

products sold x, and can be expressed as Rpxq “ 2x2
` 2x. Say also

the cost you incur to produce x objects is Cpxq “ x2
` 5x ` 10. You

want to determine the amount of product you need to produce to
break even, that is, so that revenue equals cost: Rpxq “ Cpxq. To find
the break-even value x, solve the equation

2x2
` 2x “ x2

` 5x ` 10.

This may seem complicated since there are xs all over the place. No
worries! We can turn the equation into its “standard form,” and then
use the quadratic formula. First, move all the terms to one side until
only zero remains on the other side:
Remember, if we perform the same operations on both sides of the
equation, the resulting equation has the same solutions. Therefore,
the values of x that satisfy

x2
´ 3x ´ 10 “ 0,

:::::::::::::::
x2

´ 3x ´ 10 “ 0, namely x “ ´2 and x “ 5, also satisfy

2x2
` 2x “ x2

` 5x ` 10,
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:::::::::::::::::::::
2x2

` 2x “ x2
` 5x ` 10,

:
which is the original problem we’re trying

to solve.
This “shuffling of terms” approach will work for any polynomial

equation Apxq “ Bpxq. We can always rewrite it as Cpxq “ 0, where
Cpxq is a new polynomial with coefficients equal to the difference of
the coefficients of A and B. Don’t worry about which side you move
all the coefficients to because Cpxq “ 0 and 0 “ ´Cpxq have exactly
the same solutions. Furthermore, the degree of the polynomial C can
be no greater than that of A or B.

The form Cpxq “ 0 is the standard form of a polynomial, and we’ll
explore several formulas you can use to find its solution(s).

Formulas

The formula for solving the polynomial equation Ppxq “ 0 depends
on the degree of the polynomial in question.

For a first-degree polynomial equation, P1pxq “ mx ` b “ 0, the
solution is x “

´b
m : just move b to the other side and divide by m.

For a second-degree polynomial,

P2pxq “ ax2
` bx ` c “ 0,

the solutions are x1 “
´b`

?
b2´4ac

2a and x2 “
´b´

?
b2´4ac

2a .
If b2

´ 4ac † 0, the solutions will involve taking the square root
of a negative number. In those cases, we say no real solutions exist.

There is also a formula for polynomials of degree 3 and 4, but
they are complicated. For polynomials with order • 5, there does
not exist a general analytical solution.

Using a computer

When solving real-world problems, you’ll often run into much more
complicated equations. To find the solutions of anything more com-
plicated than the quadratic equation, I recommend using a computer
algebra system like SymPy: http://live.sympy.org.

To make SymPy solve the standard-form equation Cpxq “ 0, call
the function solve(expr,var), where the expression expr corre-
sponds to Cpxq, and var is the variable you want to solve for. For
example, to solve x2

´ 3x ` 2 “ 0, type in the following:

>>> solve(x**2 - 3*x + 2, x) # usage: solve(expr, var)

[1, 2]

The function solve will find the roots of
::::::::
solutions

::
to any equation of

the form expr = 0. Indeed, we can verify that x2
´ 3x ` 2 “ px ´ 1qpx ´ 2q,

so
::
In

::::
this

:::::
case,

:::
we

:::
see

:::
the

:::::::::
solutions

:::
are

:
x “ 1 and x “ 2are .

:
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:::::::
Another

:::::
way

::
to

::::::
solve

:::
the

:::::::::
equation

::
is

:::
to

::::::
factor

:::
the

:::::::::::
polynomial

::::
Cpxq

:::::
using

::::
the

::::::::
function

::::::
factor

:::
like

::::
this:

:

>>> factor(x**2 - 3*x + 2) # usage: factor(expr)

(x - 1)*(x - 2)

:::
We

:::
see

:::::
that

::::::::::::::::::::::::::
x2

´ 3x ` 2 “ px ´ 1qpx ´ 2q,
::::::
which

:::::::::
confirms

:
the two

roots
:::
are

::::::
indeed

::::::
x “ 1

:::
and

::::::
x “ 2.

:

::
To

::::::
learn

:::::
more

::::::
about

::::::
SymPy,

::::::
check

::::
out

::::::::::
Appendix

:::
D

:::
on

:::::
page

::::
519,

:::::
which

:::::
talks

::::::
about

::
all

::::
the

:::::
SymPy

::::::::
functions

::::
that

:::
are

:::::::::
available

::
to

::::
you.

Substitution trick

Sometimes you can solve fourth-degree polynomials by using the
quadratic formula. Say you’re asked to solve for x in

gpxq “x4
´ 7x2

` 10 “ 0.

Imagine this problem is on your exam, where you are not allowed to
use a computer. How does the teacher expect you to solve for x? The
trick is to substitute y “ x2 and rewrite the same equation as

gpyq “y2
´ 7y ` 10 “ 0,

which you can solve by applying the quadratic formula. If you ob-
tain the solutions y “ a and y “ b, then the solutions to the original
fourth-degree polynomial are x “ ˘

?
a and x “ ˘

a
b, since y “ x2.

Since we’re not taking an exam right now, we are allowed to use
the computer to find the roots:

>>> solve(y**2 - 7*y + 10, y)

[2, 5]

>>> solve(x**4 - 7*x**2 + 10, x)

[sqrt(2), -sqrt(2), sqrt(5), -sqrt(5)]

Note how the second-degree polynomial has two roots, while the
fourth-degree polynomial has four roots.

Even and odd functions

The polynomials form an entire family of functions. Depending on
the choice of degree n and coefficients a0, a1, . . ., an, a polynomial
function can take on many different shapes. Consider the following
observations about the symmetries of polynomials:
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Sine
The sine function represents a fundamental unit of vibration. The
graph of sinpxq oscillates up and down and crosses the x-axis multiple
times. The shape of the graph of sinpxq corresponds to the shape of a
vibrating string. See Figure 1.33.

In the remainder of this book, we’ll meet the function sinpxq many
times. We’ll define the function sinpxq more formally as a trigono-
metric ratio in Section 1.15. In Chapter 3 we’ll use sinpxq and cospxq

(another trigonometric ratio) to work out the components of vectors.
Later in Chapter 4, we’ll learn how the sine function can be used to
describe waves and periodic motion.

At this point in the book, however, we don’t want to go into too
much detail about all these applications. Let’s hold off on the dis-
cussion about vectors, triangles, angles, and ratios of lengths of sides
and instead just focus on the graph of the function f pxq “ sinpxq.

Graph

´2 ´1 1 2 3 4 5 6 7

´2

´1

0

1
f pxq “ sinpxq

2p

p
p
2 , 1q

p
3p
2 , ´1q

x

y

Figure 1.33: The graph of the function y “ sinpxq passes through the fol-
lowing px, yq coordinates: p0, 0q, p

p
6 , 1

2 q, p
p
4 ,

?
2

2 q, p
p
3 ,

?
3

2 q, p
p
2 , 1q, p

2p
3 ,

?
3

2 q,
p

3p
4 ,

?
2

2 q, p
5p
6 , 1

2 q, and pp, 0q. For x P rp, 2ps
:
x

:::::::
between

::
p
::::

and
::::

2p,
:
the

function
:
’s

:::::
graph

:
has the same shape as

:
it

:::
has

:
for x P r0, ps

:
x
:::::::
between

::
0

:::
and

::
p, but with negative values.

2 3 4

´1

0

1
p

x

y

Figure 1.34: The function f pxq “ sinpxq crosses the x-axis at x “ p.
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Let’s start at x “ 0 and follow the graph of the function sinpxq

as it goes up and down. The graph starts from p0, 0q and smoothly
increases until it reaches the maximum value at x “

p
2 . Afterward,

the function comes back down to cross the x-axis at x “ p. After p,
the function drops below the x-axis and reaches its minimum value
of ´1 at x “

3p
2 . It then travels up again to cross the x-axis at x “ 2p.

This 2p-long cycle repeats after x “ 2p. This is why we call the
function periodic—the shape of the graph repeats.

´7p ´6p ´5p ´4p ´3p ´2p ´1p 0p 1p 2p 3p 4p 5p 6p 7p

´1

0

1

sinpxq

x

y

Figure 1.35: The graph of sinpxq from x “ 0 to x “ 2p repeats periodically
everywhere else on the number line.

Properties
• Domain: x P R.

::
R.

:
The function f pxq “ sinpxq is defined for all

input valuesx P R.
• Image: sinpxq P r´1, 1s.

:::::::::::::::::::
ty P R | ´ 1 § y § 1u.

:
The outputs of

the sine function are always between ´1 and 1.
• Roots: r. . . , ´3p, ´2p, ´p, 0, p, 2p, 3p, . . .s

:::::::::::::::::::::::::::::::::
t . . . , ´3p, ´2p, ´p, 0, p, 2p, 3p, . . . u.

The function sinpxq has roots at all multiples of p.
• The function is periodic, with period 2p: sinpxq “ sinpx ` 2pq.
• The sin function is odd: sinpxq “ ´ sinp´xq

• Relation to cos: sin2 x ` cos2 x “ 1
• Relation to csc: cscpxq ”

1
sin x :::::::::::

cscpxq “
1

sin x:(csc is read cosecant)
• The inverse function of sinpxq is denoted as sin´1

pxq
::
or

::::::::
arcsinpxq, not to be confused with psinpxqq

´1
“

1
sinpxq

” cscpxq.

Sometimes the function sin´1
pxq is denoted “arcsinpxq. ”

:::::::::::::::::::::::::
psinpxqq

´1
“

1
sinpxq

“ cscpxq.

• The number sinpqq is the length-ratio of the vertical side and
the hypotenuse in a right-angle triangle with angle q at the
base.
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Cosine
The cosine function is the same as the sine function shifted by p

2 to
the left: cospxq “ sinpx `

p
2 q. Thus everything you know about the

sine function also applies to the cosine function.

Graph

´1 1 2 3 4 5 6 7 8

´1

0

1

f pxq “ cospxq

pp, ´1q

p2p, 1q

x

y

Figure 1.36: The graph of the function y “ cospxq passes through the fol-
lowing px, yq coordinates: p0, 1q, p

p
6 ,

?
3

2 q, p
p
4 ,

?
2

2 q, p
p
3 , 1

2 q, p
p
2 , 0q, p

2p
3 , ´

1
2 q,

p
3p
4 , ´

?
2

2 q, p
5p
6 , ´

?
3

2 q, and pp, ´1q.

The cos function starts at cosp0q “ 1, then drops down to cross the
x-axis at x “

p
2 . Cos continues until it reaches its minimum value at

x “ p. The function then moves upward, crossing the x-axis again
at x “

3p
2 , and reaching its maximum value again at x “ 2p.

Properties

• Domain: x P R
:
R

:

• Image: cospxq P r´1, 1s
:::::::::::::::::::
ty P R | ´ 1 § y § 1u

• Roots: r . . . , ´
3p
2 , ´

p
2 , p

2 , 3p
2 , 5p

2 , . . . s
:::::::::::::::::::::::::::
t . . . , ´

3p
2 , ´

p
2 , p

2 , 3p
2 , 5p

2 , . . . u

• Relation to sin: sin2 x ` cos2 x “ 1
• Relation to sec: secpxq ”

1
cos x ::::::::::::

secpxq “
1

cos x (sec is read secant)
• The inverse function of cospxq is denoted cos´1

pxq
::
or

:::::::::
arccospxq.

• The cos function is even: cospxq “ cosp´xq

• The number cospqq is the length-ratio of the horizontal side and
the hypotenuse in a right-angle triangle with angle q at the base
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Tangent
The tangent function is the ratio of the sine and cosine functions:

f pxq “ tanpxq”“:

sinpxq

cospxq
.

Graph

´4 ´3 ´2 ´1 1 2 3 40

´3

´2

´1

1

2

3f pxq“ tanpxq“
sinpxq

cospxq

p
2

p
p
4 , 1q

x

y

Figure 1.37: The graph of the function f pxq “ tanpxq.

Properties

• Domain: tx P R | x ‰
p2n`1qp

2 for any n P Zu .
• Image: x P R.

:
R

:

• The function tan is periodic with period p.
• The tan function “blows up” at values of x where cos x “ 0.

These are called asymptotes of the function and their locations
are x “ . . . , ´3p

2 , ´p
2 , p

2 , 3p
2 , . . ..

• Value at x “ 0: tanp0q “
0
1 “ 0, because sinp0q “ 0.

• Value at x “
p
4 : tan

`
p
4

˘
“

sinp
p
4 q

cosp
p
4 q

“

?
2

2?
2

2
“ 1.

• The number tanpqq is the length-ratio of the vertical and the
horizontal sides in a right-angle triangle with angle q.

• The inverse function of tanpxq is
::::::::
denoted tan´1

pxq
::
or

:::::::::
arctanpxq.

• The inverse tangent function is used to compute the angle at
the base in a right-angle triangle with horizontal side length `h

and vertical side length `v: q “ tan´1
´
`v
`h

¯
.
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Exponential
The exponential function base e “ 2.7182818 . . . is denoted

f pxq “ ex
”“: exppxq.

Graph

´4 ´3 ´2 ´1 1 2 3 40

1

2

3

4 f pxq“ ex

p1, eq

x

y

Figure 1.38: The graph of the exponential function f pxq “ ex passes through
the following px, yq coordinates

:::::
points: p´2, 1

e2 q, p´1, 1
e q, p0, 1q, p1, eq, p2, e2

q,
p3, e3

“ 20.08 . . .q
::::

p3, e3
q, p5, 148.41 . . .q

:::::
p4, e4

q, and p10, 22026.46 . . .q
::
etc.

Properties

• Domain: x P R
:
R

:

• Image: ex
P p0, 8q

:::::::::::::
ty P R | y ° 0u

:

• f paq f pbq “ f pa ` bq since eaeb
“ ea`b

• The derivative (the slope of the graph) of the exponential
function is the exponential function: f pxq “ ex

ñ f 1
pxq “ ex

A more general exponential function would be f pxq “ Aegx, where
A is the initial value, and g (the Greek letter gamma) is the rate of
the exponential. For g ° 0, the function f pxq is increasing, as in
Figure 1.38. For g † 0, the function is decreasing and tends to zero
for large values of x. The case g “ 0 is special since e0

“ 1, so f pxq is
a constant of f pxq “ A1x

“ A.
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Links

[ The exponential function 2x evaluated ]
http://www.youtube.com/watch?v=e4MSN6IImpI

Natural logarithm
The natural logarithm function is denoted

f pxq “ lnpxq “ logepxq.

The function lnpxq is the inverse function of the exponential ex.

Graph

0.5 1 1.5 2 2.5 3 3.5 4

´1.5

´1

´0.5

0

0.5

1

1.5

pe, 1q1

e

f pxq “ lnpxq

x

y

Figure 1.39: The graph of the function lnpxq passes through the fol-
lowing px, yq coordinates: p

1
e2 , ´2q, p

1
e , ´1q, p1, 0q, pe, 1q

::::
pe, 1q, pe2, 2q

:::::
pe2, 2q,

pe3, 3q
::::
pe3, 3q, p148.41 . . . , 5q

:::::
pe4, 4q, and p22026.46 . . . , 10q

:::
etc.

:::::::::
Properties

•
::::::::
Domain:

:::::::::::::
tx P R | x ° 0u

:

•
::::::
Image:

::
R

:

Exercises
E1.17 Find the domain, the image, and the roots of f pxq “ 2 cospxq.

E1.18 What are the degrees of the following polynomials? Are they
even, odd, or neither?
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1 2 30

´2

´1

1

2

3
f g

h “ 2

x

y

Figure 1.42: The graph of the function gpxq “ f px ´ 2q has the same shape
as the graph of f pxq translated to the right by two units.

Figure 1.42 shows the function f pxq “ 6.75px3
´ 2x2

` xq, as well
as the function gpxq, which is shifted to the right by h “ 2 units:

gpxq “ f px ´ 2q “ 6.75
”
px ´ 2q

3
´ 2px ´ 2q

2
` px ´ 2q

ı
.

The original function f gives us f p0q “ 0 and f p1q “ 0, so the new
function gpxq must give gp2q “ 0 and gp3q “ 0. The maximum at
x “

1
3 has similarly shifted by two units to the right, gp2 `

1
3 q “ 1.

Vertical scaling
To stretch or compress the shape of a function vertically, we can mul-
tiply it by some constant A and obtain

gpxq “ A f pxq.

10

´2

´1

1

2

3

fg

21 x

y

Figure 1.43:
:::
The

:::::
graph

::
of

:::
the

:::::::
function

:::::::::::
gpxq “ 2 f pxq

::::
looks

:::
like

::::
f pxq

::::::::
vertically

:::::::
stretched

:::
by

:
a
:::::
factor

::
of

::::
two.
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Figure 1.44 shows the function f pxq “ 6.75px3
´ 2x2

` xq, as well
as the function gpxq, which is f pxq compressed horizontally by a fac-
tor of a “ 2:

gpxq“ f p2xq

“ 6.75
”
p2xq

3
´ 2p2xq

2
` p2xq

ı
.

gpxq “ f p2xq “ 6.75
”
p2xq

3
´ 2p2xq

2
` p2xq

ı
.

::::::::::::::::::::::::::::::::::::::

The x-intercept f p0q “ 0 does not move since it is on the y-axis. The
x-intercept f p1q “ 0 does move, however, and we have gp0.5q “ 0.
The maximum at x “

1
3 moves to gp

1
6 q “ 1. All points of f pxq are

compressed toward the y-axis by a factor of 2.

General quadratic function
The general quadratic function takes the form

::::
Any

::::::::
quadratic

::::::::
function

:::
can

:::
be

:::::::
written

::
in

:::
the

:::::
form:

:

f pxq “ Aapx ´ hq
2

` k,

where x is the input, and A, h
::
a,

::
h, and k are the

::::::::::
parameters.

:::::
This

:
is
::::::

called
::::
the parameters

:::::
vertex

::::
form

::
of

:::
the

:::::::::
quadratic

:::::::::
function,

::::
and

:::
the

:::::::::
coordinate

:::::
pair

:::::
ph, kq

:::
is

::::::
called

::::
the

::::::
vertex

::
of

::::
the

:::::::::
parabola.

::::::
This

::::::::
equation

::::
can

:::
be

:::::::::
obtained

::::
by

::::::::
starting

:::::
from

::::
the

::::::
basic

:::::::::
quadratic

:::::::
function

:::
x2

:::::
(see

::::::
Figure

:::::
1.30)

::::
and

:::::::::
applying

::::::
three

:::::::::::::::
transformations:

:
a
::::::::::
horizontal

::::::::::
translation

::
by

::
h
:::::
units,

::
a

:::::::
vertical

::::::
scaling

:::
by

::
a,

::::
and

::::::
finally

:
a
:::::::
vertical

::::::::::
translation

:::
by

:
k
:::::
units.

Parameters

• A
:
a: the slope multiplier
ô The larger the absolute value of A

:
a, the steeper the slope.

ô If A † 0
::::
a † 0

:
(negative), the function opens downward.

• h: the horizontal displacement of the function. Notice
::::
Note

that subtracting a number inside the bracket p q
2
::::
p q

2 (positive
h) makes the function go to the right.

• k: the vertical displacement of the function
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´2 ´1 1 2 3 4

´2

´1

0

1

2

p1, ´2q

f pxq“px ´ 1q
2

´ 2

x

y

Figure 1.45: The graph of the function f pxq “ px ´ 1q
2

´ 2 is the same as
the basic function f pxq “ x2, but shifted one unit to the right and two units
down.

Graph

The graph in Figure 1.45 illustrates a quadratic function with param-
eters A “ 1

:::::
a “ 1, h “ 1 (one unit shifted to the right), and k “ ´2

(two units shifted down).
:::
We

::::
can

:::::
also

::::::
write

::
a

:::::::::
quadratic

:::::::::
function

:::
as

::
a
::::::::::::::

second-degree

::::::::::
polynomial

:::::::::::::::::::
f pxq “ ax2

` bx ` c.
::::::

This
::
is

::::::
called

::::
the

::::::::
standard

:::::
form

::
of

:::
the

:::::::::
quadratic

:::::::::
function.

::::::
Given

:
a
:::::::::
quadratic

::::::::::
expression

:::
in

::::::::
standard

::::
form

::::::::::::
ax2

` bx ` c,
::::

we
::::
can

::::
find

:::
its

::::::::::
equivalent

::::::::::
expression

:::
in

::::::
vertex

::::
form

::::::::::::
apx ´ hq

2
` k

:::::
using

::::
the

::::::::::::::::::
complete-the-square

:::::
trick

:::
we

:::::::
learned

::
in

::::::
Section

::::
1.6.

:

If a quadratic
::::::::
function

:
crosses the x-axis, it can be written in

factored form:
::::::
factored

:::::
form:

:

f pxq “ Aapx ´ ax ´ x1
:::::

qpx ´ bx ´ x2
:::::

q,

where a and b
::
x1 ::::

and
::
x2:are the two roots . Another common way of

writing a quadraticfunction is f pxq “ Ax2
` Bx ` C.

Properties

::
of

:::
the

::::::::::
quadratic.

::::::
Given

:
a
:::::::::
quadratic

::::::::
function

::::::::::::::::::
f pxq “ ax2

` bx ` c,
:::
we

:::
can

::::
find

:::
its

:::::
roots

:::::
using

::::
the

:::::::::
quadratic

::::::::
formula:

:::::::::::::::
x1 “

´b`
?

b2´4ac
2a ::::

and

:::::::::::::::
x2 “

´b´
?

b2´4ac
2a ::::

(see
:::::::
Section

::::
1.7).
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• There is a unique quadratic function that passes through any
three points px1, y1q, px2, y2q and px3, y3q, if the points have
different x-coordinates: x1 ‰ x2, x2 ‰ x3, and x1 ‰ x3.

General sine function
Introducing all possible parameters into the sine function gives us:

f pxq “ A sin
` 2p

l x ´ f
˘
,

where A, l, and f are the function’s parameters.

´1 1 2 3 4 5 6 7 8 9

´2

´1

0

1

2

l “ 4

f pxq “ 2 sin
` 2p

4 x ´
p
2

˘

x

y

Figure 1.46:
:::
The

:::::
graph

::
of

:::
the

::::::::
function

:::::::::::::::::::
f pxq “ 2 sin

` 2p
4 x ´

p
2

˘
,
::::::
which

:::
has

::::::::
amplitude

::::::
A “ 2,

::::::::::
wavelength

:::::
l “ 4,

::::
and

:::::
phase

::::
shift

::::::
f “

p
2 .

Parameters

• A: the amplitude describes the distance above and below the
x-axis that the function reaches as it oscillates.

• f: is a phase shift, analogous to the horizontal shift h, which we
have seen. This number dictates where the oscillation starts.
The default sine function has zero phase shift (f “ 0), so it
passes through the origin with an increasing slope.

The “bare” sine function f pxq “ sinpxq has wavelength 2p and pro-
duces outputs that oscillate between ´1 and `1. When we multiply
the bare function by the constant A, the oscillations will range be-
tween ´A and A. When the input x is scaled by the factor 2p

l , the
wavelength of the function becomes l.
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Exercises
E1.20 Given the functions f pxq “ x ` 5, gpxq “ x ´ 6, hpxq “ 7x, and
qpxq “ x2, find the formulas for the following composite functions:

a) q ˝ f b) f ˝ q c) q ˝ g d) q ˝ h

In each case, describe how the graph of the composite function is
related to the graph of qpxq.

E1.21 Find the amplitude A, the wavelength l, and the phase shift f
for the function f pxq “ 5 sinp62.83t ´

p
8 q

::::::::::::::::::::::
f pxq “ 5 sinp62.83x ´

p
8 q.

E1.22 Choose the coefficients a, b, and c for the quadratic function
f pxq “ ax2

` bx ` c so that it passes through the points p0, 5q, p1, 4q,
and p2, 5q.
Hint: Find the equation f pxq “ Apx ´ hq

2
` k first.

E1.23 Find the values a and b that will make the function gpxq “

2
?

x ´ a ` b pass through the points p3, ´2q, p4, 0q, and p7, 2q.

1.14 Geometry
The word “geometry” comes from the Greek roots geo, which means
“earth,” and metron, which means “measurement.” This name is
linked to one of the early applications of geometry, which was to
measure the total amount of land contained within a certain bound-
ary region. Over the years, the study of geometry evolved to be more
abstract. Instead of developing formulas for calculating the area of
specific regions of land, mathematicians developed general area for-
mulas that apply to all regions that have a particular shape.

In this section we’ll present a number of formulas for calcu-
lating the perimeters, areas, and volumes for various shapes (also
called “figures”) commonly encountered in the real world. For two-
dimensional figures, the main quantities of interest are the figures’
areas and the figures’ perimeters (the length of the walk around the
figure). For three-dimensional figures, the quantities of interest are
the surface area (how much paint it would take to cover all sides
of the figure), and volume (how much water it would take to fill a
container of this shape). The formulas presented are by no means
an exhaustive list of everything there is to know about geometry,
but they represent a core set of facts that you want to add to your
toolbox.
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Cosine rule The cosine rules states the following equations are
true:

a2
“ b2

` c2
´ 2bc cospaq,

b2
“ a2

` c2
´ 2ac cospbq,

c2
“ a2

` b2
´ 2ab cospgq.

These equations are useful when you know two sides of a triangle
and the angle between them, and you want to find the third side.

Circle
The circle is a beautiful shape. If we take the centre of the circle at
the origin p0, 0q, the circle of radius r corresponds to the equation

x2
` y2

“ r2.

This formula describes the set of points px, yq with a distance from
the centre equal to r.

::::
Area

:::
The

:::::
area

::::::::
enclosed

::
by

::
a
:::::
circle

::
of

::::::
radius

::
r

:
is
::::::
given

:::
by

::::::::
A “ pr2.

::
A

:::::
circle

::
of

::::::
radius

:::::
r “ 1

:::
has

:::::
area

::
p.

:

:::::::::::::
Circumference

::::
and

::::
arc

::::::
length

The circumference of a circle of radius r is given by the formula

C “ 2pr.

The
C “ 2pr.
:::::::

::
A

:::::
circle

::
of

::::::
radius

:::::
r “ 1

::::
has

::::::::::::
circumference

::::
2p.

::::
This

::
is
::::
the

::::
total

::::::
length

:::
you

::::
can

::::::::
measure

:::
by

:::::::::
following

:::
the

::::::
curve

::
all

::::
the

::::
way

:::::::
around

::
to

:::::
trace

:::
the

:::::::
outline

::
of

:::
the

::::::
entire

::::::
circle.

::::
For

:::::::::
example,

:::
the

:
circumference of a

circle of radius 3 m is C “ 2pp3q “ 18.85 m. This is how far you’ll
need to walk to complete a full turn around a circle of radius r “ 3 m.

The area enclosed by a circle of radius
::::
What

::
is

:::
the

::::::
length

:::
of

:
a
::::
part

::
of

:::
the

::::::
circle?

::::
Say

::::
you

::::
have

::
a

:::::
piece

::
of

:::
the

::::::
circle,

:::::
called

:::
an

:::
arc,

::::
and

::::
that

:::::
piece

:::::::::::
corresponds

::
to

:::
the

:::::
angle

:::::::
q “ 57˝

:::
as

::::::
shown

::
in

::::::
Figure

:::::
1.49.

:::::
What

:
is
::::

the
::::
arc’s

:::::::
length

::
`?

::
If
::::
the

::::::
circle’s

:::::
total

::::::
length

::::::::
C “ 2pr

::::::::::
represents

:
a
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:::
full

:::::
360˝

::::
turn

:::::::
around

:::
the

::::::
circle,

::::
then

:::
the

::::
arc

::::::
length

:̀:::
for

::
a

:::::::
portion

::
of

:::
the

:::::
circle

:::::::::::::
corresponding

:::
to

:::
the

:::::
angle

::
q

::
is

` “ 2pr
q

360
.

:::::::::::

:::
The

:::
arc

:::::::
length

:̀::::::::
depends

:::
on r

:
,
:::
the

:::::
angle

::
q,
::::
and

::
a

:::::
factor

:::
of

:::

2p
360 .

:

O

`

r
q “57˝

Figure 1.49:
:::
The

:::
arc

::::::
length

:̀:::::
equals

:::
57

360:::
of

::
the

::::::
circle’s

::::::::::::
circumference

::::
2pr.

:::::::
Radians

:::::
While

:::::::::
scientists

:::
and

:::::::::
engineers

::::::::::
commonly

::::
use

:::::::
degrees

::
as

:
a
:::::::::::::
measurement

::::
unit

:::
for

::::::
angles,

:::::::::::::::
mathematicians

::::::
prefer

::
to

::::::::
measure

:::::::
angles

::
in

:::::::
radians,

:::::::
denoted

::::
rad.

:

::::::::::
Measuring

::
an

::::::
angle

::
in

:::::::
radians

::
is

::::::::::
equivalent

::
to

::::::::::
measuring

:::
the

:::
arc

::::::
length

:̀:::
on

:
a
:::::
circle

:::::
with

::::::
radius

::::::
r “ 1,

::
as

::::::::::
illustrated

::
in

::::::
Figure

:::::
1.50.

`

1

q

Figure 1.50:
:::
The

:::::
angle

:
q
::::::::
measured

::
in

:::::::
radians

::::::::::
corresponds

::
to

:::
the

::
arc

::::::
length

:̀

::
on

:
a
:::::
circle

::::
with

::::::
radius

:
1.
::::

The
:::
full

:::::
circle

::::::::::
corresponds

::
to

:::
the

:::::
angle

::
2p

::::
rad.

:::
The

:::::::::::
conversion

::::
ratio

::::::::
between

:::::::
degrees

::::
and

:::::::
radians

::
is
:

2p rad “ 360˝.
::::::::::::::

:::::
When

::::
the

:::::
angle

:
q
::
is
::::::::::
measured

::
in

:::::::
radians,

::::
the

:::
arc

::::::
length is given by

:
:

A` “ pr2q.
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Circles are
::
To

:::::
find

:::
the

::::
arc

::::::
length

::̀
,
::::

we
:::::::
simply

::::::::
multiply

::::
the

:::::
circle

::::::
radius

:
r
:::::
times

::::
the

:::::
angle

:
q
::::::::::
measured

::
in

:::::::
radians.

:

::::
Note

::::
the

::::::::::
arc-length

:::::::::
formula

:::::
with

::
q
::::::::::

measured
:::

in
::::::::
radians

::
is

:::::::
simpler

:::::
than

:::
the

::::::::::
arc-length

::::::::
formula

:::::
with

::
q
:::::::::
measured

:::
in

::::::::
degrees,

::::
since

::::
we

:::::
don’t

:::::
need

:::
the

::::::::::
conversion

::::::
factor

::
of

:::::
360˝.

:::
The

:::::::::
geometry

:::
of

::::::
circles

::
is

:
so important that we dedicated a whole

section (Section 1.17) to them
::::::::
pursuing

::::
this

:::::
topic

:::
in

::::::
more

::::::
detail.

For now, let’s continue discussing some other important geometric
shapes.

Sphere
A sphere of radius r is described by the equation x2

` y2
` z2

“ r2.
The surface area of the sphere is A “ 4pr2, and its volume is given
by V “

4
3 pr3.

r

Figure 1.51: A sphere of radius r has surface area 4pr2 and volume 4
3 pr3.

Cylinder
The surface area of a cylinder consists of the top and bottom circular
surfaces, plus the area of the side of the cylinder:

A “ 2
´

pr2
¯

` p2prqh.

The volume of a cylinder is the product of the area of the cylinder’s
base times its height:

V “

´
pr2

¯
h.

Example You open the hood of your car and see 2.0 L written on
top of the engine. The 2.0 L refers to the combined volume of the
four pistons, which are cylindrical in shape. The owner’s manual
tells you the radius of each piston is 43.75 mm, and the height of
each piston is 83.1 mm. Verify the total engine volume is 1998789
mm3

« 2 L.
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Figure 1.52: A cylinder with radius r and height h has volume pr2h.

Cones and pyramids
The volume of a square pyramid with side length a and height h is
given by the formula V “

1
3 a2h. The volume of a cone of radius r

and height h is given by the formula V “
1
3 pr2h. Note the factor 1

3
appears in both formulas. These two formulas are particular cases of
the general volume formula that applies to all pyramids:

V “
1
3 Ah,

where A is the area of the pyramid’s base and h is its height. This
formula applies for pyramids with a base that is a triangle (triangu-
lar pyramids), a square (square pyramids), a rectangle (rectangular
pyramids), a circle (cones), or any other shape.

h h h h h

Figure 1.53: The volumes of pyramids and cones are described by the for-
mula V “

1
3 Ah, where A is the area of the base and h is the height.

The System is obsessed with the pyramid shape. Many large
organizations are structured like pyramids: the top boss tells
vice-presidents what to do, vice-presidents tell directors what
to do, directors tell upper management what to do, and so on
until the commands reach regular employees. This pyramid-like
structure allows for tight control of information and budgets
within the organization. Pyramid structures are not necessarily
bad; yet we often find some of the worst aspects of human nature
concentrated at the tops of society’s pyramids. It’s wise to keep an
eye on pyramid-shaped power structures, and watch out for any
shenanigans the big bosses may try to pull.
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Exercises
E1.24 Find the length of side x in the triangle below.

4 x

5

60�

Hint: Use the cosine rule.

E1.25 Find the volume and the surface area of a sphere with radius 2.

E1.26
:::
On

:
a
::::::

rainy
::::
day,

::::::
Laura

::::::
brings

::::
her

::::
bike

::::::::
indoors,

:::::
and

:::
the

::::
wet

::::::
bicycle

:::::
tires

:::::
leave

::
a

:::::
track

::
of

::::::
water

:::
on

:::
the

:::::
floor.

::::::
What

::
is
::::

the
::::::
length

::
of

:::
the

::::::
water

:::::
track

:::
left

:::
by

::::
the

:::::
bike’s

:::::
rear

:::
tire

:::::::::
(diameter

:::
73

::::
cm)

::
if

:::
the

:::::
wheel

:::::::
makes

:::
five

::::
full

:::::
turns

:::::
along

::::
the

:::::
floor?

:

1.15 Trigonometry

We can put any three lines together to make a triangle. What ’s more,
if

:
If one of the triangle’s angles

::::::
angles

::
in

::
a

:::::::
triangle is equal to 90˝, we

call this triangle a right-angle triangle.
In this section we’ll discuss right-angle triangles in great detail

and get to know their properties. We’ll learn some fancy new terms
like hypotenuse, opposite, and adjacent, which are used to refer to the
different sides of a triangle. We’ll also use the functions sine, cosine,
and tangent to compute the ratios of lengths in right triangles.

Understanding triangles and their associated trigonometric func-
tions is of fundamental importance: you’ll need this knowledge
for your future understanding of mathematical subjects

::::::::
concepts

like vectors and complex numbers, as well as physics subjects like
oscillations and waves.

Figure 1.54: A right-angle triangle. The angle
:

at
:::
the

::::
base

::
is

:::::::
denoted

:
q and

the names of the sides of the triangle are indicated.
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Concepts
• A, B, C: the three vertices of the triangle
• q: the angle at the vertex C. Angles can be measured in degrees

or radians.

Pythagoras’ theorem
In a right-angle triangle, the length of the hypotenuse squared is
equal to the sum of the squares of the lengths of the other sides:

|adj|2 ` | opp|
2

“ | hyp|
2.

If we divide both sides of the above equation by |hyp|
2
::::
hyp2, we

obtain
|adj|2

|hyp|2
adj2

hyp2
:::::

`
|opp|

2

|hyp|2
opp2

hyp2
:::::

“ 1, 1.
::

which
:::::
Since

::::::::::

adj
hyp “ cos q

::::
and

:::::::::::

opp
hyp “ sin q,

:::
this

:::::::::
equation can be rewrit-

ten as
cos2 q ` sin2 q “ 1.

This is a powerful trigonometric identity that describes an important
relationship

::::::
relation

:
between sine and cosine

:::::::::
functions.

::::
In

::::
case

::::::
you’ve

::::::
never

::::
seen

::::
this

::::::::
notation

::::::
before,

::::
the

::::::::::
expression

:::::
cos2 q

::
is
:::::
used

::
to

::::::
denote

:::::::::
pcospqqq

2.

Sin and cos
Meet the trigonometric functions, or trigs for short. These are your
new friends. Don’t be shy now, say hello to them.

“Hello.”
“Hi.”
“Soooooo, you are like functions right?”
“Yep,” sin and cos reply in chorus.
“Okay, so what do you do?”
“Who me?” asks cos. “Well I tell the ratio. . . hmm. . . Wait, are you

asking what I do as a function or specifically what I do?”
“Both I guess?”
“Well, as a function, I take angles as inputs and I give ratios as

answers. More specifically, I tell you how ‘wide’ a triangle with that
angle will be,” says cos all in one breath.

“What do you mean wide?” you ask.
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“Oh yeah, I forgot to say, the triangle must have a hypotenuse of
length 1. What happens is there is a point P that moves around on
a circle of radius 1, and we imagine a triangle formed by the point
P, the origin, and the point on the x-axis located directly below the
point P.”

“I am not sure I get it,” you confess.
“Let me try explaining,” says sin. “Look on the next page,

::
at

::::::
Figure

::::
1.55

:
and you’ll see a circle. This is the unit circle because it

has a radius of 1. You see it, yes?”
“Yes.”
“Now imagine a point P that moves along the circle of radius 1,

starting from the point Pp0q “ p1, 0q. The x and y coordinates of the
point Ppqq “ pPxpqq, Pypqqq

::::::::::::::::::
Ppqq “ pPxpqq, Pypqqq

:
as a function of q

are
Ppqq “ pPxpqq, Pypqqq “ pcos q, sin qq.

So, either you can think of us in the context of triangles, or in the
context of the unit circle.”

“Cool. I kind of get it. Thanks so much,” you say, but in reality
you are weirded out. Talking functions? “Well guys. It was nice to
meet you, but I have to get going, to finish the rest of the book.”

“See you later,” says cos.
“Peace out,” says sin.

The unit circle
The unit circle

:
is

::
a

:::::
circle

::
of

::::::
radius

::::
one

:::::::
centred

::
at

::::
the

::::::
origin.

::::
The

::::
unit

:::::
circle consists of all points px, yq that satisfy the equation x2

` y2
“ 1.

A point P “ pPx, Pyq
:
P

:
on the unit circle has coordinates pPx, Pyq “

pcos q, sin qq, where q is the angle P makes with the x-axis.

x

y

1
sin q

cos q
q

10
x

y

1

q

10

pPx, Pyq “ pcos q, sin qq

x2
` y2

“ 1

Figure 1.55: The unit circle corresponds to the equation x2
` y2

“ 1. The
coordinates of the point P on the unit circle are Px “ cos q and Py “ sin q.

You should be familiar with the values of sin
::::::
Figure

::::
1.56

::::::
shows

:::
the
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q

f pqq

0 p
6

1
2

p
3

?
3

2

p
2

1

2p
3

5p
6

p

f pqq “ sin q
p
6

p
3

p
2

x2
` y2

“ 1

q

Figure 1.56: The function f pqq “ sin q describes the vertical position of a
point P that travels along the unit circle. The first half

:::::
graph

::::::
shows

:::
the

:::::
values

:
of a cycle is shown

::
the

:::::::
function

::::::::::
f pqq “ sin q

:::
for

:::::
angles

:::::::
between

:::::
q “ 0

:::
and

:::::
q “ p.

:::::
graph

:::
of

:::
the

::::::::
function

:::::::::::
f pqq “ sin q.

:::::
The

::::::
values

::::
sin q

:::
for

::::
the

::::::
angles

::
0,

::

p
6 :::::

(30˝),
::

p
3::::::

(60˝),
::::
and

::

p
2 :::::

(90˝)
:::
are

::::::::
marked.

::::::
There

:::
are

:::::
three

:::::::
values

::
to

::::::::::
remember:

::::::::
sin q “ 0

::::::
when

::::::
q “ 0,

:::::::::
sin q “

1
2 :::::

when
::::::

q “
p
6::::::

(30˝),
::::
and

::::::::
sin q “ 1

:::::
when

::::::
q “

p
2::::::

(90˝).
::::

See
:::::::
Figure

::::
1.33

::::::
(page

:::
88)

:::
for

::
a
::::::
graph

::
of

:::::
sin q

::::
that

::::::
shows

::
a
:::::::::

complete
::::::

cycle
:::::::
around

::::
the

::::::
circle.

:::::
Also

::::
see

::::::
Figure

::::
1.36

:::::
(page

:::
91)

:::
for

::::
the

:::::
graph

:::
of

:::::
cos q.

:::::::
Instead

::
of

::::::
trying

:::
to

:::::::::
memorize

::::
the

::::::
values

:::
of

:::
the

:::::::::
functions

:::::
cos q

and cos for all angles that are multiples of
:::
sin q

::::::::::
separately,

::::
it’s

:::::
easier

::
to

::::::::::
remember

:::::
them

:::
as

::
a
::::::::::
combined

::::::::::
“package”

::::::::::::
pcos q, sin qq,

::::::
which

::::::::
describes

::::
the

::
x-

:::::
and

::::::::::::
y-coordinates

:::
of

::::
the

:::::
point

::
P
::::

for
:::
the

::::::
angle

::
q.

::::::
Figure

::::
1.57

::::::
shows

::::
the

::::::
values

:::
of

:::::
cos q

::::
and

::::
sin q

::::
for

:::
the

:::::::
angles

::
0,

:

p
6

(30˝)or ,
:

p
4 (45˝). All of them are shown in Figure 1.58

:
,
::

p
3 :::::

(60˝),
::::
and

::

p
2 :::::

(90˝).
::::::

These
:::
are

::::
the

:::::
most

::::::::
common

:::::::
angles

::::
that

:::::
often

:::::
show

:::
up

:::
on

::::::::::
homework

::::
and

:::::
exam

::::::::::
questions. For each angle, the x-coordinate

(the first number in the bracket) is cos q, and the y-coordinate
:::
(the

::::::
second

::::::::
number

::
in

:::
the

::::::::
bracket) is sin q.
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:::::::

Figure 1.57: The unit circle. The
::::::::
combined

::::::::::
pcos q, sin qq

:
coordinates of

::
for

the point
:::::
points

:
on the unit circle pcos q, sin qq are indicated for several

important values of
::
at the angle q

::::
most

:::::::
common

::::::
angles:

::
0,
::

p
6:::::

(30˝),
::

p
4:::::

(45˝),

:
p
3:::::

(60˝),
::::
and

::
p
2 ::::

(90˝).

Maybe you’re thinking that’s way too much to remember. Don’t
worry, you just have to memorize one fact:

sinp30˝
q “ sin

`
p
6

˘
“

1
2 .

Knowing this, you can determine all the other angles . Let’s start
with cosp30˝

q. We know that at 30˝, point P
:::::
Note

:::
the

::::::
values

::
of

:::::
cos q

:::
and

:::::
sin q

:::
for

::::
the

::::::
angles

:::::::
shown

::
in

:::::::
Figure

::::
1.57

::::
are

::
all

:::::::::::::
combinations

::
of

::::
the

::::::::
fractions

:::

1
2 ,

::::

?
2

2 ,
:::::

and
::::

?
3

2 .
::::::

The
:::::::
square

:::::
roots

:::::::
appear

:::
as

::
a

:::::::::::
consequence

:::
of

:::
the

:::::::::::::
trigonometric

::::::::
identity

:::::::::::::::::
cos2 q ` sin2 q “ 1.

:::::
This

:::::::
identity

::::
tells

:::
us

:::::
that

:::
the

:::::
sum

:::
of

:::
the

::::::::
squared

::::::::::::
coordinates

::
of

:::::
each

:::::
point on the unit circle has the vertical coordinate 1

2 “ sinp30˝
q. We

also know the cos quantity we are looking for is, by definition, the
horizontal component:

P “ pcosp30˝
q, sinp30˝

qq.

Key fact: all points on the unit circle are a distance of 1 from the
origin. Knowing that P is a point on the unit circle, and knowing the
value of sinp30˝

q, we can solve for cosp30˝
q. Start with the following

identity,
cos2 q ` sin2 q “ 1,

which is true for all angles q. Moving things around, we obtain

cosp30˝
q “

b
1 ´ sin2

p30˝q “

b
1 ´

1
4 “

b
3
4 “

?
3

2 .

To find the
:
is
::::::

equal
:::

to
:::::

one.
:::::::

Let’s
:::::
look

::
at

::::::
what

::::
this

:::::::::
equation

::::
tells

:::
us

:::
for

::::
the

::::::
angle

::::::
q “

p
6 ::::::

(30˝).
::::::::::::

Remember
::::
that

::::::::::::
sinp30˝

q “
1
2
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:::
(the

:::::::
length

:::
of

:::
the

::::::::
dashed

::::
line

::
in

:::::::
Figure

::::::
1.57).

::::
We

::::
can

:::::
plug

::::
this

:::::
value

::::
into

::::
the

::::::::
equation

:::::::::::::::::::::::
cos2

p30˝
q ` sin2

p30˝
q “ 1

::
to

:::::
find

:::
the

::::::
value:

::::::::::::::::::::::::::::::::::::::::::::
cosp30˝

q “

b
1 ´ sin2

p30˝q “

b
1 ´

1
4 “

b
3
4 “

?
3

2 .
:

:::
The

:::::::::::
coordinates

:::::::::

´ ?
2

2 ,
?

2
2

¯
:::
for

::::
the

:::::
angle

::::::
q “

p
4 :::::

(45˝)
:::
are

::::::::
obtained

::::
from

::
a
:::::::
similar

:::::::::::
calculation.

::::
We

::::::
know

:::
the

:::::::
values

::
of

:::::
sin q

::::
and

:::::
cos q

::::
must

::::
be

:::::
equal

::::
for

:::::
that

::::::
angle,

:::
so

::::::
we’re

::::::::
looking

:::
for

::::
the

::::::::
number

:
a
:::::

that
::::::::
satisfies

:::
the

:::::::::
equation

::::::::::::
a2

` a2
“ 1,

::::::
which

:::
is

:::::::::::::
a “

1?
2

“

?
2

2 .

:::
The

:
values of cosp60˝

q and sinp60˝
q , observe the symmetry of the

circle. 60 degrees measured
:::
can

:::
be

:::::::::
obtained

:::::
from

::
a
::::::::::

symmetry
:::::::::
argument.

:::::::::::
Measuring

:::
60˝

:
from the x-axis is the same as 30 degrees

measured
:::::::::
measuring

::::
30˝

:
from the y-axis. From this, we know

:
,
:::
so

:
cosp60˝

q “ sinp30˝
q “

1
2 . Therefore, sinp60˝

q “

?
3

2 :::
and

::::::::::::::::::::::
sinp60˝

q “ cosp30˝
q “

?
3

2 .
To find the values of sin and cos for

:::
We

:::
can

::::::
extend

:::
the

:::::::::::
calculations

:::::::::
described

:::::
above

:::
for

:::
all

:::::
other

:
angles that are multiples of

::

p
6 ::::

(30˝)
::::
and

::

p
4 :

(45˝, we need to find the value a such that

a2
` a2

“ 1,

since at 45˝, the horizontal and vertical coordinates will be the same.
Solving for a we find a “

1?
2

, but people don’t like to see square roots
in the denominator, so we write

?
2

2 “ cosp45˝
q “ sinp45˝

q.

All other angles in the circlebehave like the three angles above, with
one difference:

:
)
::
to

:::::::
obtain

:::
the

:::::
cos q

::::
and

:::::
sin q

::::::
values

:::
for

::::
the

::::::
whole

::::
unit

:::::
circle,

:::
as

::::::
shown

::
in

:::::::
Figure

::::
1.58.

:

:::::
Don’t

:::
be

::::::::::
intimidated

:::
by

:::
all

:::
the

:::::::::::
information

::::::
shown

::
in

:::::::
Figure

::::
1.58!

::::::
You’re

::::
not

::::::::
expected

:::
to

::::::::::
memorize

:::
all

::::::
these

:::::::
values.

:::::
The

::::::::
primary

::::::
reason

:::
for

:::::::::
including

:::
this

::::::
figure

::
is

::
so

::::
you

:::
can

::::::::::
appreciate

:::
the

:::::::::::
symmetries

::
of

:::
the

::::
sine

::::
and

::::::
cosine

::::::
values

::::
that

:::
we

::::
find

:::
as

:::
we

::
go

:::::::
around

::::
the

:::::
circle.

:::
The

:::::::
values

:::
of

:::::
sin q

::::
and

:::::
cos q

::::
for

:::
all

:::::::
angles

:::
are

::::
the

::::::
same

::
as

::::
the

::::::
values

:::
for

:::
the

:::::::
angles

::::::::
between

::
0˝

::::
and

:::::
90˝,

:::
but

:
one or more of their

components
::::::::::
coordinates has a negative sign. For example, 150˝ is

just like 30˝, except its xcomponent is negative . Don’t memorize all
the values of sin and cos; if you ever need to determine their values,
draw a little circle and use the symmetry of the circle to find the sin
and cos components

::::::::::
-coordinate

::
is

::::::::
negative

:::::
since

:::
the

:::::
point

::::
lies

::
to

:::
the

:::
left

::
of

::::
the

::::::
y-axis.

::::::::
Another

::::
use

:::
for

::::::
Figure

::::
1.58

::
is
:::

to
:::::::
convert

::::::::
between

::::::
angles

:::::::::
measured

::
in

::::::::
degrees

::::
and

:::::::
radians,

:::::
since

:::::
both

:::::
units

:::
for

::::::
angles

:::
are

::::::::
indicated.
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Figure 1.58:
:::
The

::::::::::
coordinates

::
of

:::
the

:::::
point

:::
on

:::
the

:::
unit

:::::
circle

::::::::::
pcos q, sin qq

:::
are

:::::::
indicated

:::
for

:::
all

::::::::
multiples

::
of

::
p
6 ::::

(30˝)
:::
and

::
p
4:::::

(45˝).
:::::
Note

:::
the

::::::::::
symmetries.

Non-unit circles
Consider a point Qpqq at an angle of q on a circle with radius r ‰ 1.
How can we find the x- and y-coordinates of the point Qpqq?

We saw that the coefficients cos q and sin q correspond to the x-
and y-coordinates of a point on the unit circle (r “ 1q. To obtain
the coordinates for a point on a circle of radius r, we must scale the
coordinates by a factor of r:

Qpqq “ pQxpqq, Qypqqq “ pr cos q, r sin qq.

The take-away message is that you can use the functions cos q
and sin q to find the “horizontal” and “vertical” components of any
length r. From this point on in the book, we’ll always talk about the
length of the adjacent side as rx “ r cos q

:::::::::
x “ r cos q, and the length of

the opposite side as ry “ r sin q
:::::::::
y “ r sin q. It is extremely important

you get comfortable with this notation.
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Figure 1.59: The x- and y-coordinates of a point at the angle q and distance
of r from the origin are given by x “ r cos q and y “ r sin q.

The reasoning behind the above calculations is as follows:

cos q “
adj
hyp

“
x
r

ñ x “ r cos q,
:::::::::::::::::::::::::::::::

:::
and

:

sin q “
opp
hyp

“
y
r

ñ y “ r sin q.
:::::::::::::::::::::::::::::::

Calculators
Make sure to set your calculator to the correct units for working with
angles. What should you type into your

:::::
Watch

::::
out

:::
for

::::
the

:::::
units

::
of

:::::
angle

::::::::::
measures

:::::
when

::::::
using

:::::::::::
calculators

::::
and

:::::::::::
computers.

::::::
Make

::::
sure

::::
you

:::::
know

::::::
what

::::
kind

:::
of

:::::
angle

:::::
units

::::
the

::::::::
functions

::::
sin,

::::
cos,

::::
and

:::
tan

::::::
expect

:::
as

::::::
inputs,

::::
and

:::::
what

:::::
kind

:::
of

:::::::
outputs

:::
the

:::::::::
functions

::::::
sin´1,

::::::
cos´1,

:::
and

::::::
tan´1

::::::
return.

:

:::
For

:::::::::
example,

::::
let’s

::::
see

:::::
what

:::
we

:::::::
should

:::::
type

::::
into

::::
the calculator

to compute the sine of 30 degrees? If your
:
.
::
If
::::
the calculator is set

to degrees,
:::
we

:
simply type: , ,

::::
3 ,

::::
0 ,

::::::
sin ,

::::
= ,

:::::
and

::::::
obtain

:::
the

::::::
answer

:::
0.5.

If your
::
the

:
calculator is set to radians, you

::
we

:
have two options:

1. Change the mode of the calculator so it works in degrees.

2. Convert 30˝ to radians

30 r
˝
s
˝

ˆ
2p rrads

360 r˝s

2p rad
360˝

::::::

“
p

6
[rad] rad

:::
,

and type: , , , , on your
::::

p ,
::::
/ ,

::::
6 ,

::::::
sin ,

::::
=

:::
on

:::
the calcula-

tor.

:::
Try

:::::::::::
computing

:::::::::
cosp60˝

q,
::::::::::::

cos
`

p
3 rad

˘
,
::::

and
::::::::::

cos´1
p

1
2 q

::::::
using

:::::
your

:::::::::
calculator

::
to

:::::
make

:::::
sure

:::
you

::::::
know

::::
how

::
it
:::::::
works.
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Exercises
E1.27 Given a circle with radius r “ 5, find the x- and y-coordinates
of the point at q “ 45˝. What is the circumference of the circle?

E1.28 Convert the following angles from degrees to radians.
a) 30˝ b) 45˝ c) 60˝ d) 270˝

Links
[ Unit-circle walkthrough and tricks by patrickJMT on YouTube ]
http://bit.ly/1mQg9Cj and

:::::
and

:
http://bit.ly/1hvA702

1.16 Trigonometric identities
There are a number of important relationships between the values
of the functions sin and cos. Here are three of these relationships,
known as trigonometric identities. There about a dozen other identities
that are less important, but you should memorize these three.

The three identities to remember are:

1. Unit hypotenuse

sin2
pqq ` cos2

pqq “ 1.

The unit hypotenuse identity is true by the Pythagoras theorem and
the definitions of sin and cos. The sum of the squares of the sides of
a triangle is equal to the square of the hypotenuse.

2. sico ` sico
::::
Sine

:::::
angle

:::::
sum

sinpa ` bq “ sinpaq cospbq ` sinpbq cospaq.

The mnemonic for this identity is “sico + sico.”

3. coco ´ sisi
::::::
Cosine

::::::
angle

::::
sum

cospa ` bq “ cospaq cospbq ´ sinpaq sinpbq.

The mnemonic for this identity is “coco ´ sisi.” The negative sign is
there because it’s not good to be a sissy.

Derived formulas
If you remember the above three formulas, you can derive pretty
much all the other trigonometric identities.
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Double angle formulas

Starting from the sico + sico identity and setting a “ b “ x, we can
derive the following identity:

sinp2xq “ 2 sinpxq cospxq.

Starting from the coco-sisi identity, we obtain

cosp2xq “ cos2
pxq ´ sin2

pxq

“ 2 cos2
pxq ´ 1 “ 2

´
1 ´ sin2

pxq

¯
´ 1 “ 1 ´ 2 sin2

pxq.

The formulas for expressing sinp2xq and cosp2xq in terms of sinpxq

and cospxq are called double angle formulas.
If we rewrite the double-angle formula for cosp2xq to isolate the

sin2 or the cos2 term, we obtain the power-reduction formulas:

cos2
pxq “

1
2

p1 ` cosp2xqq , sin2
pxq “

1
2

p1 ´ cosp2xqq .

Self similarity
:::::::::::::
Self-similarity

Sin and cos are periodic functions with period 2p. Adding a multiple
of 2p to the function’s input does not change the function:

sinpx ` 2pq “ sinpx`124pq “ sinpxq, cospx ` 2pq “ cospxq.

::::
This

:::::::
follows

::::::::
because

::::::
adding

::
a
::::::::
multiple

:::
of

:::
2p

::::::
brings

:::
us

::::
back

:::
to

:::
the

:::::
same

:::::
point

:::
on

:::
the

::::
unit

::::::
circle.

Furthermore, sin and cos are self similar within each
::::
have

::::::::::
symmetries

:::::
with

:::::::
respect

::
to

:::::
zero,

sinp´xq “ ´ sinpxq, cosp´xq “ cospxq,
:::::::::::::::::::::::::::::::::::::

::::::
within

::::
each

::
p
::::::::::
half-cycle,

sinpp ´ xq “ sinpxq, cospp ´ xq “ ´ cospxq,
:::::::::::::::::::::::::::::::::::::::::

:::
and

:::::::
within

::::
each

::::
full 2p cycle: ,

:

sinp2
:

p ´ xq “ ´
:

sinpxq, cosp2
:

p ´ xq “ ´ cospxq.

::::
Take

::::
the

::::
time

::
to

:::::::
revisit

::::::
Figure

::::
1.33

::::::
(page

:::
88),

:::::::
Figure

::::
1.36

:::::
(page

::::
91),

:::
and

:::::::
Figure

::::
1.58

:::::
(page

::::
114)

:::
to

:::::::
visually

::::::::
confirm

::::
that

:::
all

:::
the

:::::::::
equations

::::::
shown

::::::
above

::::
are

:::::
true.

::::::::::
Knowing

:::
the

:::::::
points

::::::
where

::::
the

:::::::::
functions

::::
take

:::
on

:::
the

::::::
same

::::::
values

:::::::::::::
(symmetries)

:::
or

::::
take

:::
on

:::::::::
opposite

::::::
values

::::::::::::::::
(anti-symmetries)

::
is

::::
very

::::::
useful

::
in

::::::::::::
calculations.
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Sin is cos, cos is sin
It shouldn’t be surprising if I tell you that sin and cos are actually
p
2 -shifted versions of each other:

cospxq “ sin

˜
x`

p

2
“ sin

p

2
´x p

2

¸
, sin pxq “ cos x́

p

2
“ cos

˜
p

2
x
:

´x p
2

¸
.

Sum formulas

sinpaq ` sinpbq “ 2 sin
ˆ

1
2

pa ` bq

˙
cos

ˆ
1
2

pa ´ bq

˙
,

sinpaq ´ sinpbq “ 2 sin
ˆ

1
2

pa ´ bq

˙
cos

ˆ
1
2

pa ` bq

˙
,

cospaq ` cospbq “ 2 cos
ˆ

1
2

pa ` bq

˙
cos

ˆ
1
2

pa ´ bq

˙
,

cospaq ´ cospbq “ ´2 sin
ˆ

1
2

pa ` bq

˙
sin

ˆ
1
2

pa ´ bq

˙
.

:::::::::
Formulas

:::
for

:::::
sums

::::
and

::::::::
products

Product formulas

::::
Here

::::
are

:::::
some

::::::::
formulas

:::
for

::::::::::::
transforming

::::::
sums

:::
into

:::::::::
products:

:

sinpaq ` sinpbq “ 2 sin
´

1
2 pa ` bq

¯
cos

´
1
2 pa ´ bq

¯
,

::::::::::::::::::::::::::::::::::::::::::

sinpaq ´ sinpbq “ 2 sin
´

1
2 pa ´ bq

¯
cos

´
1
2 pa ` bq

¯
,

::::::::::::::::::::::::::::::::::::::::::

cospaq ` cospbq “ 2 cos
´

1
2 pa ` bq

¯
cos

´
1
2 pa ´ bq

¯
,

::::::::::::::::::::::::::::::::::::::::::

cospaq ´ cospbq “ ´2 sin
´

1
2 pa ` bq

¯
sin

´
1
2 pa ´ bq

¯
.

:::::::::::::::::::::::::::::::::::::::::::

::::
And

::::
here

:::
are

::::::
some

::::::::
formulas

:::
for

::::::::::::
transforming

:::::::::
products

::::
into

:::::
sums:

:

sinpaq cospbq “
1
2

1
2

´
sin
::

psin pa ` bqa ` sin pa ´ bqbq ` sinpa ´ b
:::::::::::

q

¯
,
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sinpaq sinpbq “
1
2

1
2

´
cos
::

pcos pa ´ bqa ´ bq
:::::

´ cos pa ` bqcospa ` b
:::::::

q

¯
,

cospaq cospbq “
1
2

1
2

´
cos
::

pcos pa ´ bqa ´ bq
:::::

` cos pa ` bqcospa ` b
:::::::

q

¯
.

Discussion
The above formulas will come in handy when you need to find
some unknown in an equation, or when you are trying to simplify
a trigonometric expression. I am not saying you should necessarily
memorize them, but you should be aware that they exist.

Exercises
E1.29 Given a “ p and b “

p
2 , find

a) sinpa ` bq b) cosp2aq c) cospa ` bq

E1.30 Simplify the following expressions and compute their value
without using a calculator.

a) cospxq ` cospp ´ xq b) 2 sin2
pxq ` cosp2xq

c) sinp
5p
4 q sinp´

p
4 q d) 2 cosp

5p
4 q cosp´

p
4 q cosppq

1.17 Circle
:::::::::
Circles

::::::
and

:::::::
polar

::::::::::::::::
coordinates

The
::
In

::::
this

:::::::
section,

::::::
we’ll

::::::
review

::::::
what

:::
we

::::::
know

::::::
about

::::::
circles

::::
and

::::::
define

:::
the

::::
polar

:::::::::
coordinate

::::::
system

:
,
:
a
:::::::::::
specialized

:::::::::
coordinate

:::::::
system

:::
for

:::::::::
describing

::::::
circles

::::
and

:::::
other

:::::::
circular

::::::::
shapes.

::::::::::
Formulas

::
A circle is a set of points located

:
at

:
a constant distance from a centre

point. This geometric shape appears in many situations.

Definitions

• r: the radius of the circle
• A: the area of the circle
• C: the circumference of the circle
• px, yq: a point on the circle
• q: the angle (measured from the x-axis) of a point on the circle
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Formulas
A circle with radius r centred at the origin is described by the equa-
tion

x2
` y2

“ r2.

All points px, yq that satisfy this equation are part of the circle.
Rather than staying centred at the origin

:::::
More

:::::::::
generally, the cir-

cle’s centre can be located at any point pp, qq on the plane
:::::
ph, kq

::
in

:::
the

:::::
plane,

:
as illustrated in Figure ??

::::
1.60.

x

y

r

k

0 h

Figure 1.60: A circle of radius r centred at the point pp, qq
::::
ph, kq

:
is described

by the formula px ´ pq
2

` py ´ qq
2

“ r2
:::::::
equation

:::::::::::::::::::
px ´ hq

2
` py ´ kq

2
“ r2.

Explicit function
::::::::::
Describing

:::::::
circles

:::::
using

:::::::::
functions

The equation of a circle
:::::
circle

::::::::
equation

:::::::::::
x2

` y2
“ r2 is a relation or an

implicit function involving
::::::::
between

:::
the

:::::::::
variables

:
x and y. To obtain

an explicit function
:
If

:::
we

:::::
want

:::
to

::::::::
describe

:::
the

:::::
circle

::::::
using

:
a
::::::::
function

y “ f pxqfor the circle , we can solve for y to obtain
:
in

::::
the

::::::::
equation

:::::::::::
x2

` y2
“ r2

::
to

::::::
obtain

y “ ftpxq “
::::::

a
r2 ´ x2, : ´ r § x § r,

and
y “ fbpxq “

::::::
´

a
r2 ´ x2, ´r § x § r.

The explicit expression is really
::::::::::
Describing

::
a
::::::
circle

::::::::
requires

:
two

functions, because a vertical line crosses the circle in two places.
The first function corresponds to

:
ft::::

and
:::

fb,
::::::::

because
:::::

there
::::

are
::::
two

::::::
values

::
of

::
y

::::
that

::::::
satisfy

:::
the

:::::::::
equation

:::::::::::
x2

` y2
“ r2

:::
for

::::
each

::::::
value

::
of

::
x.

:::
The

::::::::
function

:::
ft :::::::::

describes the top half of the circle, and the second
function corresponds to

:::::
while

:::
the

::::::::
function

:::
fb:::::::::

describes the bottom
half.
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Polar coordinates

Circles are so common in mathematics that mathematicians developed
a special “circular coordinate system” in order to describe them more
easily.

It is possible to specify the
::::
You

:::::
might

:::
be

::::::::::
wondering

::::
why

::
a

::::::
simple

:::::::::
geometric

::::::
shape

::::
like

:::
a

:::::
circle

:::::::::
requires

:::::
such

:::::::::::::::::::
complicated-looking

::::::::
formulas

::::
like

:::::
ftpxq

::::
and

:::::
fbpxq

:::
to

::::::::
describe

::
it.

:::::::
Surely

:::::::
there’s

:
a
::::::

better
::::
way

::
to

::::::::
describe

:::::::
circles

::::
that

:::::::
doesn’t

::::::::
involve

:::::::::
quadratic

:::::::::::
expressions

:::
and

:::::::
square

::::::
roots?

::::::
There

:::
is!

::
If
:::::::
instead

:::
of

:::::
using

::::
the

:::::::::
Cartesian

:
coor-

dinates px, yq of any point on the circle in terms of
:::
we

::::
use

:::
the

:::::
polar

::::::::::
coordinates

:::::
r=q,

::::
then

::::
the

::::::::
equation

::
of

::
a
:::::
circle

:::::::::
becomes

::::
very

:::::::
simple.

::::
We’ll

:::::
learn

::::::
about

::::
that

:::::
next.

::::
The

:::::::
polar

::::::::::::
coordinate

::::::::
system

::::::
Figure

::::
1.61

:::::::
shows

::::
the

:::::
polar

:::::::::
coordinate

:::::::
system

:
,
::::::
which

::::::::
consists

:::
of

:::::::::
concentric

::::::
circles

:::
at

::::::::
different

:::::::::
distances

:::::
from

:::
the

::::::
origin

:::::
(also

::::::
called

:::
the

::::
pole

:
),

::::
and

:::::
radial

:::::
lines

:::::::::
extending

:::::
from

::::
the

:::::
origin

:::
in

::
all

::::::::::
directions.

:::
We

:::
can

:::::::
specify

::::
the

:::::::
location

::
of

::::
any

::::::
point

::
in

:::
the

::::::
plane

:::::
using

:
the polar

coordinates r=q, where r measures the distance of the point
::::::
point’s

:::::::
distance

:
from the origin, and q is

:::::::::
describes the angle measured from

the x
:
in

::::
the

::::::::::::::::
counterclockwise

::::::::
direction

::::::::
starting

:::::
from

:::
the

:
r-axis.

:::
For

::::::::
example,

::::
the

:::::
point

:::::::::::
Q “ 2=60˝

::
is
::::::::

located
::
at

::::
the

::::::::
distance

:::
of

:::::
r “ 2

::::
units

:::::
form

::::
the

::::::
origin,

::
in

:::
the

:::::::::
direction

:::::::
q “ 60˝.

:

To convert from the polar coordinates r=q to
::::::::
Compare

::::
the

:::::
polar

::::::::::
coordinate

:::::::
system

:::::::
shown

::
in

:::::::
Figure

::::
1.61

:::::
with

::::
the

:::::::::
Cartesian

:::::::::
coordinate

:::::::
system

::
in

::::::
Figure

:::::
1.18.

::
In

:::
the

:::::::::
Cartesian

::::::::::
coordinate

:::::::
system,

:::
we

::::::::
interpret

::::
the

::::::::::
coordinate

::::
pair

::::::
px, yq

::
as

::::
the

:::::::::::
instructions

::::::
“Walk

::
a

:::::::
distance

:::
of

:
x
:::::
units

:::
in

:::
the

:::::::::
direction

::
of

:::
the

:::::::
x-axis,

::::
and

:
a
::::::::
distance

:::
of

:
y

::::
units

:::
in

:::
the

:::::::::
direction

:::
of

:::
the

:::::::
y-axis.”

::::
In

:
a
::::::
polar

::::::::::
coordinate

:::::::
system,

:::
we

::::::::
interpret

::::
the

:::::::::::
coordinates

::::
r=q

::
as

::::
the

:::::::::::
instructions

::::::
“Turn

:::::::
toward

:::
the

::::::::
direction

::
q

::::
and

::::
walk

::
a
::::::::
distance

::
of

:
r
:::::
units

:::
in

:::
that

::::::::::
direction.”

:::::
Both

:::::
types

::
of

:::::::::::
coordinates

::::
give

:::::::::::
instructions

:::
for

::::::
getting

::
to

::
a
:::::::::
particular

:::::
point

::
in

:::
the

::::::
plane,

::::
with

:::::::::
Cartesian

:::::::::::
coordinates

::::::
giving

:::
the

:::::::::::
instructions

::
in

:::
the

::::
form

:::
of

::::
two

:::::::::
distances,

:::::
while

::::::
polar

::::::::::
coordinates

:::::
give

:::
the

:::::::::::
instructions

::
in

:::
the

:::::
form

::
of

::
a

:::::::
distance

::::
and

::
a

:::::::::
direction.

::
A

::::::::
Cartesian

::::::::::
coordinate

::::
pair

:::::
px, yq

::
is
::::::
made

::
of

::
x

:::
and

::
y
:::::::::::
coordinates,

:::::
while

::
a

:::::
polar

::::::::::
coordinate

:::::
pair

::::
r=q

::
is

::::::
made

::
of

::
r
::::
and

::
q

:::::::::::
coordinates.

::
In

::::
this

:::::
book,

::::
we

:::
use

::::
the

:::::
angle

:::::::
symbol

:::
=

:::::
(read

:::
“at

:::
an

::::::
angle

::::
of”)

::
to

:::::::
separate

::::
the

:::::
polar

:::::::::::
coordinates

::
r
::::
and

:::
q,

::
in

::::::
order

::
to

:::::::::::
emphasize

:::
the

:::::::::
difference

::::::::
between

:::::::::
Cartesian

:::
and

::::::
polar

:::::::::::
coordinates.

:::::::::
However,

:::::
some

:::::
other

:::::
books

::::
use

:::
the

::::::::
notation

:::::
pr, qq

:::
for

:::::
polar

:::::::::::
coordinates,

:::
so

:::
you

:::::
have
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30˝

60˝

90˝

120˝

150˝

180˝

210˝

240˝

270˝

300˝

330˝

r1 2 3 4 5

P “ 3.61=146.31˝

Q “ 2=60˝

60˝

2

Figure 1.61: Polar coordinates r=q
::
We

:
can be used

:::
use

:::
the

::::
polar

:::::::::
coordinate

::::::
system to describe any

:::::
points

::
in

::::
the

::::::::::::::
two-dimensional

::::::
plane.

::::
The

:::::
polar

:::::::::
coordinates

::::
r=q

:::::::
describe

:::
the

:
point px, yq

::::::
located

::
at

:::
the

:::::::
distance

::
r

::::
from

:::
the

:::::
origin

::
in

:::
the

:::::::
direction

::
q.

::
to

::::::
watch

::::::::
out—the

:::::::::::
coordinate

::::
pair

:::::::
p20, 30q

::::::
could

:::
be

::::::
either

::
a

:::::
px, yq

:::::::::
coordinate

::::
pair

:::
or

:
a
:::::
pr, qq

::::::::::
coordinate

::::
pair,

::::::::::
depending

:::
on

:::
the

::::::::
context.

::::
Note

::::
the

:::::
polar

:::::::::::
coordinates

:::::
that

::::::::
describe

::
a

:::::
given

::::::
point

:::
are

::::
not

:::::::
unique,

:::::::::
meaning

::::
the

:::::
same

::::::
point

:::::
can

:::
be

::::::::::
described

::
in

:::::::::
multiple

:::::
ways.

::::::
The

::::::
point

::::::::::
Q “ 2=60˝

:::
is

::::::::
equally

:::::::::
described

::::
by

:::
the

::::::
polar

::::::::::
coordinates

::::::::::
2= ´ 300˝,

::::::
since

::
a

:::::::::
clockwise

:::::
turn

::
of

:::::
300˝

::
is

::::
the

:::::
same

::
as

::
a

::::::::::::::::
counterclockwise

::::
turn

:::
of

::::
60˝.

::::
We

::::
can

::::
also

::::::::
describe

:
the

::::
same

:::::
point

::
Q
::::::

using
::::

the
::::::

polar
:::::::::::

coordinates
::::::::::

´2=240˝

::::
and

::::::::::::
´2= ´ 120˝,

:::::
which

::::
tell

:::
us

::
to

:::::
turn

::
in

::::
the

::::::::
direction

:::::::::
opposite

::
to

::::
60˝

::::
and

::::::::
measure

:
a
::::::::
negative

::::::::
distance

:::::::
r “ ´2.

:::::::
While

::
all

:::
of

:::::
these

:::::
polar

:::::::::::
coordinates

:::
for

::
Q

:::
are

:::::::::::
equivalent,

:::
the

:::::::::
preferred

::::
way

:::
to

:::::::
specify

:::::
polar

:::::::::::
coordinates

::
is

::::
with

::::::::
positive

:
r
::::::
values

::::
and

::::::
angles

::::::::::
|q| § 180˝.

:

::::::::::
Converting

:::::::::
between

:::::::::
Cartesian

::::
and

:::::
polar

:::::::::::
coordinates

::::::
Figure

::::
1.62

::::::
shows

:
a
::::::

point
::::::
whose

::::::::
location

::
is

:::::::::
described

::::
both

:::
in

:::::
terms

::
of

:::::::::
Cartesian

::::::::::::
coordinates

:
px, yq

::::
and

:::::
polar

::::::::::::
coordinates

:::::
r=q.

:::::
The
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:::::::
triangle

:::::::
formed

:::
by

:::
the

:
coordinates

::::
p0, 0q, use the

:::::
px, 0q,

::::
and

:::::
px, yq

::
is

:
a
::::::::::
right-angle

::::::::
triangle.

:::::
This

:::::::
means

:::
we

::::
can

:::::
apply

::::
our

:::::::::::
knowledge

::
of

:::
the

:::::::::::::
trigonometric

:::::::::
functions

::::
sin,

:::::
cos,

::::
and

::::
tan

:::
to

::::::
obtain

:::::::::
formulas

:::
for

::::::::::
converting

:::::::::
between

::::::::::
Cartesian

::::::::::::
coordinates

:::::
px, yq

:::::
and

::::::
polar

::::::::::
coordinates

:::::
r=q.

r

px, yq

q

y

x

Figure 1.62:
::::
Polar

::::::::::
coordinates

:::
r=q

:::
can

:::::::
describe

::::
any

::::
point

:::::
px, yq.

::
To

::::::::
convert

:::::
from

::::::
polar

:::::::::::
coordinates

:::::
r=q

:::
to

:::::
px, yq

::::::::::::
coordinates,

:::
we

:::
use

::::
the

::::::::::
definitions

:::
of

:::
the

:
trigonometric functions cos and sin:

::::::::::::::
cos q “

adj
hyp “

x
r ::::

and
::::::::::::::
sin q “

opp
hyp “

y
r ::

to
::::::
obtain

::::
the

:::::::::
formulas:

x “ r cos q and y “ r sin q.

:::
For

:::::::::
example,

:::
the

:::::::::
Cartesian

:::::::::::
coordinates

:::
of

:::
the

:::::
point

:::::::::::
Q “ 2=60˝

:::
are

:::::
given

:::
by

::::::::::::::::::::::::::::::::::::::
Q “ px, yq “ p2 cos 60˝, 2 sin 60˝

q “ p1,
?

3q.
:

Parametric equation

We can describe all the points on the circle if we specify a fixed radius
r and vary the angle q over all angles: q P r0, 360˝

q. A parametric
equation specifies the coordinates pxpqq, ypqqq for the points on a
curve, for all values of the parameter q. The parametric equation for
a circle of radius r is given by

tpx, yq P R2
| x “ r cos q, y “ r sin q, q Pr0, 360˝

qu.

In words, this expression describes the set of points
::
To

:::::::
convert

:::::
from

px, yq in the Cartesian plane with
:::::::::::
coordinates

::
to

:::::
r=q

:::::::::::
coordinates,

:::
we

:::
can

::::
use

:::
the

:::::
circle

:::::::::
equation

:::::::::::
x2

` y2
“ r2

::::
and

:::
the

:::::::::
definition

:::
of

:::
the

:::::::
tangent

::::::::
function

::::::::::::::
tan q “

opp
adj “

y
x ,
:::::
then

:::::
solve

:::
for

:
r
::::
and

::
q

::
to

::::::
obtain

:::
the

::::::::
formulas:

:

r “

b
x2 ` y2 and q “

$
’’&

’’%

tan´1` y
x

˘
if x ° 0,

180˝
` tan´1` y

x
˘

if x † 0,
90˝ if x “ 0 and y ° 0,
´90˝ if x “ 0 and y † 0.

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
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:::::::
Finding

:::
the

::::::
angle

:
q
::
is

::
a

::::
little

::::::
tricky.

:::
We

:::::
must

::::
use

:
a
:::::::::
different

:::::::
formula

:::
for

::::::::::
computing

:
q
::::::::::
depending

:::
on

::::::
where

::::
the

:::::
point

::
is

:::::::
located,

::::
and

:::::
there

:::
are

::::
four

:::::::::
different

:::::
cases

:::
to

:::::::::
consider.

:::::
The

:::::
basic

:::::
idea

::
is

:::
to

:::
use

::::
the

::::::
inverse

::::::::
tangent

::::::::
function

::::::
tan´1,

::::::
which

::
is

::::
also

::::::
called

:::::::
arctan,

::
or

:::::
atan

::
on

::::::::::
computer

::::::::
systems.

::::
By

:::::::::::
convention,

::::
the

::::::::
function

::::::
tan´1

:::::::
returns

::::::
values

::::::::
between

:::::
´90˝

:::::
(´ p

2 ::::
rad)

::::
and

::::
90˝

::
( p

2:::::
rad),

::::::
which

:::::::::::
correspond

::
to

::::::
points

:::::
with

::::::::
positive

:
x-coordinatesthat are described by r cos q

and with y-coordinates that are described by r sin q, where .
:::

If
:::
the

:::::::::::
x-coordinate

::
of

::::
the

:::::
point

::
is

::::::::
negative,

:::
we

:::::
must

::::
add

::::
180˝

:::
(p

::::
rad)

::
to

:::
the

::::::
output

::
of

::::
the

::::::::::::::
inverse-tangent

::::::::::
calculation

::
to

::::::
obtain

::::
the

::::::
correct

::::::
angle.

:::::
When

::::::
x “ 0

:::
we

::::::
can’t

::::::::
compute

::::
the

::::::::
fraction

::

y
x ::::::::

because
:::
we

:::::::
cannot

::::::
divide

::
by

:::::
zero,

:::
so

:::
we

:::::
must

::::::
handle

:::
the

:::::
cases

:::::
with

:::::
x “ 0

::::::::::
separately

::
as

:::::::::
described

::
in

:::
the

::::::
above

:::::::::
equation.

:
If
::::
you

:::::
have

::::::
access

::
to

::
a
:::::::::
computer

:::::::
algebra

:::::::
system,

:::
the

:::::::
easiest

::::
way

::
to

::::::::
calculate

:
the angle q varies from 0˝ to 360˝. Try to visualize the

curve traced by the point pxpqq, ypqqq “ pr cos q, r sin qq as q varies
from 0˝ to 360˝. The point will trace out a circle of radius r.

If we let the parameter
::
for

:::
the

::::::
point

:::::
px, yq

::
is

::
to

:::
use

::::
the

:::::::::
two-input

::::::
inverse

::::::::
tangent

::::::::
function

:::::::::::
atan2(y,x).

::::
The

::::::::
function

::::::
atan2

::
is

:::
the

::::
best

::::
way

::
to

::::::::
compute

:::
the

::::::
angle

::::
since

::
it

:::::::
handles

:::
all

::::
four

:::::
cases

::
of

::::::::::
converting

::::::::
Cartesian

:::::::::::
coordinates

::
to

:::::
polar

:::::::::::
coordinates

:::::::::::::
automatically

:::
and

:::::::
always

:::::
gives

:::
the

:::::::
correct

::::::
angle.

:::::
You

:::
can

::::
try

:::::
some

:::::::::::
calculations

:::::
with

::::::
atan2

:::::
using

:::
the

:::::::::
computer

:::::::
algebra

:::::::
system

::
at

:
https://live.sympy.org.

:

:::
For

:::::::::
example,

::::::::
consider

::::
the

::::::
point

::
P

:::::
with

:::::::::
Cartesian

:::::::::::
coordinates

::::::
p´3, 2q

::::::
shown

:::
in

::::::
Figure

::::
1.18

:::::
(page

::::
59).

:::
To

::::
find

:::
the

:::::
polar

:::::::::::
coordinates

::
of

:::
this

:::::
point

:::
we

::::
first

::::::::
calculate

::::
the

:::::::
distance

:::::
from

:::
the

::::::
centre,

::::::::::::::::::::::::::::
r “

a
p´3q2 ` 22 “

?

13 « 3.61.
::
To

::::
find

::::
the

:::::
angle q vary over a smaller interval, we ’ll obtain subsets

of the circle. For example, the parametric equation for the top half of
the circle is

tpx, yq P R2
| x “ r cos q, y “ r sin q, q Pr0, 180˝

su.

The top half of the circle is also described by tpx, yq P R2
| y “

?

r2 ´ x2, x P r´r, rsu,
where the parameter used is the

::
we

:::::
note

::::
that

:::
the

:
x-coordinate

::
of

::
P

:
is
:::::::::

negative,
:::
so

:::
the

:::::
angle

::
q
:::::
we’re

::::::::
looking

:::
for

::
is

:::::
given

:::
by

:::
the

::::::::
formula

:::::::::::::::::::::::::::::
q “ 180˝

` tan´1` 2
´3

˘
“ 146.31˝.

::::
The

::::::
angle

::
of

:::
the

::::::
point

::::::::::
P “ p´3, 2q

:::
can

::::
also

:::
be

:::::::::
obtained

:::::
from

::::::::::::
atan2(2,-3).

:::::
The

::::::
polar

:::::::::::
coordinates

::
of

:::
the

:::::
point

::
P

:::
are

::::::::::::
3.61=146.31˝

::::
(see

::::::
Figure

:::::
1.61).

:

:::::::::
Equations

:::
in

:::::
polar

:::::::::::
coordinates

:::::::::
Equations

::
in

::::::
polar

:::::::::::
coordinates

:::::
serve

:::
to

::::::::
describe

::::::::
relations

::::::::
between

:::
the

:::::::::
variables

:
r
::::

and
:::

q.
::::

For
:::::::::

example,
::::

the
::::::::
equation

:::
of

::
a

:::::
circle

:::::
with

::::::
radius

::
2

::
in

::::::
polar

:::::::::::
coordinates

:::
is

:::::::
simply

::::::
r “ 2.

::::
If

:::
we

::::::::::
substitute
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::::::::::::
r “

a
x2 ` y2

::::
and

::::::
square

:::::
both

:::::
sides

:::
of

:::
the

:::::::::
equation,

:::
we

:::::::
obtain

:::
the

::::::::
equation

:::::::::::
x2

` y2
“ 22

::::
that

:::
we

::::
saw

::
in

::::
the

:::::::::
beginning

::
of

::::
this

:::::::
section.

:

:::
We

:::
can

::::
use

:::
the

::::::::::::
substitutions

::::::::::
x “ r cos q

:::
and

::::::::::
y “ r sin q

::
to

:::::::
convert

:::::::::
equations

:::::
from

:::::::::
Cartesian

:::::::::::
coordinates

::
x

::::
and

:
y
:::

to
:::::
polar

:::::::::::
coordinates

:
r
::::
and

::
q.

:::::::::
Consider

:::
the

:::::::::
equation

::::::::::
2x ´ y “ 3,

::::::
which

:::::::::
describes

:::
the

::::
line

::::::
shown

::
in

:::::::
Figure

::::
1.29

:::
on

:::::
page

:::
77.

::::
We

::::
can

:::::::
rewrite

::::
this

:::::::::
equation

::
in

:::::
polar

::::::::::
coordinates

:::
as

::::::::::::::::::
2r cos q ´ r sin q “ 3,

::::::
which

::
is

:
a
:::::::
relation

::::::::
between

:::
the

:::::
polar

:::::::::::
coordinates

:
r
::::
and

::
q.

:

::
As

::::
you

::::
can

:::
tell

:::::
from

::::::
these

:::::::::
examples,

:::::
polar

:::::::::::
coordinates

::::
are

::::
very

::::::::::
convenient

::::::
when

:::::::
dealing

:::::
with

:::::::
circles,

::::
and

::::
less

:::
so

::::::
when

::::::::
working

::::
with

::::::
lines.

::::::::
Indeed,

::::::::::
describing

::
a
::::::

circle
::
in

::::::
polar

:::::::::::
coordinates

::
is
:::

as
::::::
simple

:::
as

::::::
r “ 2,

::::::
while

:::
in

::::::::::
Cartesian

:::::::::::
coordinates

::::
we

::::
had

:::
to

::::
use

:::
the

:::::::::::::::::::
complicated-looking

:::::::::
functions

::
ft:::::

and
::
fb:::::

(see
:::::
page

:::::
120).

:::::
The

::::::::
situation

::
is

:::
the

::::::::
opposite

:::
for

:::::
lines:

::::
the

::::::::
equation

:::
of

:
a
::::
line

::
in

:::::::::
Cartesian

::::::::::
coordinates

:::
is

:::::::
simple,

:::::::::::
2x ´ y “ 3,

::::::
while

:::
in

:::::
polar

:::::::::::
coordinates

::::
the

:::::
same

::::
line

::
is

::::::::::
described

:::
by

::
a
::::::::
tangled

:::::
mess

:::::::::
involving

::::
sin

::::
and

::::
cos

::::::::
functions.

Area
:::::::::
Functions

:::
in

:::::
polar

:::::::::::
coordinates

The area of a circle of radius r is A “ pr2.
::
A

::::::::
function

:::
in

:::::
polar

::::::::::
coordinates

::
is
::::::::
denoted

::::
rpqq

::::
and

:::::::::
describes

::::
how

::::
the

::::::::
distance

:
r
::::::
varies

::
as

:
a
::::::::
function

:::
of

:::
the

:::::
angle

::
q.

:

Circumference and arc length

The circumference of a circle is

C “ 2pr.

This is the total length you can measure by following the curve all
the way around to trace the outline of the entire circle

:::
For

::::::::
example,

:
a
:::::
circle

:::::
with

::::::
radius

::
2
::
is

:::::::::
described

:::
by

::::
the

::::::::
function

:::::::
rpqq “ 2

:::
in

:::::
polar

:::::::::::
coordinates,

::
as

::::::::::
illustrated

::
in

:::::::
Figure

::::
1.63

:::
(a).

:::::
The

:::::
circle

::
is

:::::::::
described

::
by

::
a
::::::::
constant

::::::::
function

:::
in

:::::
polar

::::::::::::
coordinates,

:::::
since

:::
the

:::::::
points

::
in

:::
all

:::::::::
directions

::::
have

::::
the

:::::
same

::::::::
distance

::::
from

::::
the

::::::
centre.

What is the length of a part of the circle? Say you have a piece
of the circle, called an arc, and that piece corresponds to the angle
q “ 57˝. What is the arc’s length `?

:::
As

:::::::
another

:::::::::
example,

:::
we

::::
can

:::::::::
transform

:::
the

::::::::
equation

:::
of

:::
the

::::
line

::::::::::
2x ´ y “ 3

::
to

:::::
polar

:::::::::::
coordinates

::
to

::::::
obtain

::::::::::::::::::
2r cos q ´ r sin q “ 3,

::::
then

:::::::
isolate

:
r
::
to

::::::
obtain

::::
the

::::::::
function

rpqq “
3

2 cos q ´ sin q
,

:::::::::::::::::::
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:::::
which

:::::::::
describes

::::
the

::::::::
distance

:::::
from

:::
the

::::::
origin

:::
for

:::::::::
different

::::::
angles

::
q.

:::
For

::::::::
example,

::::::
when

::::::
q “ 0,

:::
we

::::
find

:::::::::::::::::::::
rp0q “

3
2 cos 0´sin 0 “ 1.5,

::
so

::::
we

:::
can

::::
plot

:::
the

:::::
polar

:::::::::::
coordinates

::::::
1.5=0˝

:::
on

:::
the

::::::::::
function’s

::::::
graph.

If the circle’s total length C “ 2pr represents a full 360˝ turn
around the circle, then the arc length ` for a portion of the circle
corresponding to the angle

:::
The

::::::
polar

:::::::::::
coordinates

::::::
graph

:::
of

::::
the

:::::::
function

::::
rpqq

:::::::::::
corresponds

:::
to

::
all

::::::
points

:::::
with

:::::
polar

::::::::::
coordinates

:::::::
rpqq=q,

:::
for

::
all

::::::::
possible

::::::
values

::
of

:
qis

` “ 2pr
q

360
.

The arc length ` depends on r, the angle q,
:
.
::::
This

::
is

::::::::::
analogous

::
to

::::
how

:::
we

::::::
obtain

::::
the

::::::
graph

::
of

::::
the

::::::::
function

::::
f pxq

:::
in

:::::::::
Cartesian

:::::::::::
coordinates

::
by

::::::::
plotting

:::
the

:::::::
points

::::::::
px, f pxqq,

:::
for

:::
all

::::::::
possible

:::::::
values

::
of

::::
the

:::::
input

:::::::
variable

:::
x.

::::::::
Figure

::::
1.63

:::::::
shows

::::
the

:::::::
graphs

:::
of

:::
the

:::::
two

:::::::::
functions

:::::::::
discussed

::::
here.

:

:
If
:::::

you
:::::
ever

:::::
need

:::
to

::::::
graph

::
a

::::::::
function

::::
rpqq

::::
by

::::::
hand,

::::
you

::::
can

::::::::
compute

:::
the

::::::
value

::
of

::::
the

::::::::
function

:::
for

:::::::
several

::::::
angles

::::
like

:::::::::
q “ ´90˝,

::::::
q “ 0˝,

:::::::::
q “ 90˝,

:::::
then

::::
plot

::::::
these

:::::::
points

:::
in

::::
the

::::::
polar

::::::::::
coordinate

:::::::
system.

::::
For

:::::::::
example,

:::
to

::::::
graph

:::
the

::::::::
function

:::::::::::::::::
rpqq “

3
2 cos q´sin q ,

:::
we

:::
can

::::::::
compute

::::::::::::::::::::::::::::::::
rp´90˝

q “
3

2 cosp´90˝q´sinp´90˝q
“ 3,

::::::
which

:::::
gives

:::
us

:::
the

:::::
point

::::::::
3=´90˝

::
on

::::
the

::::::
graph.

::::
We

::::
can

:::::::::
similarly

::::::::
compute

::::::::::
rp0˝

q “ 1.5
and a factor of 2p

360::::::::::::
rp30˝

q “ 2.43,
::::::
which

::::::
gives

:::
us

:::
the

::::::
points

:::::::
1.5=0˝

:::
and

:::::::::
2.43=30˝.

r
1 2 3

(a) rpqq “ 2

1.5=0˝

2.43=30˝

3=´90˝

r
1 2 3

(b) rpqq “
3

2 cos q´sin q

Figure 1.63: The arc length ` equals 57
360 :::::

graphs
::

of
:::::::
functions

:::
in

::::
polar

::::::::::
coordinates

::::
are

::::::::
obtained

:::
by

:::::::::
computing

:
the circle’s circumference

2pr
:::::::
distance

:::
rpqq

::
in

::
all

:::::::::
directions

:
q
:::::::
varying

::::
from

::
0˝

::
to
::::
360˝.
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Radians

::::::
Figure

::::
1.64

:::::::
shows

::::
the

::::::
polar

:::::::::::
coordinates

::::::::
graphs

:::
of

:::::
three

::::::
other

:::::::::
interesting

::::::::::
functions.

:::::::
Look

::
at
::::

the
:::::::

points
::::
r=q

:::::::::
indicated

:::
in

:::::
each

:::::
graph

::::
and

::::::
check

::::
that

::::
they

::::::
satisfy

:::
the

::::::::::::::
corresponding

::::::::
function

::::
rpqq.

:

Though degrees are commonly used as a measurement unit for
angles, it’s much better to measure angles in radians

2=0˝

1=60˝

´1=120˝

r1 2

(a) rpqq “ 2 cos q

2=0˝

2=120˝

´2=60˝

r1 2

(b) rpqq “ 2 cosp3qq

2=360˝
0.5=90˝

1=180˝

1.5=270˝

r1 2

(c) rpqq “
2

360˝ q

Figure 1.64:
:::
The

::::::
graphs

::
of

:::::
three

::::::::
functions

::
in

:::::
polar

::::::::::
coordinates:

:::
(a)

:
a
:::::
circle,

::
(b)

::
a

:::::::::::
three-petalled

::::
rose,

::::
and

::
(c)

:::
an

:::::::::::
Archimedean

:::::
spiral.

::::::::::::
Discussion

:::
The

::::::
polar

::::::::::
coordinate

::::::::
system

::
is

:::
an

::::::::::
alternative

:::::
way

:::
of

::::::::::
describing

::::::
points

::
in

::::::
space

::::::
using

:::::
polar

:::::::::::
coordinates

:::::
r=q

:::::::
instead

:::
of

:::
the

::::::
usual

::::::::
Cartesian

::::::::::::
coordinates

:::::
px, yq.

:::::
See

::::
the

:::::::
concept

:::::
map

:::
in

::::::
Figure

:::::
1.65.

::::
Your

:::::::::::
knowledge

::::
and

:::::::::::
experience

::::
with

::::
the

:::::::::::::
trigonometric

:::::::::
functions

:::
sin, since radians are the natural units for measuring angles. The
conversion ratio between degrees and radians is

2p[rad] “ 360˝.

When measuring angles in radians, the arc length is given by:

` “ rqrad.

Measuring angles in radians is equivalent to measuring arc length on
a circle with radius r “ 1

::::
cos,

::::
and

:::
tan

::
is

:::::
what

:::::::
allows

::::
you

::
to

:::::::
convert

:::::::
between

:::::::::
Cartesian

::::
and

:::::
polar

:::::::::::
coordinates.

:::
The

:::::::::
formulas

:::
for

::::::::::
converting

::::::::
between

::::::::
Cartesian

:::::::::::
coordinates

:::::
px, yq

:::
and

::::::
polar

:::::::::::
coordinates

::::
r=q

::::::::
covered

:::
in

::::
this

:::::::
section

::::
are

::::::::::
important,

:::
and

::::
you

:::::::
should

::::::::
consider

:::::
them

::::::::::
“required

:::::::::
material.”

::
I
::::::
expect

::::
you

::
to

:::::::
become

::::::
totally

::::::
fluent

:::::
with

:::::
these

:::::::::
formulas

::::
now,

::::::::
because

:::::
we’ll

:::::
need
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Figure 1.65:
::::::::
Cartesian

:::::::::
coordinates

:::::
px, yq

::::
and

::::
polar

::::::::::
coordinates

::::
r=q

:::
are

:::
two

::::::::
equivalent

:::::::
systems

:::
for

::::::::::
representing

::::::
points,

:::::::::
equations,

:::
and

:::::::::
functions.

:::::
them

::::
later

::
in

:::
the

:::::
book

::::::
when

:::
we

:::::
learn

:::::
about

:::::::
vectors

::::::::
(Section

:::
3.2)

::::
and

::::::::
complex

::::::::
numbers

:::::::
(Section

:::::
3.5).

::
In

::::::::
contrast,

::::
the

:::::
three

::::
next

::::::::
sections

::::
are

:::
not

::::::::::
“required

:::::::::
material.”

::::
We’ll

:::::
now

:::::::
switch

:::::
gears

:::
to

::::::::::::::
“entertainment

:::::::
mode”

::::
and

:::::
learn

::::::
about

::::
three

:::::::
bonus

:::::::::
geometry

::::::
topics:

::::::::
ellipses,

::::::::::
parabolas,

::::
and

:::::::::::
hyperbolas.

:
I

::::
want

:::::
you

::
to

::::::
know

:::::
about

:::::
these

::::::::
shapes,

:::
but

:
I
::::::

don’t
::::::
expect

::::
you

::
to

:::
be

:::::
fluent

:::::
with

::
all

::::
the

::::::::::
definitions

::::
and

:::::::::
equations.

::::
You

::::
can

::::
take

::
it

::::
easy

:::
for

:::
the

::::
next

:::::
three

::::::::
sections

::::::::
because

::::
none

:::
of

:::
the

::::::::
material

::::
will

:::
be

::::
“on

:::
the

::::::
exam.”

::::
You

::::::::
deserve

:
a
::::::
break

::::
after

:::
all

:::
the

:::::
polar

:::::::::::
coordinates

:::::::::
formulas!

Exercises
E1.31 On a rainy day, Laura brings her bike indoors, and the wet
bicycle tires leave a track of water on the floor. What is the length of
the water track left by the bike’s rear tire (diameter 73cm) if the wheel
makes five full turns along the floor?

::::::::
Convert

:::
the

:::::
given

::::::
points

:::::
from

::::::::
Cartesian

:::
to

:::::
polar

:::::::::::
coordinates:

:

::
a)

:::::
p3, 1q

::
b)

::::::::
p´1, ´2q

::
c)

::::::
p0, ´6q

:::::::
Convert

:::
the

:::::::
points

::::
from

:::::
polar

:::
to

:::::::::
Cartesian

:::::::::::
coordinates:

::
d)

:::::::
10=30˝

::
e)

:::::::::
10=´345˝

: :
f)
::::::::
10=120˝

:

E1.32 Describe the circle of radius 3 centred at p1, 4q in terms of
Cartesian coordinates and in terms of a parametric equation.

:::::
Draw

:::
the

::::::
graph

:::
of

::::
the

::::::::
function

:::::::::::
rpqq “

2
sin q :::

in
:::::
polar

::::::::::::
coordinates

:::
for

::
q

:::::::
varying

:::::
from

::
0

::
to

:::::
180˝.

::::::
What

::
is
::::

the
::::::::::
equivalent

:::::::::::
description

::
of

::::
this

:::::::
function

:::
in

:::::::::
Cartesian

:::::::::::
coordinates?

:
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::::::
Links

[
::::::
Visual

:::::::::::
introduction

:::
to

:::::
polar

::::::::::
coordinates

:
]

:::::::::::::::::::::::::::::::::::::::::::::
https://www.youtube.com/watch?v=stU63ST6ung

[
::::::::
Professor

::::::
Dave

:::::::
explains

::::::::::
equations

::
in

:::::
polar

:::::::::::
coordinates ]

:::::::::::::::::::::::::::::::::::::::::::::
https://www.youtube.com/watch?v=jwLUapqnwkk

1.18 Ellipse
The ellipse is a fundamental shape that occurs in nature. The orbit of
planet Earth around the Sun is an ellipse.

Parameters

::::::
Figure

::::
1.66

::::::
shows

:::
an

::::::
ellipse

::::
with

:::
all

:::
its

::::::::::
parameters

::::::::::
annotated:

:

• a: the half-length
:::::
F1, F2:

:::
the

::::
two

::::
focal

::::::
points of the ellipse along

the x-axis, also known as the semi-major axis
• b: the

:::
r1:

:::
the

::::::::
distance

:::::
from

:
a
:::::
point

:::
on

:::
the

::::::
ellipse

:::
to

::
F1:

•
::
r2:

::::
the

:::::::
distance

:::::
from

::
a

:::::
point

:::
on

:::
the

::::::
ellipse

::
to

:::
F2

•
:
a:
::::

the
:::::::::::

semi-major
::::
axis

:::
of

:::
the

:::::::
ellipse

::
is

::::
the half-length of the

ellipse along the y
:
x-axis

:
.
::::
The

:::::::
distance

::::::::
between

:::
V1::::

and
::
V2::

is
:::
2a.

• #: the eccentricity
:
b:

:::::
the

:::::::::::
semi-minor

:::::
axis

:
of the ellipse ,

# ”

b
1 ´

b2

a2

• F1, F2: the two focal points
:
is
::::
the

::::::::::
half-width of the ellipse

:::::
along

:::
the

::::::
y-axis.

::::
The

::::::::
distance

::::::::
between

::
V3::::

and
:::
V4 ::

is
:::
2b.

• r1 :
c: the distance from a point on the ellipseto

:
of

::::
the

::::
focal

::::::
points

::::
from

::::
the

:::::
centre

:::
of

:::
the

:::::::
ellipse.

::::
The

:::::::
distance

::::::::
between

:
F1

• r2: the distance from a point on the ellipseto
::::
and F2 :

is
:::
2c.

:

•
:
#:
::::
the

::::::::::
eccentricity

::
of

:::
the

:::::::
ellipse,

:::::::::::::::
# “

b
1 ´

b2

a2 “
c
a .
:

Definition
An ellipse is the curve found by tracing along all the points for which
the sum of the distances to the two focal points is a constant:

r1 ` r2 “ const.

There’s a neat way to draw a perfect ellipse using a piece of string
and two tacksor pins. Take a piece of string and tack it to a picnic
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F1 “p´c, 0q

r1

px, yq

r2

F2 “pc, 0q

V1 V2

V3

V4 a

b

Figure 1.66:
:::
An

:::::
ellipse

:::::
with

:::::::::
semi-major

::::
axis

:
a
::::
and

::::::::::
semi-minor

:::
axis

::
b.
::::

The

:::::::
locations

::
of

:::
the

::::
focal

::::::
points

::
F1:::

and
:::

F2 ::
are

:::::::::
indicated.

table at two points, leaving some loose slack in the middle of the
string. Now take a pencil, and without touching the table, use the
pencil to pull the middle of the string until it is taut. Make a mark at
that point. With the two parts of string completely straight, make a
mark at every point possible where the two “legs” of string remain
taut.

An ellipse with semi-major axis a and semi-minor axis b. The
locations of the focal points F1 and F2 are indicated.

An ellipse is a set of points px, yq that satisfy the equation

x2

a2 `
y2

b2 “ 1.

The eccentricity of an ellipse describes how elongated it is:

# ”

c
1 ´

b2

a2 .

The parameter # P r0, 1q describes the shape of the ellipse in a
scale-less fashion. The bigger # is, the bigger the difference will
be between the length of the semi-major axis and the semi-minor
axis. In the special case when # “ 0, the equation

:::
The

:::::::::::
parameters

:
a

:::
and

::
b
:::::::::
determine

::::
the

:::::
shape

:
of the ellipsebecomes a circle with radius

a.
The px, yq-coordinates of the two focal points are

F1 “ p´a#, 0q and F2 “ pa#, 0q.

The focal points
::::
focal

::::::
points

::
F1::::

and
::
F2:correspond to the locations of

the two tacks where the string is held in place. Recall that we defined
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the variables r1 and r2 to represent the distance from the focal points
F1 and F2. Furthermore, we will denote by q “ ap1 ´ #q the distance
of the ellipse ’s closest approach to a focal point

::::
The

:::::::::::
coordinates

::
of

:::
the

::::
two

::::
focal

::::::
points

::::
are

F1 “ p´c, 0q and F2 “ pc, 0q,
:::::::::::::::::::::::::::::::

::::::
where

:::::::::::
c “

?

a2 ´ b2
::
is

:::
the

:::::
focal

:::::::
distance.

:

:::
The

::::::::::
eccentricity

:
of

:::
an

::::::
ellipse

::
is
::::::
given

::
by

::::
the

::::::::
equation

# “

c
1 ´

b2

a2 “
c
a

.
::::::::::::::::

:::
The

::::::::::
parameter

:
#
::::
(the

::::::
Greek

:::::
letter

::::::
epsilon

:
)
::::::
varies

:::::::
between

::
0
::::
and

:
1
::::
and

::::::::
describes

:::::
how

:::::
much

:::
the

::::::
shape

::
of

:::
the

::::::
ellipse

::::::
differs

:::::
from

:::
the

::::::
shape

::
of

:
a
::::::
circle.

:::::
When

:::::
# “ 0

:::
the

:::::::
ellipse

:
is
::
a
:::::
circle

::::
with

::::::
radius

::
a,
::::
and

:::::
both

::::
focal

::::::
points

:::
are

:::::::
located

::
at

::::
the

::::::
centre.

::::
As

:::
the

:::::::::::
eccentricity

:
#
::::::::::

increases,
:::
the

::::::
ellipse

::::::::
becomes

:::::
more

:::::::::
elongated

:::::
and

:::
the

:::::
focal

::::::
points

:::::::
spread

::::::
farther

:::::
apart.

Polar coordinates
In polar coordinates, the ellipse can be described by a

::::::::
Consider

::
a

:::::
polar

:::::::::::
coordination

:::::::
system

::::::
whose

::::::
centre

::
is

:::::::
located

::
at

:::
the

:::::
focus

:::
F2.

:::
We

:::
can

::::::::
describe

:::
the

::::::
ellipse

:::
by

::::::::::
specifying

:::
the

:
function r2pqqas illustrated

in Figure ??. This function gives the distance of a point E from ,
:::::
which

:::::::::
describes

::::
the

:::::::
distance

:::::
from

::::
the

:::::
focus F2 ::

to
:::
the

:::::
point

::
E

:::
on

:::
the

::::::
ellipse as a function of the angle q . Recall

:::
(see

:::::::
Figure

:::::
1.67).

::::::
Recall

:::
that

:::
for

:::::::::
functions

:
in polar coordinates, the angle q is the independent

variable
:::
that

::::::
varies

:::::
from

:
0
:::
to

:::
2p

::::::
(360˝),

:
and the dependent variable

is the distance r2pqq.

q

E

r2pqq

F2

Figure 1.67: The shape of
::::::
function

:::::
r2pqq

::
in

:::::
polar

::::::::::
coordinates

:::::::
specifies

:::
the

:::::::
distance

:::::::
between

:::
the

::::
point

::
E
:::
on the ellipse is described by

:::
and

:
the function

r2pqq
::::
focal

::::
point

:::
F2 ::

for
:::
all

:::::
angles.
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The equation of the ellipse in polar coordinates depends on the
length of the semi-major axis a and the eccentricity #. The equation
:::::::
function

:
that describes an ellipse in polar coordinates is

r2pqq “
ap1 ´ #2

q

1 ` # cospqq
,

where the angle q is measured with respect to the positive x-axis
:::::::::
semi-major

:::
axis. The distance is smallest when q “ 0 with r2p0q “ ap1 ´ #q “ q
::::::::::::::::::::
r2p0q “ a ´ c “ ap1 ´ #q

:
and largest when q “ p with r2ppq “ a ` a# “ ap1 ` #q

:::::::::::::::::::::
r2ppq “ a ` c “ ap1 ` #q.

Calculating the orbit of the Earth
To a close approximation, the

:::
The

:
motion of the Earth around the

Sun is described by an ellipse with the Sun positioned at the focus F2.
We can therefore use the polar coordinates formula r2pqq to describe
the distance of the Earth from the Sun.

The eccentricity of Earth’s orbit around the Sun is # “ 0.01671123,
and the half-length of the major axis is a “ 149 598 261 km

:::
km. We

substitute these values into the general formula for r2pqq and obtain
the following equation:

r2pqq “
149 556 484.56

1 ` 0.01671123 cospqq
[km]

149 556 484
1 ` 0.01671123 cospqq

km
:::::::::::::::::::::::

.

The point where the Earth is closest to the Sun is called the perihelion.
It occurs when q “ 0, which happens around the 3rd of January. The
moment where the Earth is most distant from the Sun is called the
aphelion and corresponds to the angle q “ p. Earth’s aphelion happens
around the 3rd of July.

We can
::::
Let’s use the formula for r2pqq to predict the perihelion and

aphelion distances of Earth’s orbit:

r2,peri “ r2p0q “
149556483

1 ` 0.01671123 cosp0q
“ 147 098 290 [km] km

:::
,

r2,aphe “ r2ppq “
149556483

1 ` 0.01671123 cosppq
“ 152 098 232 [km] km

:::
.

Google “perihelion” and “aphelion” to verify that the above predic-
tions are accurate.

:::
It’s

::::
kind

:::
of

::::
cool

::::
that

:
a
:::::::::::::
mathematical

::::::::
formula

:::
can

:::::::
describe

::::
the

::::::
motion

:::
of

:::
our

:::::::
planet,

:::::
don’t

::::
you

::::::
think?

:
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Figure 1.68: The orbit of the Earth around the Sun. Key points of the orbit
are labelled. The seasons in the Northern hemisphere are also indicated.

The angle q of the Earth relative to the Sun can be described as a
function of time qptq. The exact formula of the function qptq that de-
scribes the angle as a function of time is fairly complicated, so we
won’t go into the details. Let’s simply look at some

:::
the values of qptq

with t measured in days
::::::
shown

::
in

:::::
Table

:::
??. We’ll begin on Jan 3rd.

Newton’s insight
Contrary to common belief, Newton did not discover his theory of
gravitation because an apple fell on his head while sitting under a
tree. What actually happened is that he started from Kepler’s laws
of motion, which describe the exact elliptical orbit of the Earth as a
function of time. Newton asked, “What kind of force would cause
two bodies to spin around each other in an elliptical orbit?” He de-
termined that the gravitational force between the Sun of mass M and
the Earth of mass m must be of the form Fg “

GMm
r2 . We’ll discuss

more about the law of gravitation in Chapter 4.
For now, let’s give props to Newton for connecting the dots, and

props to Johannes Kepler for studying the orbital periods, and Tycho
Brahe for doing all the astronomical measurements. Above all, we
owe some props to the ellipse for being such an awesome shape!

By the way, the varying distance between the Earth and the Sun
is not the reason we have seasons. The
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::::::::::
Exercises

E1.33
:::
The

:::::
focal

::::::
points

:::
of

:::
the

:::::::
ellipse

:::::
with

::::::::
equation

:::::::::::

x2

a2 `
y2

b2 “ 1
:::
are

::::::::::
F1 “ p´c, 0q

:::::
and

::::::::::
F2 “ pc, 0q,

:::
as

:::::::::
illustrated

:::
in

:::::::
Figure

::::
1.66.

::::::
Use

:::
the

:::::::::
definition

::
of

:::
the

:
ellipse had nothing to do with seasons! Seasons are

predominantly caused by the
:::::::::::::
r1 ` r2 “ const.

:::
to

::::::::
compute

::::
the

:::::
value

::
of

:::
the

::::::::::
parameter

:
c
::
in

::::::
terms

::
of

:::
the

:::::::::::
parameters

:
a
::::
and

::
b.

:

::::::
Links

[
::::::::::
Interactive

:::::
graph

:::
of

::
an

:::::::
ellipse ]

https://www.desmos.com/calculator/kgmh67lroj
[
:::::::
Further

:::::::
reading

::::::
about

:::::::::
Earth-Sun

:::::::::
geometry

:
]

::::::::::::::::::::::::::::::::::::::::::::::::::::::::
http://www.physicalgeography.net/fundamentals/6h.html

1.19
:::::::::::
Parabola

:::
The

:
parabola

:
is

:::::::
another

::::::::::
important

::::::::::
geometric

::::::
shape.

:::
In

::::
this

:::::::
section,

::::
we’ll

::::
see

:::::
how

::::
we

::::
can

::::::::
describe

::::::::::
parabolas

::::::
using

:::::
their

::::::::::
geometric

::::::::::
properties,

::
as

::::
well

:::
as

::
in

:::::
terms

:::
of

::::::::
algebraic

::::::::::
equations.

::::::::::::
Parameters

::::::
Figure

::::
1.69

::::::
shows

:
a
:::::::::
parabola

::::
with

:::
all

::
its

:::::::::::
parameters

::::::::::
annotated:

•
::
f :

:::
the

::::
focal

::::::
length

::
of

:::
the

:::::::::
parabola

•
:::::::::
F “ p0, f q:

:::
the

:::::
focal

::::
point

:
of

::::
the

::::::::
parabola

:

•
::::::::::::::::::::
tpx, yq P R2

| y “ ´ f u:
:::
the

:::::::
directrix

:::
line

::
to

::::
the

::::::::
parabola

•
:
r:
::::
the

:::::::
distance

:::::
from

:::::
point

::
P
:::
on

:::
the

::::::::
parabola

::
to

::::
the

::::
focal

:::::
point

::
F

•
:̀
:
::::

the
:::::::

closest
::::::::
distance

:::::
from

::
a

:::::
point

::
P
:::
on

::::
the

::::::::
parabola

:::
to

:::
the

:::::::::
parabola’s

::::::::
directrix

::::
line

:::::::::::
Geometric

::::::::::::
definition

:::
The

::::::
shape

::
of

::
a

::::::::
parabola

::
is

::::::::::
determined

:::
by

:
a
::::::
single

:::::::::
parameter

::
f ,
::::::
called

:::
the axial tiltof the Earth. The axis of rotation of the Earth is tilted by 23.4˝

relative to the plane of its orbit around the Sun. In the Northern hemisphere,
the longest day of the year is the summer solstice, which occurs around the
21st of June. On that day, the Earth’s spin axis is tilted toward the Sun so
the Northern hemisphere receives

::::
focal

::::::
length.

::::
For

:
a
:::::::::

parabola
::::
with

:::::
focal
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´2 ´1 1 2

´1

0

1

2y“
1
4 x2

directrix

x

y

Pr

`

F

D

Figure 1.69:
:::
The

:::::::
parabola

::
is

::::::
defined

::::::::::::
geometrically

::
as

:::
the

::
set

::
of

::::::
points

:::::
whose

:::::::
distance

::::
form

:::
the

::::
focal

:::::
point

:
r
::
is

:::::
equal

::
to

::::
their

:::::::
distance

::::
from

:::
the

:::::::
directrix

::̀
.

:::
The

:::::
figure

::::::
shows

:::
the

::::
point

::
P

::
on

:::
the

::::::::
parabola

:::
that

:::
has

:::::::
distance

:::::
r “ 2

::::
from

::
F,

:::
and

:::::::
distance

:::::
` “ 2

::::
from

:::
the

:::::
point

::
D

:::
on

:::
the

::::::::
directrix.

::::
This

:::::::
parabola

::::
can

::
be

::::::::
described

::::::::::
algebraically

:::::
using

:::
the

::::::::
equation

:::::::
y “

1
4 x2.

::::::
length

::
f ,

:::
the

:::::
focal

:::::
point

::
is
:::
at

:::::::::
F “ p0, f q

::::
and

:::
the

:::::::
directrix

:::
line

::::
has

:::
the

::::::::
equation

:::::::
y “ ´ f .

:::::
The

::::::::
parabola

::
is

:::::::
defined

:::
as

:::
the

:::
set

:::
of

::::::
points

::
P

:::
for

:::::
which

::::
the

::::::::
distance

::::
from

::::
the

::::
focal

::::::
point

:::
and

::::
the

::::::::
directrix

:::
are

::::::
equal:

r “ `,
::::

::::::
where

:::::::::
r “ dpP, Fq

::
is
:::
the

::::::::
distance

:::::
from

:::
the

:::::
point

::
P

::
to

:::
the

:::::
focal

:::::
point

::
F,

:::
and

:::::::::::
` “ dpP, Dq

::
is

:::
the

::::::::
distance

:::::
from

:
P
:::
to

:::
the

:::::
point

::
D

:::
on

:::
the

::::::::
directrix

:::
that

::
is
:::::::
closest

::
to

:::
the

:::::
point

:::
P.

::::::
Figure

::::
1.69

::::::
shows

::
a

::::::::
parabola

::::::::
opening

:::::::
upward

:::::
with

:::::
focal

::::::
length

:::::
f “ 1

:::::::
centred

:::
at

:::
the

:::::::
origin.

:::::
The

::::::::
parabola

::
is
::::

the
:::
set

:::
of

::::::
points

::::
that

:::
are

::::::::::
equidistant

:::::
from

::::
the

::::
focal

::::::
point

:::::::::
F “ p0, 1q

::::
and

:::
the

::::::::
directrix

::::
line

::::::
located

:::
at

:::::::
y “ ´1.

:::::::::::
Algebraic

:::::::::::::
description

:::
The

:::::::
shape

:::
of

::
a

:::::::::
parabola

:::::
with

:::::
focal

:::::::
length

::
f
:::::::::

opening
::::::::

upward

:::::::::::
corresponds

:::
to

:::
the

::::::
graph

:::
of

::::
the

:::::::::
quadratic

:::::::::
functions

::::::::::::
f pxq “

1
4 f x2.

::::
This

::
is

:
a
:::::::

special
::::
case

:::
of

:::
the

:::::::
general

::::::::
formula

:::
for

:::::::::
quadratic

:::::::::
functions

::::::::::::::::::
f pxq “ apx ´ hq

2
` k,

:::::::
which

:::::::
you’re

::::::::
already

:::::::::
familiar

:::::
with

::::::
from

::::::
Section

:::::
1.13

::::
(see

:::::
page

::::
99).

:::::
The

:::::::::
parabola

::::::
shown

:::
in

:::::::
Figure

::::
1.69

::
is

:::::::
centred

::
at

::::
the

::::::
origin,

:::
so

::::
the

::::::::::::
displacement

:::::::::::
parameters

::
h

::::
and

::
k

:::
are

::::
both

:::::
zero.

::::
The

::::::::::
coefficient

::
a

::
in

::::
the

:::::::
general

:::::::
formula

:::
is

::::::
related

:::
to

:::
the

::::
focal

:::::::
length

::
f
::::::::
through

:::
the

::::::::
relation

:::::::
a “

1
4 f ,

:::
so

::
in

::::
the

::::
case

:::
of

:::::
focal

::::::
length

:::::
f “ 1

:::
the

::::::::::
coefficient

::
is

::::::
a “

1
4 .

:::
See

::::::
Figure

:::::
1.69.
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:::
The

::::::::
formula

::::::::
y “

1
4 f x2

::
is

:::::::
specific

::
to

:::
the

:::::
case

::
of

:
a
::::::::
parabola

::::::::
opening

::::::::
upward,

::::
but

::::::::
similar

:::::::::
algebraic

::::::::::::
expressions

:::::
exist

::::
for

::::::::::
parabolas

:::::::
opening

:::::::::::
downward

::::
and

:::::::::
sideways.

:::::
The

::::::::
parabola

:::::
with

:::::
focal

::::::
length

:
f
:::::::::

opening
:::::::::::
downward

::
is

::::::::::
described

:::
by

::::
the

:::::::::
equation

:::::::::::
y “ ´

1
4 f x2.

:::
The

:::::::::
parabola

::::::::
opening

::
to

::::
the

:::
left

::::
and

:::
to

:::
the

:::::
right

::::
are

:::::::::
described

:::
by

::::::::
relations

::::::::::
x “ ´

1
4 f y2

::::
and

:::::::::
x “

1
4 f y2.

:::::::
With

:::::
your

:::::::::::
knowledge

::
of

:
the

most sunlight.
::::::::::::
displacement

:::::::::::
parameters

::
h

::::
and

::
k

:::::
used

:::
for

:::::::
general

::::::::
quadratic

::::::::::
equations

::::
(see

::::::
page

::::
99),

::::
you

::::
can

:::::
also

::::::
obtain

:::::::::
algebraic

::::::::::
expressions

:::
for

:::::::::
parabolas

::::
that

::::
are

:::
not

:::::::
centred

::
at

::::
the

::::::
origin.

:

::::::
Polar

:::::::::::::
coordinates

::
In

::::
the

::::::::
previous

:::::::
section

::::
we

::::::::::
connected

:::
the

::::::::::
geometric

::::::::::
definition

::
of

:::::::::
parabolas

:::::
with

:::::::::
quadratic

:::::::::
algebraic

::::::::::::
expressions.

::::::::
When

::::::::
learning

:::::
math,

::::
it’s

:::::::::
important

:::
to

:::::
note

:::::::::::
connections

::
of

::::
this

:::::
sort

:::::::
because

:::::
they

:::
are

:::
the

::::::::
bridges

::::::::
between

:::::::::
different

:::::::::::::
mathematical

:::::::::
domains.

:::
If

::::
one

:::
day

::::
you

:::::
have

::
to

:::::
solve

::
a

:::::::::
geometry

::::::::
problem

:::::::::
involving

:::::::::
parabolas,

::::
you

:::::
could

:::
use

:::::::::
algebraic

:::::::::
equations

::
to

::::::::
describe

:::
the

:::::::::
parabolas

::::
and

:::::
solve

:::
the

:::::::
problem

::::::
using

::::::::
algebra.

::
If

:::
on

:::::::
another

::::
day

::::
you

:::::::::
encounter

:::
an

:::::::
algebra

:::::::
problem

::::::::::
involving

::
a
:::::::::
quadratic

:::::::::
equation,

:::::
you

::::::
could

::::::::
visualize

::::
the

::::::::
quadratic

:::::::::
equation

::
as

:
a
:::::::::
parabolic

::::::
shape

::::
and

:::::
solve

:::
the

::::::::
problem

:::::
using

:::::::::
geometric

::::::::::
reasoning.

::::::
Being

:::::
able

::
to

::::::
travel

::::::::
between

::::::
math

::::::::
domains

:::
like

::::
this

::
is

:
a
::::::
mark

::
of

::::
true

:::::
math

:::::::
fluency.

:

::
In

:::
the

::::::
spirit

::
of

:::::::
further

:::::::::::::::
bridge-building,

::
I
:::::
want

::
to

::::::
show

::::
you

:::
the

::::::::
equation

::
of

::
a

::::::::
parabola

::
in

:::::
polar

::::::::::::
coordinates.

:::
We

:::::::
choose

:
a
::::::::::
coordinate

::::::
system

:::::::
centred

:::
at

:::
the

:::::
focal

:::::
point

::
F.

:::::
The

::::::::::::::::
polar-coordinates

::::::::
equation

:::
for

:::
the

::::::::
parabola

:::::
with

::::
focal

:::::::
length

:
f
::::::::
opening

::
to

:::
the

::::
left

::
is

rpqq “
2 f

1 ` cos q
.

::::::::::::::

::::::
Figure

::::
1.70

:::::::
shows

:
a
::::::::::

particular
::::::::
instance

:::
of

::::
this

::::::::
formula

::::::
when

:::
the

::::::::
parabola

:::
has

:::::
focal

::::::
length

::::::
f “ 1.

:::
Try

:::::::::::
substituting

:::
the

::::::
values

:::::
q “ 0

::::
and

:::::::
q “ 90˝

:::
( p

2 ::::::::
radians)

::
in

:::
the

::::::
polar

::::::::
equation

:::
to

::::::
verify

::::
that

::
it

::::::::
correctly

::::::::
describes

:::
the

:::::::
points

::
on

::::
the

::::::::
parabola.

:
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Figure 1.70:
:::
The

::::::::
parabola

::::::::
described

:::
by

:::::::::::
rpqq “

2
1`cos q ::

in
::::
polar

:::::::::::
coordinates.

:::
The

::::
key

::::::
point

::
I
:::::
want

::::
you

:::
to

::::
take

::::::
away

:::::
from

::::
this

:::::::
section

:::
is

::::
that

::::::::
algebraic

:::::::::
formulas

::::
can

:::
be

::::::
very

::::::
useful

::::
for

::::::::::
describing

::::::::::
geometric

:::::::
shapes.

::::
The

::::::::
parabola

::::::::::
illustrated

:::
in

::::::
Figure

::::
1.70

::::
can

:::
be

:::::::::
described

::
in

::::
three

::::::::::
equivalent

::::::
ways:

:::::::::::::
geometrically

::::::::
through

:::
its

::::
focal

:::::::
length

:::::
f “ 1

:::
and

:::::::::
directrix

::::
line

::::::
x “ 2;

:::::::::::::
algebraically

::
as

::::
the

::::::::
relation

:::::::::::
x “ 1 ´

1
4 y2

::
in

:::::::::
Cartesian

:::::::::::
coordinates;

:::
or

:::
as

:::
the

:::::::::
function

::::::::::::
rpqq “

2
1`cos q:::

in
:::::
polar

:::::::::::
coordinates.

::::::::::
Parabola

::::::::::::::
applications

::::::::
Parabolic

:::::::
shapes

:::
are

::
of

::::::
special

:::::::::::
importance

::
in

::::::
optics

:::
and

::::::::::::::::
communications.

:::::
Using

:::::::::
parabolic

:::::::
lenses,

:::::::
mirrors,

::::
and

:::::::::
antennas,

::::
it’s

:::::::
possible

:::
to

:::::
focus

:::
the

::::::
energy

::::::::
emitted

:::::
from

:
a
:::::::
distant

::::::
object

::::
into

::
a

:::::
single

::::::
point.

:::::
This

::
is

:::
due

:::
to

:::
the

::::::::
reflective

::::::::
property

::
of

::::::::::
parabolas,

::::::
which

:::::
states

:::::
that

::
all

:::::
light

::::
rays

:::::::
coming

:::::
from

:::
far

:::::
away

::::
are

:::::::::
redirected

:::::::
toward

::::
the

::::
focal

::::::
point

::
of

:::
the

:::::::::
parabolic

::::::
shape.

::::
The

::::::::
reflective

:::::::::
property

::::::
makes

:::::::::
parabolas

::::::
useful

:::
for

:::::
many

::::::::
practical

:::::::::::::::
communication

:::::::::::
applications.

:

Figure 1.71:
:::
The

::::::::
reflective

:::::::
property

:::
of

::::::::
parabolas

::::
tells

:::
us

::
all

:::::
radio

::::::
waves

::::::
coming

::::
from

:::::::
infinity

::
are

::::::::
reflected

::::::
toward

:::
the

::::
focal

:::::
point

::
of

:::
the

::::::::
parabola.



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



138 MATH FUNDAMENTALS

::::::
Figure

::::
1.71

::::::::::
illustrates

::::
the

::::::
setup

::::
for

::
a
::::::

radio
:::::::::::::::

communication
:::::::
scenario

:::
in

:::::
which

::
a
:::::::
ground

::::::
station

::
is

::::::
trying

::
to

::::::
detect

:
a
::::::
signal

:::::::
coming

::::
from

::
a
:::::::
satellite

:::
in

:::::
orbit.

:::::
The

:::::::
satellite

::
is

:::::
very

:::
far

:::::
away

:::
so

:::
the

::::::
signal

:::::::
received

:::
on

::::::
Earth

::
is

:::::
very

::::::
weak.

::
A
:::::::::

parabolic
::::::::

satellite
::::
dish

::::::::
antenna

::::::
collects

::::
the

:::::
signal

:::::
from

:
a
:::::
large

:::::::
surface

::::
area

::::
and

:::::::
focuses

::
all

:::
of

:
it
:::
on

:::
the

::::
focal

:::::
point

:::
of

:::
the

:::::::::
parabola.

::
A

:::::
radio

::::::::
receiver

::::::
placed

::
at

:::
the

:::::
focal

:::::
point

::
of

:::
the

::::::::
parabola

::::::::
receives

:
a
::::::
much

::::::::
stronger

::::::
signal,

:::::
since

:::
the

:::::
focal

:::::
point

:
is
:::::::

where
:::
the

:::::::
power

:::::
from

::::
the

::::::
whole

:::::
dish

:::::::
surface

::
is
:::::::::::::

concentrated.
::::
This

::
is

:::::::
thanks

::
to

:::
the

:::::::::
reflective

:::::::::
property

::
of

::::
the

:::::::::
parabolic

::::::
shape:

:::
all

:::::
radio

::::::
waves

:::::::
coming

:::::
from

:::
the

::::::::
far-away

::::::::
satellite

:::
get

::::::::
reflected

:::::::
toward

:::
the

:::::
focal

:::::
point

::
of

:::
the

:::::::::
parabola.

:

::::::::::
Exercises

E1.34
::::::::
Consider

::::::
some

:::::::::
arbitrary

::::::
point

:::::::::
P “ px, yq

:::::
that

::::
lies

:::
on

::::
the

::::::::
parabola

:::::
with

:::::
focal

::::::
length

::
f
:::::::
centred

:::
at

:::
the

::::::
origin

:::
as

::::::::::
illustrated

::
in

::::::
Figure

::::
1.69.

:::::
Use

::::
the

:::::::::
geometric

::::::::::
definition

::
of

::::
the

::::::::
parabola

::::::
r “ `

::
to

::::::
obtain

:
a
:::::::
relation

::::::::
between

::::
the

::
x-

::::
and

::::::::::::
y-coordinates

::
of

::::
the

:::::
point

::
P.

:

Hint:
::::
The

::::::::
distance

::::::::
between

::::::
points

::::::::::::
A “ pAx, Ayq

::::
and

:::::::::::
B “ pBx, Byq

::
is

:::::
given

:::
by

:::::::::::::::::::::::::::::::::
dpA, Bq “

b
pAx ´ Bxq2 ` pAy ´ Byq2.

:

Hint:
::::::
Recall

:::
the

::::::::::
definitions

::
of

::::::::::
r “ dpP, Fq

::::
and

:::::::::::
` “ dpP, Dq.

:

Links
[
::::::::::
Interactive

:::::
graph

:::
of

:
a
::::::::
parabola

:
]

https://www.desmos.com/calculator/4ddfrv7wvx

[ Further reading about Earth-Sun geometry
:::::::::
parabolas

:::
on

:::::::::
Wikipedia

]
http

:::::
https://www

::
en.physicalgeography

:::::::::
wikipedia.net

::::
org/fundamentals

::::
wiki/6h.html

::::::::
Parabola

1.20 Hyperbola

The hyperbola is another fundamental shape of nature. A horizontal
hyperbola is

::::::::::::
Parameters

•
:::::
F1, F2:

:::
the

:::::
focal

:::::
points

:
of

::::
the

:::::::::
hyperbola

:

•
::
r1:

::::
the

:::::::
distance

:::::
from

::
a

:::::
point

::
of

:::
the

::::::::::
hyperbola

::
to

::
F1:

•
::
r2:

::::
the

:::::::
distance

:::::
from

::
a

:::::
point

::
of

:::
the

::::::::::
hyperbola

::
to

::
F2:
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•
:
a:
::::

the
::::::::::
semi-major

::::
axis

::
of

::::
the

:::::::::
hyperbola

::
is

:::
the

::::::::
distance

:::::
from

:::
the

:::::
origin

:::
to

:::
the

:::::::
vertices

:::
V1 ::::

and
::
V2:

•
:
b:
::::

the
:::::::::::
semi-minor

::::
axis

::
of

::::
the

:::::::::
hyperbola

::
is
::::
the

::::::::
distance

:::::
from

:
a

:::::
focus

::
to

:::
the

:::::::
nearest

::::::::::
asymptote

•
:
c:
::::
the

::::::::
distance

::
of

:::
the

:::::
focal

::::::
points

:::::
from

:::
the

::::::
centre.

::::
The

::::::::
distance

:::::::
between

:::
F1 ::::

and
::
F2::

is
:::
2c.

:

•
:
#:
::::::::::
eccentricity

::
of

:::
the

::::::::::
hyperbola,

:::::::::::::::
# “

b
1 `

b2

a2 “
c
a

Figure 1.72:
:::
The

:::::
graph

::
of

:::
the

::::
unit

::::::::
hyperbola

::::::::::
x2

´ y2
“ 1.

:::
The

::::::
graph

:::
has

:::
two

:::::::
branches

:::::::
opening

::
to

:::
the

:::::
sides,

:::
and

:::
its

:::::::::
eccentricity

::
is
:::::::::::::::
# “

b
1 `

1
1 “

?
2.

:::
The

::::::
graph

:::
of

::
a

:::::::::
hyperbola

::::::::
consists

:::
of

::::
two

::::::::
separate

::::::::
branches,

:::
as

:::::::::
illustrated

::
in

:::::::
Figure

::::
1.72.

::::
The

:::::::
dashed

:::::
lines

:::
are

::::::
called

::::
the

:::::::::
asymptotes

::
of

:::
the

:::::::::::
hyperbola.

:::::
The

::::::
graph

:::
of

::::
the

::::::::::
hyperbola

:::::::::::
approaches

:::::
these

::::
lines

::::
but

::::::
never

::::::::
touches

:::::
them.

::::::
The

:::::::::
equations

::::
that

:::::::::
describe

:::::
these

::::::::::
asymptotes

:::
are

:::::::
y “

b
a x

::::
and

:::::::::
y “ ´

b
a x.

:

:::::::::::
Definition

::
A

:::::::::
hyperbola

:::
is

:::::::
defined

:::
as

:::
the

:::
set

:::
of

::::::
points

:::::
such

::::
that

::::
the

::::::::
absolute

:::::
value

::
of

::::
the

::::::::::
difference

::
of

::::
the

:::::::::
distances

:::
to

:::
the

::::
two

:::::
focal

:::::::
points

::
is

::::::::
constant:

:

|r1 ´ r2| “ const.
::::::::::::::

:::::::
Another

:::::
way

::
to

::::::
define

:
a
::::::::::
hyperbola

::
is

::
as the set of points px, yq which

:::
that

:
satisfy the equation

x2

a2 ´
y2

b2 “ 1.
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The numbers a
::::::::::
coordinates

::
of

::::
the

::::
two

::::
focal

::::::
points

:::
of

::::
this

:::::::::
hyperbola

:::
are

F1 “ p´c, 0q and F2 “ pc, 0q,
:::::::::::::::::::::::::::::::

::::::
where

:::
the

::::
focal

:::::::
distance

::
is

::::::::::::
c “

?

a2 ` b2.
::::
The

::::::::::
coordinates

::
of

::::
the

::::::
vertices

::
V1:and b are arbitrary constants. This hyperbola passes through the
points

::
V2::::

are p´a, 0q and pa, 0q. The eccentricity of this hyperbolais
defined as

# “

c
1 `

b2

a2 .

Eccentricity is an important parameter of the hyperbola, as it
:::
The

:::::::::::
hyperbola’s

::::::::::
eccentricity

:
is

:::::::
defined

:::
by

:::
the

:::::::::
equation

# “

c
1 `

b2

a2 “
c
a

.
::::::::::::::::

:::
The

:::::::::::
eccentricity

::
is

::
a

:::::::
number

:::::::
greater

:::::
than

::
1

::::
that determines the hy-

perbola’s shape. Recall the
:::
that

:::
an ellipse is also defined by an eccen-

tricity parameter, though the formula is slightly different. This could
be a coincidence—or is there a connection? Let’s see

:::::
Read

:::
on

::
to

::::
find

:::
out.

Graph

The unit hyperbola x2
´ y2

“ 1. The graph of the hyperbola has
two branches, opening to the sides. The dashed lines are called
the asymptotes of the hyperbola. The eccentricity determines the
angle between the asymptotes. The eccentricity of x2

´ y2
“ 1 is

# “

b
1 `

1
1 “

?

2.
The graph of a hyperbola consists of two separate branches, as

illustrated in Figure 1.72. We’ll focus our discussion mostly on the
right branch of the hyperbola.

Hyperbolic trigonometry
The trigonometric functions sin and cos describe the

:::
The

:::::::
study

:::
of

::::
the

:
geometry of the unit circle

::::::
points

:::
on

::::
the

::::
unit

:::::
circle

:::
is

::::::
called

::::::::
circular

:::::::::::
trigonometry

:
.
::::::

The
:::::::::
geometry

:::
of

::::
the

::::
unit

:::::
circle

:::
is

:::::::::
described

::::
by

:::
the

::::::::::::::
trigonometric

:::::::::
functions

:::::
sin q

::::
and

:::::
cos q.

:::::
The

::::::::
function

:::::
cos q

::::::::
defines

:::
the

:::::::::::::
x-coordinates

:::
of

::::
the

::::::
points

::
on

::::
the

::::
unit

::::::
circle,

::::
and

:::::
sin q

:::::::
defines

:::::
their

:::::::::::::
y-coordinates. The point

P “ pcos q, sin qq traces out the unit circle as the angle q goes from 0
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to 2p. The function cos is defined as the x-coordinate of the point P,
and sin is the y-coordinate. The

::::::::
Similarly,

::::
the study of the geometry of the points on the unit circle

is called
:::
unit

::::::::::
hyperbola

::
is

:::::
called

:
circular

::::::::
hyperbolic trigonometry.

Instead of looking at a
:::::::
Doesn’t

::::
that

:::::::
sound

::::::::::
awesome?

::::::
Next

::::
time

:::::
your

:::::::
friends

:::
ask

:::::
what

::::
you

:::::
have

:::::
been

:::
up

:::
to,

::::
tell

:::::
them

::::
you

:::
are

:::::::
learning

::::::
about

::::::::::
hyperbolic

:::::::::::::
trigonometry.

::::::::
Whereas

:::
we

:::::
trace

::::
the

::::
path

::
of

:::
the

:
point P on the unit circle x2

` y2
“ 1, let’s trace out

::::
we’ll

::::::
instead

:::::
trace

:
the path of a point Q on the unit hyperbola x2

´ y2
“ 1.

Wewill
:
’ll

:
now define hyperbolic variants of the sin and cos functions

to describe the coordinates of the point Q. This is called hyperbolic
trigonometry. Doesn’t that sound awesome? Next time your friends
ask what you have been up to, tell them you are learning about
hyperbolic trigonometry.

The coordinates of a point Q on the
::::
right

:::::::
branch

::
of

:::
the

:
unit hy-

perbola are Q “ pcosh µ, sinh µq, where µ is the hyperbolic angle. The
x-coordinate of the point Q is x “ cosh µ, and its y-coordinate is
y “ sinh µ. The name hyperbolic angle is a bit of a misnomer, since
µ P r0, 8q

:
µ
:
actually measures an area. The area of the highlighted

region in Figure 1.73 corresponds to 1
2 µ.

Figure 1.73: The functions cosh µ and sinh µ are defined as the x- and y-
coordinates of a point moving on the unit hyperbola x2

´ y2
“ 1.

Recall the circular-trigonometric identity cos2 q ` sin2 q “ 1,
which follows from the fact that all the points px, yq on the unit circle
obey x2

` y2
“ 1. There is an analogous hyperbolic trigonometric

identity:
cosh2 µ ´ sinh2 µ “ 1.

This identity follows because we defined x “ cosh µ and y “ sinh µ
to be the coordinates of a point Q which traces out the unit hyperbola
x2

´ y2
“ 1.
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different shapes can be obtained, geometrically speaking, from a sin-
gle object: the cone. We can obtain the four curves by slicing the
cone at different angles. Furthermore, we can use the eccentricity
parameter # to classify the curves.

:
,
::
as

::::::::::
illustrated

::
in

::::::
Figure

:::::
1.75.

circle ellipse parabola hyperbola

Figure 1.75: Taking slices through a cone at different angles produces differ-
ent geometric shapes: a circle, an ellipse, a parabola, or a hyperbola.

A horizontal cut through the cone will produce a circle. The circle
corresponds to an eccentricity parameter of # “ 0. For values of # in
the interval r0, 1q the function rpqq describes an ellipse. The value
# “ 1 corresponds to the shape of a parabola. An eccentricity # ° 1
corresponds to the shape of a hyperbola.

Conic sections in polar coordinates
In polar coordinates, all

:::
All four conic sections can be described by

the same equation,
::::::::
function

::
in

:::::
polar

:::::::::::
coordinates:

:

rpqq “
qp1 ` #q

1 ` # cospqq
,

where q is the curve’s closest distance to a focal point .
:::
and

::
#
::
is

:::
the

:::::::
curve’s

:::::::::::
eccentricity.

:
For a circleq “ a, for an ellipseq “ ap1 ´ #q,

:
,
:::::
q “ R

::::
(the

:::::::
radius)

::::
and

::::
the

:::::::::::
eccentricity

:::::::::
parameter

:::
is

:::::
# “ 0.

::::
For

:::
an

::::::
ellipse,

:::::::::::
q “ ap1 ´ #q

:::::
and

:::
the

:::::::::::
eccentricity

::::::::::
parameter

::::::
varies

::::::::
between

:
0
:
and for a hyperbola q “ ap# ´ 1q. In the context of

:
1
:::::::::::

(0 § # † 1).
::::
Note

::::
we

:::::::
include

:::
the

:::::
case

:::::
# “ 0

:::::
since

::
a

:::::
circle

::
is

::
a

:::::::
special

::::
case

::
of

:::
an

::::::
ellipse.

::::
For a parabola, the length q is sometimes referred to as

:::::
q “ f

:
(the focal lengthand denoted f )

::::
and

::::
the

:::::::::::
eccentricity

::
is

:::::
# “ 1.

::::
For

::
a

::::::::::
hyperbola,

::::::::::
q “ ap# ´ 1q

::::
and

:::
the

:::::::::::
eccentricity

::
is

:::::
# ° 1.

:::
We

:::
can

::::
use

:::
the

:::::::::::
eccentricity

:::::::::
parameter

:
#
:::
to

:::::::
classify

::
all

::::
four

:::::::
curves.

Depending on the parameter
:::::
value

:::
of #, the equation rpqq defines

either a circle, an ellipse, a parabola, or a hyperbola. Table 1.3 sum-
marizes all our observations regarding conic sections.

The motion of the planets is explained by Newton’s law of grav-
itation. The gravitational interaction between two bodies is always
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Conic section Equation Polar equation
:::::::
function Eccentricity

Circle x2
` y2

“ a2
:::::::::::
x2

` y2
“ R2

:
rpqq “ a

:::::::
rpqq “ R # “ 0

Ellipse x2

a2 `
y2

b2 “ 1 rpqq “
ap1´#2q

1`# cospqq # “

b
1 ´

b2

a2 P r0, 1q
:::::::::::::::
#“

b
1´

b2

a2 , 0§ #†1
:

Parabola y2
“ 4qx

:::::::
y2

“ 4 f x rpqq “
2q

1`cospqq :::::::::::
rpqq “

2 f
1`cospqq: # “ 1

Hyperbola x2

a2 ´
y2

b2 “ 1 rpqq “
ap#2´1q

1`# cospqq # “

b
1 `

b2

a2 P p1, 8q
:::::::::::::::::
#“

b
1`

b2

a2 , 1† #†8

Table 1.3: The four conic sections and their eccentricity parameters.

::::::
always

:::::
leads

::::
one

:::
of

:::
the

::::
two

:::::::
bodies

::
to

::::::
follow

::
a
:::::::::
trajectory

:
described

by one of the four conic sections
::::
conic

::::::::
sections

:::
for

::::::
which

::::
the

:::::
other

:::::
body

::
is

:::
the

:::::
focal

:::::
point. Figure 1.76 illustrates four different trajec-

tories for a satellite near planet F. The circle (# “ 0) and the ellipse
(# P r0, 1q

::::::::
0 § # † 1) describe closed orbits, in which the satellite is cap-

tured in the gravitational field of the planet F and remains in orbit
forever. The parabola (# “ 1) and the hyperbola (# ° 1) describe open
orbits, in which the satellite swings by the planet F and then contin-
ues.

Figure 1.76: Four different trajectories for a satellite moving near a planet.
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Links
[
::::::::::
Interactive

:::::
graph

:::
of

:
a
::::::::::
hyperbola ]

https://www.desmos.com/calculator/2mnsk5o8vn

[ Lots of information about ellipses and orbits
:::::
conic

::::::::
sections

:
on

Wikipedia ]
https://en.wikipedia.org/wiki/Conic_section
http://en.wikipedia.org/wiki/Eccentricity_(mathematics)

[ An in-depth discussion on the conic sections ]
http://astrowww.phys.uvic.ca/~tatum/celmechs/celm2.pdf

* * *

::
I’d

:::::
love

:::
to

::::::::
continue

:::::
this

:::::::::
geometric

::::::::::
digression

:::::
and

:::
tell

:::::
you

:::::
more

:::::
about

::::
the

::::::::::
properties

::::
and

:::::::::::
applications

:::
of

::::::
conic

::::::::
sections,

::::
but

:::::
there

:::
are

:::::
more

::::::::
pressing

:::::
math

::::::
topics

:::
to

:::::::
discuss!

:::
In

::::
the

::::
next

:::::::
section

:::::
we’ll

::::
learn

:::::
how

:::
to

:::::
solve

::::::::
systems

:::
of

:::::::::
equations

:::::
with

:::::::::
multiple

:::::::::
unknown

::::::::
variables.

::::::
After

::::
that,

:::::
we’ll

:::::
learn

:::::
how

:::::::
interest

:::::::::::
calculations

:::::
work,

::::
and

::::::
finally

:::::
we’ll

::::::::
conclude

::::
the

:::::::
chapter

:::
by

:::::::::::
introducing

::::::::::::
terminology

::::
and

:::::::
notation

:::
for

::::::::::
describing

:::::::::::::
mathematical

::::
sets.

:

1.21 Solving systems of linear equations
Solving equations with one unknown—like 2x ` 4 “ 7x, for
instance—requires manipulating both sides of the equation until
the unknown variable is isolated on one side. For this instance, we
can subtract 2x from both sides of the equation to obtain 4 “ 5x,
which simplifies to x “

4
5 .

What about the case when you are given two
:::
two equations and

must solve for two
:::
two unknowns? For example,

x ` 2y “ 5,
3x ` 9y “ 21.

Can you find values of x and y that satisfy both equations?

Concepts
• x, y: the two unknowns in the equations
• eq1, eq2: a system of two equations that must be solved simul-

taneously. These equations will look like

a1x ` b1y “ c1,
a2x ` b2y “ c2,

where as, bs, and cs are given constants.
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Principles
If you have n equations and n unknowns, you can solve the equa-
tions simultaneously

:::::::::::::
simultaneously and find the values of the

unknowns. There are several different approaches for solving
equations simultaneously. We’ll learn about

:::::
show

:
three of these

approaches in this section
::
for

::::
the

::::
case

:::::
n “ 2.

Solution techniques
When solving for two unknowns in two equations, the best approach
is to eliminate one of the variables from the equations. By combining
the two equations appropriately, we can simplify the problem to the
problem of finding one unknown in one equation.

Solving by substitution

We want to solve the following system of equations:

x ` 2y “ 5,
3x ` 9y “ 21.

We can isolate x in the first equation to obtain

x “ 5 ´ 2y,
3x ` 9y “ 21.

Now substitute the expression for x from the top equation into the
bottom equation:

3p5 ´ 2yq ` 9y “ 21.

We just eliminated one of the unknowns by substitution. Continuing,
we expand the bracket to find

15 ´ 6y ` 9y “ 21,

or
3y “ 6.

We find y “ 2, but what is x? Easy. To solve for x, plug the value
y “ 2 into any of the equations we started from. Using the equation
x “ 5 ´ 2y, we find x “ 5 ´ 2p2q “ 1.
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Solving by subtraction

Let’s return to our set of equationsto see another approach for
solving

:::
now

::::::
look

::
at

::::::::
another

:::::
way

:::
to

::::::
solve

::::
the

::::::
same

:::::::
system

:::
of

:::::::::
equations:

x ` 2y “ 5,
3x ` 9y “ 21.

Observe that any equation will remain true if we multiply the whole
equation by some constant. For example, we can multiply the first
equation by 3 to obtain an equivalent set of equations:

3x ` 6y “ 15,
3x ` 9y “ 21.

Why did I pick 3 as the multiplier? By choosing this constant, the x
terms in both equations now have the same coefficient.

Subtracting two true equations yields another true equation.
Let’s subtract the top equation from the bottom one:

⇢⇢3x ´⇢⇢3x ` 9y ´ 6y “ 21 ´ 15 ñ 3y “ 6.

The 3x terms cancel. This subtraction eliminates the variable x be-
cause we multiplied the first equation by 3. We find y “ 2. To find x,
substitute y “ 2 into one of the original equations:

x ` 2p2q “ 5,

from which we deduce that x “ 1.

Solving by equating

There is a third way to solve the system of equations

x ` 2y “ 5,
3x ` 9y “ 21.

We can isolate x in both equations by moving all other variables and
constants to the right-hand sides of the equations:

x “ 5 ´ 2y,

x “
1
3

p21 ´ 9yq “ 7 ´ 3y.

Though the variable x is unknown to us, we know two facts about
it: x is equal to 5 ´ 2y and x is equal to 7 ´ 3y. Therefore, we can
eliminate x by equating the right-hand sides of the equations:

5 ´ 2y “ 7 ´ 3y.
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We solve for y by adding 3y to both sides and subtracting 5 from both
sides. We find y “ 2 then plug this value into the equation x “ 5 ´ 2y
to find x. The solutions are x “ 1 and y “ 2.

Discussion
The three elimination techniques presented here

::::::::
repeated

::::
use

::
of

:::
the

::::
three

:::::::::
algebraic

::::::::::
techniques

:::::::::
presented

::
in

::::
this

:::::::
section will allow you to

solve any system of n linear equations in n unknowns. Each time
you perform

::::::::
eliminate

::::
one

::::::::
variable

:::::
using

:
a substitution, a subtrac-

tion, or an elimination by equating, you’re simplifying the problem
to a problem of finding pn ´ 1q unknowns in a system of pn ´ 1q equa-
tions. There is actually an entire

:::
an

:::::
entire

:::::
math

:
course called linear

algebra, in which you’ll develop a more advanced, systematic ap-
proach for solving systems of linear equations.

:::::::::::
Geometric

::::::::::
solution

:::::::
Solving

::
a

:::::::
system

:::
of

::::
two

::::::
linear

::::::::::
equations

::
in

:::::
two

::::::::::
unknowns

::::
can

::
be

:::::::::::
understood

:::::::::::::
geometrically

:::
as

::::::::
finding

:::
the

::::::
point

:::
of

:::::::::::
intersection

:::::::
between

::::
two

:::::
lines

::
in

:::
the

:::::::::
Cartesian

::::::
plane.

::
In

::::
this

::::::
section

:::::
we’ll

:::::::
explore

:::
this

:::::::::::::::
correspondence

::::::::
between

:::::::
algebra

::::
and

:::::::::
geometry

:::
to

::::::::
develop

:::
yet

:::::::
another

::::
way

::
of

:::::::
solving

::::::::
systems

::
of

::::::
linear

:::::::::
equations.

:

:::
The

:::::::::
algebraic

:::::::::
equation

::::::::::
ax ` by “ c

:::::::::::
containing

:::
the

::::::::::
unknowns

::
x

:::
and

::
y
:::
can

:::
be

::::::::::
interpreted

::
as

::
a

::::::::
constraint

::::::::
equation

::
on

:::
the

:::
set

:::
of

:::::::
possible

::::::
values

:::
for

::::
the

::::::::
variables

::
x
::::

and
:::

y.
::::

We
::::
can

:::::::::
visualize

::::
this

:::::::::
constraint

::::::::::::
geometrically

:::
by

:::::::::::
considering

::::
the

::::::::::
coordinate

:::::
pairs

:::::
px, yq

:::::
that

:::
lie

::
in

:::
the

:::::::::
Cartesian

::::::
plane.

::::::
Recall

:::::
that

:::::
every

::::::
point

::
in

:::
the

::::::::::
Cartesian

:::::
plane

:::
can

:::
be

:::::::::::
represented

::
as

::
a

::::::::::
coordinate

::::
pair

:::::
px, yq,

::::::
where

::
x
::::
and

::
y

:::
are

:::
the

::::::::::
coordinates

:::
of

:::
the

:::::
point.

:

::::::
Figure

::::
1.77

::::::
shows

:::
the

:::::::::::
geometrical

:::::::::::::
representation

::
of

:::::
three

:::::::::
equations.

:::
The

::::
line

:::̀a::::::::::::
corresponds

::
to

::::
the

:::
set

:::
of

::::::
points

::::::
px, yq

::::
that

:::::::
satisfy

:::
the

::::::::
equation

::::::
x “ 1,

:::
the

::::
line

:::
`b ::

is
:::
the

:::
set

:::
of

::::::
points

:::::
px, yq

::::
that

:::::::
satisfy

:::
the

::::::::
equation

::::::
y “ 2,

::::
and

:::
the

::::
line

::̀c::::::::::::
corresponds

::
to

:::
the

::::
set

::
of

::::::
points

::::
that

::::::
satisfy

::::::::::
x ` 2y “ 2.
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x

y

`a

1 2 3

1

2

(a) x “ 1

x

y
`b

1 2 3

1

2

(b) y “ 2

x

y

`c
1 2 3

1

2

(c) x ` 2y “ 2

Figure 1.77:
::::::::
Graphical

::::::::::::
representations

::
of

:::::
three

:::::
linear

::::::::
equations.

:::
You

:::::
can

:::::::::
convince

:::::::::
yourself

::::
that

::::
the

::::::::::
geometric

::::::
lines

:::::::
shown

:::
in

::::::
Figure

::::
1.77

:::
are

::::::::::
equivalent

::
to

::::
the

::::::::
algebraic

:::::::::
equations

:::
by

:::::::::::
considering

:::::::::
individual

:::::::
points

::::::
px, yq

::
in

::::
the

:::::::
plane.

:::::
For

:::::::::
example,

::::
the

:::::::
points

:::::
p1, 0q,

::::::
p1, 1q,

::::
and

:::::
p1, 2q

::::
are

:::
all

::::
part

:::
of

:::
the

::::
line

:::
`a :::::

since
:::::
they

::::::
satisfy

:::
the

::::::::
equation

::::::
x “ 1.

:::::
For

::::
the

::::
line

:::
`c,

::::
you

::::
can

::::::
verify

::::
that

::::
the

:::::
line’s

::::::::::
x-intercept

:::::
p2, 0q

::::
and

:::
its

::::::::::
y-intercept

:::::
p0, 1q

:::::
both

::::::
satisfy

::::
the

::::::::
equation

::::::::::
x ` 2y “ 2.

:::
The

::::::::::
Cartesian

::::::
plane

:::
as

::
a
:::::::

whole
::::::::::::
corresponds

:::
to

:::
the

::::
set

::::
R2,

:::::
which

::::::::::
describes

:::
all

::::::::
possible

:::::
pairs

:::
of

:::::::::::
coordinates.

::::
To

:::::::::::
understand

:::
the

:::::::::::
equivalence

::::::::
between

:::
the

:::::::::
algebraic

::::::::
equation

:::::::::::
ax ` by “ c

::::
and

:::
the

:::
line

::̀::
in

:::
the

:::::::::
Cartesian

::::::
plane,

::::
we

:::
can

::::
use

:::
the

:::::::::
following

:::::::
precise

:::::
math

::::::::
notation:

:

` : tpx, yq P R2
| ax ` by “ cu.

:::::::::::::::::::::::::

::
In

:::::::
words,

::::
this

::::::
means

::::
that

::::
the

::::
line

:̀::
is
::::::::

defined
::
as

::::
the

::::::
subset

:::
of

:::
the

::::
pairs

:::
of

::::
real

:::::::::
numbers

:::::
px, yq

:::::
that

::::::
satisfy

::::
the

:::::::::
equation

:::::::::::
ax ` by “ c.

::::::
Figure

::::
1.78

::::::
shows

:::
the

:::::::::
graphical

:::::::::::::
representation

::
of

::::
the

:::
line

::̀
.
:

:::
You

::::::
don’t

::::
have

::
to

::::
take

::::
my

:::::
word

:::
for

::
it,

:::::::
though!

::::::
Think

::::::
about

:
it
::::
and

::::::::
convince

::::::::
yourself

::::
that

:::
all

::::::
points

:::
on

:::
the

::::
line

::̀::::::
shown

:::
in

::::::
Figure

::::
1.78

::::::
satisfy

:::
the

:::::::::
equation

:::::::::::
ax ` by “ c.

::::
For

:::::::::
example,

::::
you

::::
can

::::::
check

::::
that

:::
the

::::::::::
x-intercept

:::::
p

c
a , 0q

:::::
and

:::
the

::::::::::
y-intercept

::::::
p0, c

b q
::::::
satisfy

::::
the

::::::::
equation

::::::::::
ax ` by “ c.

:
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x

y

`

c
b

c
a

Figure 1.78:
::::::::
Graphical

::::::::::::
representation

::
of

:::
the

:::::::
equation

::::::::::
ax ` by “ c.

:::::::
Solving

:::
the

:::::::
system

::
of

::::
two

:::::::::
equations

a1x ` b1y
::::::::

“ c1,
::::

a2x ` b2y
::::::::

“ c2,
::::

:::::::::::
corresponds

::
to

::::::::
finding

:::
the

:::::::::::
intersection

:::
of

::::
the

:::::
lines

::̀1::::
and

:::
`2::::

that
::::::::
represent

:::::
each

:::::::::
equation.

::::
The

::::
pair

:::::
px, yq

::::
that

::::::::
satisfies

:::::
both

::::::::
algebraic

:::::::::
equations

::::::::::::::
simultaneously

::
is

::::::::::
equivalent

::
to

:::
the

::::::
point

:::::
px, yq

::::
that

::
is

:::
the

::::::::::
intersection

:::
of

::::
lines

::̀1::::
and

:::
`2,

:::
as

:::::::::
illustrated

::
in

:::::::
Figure

::::
1.79.

:

x

y

`1

`2

px, yq

Figure 1.79:
:::
The

:::::
point

::::
px, yq

::::
that

:::
lies

::
at

:::
the

::::::::::
intersection

::
of

::::
lines

::
`1:::

and
:::
`2.

::::::::
Example

::::
Let’s

:::
see

:::::
how

:::
we

::::
can

:::
use

::::
the

:::::::::
geometric

:::::::::::::
interpretation

::
to

:::::
solve

:::
the

:::::::
system

::
of

:::::::::
equations

x ` 2y
:::::

“ 5,
:::

3x ` 9y
::::::

“ 21.
::::
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1.21 SOLVING SYSTEMS OF LINEAR EQUATIONS 151

:::::
We’ve

::::::::
already

:::::
seen

:::::
three

::::::::
different

::::::::
algebraic

::::::::::
techniques

:::
for

:::::::
finding

:::
the

::::::::
solution

::
to

::::
this

:::::::
system

:::
of

::::::::::
equations;

:::::
now

::::
let’s

::::
see

::
a

::::::::
geometric

::::::::
approach

:::
for

:::::::
finding

::::
the

::::::::
solution.

::::
I’m

:::
not

::::::::
kidding

::::
you,

::::::
we’re

:::::
going

::
to

:::::
solve

:::
the

:::::
exact

:::::
same

:::::::
system

::
of

:::::::::
equations

::
a

::::::
fourth

:::::
time!

:::
The

:::::
first

::::
step

:::
is

::
to

::::::
draw

::::
the

:::::
lines

::::
that

:::::::::::
correspond

:::
to

::::
each

:::
of

:::
the

:::::::::
equations

::::::
using

::::
pen

::::
and

::::::
paper

:::
or

::
a

::::::::
graphing

::::::::::
calculator.

:::::
The

::::::
second

:::::
step

::
is

::
to

:::::
find

:::
the

:::::::::::
coordinates

:::
of

::::
the

:::::
point

::::::
where

::::
the

::::
two

::::
lines

::::::::
intersect

:::
as

::::::
shown

:::
in

::::::
Figure

:::::
1.80.

::::
The

:::::
point

::::::
p1, 2q

::::
that

:::
lies

:::
on

::::
both

:::::
lines

::̀1::::
and

:::
`2::::::::::::

corresponds
::
to

:::
the

::
x
::::
and

::
y
:::::::
values

::::
that

::::::
satisfy

::::
both

:::::::::
equations

:::::::::::::::
simultaneously.

x

y

`1

`2

p1, 2q

1 2 3 4 5 6 7

1

2

3

Figure 1.80:
:::
The

:::
line

::̀1:::::
with

::::::::
equations

:::::::::
x ` 2y “ 5

::::::::
intersects

:::
the

:::
line

::̀2::::
with

:::::::
equation

:::::::::::
3x ` 9y “ 21

:
at
:::

the
:::::
point

:::::
p1, 2q.

::::
Visit

::::
the

::::::::
webpage

:::
at

:
www.desmos.com/calculator/exikik615f

::
to

::::
play

:::::
with

::
an

::::::::::
interactive

:::::::
version

:::
of

:::
the

:::::::
graphs

::::::
shown

::
in

:::::::
Figure

::::
1.80.

:::
Try

:::::::::
changing

:::
the

:::::::::
equations

::::
and

:::
see

:::::
how

:::
the

::::::
graphs

::::::::
change.

Exercises
E1.35

:::
Plot

::::
the

:::::
lines

:::
`a,

:::
`b,

::::
and

::̀c:::::::
shown

::
in

:::::::
Figure

::::
1.77

::::::
(page

::::
149)

:::::
using

:::
the Desmos graphing calculator

:
.
::::
Use

:::
the

::::::::
graphical

:::::::::::::
representation

::
of

:::::
these

:::::
lines

:::
to

::::
find:

:::
a)

:::
the

:::::::::::
intersection

::
of

:::::
lines

:::
`c ::::

and
:::
`a,

:::
b)

:::
the

::::::::::
intersection

:::
of

::
`a ::::

and
::
`b,

::::
and

::
c)

:::
the

:::::::::::
intersection

::
of

::::
lines

:::
`b ::::

and
::
`c.

:

E1.36 Solve the system of equations simultaneously for x and y:

2x ` 4y “ 16,
5x ´ y “ 7.

E1.37 Solve the system of equations for the unknowns x, y, and z:

2x ` y ´ 4z “ 28,
x ` y ` z “ 8,

2x ´ y ´ 6z “ 22.
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The annual growth ratio will be
ˆ

1 `
6

100n

ṅ
,

where the interest rate per compounding period is 6
n %, and there are

n periods per year.
Consider a scenario in which the compounding is performed

infinitely often. This corresponds to the case when the number n
in the above equation tends to infinity (denoted n Ñ 8). This is
not a practical question, but it is an interesting avenue to explore
nevertheless because it

:::::::
scenario

:
leads to the definition of the natural

exponential function f pxq “ ex.
When we set n Ñ 8 in the above expression, the annual growth

ratio will be
:
is

:
described by the exponential function base e as fol-

lows:

lim
nÑ8

ˆ
1 `

6
100n

˙n
“ exp

ˆ
6

100

˙
“ 1.0618365.

The expression “limnÑ8” is to be read as “In the limit when n tends
to infinity.” We will learn more about limits in Chapter 5.

A nominal APR of 6% with compounding that occurs infinitely
often has effective APR of 6.183%. After six years you will owe

L6 “ exp
ˆ

6
100

˙6
ˆ 1000 “ $1433.33.

The nominal APR is 6% in each case, yet, the more frequent the com-
pounding schedule, the more money you’ll owe after six years.

Exercises
E1.39 Studious Jack borrowed $40 000 to complete his university
studies and made no payments since graduation. Calculate how
much money he owes after 10 years in each of the scenarios.

a) Nominal annual interest rate of 3% compounded monthly

b) Effective annual interest rate of 4%

c) Nominal annual interest rate of 5% with infinite compounding

E1.40 Entrepreneurial Kate borrowed $20 000 to start a business. Ini-
tially her loan had an effective annual percentage rate of 6%, but after
five years she negotiated with the bank to obtain a lower rate of 4%.
How much money does she owe after 10 years?
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1.23 Set notation
A set is the mathematically precise notion for describing a group of
objects. You don’t need to know about sets to perform simple math;
but more advanced topics require an understanding of what sets are
and how to denote set membership, set operations, and set contain-
ment relations. This section introduces all the relevant concepts.

Definitions
• set: a collection of mathematical objects
• S, T: the usual variable names for sets
• s P S: this statement is read “s is an element of S” or “s is in S”
• N, Z, Q, R: some important number sets: the naturals, the in-

tegers, the rationals, and the real numbers, respectively.
• H: the empty set is a set that contains no elements
• t definition u

::::::
t ..... u: the curly brackets surround the definition

of a set
::
are

:::::
used

:::
to

::::::
define

::::
sets, and the expression inside the

curly brackets describes what the set contains
:::
the

:::
set

::::::::
contents.

Set operations:

• S Y T: the union of two sets. The union of S and T corresponds
to the elements in either S or T.

• S X T: the intersection of the two sets. The intersection of S and
T corresponds to the elements that are in both S and T.

• SzT: set difference or set minus. The set difference SzT corre-
sponds to the elements of S that are not in T.

Set relations:

• Ä: is a strict subset of
• Ñ: is a subset of or equal to

Here is a list of special mathematical shorthand symbols and their
corresponding meanings:

• P: element of
• R: not an element of
• @: for all
• D: there exists
• E: there doesn’t exist
• | : such that
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These symbols are used in math proofs because they allow us to ex-
press complex mathematical arguments succinctly and precisely.

An interval is a subset of the real line. We denote an interval by
specifying its endpoints and surrounding them with either square
brackets “r” or round brackets “p” to indicate whether or not the cor-
responding endpoint is included in the interval.
Sometimes we encounter intervals that consist of two disjointed
parts. We use the notation ra, bs Y rc, ds to denote the union of the
two intervals, which is the set of numbers either between a and b
(inclusive) or between c and d (inclusive).

Sets
Much of math’s power comes from abstraction: the ability to see the
bigger picture and think meta thoughts about the common relation-
ships between math objects.

It is often useful to restrict our attention to a specific subset of the
numbers as in the following examples.

Example 1: The nonnegative real numbers

Define R` Ä R (read “R` is a subset of R”) to be the set of non-
negative real numbers: or expressed more compactly, If we were to
translate the above expression into plain English, it would read “The
set R` is defined as the set of all real numbers x such that x is greater
or equal to zero.”

Note we used the symbol “”
::
“is

:::::::
defined

::::
as”

:::::::
symbol

:::
“def

“” instead
of the basic ““” to give you an extra hint that we’re defining a new
variable R` that is equal to the set expression on the right. In this
book, we

::
’ll

::::::::::
sometimes

:
use the symbol “”” whenever we define

:::

def
“”

:::::
when

::::::::
defining new variables and math quantities. Some other books

use the notation “:“”
::
or

::::
“””

:
for this purpose. The meaning of “”

::

def
“”

is identical to ““” but it tells you
::
us

:
the variable on the left of the

equality is new.

Example 2: Even and odd integers

In both of the above examples, we use the mathematical
::::::::
set-builder

notation t . . . | . . . u to define the sets. Inside the curly braces we
first describe the general kind of

::::::::::::
mathematical objects we are talking

about, followed by the symbol “|” (read “such that”), followed by
the conditions that must be satisfied by all elements of the set.
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Number sets
Recall the fundamental number sets we defined in Section 1.2 in the
beginning of the book. It is worthwhile to review them briefly.

The natural numbers form the set derived when you start from 0
and add 1 any number of times:

N”
def
“ t0, 1, 2, 3, 4, 5, 6, . . .u.

:::
We

:::
use

::::
the

::::::::
notation

:::
N˚

::
to

:::::::
denote

:::
the

:::
set

:::
of

:::::::
positive

::::::
natural

::::::::
numbers.

:::
The

:::
set

::::
N˚

::
is

:::
the

:::::
same

::
as

:::
N

:::
but

:::::::::
excludes

::::
zero.

:

The integers are the numbers derived by adding or subtracting 1
some number of times:

Z”
def
“ tx | x “ ˘n, n P Nu.

When
:
If

:
we allow for divisions between integers, we get the rational

numbers:
::::::
require

:::
the

:::
set

:::
of

:::::::
rational

::::::::
numbers

::
to

:::::::::
represent

:::
the

:::::::
results:

Q”
def
“

$
&

%z z “
x
y

where x and y are in
m
n
::

ˇ̌
ˇ m P
:::

Z, and y ‰ 0 n P N˚

::::::

,
.

-.,

::
In

::::::
words,

::::
this

::::::::::
expression

::
is

::::::
telling

:::
us

:::
that

::::::
every

:::::::
rational

::::::::
number

:::
can

::
be

:::::::
written

:::
as

:
a
:::::::
fraction

:::

m
n ,

::::::
where

:::
m

::
is

::
an

:::::::
integer

::::::::
(m P Z),

::::
and

::
n

::
is

:
a

:::::::
positive

:::::::
natural

:::::::
number

:::::::::
(n P N˚).

:

The broader class of real numbers also includes all rationals as
well as irrational numbers like

?

2 and p:

R”
def
“ tp, e, ´1.53929411 . . . , 4.99401940129401 . . . , . . .u.

Finally, we have the set of complex numbers:

C”
def
“ t1, i, 1 ` i, 2 ` 3i, . . .u,

where i ”
?

´1
::::::::
i def

“
?

´1 is the unit imaginary number.
Note that the definitions of R and C are not very precise. Rather

than give a precise definition of each set inside the curly braces as we
did for Z and Q, we instead stated some examples of the elements in
the set. Mathematicians sometimes do this and expect you to guess
the general pattern for all the elements in the set.

The following inclusion relationship holds for the fundamental
sets of numbers:

N Ä Z Ä Q Ä R Ä C.
This relationship means every natural number is also an integer. Ev-
ery integer is a rational number. Every rational number is a real. And
every real number is also a complex number. See Figure 1.2 (page 8)
for an illustration of the subset relationship between the number sets.
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:::::::::
Rational

:::::::::::
numbers

::::
and

:::::::::::
fractions

::
So

:::
far

::
in

::::
this

:::::
book,

::::::
we’ve

::::
used

::::
the

:::::::
notions

::
of

:::::::::
“fraction”

::::
and

::::::::
“rational

::::::::
number”

::::::::::
somewhat

:::::::::::::::
interchangeably.

:::::
Now

::::
that

:::::
we’ve

::::::::
learned

:::::
about

::::
sets,

:::
we

::::
can

::::::
clarify

:::
the

::::::::::
differences

::::
and

:::::::::::::
equivalencies

::::::::
between

:::::
these

::::::
related

:::::::::
concepts.

:::
The

::::::
same

::::::::
rational

::::::::
number

::

2
3::::

can
:::

be
::::::::

written
:::
as

::
a

:::::::
fraction

:::
in

::::::::
multiple,

::::::::::
equivalent

::::::
ways.

::::::
The

::::::::
fractions

:::

2
3 ,

:::

4
6 ,

::

6
9 ,
::::

8
12 ,

::::
and

:::

2k
3k:::

all
::::::::::
correspond

::
to

:::
the

::::::
same

:::::::
rational

::::::::
number.

:::::
Keep

::
in

:::::
mind

::::
the

::::::::
existence

::
of

:::::
these

:::::::::
equivalent

:::::::
fractions

:::::::::
whenever

::::::::
checking

::::::::
whether

::::
two

:::::::
rational

::::::::
numbers

::::
are

::::::
equal.

:::::
For

:::::::::
example,

:::::
one

:::::::
person

::::::
could

::::::
obtain

::::
the

::::::
answer

:::

2
3 ::

to
::

a
::::::

given
:::::::::

problem,
::::::

while
::::::::

another
:::::::
person

:::::::
obtains

::::
the

::::::
answer

:::

4
6 .

::::::
Since

::::
the

::::
two

::::::::
fractions

:::::
look

:::::::::
different,

::::
we

::::::
might

:::::
think

:::::
these

:::
are

::::::::
different

:::::::::
answers,

:::::
when

:::
in

::::
fact

::::
both

::::::::
answers

:::::::::::
correspond

::
to

:::
the

:::::
same

:::::::
rational

::::::::
number.

:

::
A

::::::
reduced

:::::::
fraction

::
is

:
a
:::::::
fraction

::
of

::::
the

::::
form

::

m
n:::::

such
::::
that

:::
the

::::::::
numbers

::
m

::::
and

::
n
::::

are
::::
the

::::::::
smallest

:::::::::
possible.

:::::
We

::::
can

::::::
obtain

::::
the

::::::::
reduced

:::::::
fraction

:::
by

:::::::
getting

:::
rid

:::
of

::::
any

::::::::
common

:::::::
factors

::::
that

:::::::
appear

:::::
both

::
in

:::
the

::::::::::
numerator

::::
and

::::::::::::
denominator.

::::
For

::::::::
example,

:

4
6

“
2 ¨ 2
3 ¨ 2

“
2 ¨ �2
3 ¨ �2

“
2
3

,
:::::::::::::::::::

::::::
where

:::
we

:::::::::
cancelled

:::
the

:::::::::
common

::::::
factor

::
2

::
to

::::::
obtain

::::
the

::::::::::
equivalent

:::::::
reduced

:::::::::
fraction.

:::::::::
Reduced

:::::::::
fractions

::::
are

::
a
::::::
useful

::::::::::::::
representation

:::
for

:::
the

::::
set

:::
of

::::::::
rational

::::::::::
numbers,

::::::::
because

:::::
each

::::::::
rational

::::::::
number

:::::::::::
corresponds

::
to

::
a

::::::
unique

::::::::
reduced

::::::::
fraction.

::::
Two

::::::::
rational

::::::::
numbers

:::
are

:::::
equal

::
if

:::
and

:::::
only

::
if

::::
they

:::::::::::
correspond

::
to

:::
the

:::::
same

::::::::
reduced

::::::::
fraction.

Subsets of the real line
Recall that the real numbers R have a graphical representation as
points on the number line. See Figure 1.13 on page 24 for a reminder.
The number line is also useful for representing various subsets of the
real numbers, which we call intervals. We can graphically represent
an interval by setting a section of the number line in bold. For exam-
ple, the set of numbers that are strictly greater than 2 and strictly
smaller than 4 is represented mathematically either as “p2, 4q,” or
more explicitly as

tx P R | 2 † x † 4u,

or graphically as in Figure ??
::::
1.81.
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A B

a b
B Ä A

Figure 1.83: Venn diagram showing an example of the set relation B Ä A.
The set B is strictly contained in the set A.

is an abstract mathematical notion, but the
:::
The

:
picture helps us vi-

sualize the situation
:::
this

:::::::
abstract

:::::::::::::
mathematical

::::::
notion.

Mathematicians use two different symbols to describe set con-
tainment, in order to specify either a strict containment relation or a
subset-or-equal relation. The two types of containment relations be-
tween sets are similar to the less-than (†) and less-than-or-equal (§)
relations between numbers. A strict containment relation is denoted
by the symbol Ä. We write B Ä A if and only if every element of B is
also an element of A, and there exists at least one element of A that
is not an element of B. Using set notation, the previous sentence is
expressed as

B Ä A ô @b P B, b P A and Da P A such that a R B.

For example, the expression E Ä Z shows that the even numbers are
a strict subset of the integers. Every even number is an integer, but
there exist integers that are not even (the odd numbers). Some math-
ematicians prefer the more descriptive symbol à to describe strict
containment relations.

A subset-or-equal relation is denoted B Ñ A. In writing B Ñ

A, a mathematician claims, “Every element of B is also an element
of A,” but makes no claim about the existence of elements that are
contained in A but not in B. The statement B Ä A implies B Ñ A;
however, B Ñ A does not imply B Ä A. This is analogous to how
b † a implies b § a, but b § a doesn’t imply b † a, since a and b
could be equal.

:::
Set

:::::::::::::
operations

Venn diagrams also help us visualize the subsets obtained from set
operations. Figure 1.84 illustrates the set union A Y B, the set inter-
section A X B, and the set difference AzB, for two sets A and B.

The union A Y B describes all elements that are in either set A or
set B, or both. If e P A Y B, then e P A or e P B.
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which is the set of elements that are in A or B but not in C.
Another example of a complicated set expression is

pA X Bq Y pB X Cq “ tb, c, du,

which describes the set of elements in both A and B or in both B and
C. As you can see, set notation is a compact, precise language for
writing complicated set expressions.

Example 4: Word problem

A startup is looking to hire student interns for the summer. Let S
denote the whole set of students looking for a summer internship.
Define C to be the subset of students who are good with comput-
ers, M the subset of students who know math, D the students with
design skills, and L the students with good language skills.

Using set notation, we can specify different subsets of the stu-
dents the startup might hire. Let’s say the startup is a math textbook
publisher; they want to hire students from the set M X L—the stu-
dents who are good at math and who also have good language skills.
A startup that builds websites needs both designers and coders, and
therefore would choose students from the set D Y C.

New vocabulary
The specialized notation used by mathematicians can be difficult to
get used to. You must learn how to read symbols like D, Ä, |, and
P and translate their meaning in the sentence. Indeed, learning ad-
vanced mathematics notation is akin to learning a new language.

To help you practice the new vocabulary, we’ll look at some
mathematical arguments that make

:
a

::::::
simple

:::::::::::::
mathematical

::::::
proof

:::
that

:::::::
makes use of the new symbols.

Simple proof example

Claim: Given Jpnq “ 3n ` 2 ´ n, Jpnq P E for all n P Z.

The claim is that
::
the

::::::::
function

:
Jpnq is always

:::::::
outputs

:
an even num-

ber, whenever
:::
the

:::::
input

:
n is an integer. This means no matter which

integer number n we choose, the function Jpnq “ 3n ` 2 ´ n will
always output an even number

::
To

:::::
prove

::::
this

::::::
claim,

:::
we

:::::
have

::
to

:::::
show

:::
that

::::
the

::::::::::
expression

:::::::::
3n ` 2 ´ n

::
is

:::::
even

:::
for

:::
all

::::::::
numbers

:::::
n P Z.

Proof:
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Proof. We want to show Jpnq P E for all n P Z. Let’s first review the
definition of the set of even numbers E ” tm P Z | m “ 2n, n P Zu

:::::::::::::::::::::::::
E def

“ tm P Z | m “ 2n, n P Zu.
A number is even if it is equal to 2n for some integer n. Next let’s
simplify the expression for Jpnq as follows:

Jpnq “ 3n ` 2 ´ n “ 2n ` 2 “ 2pn ` 1q.

Observe that the number pn ` 1q is always an integer whenever n is
an integer. Since the output of Jpnq “ 2pn ` 1q is equal to 2m for some
integer m, we’ve proven that Jpnq P E, for all n P Z. ˝

Less simple proof example: Square root of 2 is irrational

The following is an ancient mathematical proof expressed in terms
of modern math symbols.

Claim:
?

2 R Q. The claim is that
?

2 is not part of the set of
rational numbers. Recall the definition of the set of rational numbers:
Q ”

 m
n

ˇ̌
m, n P Z, n ‰ 0

(
. If

?

2 R Q, this means no numbers m P Z

and n P Z exist such that m{n “

?

2. Using mathematical notation,
the previous sentence is expressed as

E m P Z, n P Z
ˇ̌

m{n “

?

2.

To prove the claim, we’ll use a technique called proof by contradiction.
We begin by assuming the opposite of what we want to prove: that
there exist numbers m P Z and n P Z such that m{n “

?

2. We’ll then
carry out some simple algebra steps and in the end we’ll obtain an
equation that is not true—we’ll arrive at a contradiction. Arriving at
a contradiction means our original supposition is wrong: there are
no numbers m P Z and n P Z such that m{n “

?

2.
Proof: Suppose there exist numbers m P Z and n P Z such that

m{n “

?

2. We can assume the integers m and n have no common
factors. In particular, m and n cannot both be even, otherwise they
would both contain at least one factor of 2. Next, we’ll investigate
whether m is an even number m P E, or an odd number m P O. Look
back to Example 2 (page 156) for the definitions of the sets O and E.

Before we check for even and oddness, it will help to point out
the fact that the action of squaring an integer preserves its odd/even
nature. An even number times an even number gives an even
number: if e P E then e2

P E. Similarly, an odd number times an odd
number gives an odd number: if o P O then o2

P O.
We proceed with the proof. We assume m{n “

?

2. Taking the
square of both sides of this equation, we obtain

m2

n2 “ 2 ñ m2
“ 2n2.
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If we analyze the last equation in more detail, we can conclude that
m cannot be an odd number, or written “m R O” in math. If m is an
odd number then m2 will also be odd, but this would contradict the
above equation since the right-hand side of the equation contains the
factor 2 and every number containing a factor 2 is even, not odd. If
m is an integer (m P Z) and m is not odd (m R O) then it must be that
m is even (m P E).

If m is even, then it contains a factor of 2, so it can be written as
m “ 2q where q is some other number q P Z. The exact value of q
is not important. Let’s revisit the equation m2

“ 2n2 once more, this
time substituting m “ 2q into the equation:

p2qq
2

“ 2n2
ñ 2q2

“ n2.

By a similar reasoning as before, we can conclude n cannot be odd
(n R O) so n must be even (n P E). We’ve shown that both m and n
must be even numbers, which means they both contain a factor 2.
However, this statement contradicts our initial assumption that m
and n do not have any common factors!

The fact that we arrived at a contradiction means there must be a
mistake in our reasoning. Since each step we carried out was correct,
the mistake must be in the original premise, namely that “There exist
numbers m P Z and n P Z such that m{n “

?

2.” Rather, the opposite
must be true: “There do not exist numbers m P Z and n P Z such
that m{n “

?

2.” The last statement is equivalent to saying
?

2 is
irrational, which is what we wanted to prove. ˝

Sets as solutions to equations
Another context where sets come up is when describing solutions to
equations and inequalities. In Section 1.1 we learned how to solve for
the unknown x in equations. To solve the equation f pxq “ c is to find
all the values of x that satisfy this equation. For simple equations like
x ´ 3 “ 6, the solution is a single number x “ 9, but more complex
equations can have multiple solutions. For example, the solution to
the equation x2

“ 4 is the set t´2, 2u, since both x “ ´2 and x “ 2
satisfy the equation.

Please update your definition of the math verb “to solve” (an
equation) to include the new notion of a solution setsolution set—the
set of values that satisfy the equation. A solution set is the mathe-
matically precise way to describe an equation’s solutions:

• The solution set to the equation x ´ 3 “ 6 is the set t9u.
• The solution set for the equation x2

“ 4 is the set t´2, 2u.
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• The solution set of sinpxq “ 0 is the set tx | x “ pn, @n P Zu
::::::::::::::::::
tx | x “ pn, @n P Zu.

• The solution set for the equation sinpxq “ 2 is H (the empty
set), since there is no number x that satisfies the equation.

The SymPy function solve returns the solutions of equations as a list.
To solve the equation f pxq “ c using SymPy, we first rewrite it as
expression that equals zero f pxq ´ c “ 0, then call the function solve:

>>> solve(x-3 -6, x) # usage: solve(expr, var)

[9]

>>> solve(x**2 -4, x)

[-2, 2]

>>> solve(sin(x), x)

[0, pi] # found only solutions in [0,2*pi)

>>> solve(sin(x) -2, x)

[] # empty list = empty set

Solution sets
::
In

:::
the

::::
next

:::::::
section

:::::
we’ll

:::::
learn

::::
how

:::
the

::::::
notion

:::
of

:
a
::::::::
solution

:::
set

:
is
:::::
used

:::
for

:::::::::
describing

::::
the

::::::::
solutions

::
to

::::::::
systems

::
of

::::::::::
equations.

::::::::
Solution

::::
sets

::
to

::::::::
systems

::
of

::::::::::
equations

::::
Let’s

:::::::
revisit

:::::
what

::::
we

:::::::
learned

:::
in

:::::::
Section

:::::
1.21

:::::
about

::::
the

:::::::::
solutions

::
to

:::::::
systems

:::
of

::::::
linear

::::::::::
equations,

::::
and

::::::
define

:::::
their

::::::::
solution

::::
sets

:::::
more

::::::::
precisely.

::::
The

::::::::
solution

:::
set

:::
for

:::
the

:::::::
system

::
of

:::::::::
equations

:

a1x ` b1y
::::::::

“ c1,
::::

a2x ` b2y
::::::::

“ c2,
::::

:::::::::::
corresponds

::
to

:::
the

:::::::::::
intersection

::
of

::::
two

:::::
sets:

tpx, yq P R2
| a1x ` b1y “ c1uloooooooooooooooooomoooooooooooooooooon
`1

X tpx, yq P R2
| a2x ` b2y “ c2uloooooooooooooooooomoooooooooooooooooon
`2

.

::::::::::::::::::::::::::::::::::::::::::::::::::::::

:::::
Recall

:::::
that

:::
the

:::::
lines

:::
`1::::

and
:::
`2 :::

are
::::

the
::::::::::
geometric

:::::::::::::
interpretation

::
of

:::::
these

::::
sets.

::::::
Each

:::
line

::::::::::::
corresponds

::
to

::
a
:::
set

:::
of

::::::::::
coordinate

:::::
pairs

:::::
px, yq

:::
that

:::::::
satisfy

::::
the

::::::::
equation

:::
of

::::
the

::::
line.

::::::
The

::::::::
solution

::
to

::::
the

:::::::
system

::
of

:::::::::
equations

:::
is

::::
the

:::
set

:::
of

:::::::
points

:::
at

::::
the

:::::::::::
intersection

:::
of

::::
the

::::
two

::::
lines

:::::::
`1 X `2.

:::::::
Note

:::
the

::::::
word

::::::::::
intersection

::
is

:::::
used

::
in

:::::
two

::::::::
different

::::::::::::
mathematical

::::::::
contexts:

::::
the

::::::::
solution

::
is

:::
the

:::
set

::::::::::
intersection

::
of

::::
two

::::
sets,

:::
and

::::
also

::::
the

::::::::
geometric

::::::::::
intersection

::
of

::::
two

:::::
lines.

:
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::::
Let’s

::::
take

::::::::::
advantage

::
of

::::
this

::::::::::::::
correspondence

::::::::
between

:::
set

:::::::::::
intersections

:::
and

::::::::::
geometric

:::::
line

::::::::::::
intersections

:::
to

:::::::::::
understand

::::
the

:::::::::
solutions

:::
to

:::::::
systems

::
of

:::::::::
equations

::
in

::
a
::::
little

:::::
more

::::::
detail.

:::
In

:::
the

::::
next

:::::
three

::::::::
sections,

::::
we’ll

:::::
look

::
at

:::::
three

::::::::
possible

:::::
cases

::::
that

:::
can

:::::
occur

::::::
when

::::::
trying

::
to

:::::
solve

:
a
:::::::
system

::
of

:::::
two

::::::
linear

:::::::::
equations

::
in

:::::
two

::::::::::
unknowns.

::::
So

:::
far

::::::
we’ve

::::
only

:::::::::
discussed

:::::
Case

::
A,

::::::
which

:::::::
occurs

:::::
when

:::
the

::::
two

:::::
lines

::::::::
intersect

::
at

:
a
::::::
point,

::
as

::
in

::::
the

::::::::
example

::::::
shown

::
in

::::::
Figure

:::::
1.85.

:::
To

::::
fully

:::::::::::
understand

:::
the

::::::::
possible

:::::::::
solutions

::
to

::
a
:::::::
system

:::
of

::::::::::
equations,

:::
we

:::::
need

:::
to

:::::
think

:::::
about

:::
all

:::::
other

:::::
cases;

::::
like

:::::
Case

::
B

:::::
when

:::::::::::
`1 X `2 “ H

::
as

::
in

:::::::
Figure

::::
1.86,

:::
and

:::::
Case

::
C

:::::
when

::::::::::::::::
`1 X `2 “ `1 “ `2 ::

as
::
in

:::::::
Figure

::::
1.87.

:

::::
Case

:::
A:

:::::
One

::::::::
solution.

::::::
When

:::
the

:::::
lines

::̀1::::
and

:::
`2 :::

are
::::::::::::
non-parallel,

::::
they

::::
will

::::::::
intersect

::
at

:
a
:::::
point

:::
as

::::::
shown

::
in

:::::::
Figure

::::
1.85.

:::
In

:::
this

:::::
case,

:::
the

:::::::
solution

:::
set

::
to

::::
the

::::::
system

:::
of

:::::::::
equations

::::::::
contains

:
a
::::::
single

::::::
point:

tpx, yq P R2
| x ` 2y “ 2u X tpx, yq P R2

| x “ 1u “ tp1, 1
2 qu.

::::::::::::::::::::::::::::::::::::::::::::::::::::

x

y

`1

`2

p1, 1
2 q

1 2 3

1

2

Figure 1.85:
::::
Case

::
A:

::::
The

::::::::::
intersection

::
of

:::
the

::::
lines

::::
with

::::::::
equations

:::::::::
x ` 2y “ 2

:::
and

:::::
x “ 1

::
is

:::
the

::::
point

::::::::::
p1, 1

2 q P R2.

::::
Case

:::
B:

:::
No

::::::::
solution.

::
If

:::
the

::::
lines

::̀1::::
and

::̀2::::
are

:::::::
parallel

::::
then

::::
they

::::
will

:::::
never

::::::::
intersect.

::::
The

:::::::::::
intersection

:::
of

:::::
these

::::
lines

::
is

:::
the

:::::::
empty

:::
set:

:

tpx, yq P R2
| x ` 2y “ 2u X tpx, yq P R2

| x ` 2y “ 4u “ H.
::::::::::::::::::::::::::::::::::::::::::::::::::::

:::::
Think

::::::
about

::::::::
it—there

:::
is

::
no

::::::
point

:::::
px, yq

::::
that

::::
lies

:::
on

:::::
both

::̀1::::
and

:::
`2.

:::::
Using

::::::::
algebra

::::::::::::
terminology,

::::
we

::::
say

::::
this

:::::::
system

:::
of

:::::::::
equations

::::
has

::
no

:::::::::
solution,

:::::
since

:::::
there

::::
are

:::
no

:::::::::
numbers

::
x

::::
and

::
y

::::
that

::::::
satisfy

:::::
both

:::::::::
equations.

:
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x

y

`1

`2

1 2 3

1

2

Figure 1.86:
::::
Case

::
B:

:::
The

:::::
lines

::::
with

::::::::
equations

:::::::::
x ` 2y “ 2

:::
and

:::::::::
x ` 2y “ 4

:::
are

::::::
parallel

:::
and

:::
do

:::
not

:::::::
intersect.

::::::
Using

::
set

::::::::
notation,

::
we

:::
can

:::::::
describe

:::
the

:::::::
solution

::
set

::
as

:::
H

:::
(the

::::::
empty

:::
set).

::::
Case

:::
C:

:::::::::
Infinitely

:::::
many

::::::::::
solutions.

:
If

:::
the

:::::
lines

::
`1::::

and
::
`2:::

are
:::::::
parallel

:::
and

::::::::::::
overlapping

:::::
then

::::
they

::::::::
intersect

::::::::::::
everywhere.

:::::
This

:::::
case

::::::
occurs

:::::
when

::::
one

:::
of

:::
the

::::::::::
equations

::
in

::
a
:::::::
system

::
of

::::::::::
equations

::
is

::
a
::::::::
multiple

::
of

:::
the

::::::
other

:::::::::
equation,

:::
as

:::
in

:::
the

:::::
case

::
of

::::::::::
equations

::::::::::
x ` 2y “ 2

::::
and

:::::::::::
3x ` 6y “ 6.

::::
The

:::::
lines

::̀1::::
and

:::
`2 ::::

that
::::::::::
correspond

:::
to

:::::
these

:::::::::
equations

:::
are

::::::
shown

:::
in

::::::
Figure

:::::
1.87.

:::::
Any

:::::
point

::::::
px, yq

::::
that

:::::::
satisfies

::::::::::
x ` 2y “ 2

::::
also

:::::::
satisfies

::::::::::::
3x ` 6y “ 6.

::::::
Since

:::::
both

:::::::::
equations

::::::::
describe

::::
the

:::::
same

:::::::::
geometric

::::
line,

::::
the

::::::::::
intersection

:::
of

:::
the

::::
two

:::::
lines

::
is

:::::
equal

:::
to

:::
the

:::::
lines:

:::::::::::::::
`1 X `2 “ `1 “ `2.

:::
In

:::
this

:::::
case,

:::
the

::::::::
solution

::
to

:::
the

:::::::
system

::
of

:::::::::
equations

:
is
::::::::::
described

::
by

:::
the

:::
set

:::::::::::::::::::::::
tpx, yq P R2

| x ` 2y “ 2u.
:

x

y

`1

`2

1 2 3

1

2

Figure 1.87:
::::
Case

:::
C:

:::
the

::::
line

:::
`1 ::::::::

described
:::

by
::::::::

equation
:::::::::

x ` 2y “ 2
::::

and

::
the

::::
line

:::̀2:::::::::
described

:::
by

::::::::
equation

::::::::::
3x ` 6y “ 6

::::::::::
correspond

:::
to

:::
the

:::::
same

:::
line

:::
in

:::
the

:::::::::
Cartesian

:::::
plane.

::::::
The

::::::::::
intersection

::
of
::::::

these
::::
lines

::
is
::::

the
:::

set

::::::::::::::::::::::::::::
tpx, yq P R2

| x ` 2y “ 2u “ `1 “ `2.

:::
We

:::::
need

:::
to

::::::::
consider

:::
all

::::::
three

:::::
cases

::::::
when

::::::::
thinking

::::::
about

::::
the

::::::::
solutions

:::
to

:::::::
systems

:::
of

::::::
linear

::::::::::
equations:

::::
the

::::::::
solution

:::
set

::::
can

::
be

::
a
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:::::
point

:::::
(Case

::::
A),

:::
the

::::::
empty

::::
set

:::::
(Case

:::
B),

:::
or

:
a
::::

line
::::::
(Case

:::
C).

::::::::
Observe

:::
that

::::
the

::::::
same

:::::::::::::
mathematical

::::::
notion

:::
(a

::::
set)

::
is

:::::
able

::
to

::::::::
describe

::::
the

::::::::
solutions

:::
in

:::
all

:::::
three

:::::
cases

:::::
even

::::::::
though

:::
the

:::::::::
solutions

:::::::::::
correspond

::
to

::::
very

:::::::::
different

:::::::::
geometric

:::::::
objects.

::::
In

::::
Case

:::
A

:::
the

::::::::
solution

::
is
::
a
:::
set

:::
that

:::::::::
contains

:
a
::::::

single
::::::

point
::::::::
tpx, yqu.

:::
In

:::::
Case

::
B

:::
the

::::::::
solution

:::
is

:::
the

::::::
empty

:::
set

:::
H.

::::::
And

::
in

:::::
Case

::
C
::::

the
::::::::
solution

:::
set

::
is
::::::::::

described
:::
by

:::
the

::::::
infinite

:::
set

::::::::::::::::::::::::
tpx, yq P R2

| ax ` by “ cu,
::::::
which

::::::::::::
corresponds

::
to

::
a

::::
line

:̀

::
in

:::
the

:::::::::
Cartesian

::::::
plane.

:
I
:::::
hope

::::::
you’ll

:::::
agree

:::::
with

:::
me

::::
that

:::
set

::::::::
notation

:
is
:::::::

useful
:::
for

:::::::::::
describing

:::::::::::::
mathematical

::::::::
concepts

:::::::::
precisely

:::::
and

:::
for

::::::::
handling

:::::::::
solutions

::
to

:::::
linear

::::::::::
equations.

:

::::
Sets are also useful for describing the solutions to inequalities,

which is what we’ll learn about next.

Inequalities

In this section, we’ll learn how to solve inequalities. The solution set
to an inequality is an interval—a subset of the number line. Consider
the inequality x2

§ 4, which is equivalent to asking the question,
“For which values of x is x2 less than or equal to 4?” The answer to
this question is the interval r´2, 2s ” tx P R | ´ 2 § x § 2 u

:::::::::::::::::::::::::::
r´2, 2s “ tx P R | ´ 2 § x § 2 u.

Working with inequalities is essentially the same as working with
their endpoints. To solve the inequality x2

§ 4, we first solve x2
“ 4

to find the endpoints and then use trial and error to figure out which
part of the space to the left and right of the endpoints satisfies the
inequality.

It’s important to distinguish the different types of inequality con-
ditions. The four different types of inequalities are

• f pxq † gpxq: a strict inequality. The function f pxq is always
strictly less than the function gpxq.

• f pxq § gpxq: the function f pxq is less than or equal to gpxq.
• f pxq ° gpxq: f pxq is strictly greater than gpxq.
• f pxq • gpxq: f pxq is greater than or equal to gpxq.

Depending on the type of inequality, the answer will be either a open
or closed interval.

To solve inequalities we use the techniques we learned for solv-
ing equations: we perform simplifying steps on both sides of the
inequality until we obtain the answer. The only new aspect when
dealing with inequalities is the following. When multiplying an in-
equality by a negative number on both sides, we must flip the direc-
tion of the inequality:

f pxq § gpxq ñ ´ f pxq • ´gpxq.
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Sets related to functions
A function that takes real variables as inputs and produces real num-
bers as outputs is denoted f : R Ñ R. The domain of a function is the
set of all possible inputs to the function that produce an output: In-
puts for which the function is undefined are not part of the domain.
For instance the function f pxq “

?
x is not defined for negative in-

puts, so we have Domp f q “ R`.
The image of a function is the set of all possible outputs of the

function: For example, the function f pxq “ x2 has the image setImp f q “ R` since the outputs it produces are always nonnegative.

Discussion
Knowledge of the precise mathematical jargon introduced in this sec-
tion is not crucial to understanding basic mathematics. That said, I
wanted to expose you to some technical math notation here because
this is the language in which mathematicians think and communi-
cate. Most advanced math textbooks will assume you understand
technical math notation, so it’s good to be prepared.

Exercises
E1.41 Given the three sets A “ t1, 2, 3, 4, 5, 6, 7u, B “ t1, 3, 5u, and
C “ t2, 4, 6u, compute the following set expressions.

a) AzB b) B Y C c) A X B d) B X C

e) AYBYC f) AzpBYCq g) pAzBqYC

E1.42 Find the values of x that satisfy the following inequalities.

a) 2x † 3 b) ´4x • 20 c) |2x ´ 3| † 5

d) 3x ` 3 † 5x ´ 5 e) 1
2 x ´ 2 •

1
3 f) px ` 1q

2
• 9

Express your answer as an interval with appropriate endpoints.

1.24 Math problems
We’ve now reached the first section of problems in this book. The
purpose of these problems is to give you a way to comprehen-
sively practice your math fundamentals. In the real world, you’ll
rarely have to solve equations by hand; however, knowing how to
manipulate math expressions and solve math equations

::::::::
Knowing

::::
how

::
to

::::::
solve

:::::
math

:::::::::
problems

:
is a very useful skill to develop. At

times, honing your math chops might seem like tough mental work,
but at the end of each problem, you’ll gain a stronger foothold on all
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the subjects
:::::
topics you’ve been learning about. You’ll also experience

a small achievement buzz after each problem you vanquish.
I have a special message to readers who are learning math just

for fun: you can either try the problems in this section or skip them.
Since you have no upcoming exam on this material, you could skip
ahead to Chapter 2 without any immediate consequences. However
(and it’s a big however), those readers who don’t

::
Sit

::::::
down

::::
and take

a crack at these problems will be missing a significant opportunity.
Sit down to do them later

:::::::
practice

:::::::::
problems today, or another

time when you’re properly caffeinated. If you take the initiative
to make time for math

:::::
some

:::::
math

::::::::
practice, you’ll find yourself

developing lasting
:::::::
develop

::::::::::::
long-lasting

:
comprehension and true

math fluency. Without the practice of solving problems, however,
:::::::
Without

:::::::
solving

::::
any

::::::::::
problems, you’re extremely likely to forget

most of what you’ve learned in the next month or two, simple as
that. You ’ll

:::
few

::::::::
months.

::::
You

:::::
might

:
still remember the big ideas, but

the details will be fuzzy and faded.
:::
By

:::::::
solving

:::::
some

::
of

::::
the

:::::::
practice

:::::::::
problems,

::::::
you’ll

::::::::::
remember

:
a
:::
lot

::::::
more

:::::
stuff.

:
Don’t break the pace

now: with math, it’s very much use it or lose it!
By solving some of the problems in this section, you’ll remember

a lot more stuff. Make sure you step away from the pixels
:::
put

:::::
your

::::::
phone

:::::
away

:
while you’re solving

::::::::
working

:::
on

::::
the problems. You

don’t need fancy technology to do math; grab a pen and some pa-
per from the printer and you’ll be fine. Do yourself a favour: put
your phone in airplane-mode, close the lid of your laptop, and move
away from desktop computers. Give yourself some time to think.
Yes, I know you can look up the answer to any question in five
seconds on the internet, and you can use to solve any math problem,
but that is like outsourcing the thinking. Mathematicians

:::
The

:::::
great

::::::::::::::
mathematicians

:
like Descartes, Hilbert, Leibniz, and Noether did

most of their work with pen and paper and they did well. Spend
some time with math the way they did.

P1.1 Solve for x in the equation x2
´ 9 “ 7.

P1.2 Solve for x in the equation cos´1` x
A

˘
´ f “ wt.

P1.3 Solve for x in the equation 1
x “

1
a `

1
b .

P1.4 Use a calculator to find the values of the following expressions:

P1.5 Compute the following expressions involving fractions:

a)
1
2

`
1
4

b)
4
7

´
23
5

c) 1 3
4 ` 1 31

32

P1.6 Use the basic rules of algebra to simplify the following expressions:

a) ab
1
a

b2cb´3 b)
abc
bca
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Chapter 2

Introduction to physics

2.1 Introduction
One of the coolest things about understanding math is that you will
automatically start to understand the laws of physics too. Indeed,
most physics laws are expressed as mathematical equations. If you
know how to manipulate equations and you know how to solve for
the unknowns in them, then you know half of physics already.

Ever since Newton figured out the whole F “ ma thing, people
have used mechanics to achieve great technological feats, like land-
ing spaceships on the Moonand Mars. You can be part of this science
thing too. Learning physics will give you the following superpow-
ers:

1. The power to predict the future motion of objects using equa-
tions. For most types of motion, it is possible to find an equa-
tion that describes the position of an object as a function of time
xptq. You can use this equation to predict the position of the
object at all times t, including the future. “Yo G! Where’s the
particle going to be at t “ 1.3 seconds?” you are asked. “It is
going to be at xp1.3q metres, bro.” Simple as that. The equation
xptq describes the object’s position for all times t during the mo-
tion. Knowing this, you can plug t “ 1.3 seconds into xptq to
find the object’s location at that time.

2. Special physics vision for seeing the world. After learning
physics, you will start to think in terms of concepts like force,
acceleration, and velocity. You can use these concepts to pre-
cisely describe all aspects of the motion of objects. Without
physics vision, when you throw a ball into the air you will

181
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196 INTRODUCTION TO PHYSICS

function trptq. Using mathematical symbols, we can represent this
relationship as

trptq “
d
dt

tbaptqu .

If the derivative is positive, your account balance is growing. If the
derivative is negative, your account balance is depleting.

Suppose you have a record of all the transactions on your account
trptq, and you want to compute the final account balance at the end of
the month. Since trptq is the derivative of baptq, you can use an inte-
gral (the inverse operation of the derivative) to obtain baptq. Know-
ing the balance of your account at the beginning of the month, you
can predict the balance at the end of the month by using the follow-
ing integral calculation:

bap30q “ bap0q `

ª 30

0
trptq dt.

This calculation makes sense since trptq represents the instantaneous
changes in baptq. If you want to find the overall change in the account
balance from day 0 until day 30, you can compute the total of all the
transactions on the account.

We use integrals every time we need to calculate the total of some
quantity over a time period. In the next section, we’ll see how these
integration techniques can be applied to the subject of kinematics,
and how the equations of motion for UAM are derived from first
principles.

2.4 Kinematics with calculus
To carry out kinematics calculations, all we need to do is plug the
initial conditions (xi and vi) into the correct equation of motion. But
how did Newton come up with the equations of motion in the first
place? Now that you know Newton’s mathematical techniques (cal-
culus), you can learn to derive the equations of motion by yourself.

Concepts
Recall the kinematics concepts related to the motion of objects:

• t: time
• xptq: position as a function of time
• vptq: velocity as a function of time
• aptq: acceleration as a function of time
• xi ” xp0q, vi ” vp0q

:::::::::::::::::
xi

def
“ xp0q, vi

def
“ vp0q: the initial conditions
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2.5 KINEMATICS PROBLEMS 203

Hint: Differentiate the function with respect to t.

P2.7 You’re on a mission to Jupiter where you design an experiment to
measure the planet’s gravitational acceleration. In the experiment, you let
go of a ball from a height of 4[m] and watch it fall to the ground. When the
ball hits the ground, its speed is 14[m/s].

1. What is the gravitational acceleration on Jupiter?

2. Find the position of the ball as a function of time.

Hint: Use the fourth equation of motion.

P2.8 You’re pulling a 5[kg] cart in a straight path. The position of the cart
as a function of time is xptq “ 6t2

` 2t ` 1[m].

1. Find the velocity and acceleration of the cart as functions of time.

2. Calculate the force you’re using to pull the cart.

Hint: Take the derivative of the position with respect to time. Use Newton’s
2nd law F “ ma.

P2.9 A remote controlled car has a mass of 0.5[kg]. The electric engine
pushes the car with a force of 1.0[N] starting from rest at point A.

1. Find the acceleration, velocity, and position of the car as functions of
time, assuming x “ 0 at point A.

2. Calculate the velocity of the car at t “ 4[s].

3. What is the car’s velocity when it is 9[m] away from point A?

Hint: Use Newton’s 2nd law and integration.

P2.10 Below is an acceleration-vs-time graph of a particle. At t “ 0[s], the
particle starts moving from rest at x “ 0[m]. The particle’s acceleration from
t “ 0[s] to t “ 3

::::
t “ 2[s] is given by aptq “ 3t[m/s2]. After t “ 2[s], the

acceleration is constant a “ 6[m/s2].

1. Find the velocity vp2q and position xp2q of the particle at t “ 2[s].

2. Construct the functions of time that describe the acceleration, the ve-
locity, and the position of the particle after t “ 2[s].

3. How much time is needed for the particle to reach x “ 49[m]?

4. At what distance from the origin will the particle’s velocity reach
12[m/s]?
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Chapter 3

Vectors

In this chapter we’ll learn how to manipulate multi-dimensional ob-
jects called vectors. Vectors are the precise way to describe directions
in space. We need vectors in order to describe physical quantities like
the velocity of an object, its acceleration, and the net force acting on
the object

::::::
forces,

:::::::::
velocities,

::::
and

::::::::::::
accelerations.

Vectors are built from ordinary numbers, which form the com-
ponents of the vector. You can think of a vector as a list of numbers,
and vector algebra as operations performed on the numbers in the list.
Vectors can also be manipulated as geometric objects, represented by
arrows in space. For instance, the arrow that corresponds to the vec-
tor~v “ pvx, vyq starts at the origin p0, 0q and ends at the point pvx, vyq.
The word vector comes from the Latin vehere, which means to carry.
Indeed, the vector ~v takes the point p0, 0q and carries it to the point
pvx, vyq.

x

y

~v

vx

vy

Figure 3.1: The vector ~v “ p3, 2q can be represented as
:
is an arrow in the

Cartesian plane. The horizontal component of ~v is vx “ 3 . The
:::
and

:::
the

vertical component of ~v is vy “ 2.

This chapter will introduce you to vectors, vector algebra, and vec-
tor operations, which are very useful for solving physics problems.

207
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208 VECTORS

What you’ll learn here applies more broadly to current problems in
computer graphics, probability theory, machine learning, and other
fields of science and mathematics. It’s all about vectors these days,
so you’d best get to know them.

Figure 3.2: This figure illustrates the new concepts related to vectors. As
you can see, there is quite a bit of new vocabulary to learn, but don’t be
fazed—all these terms are just fancy ways of talking about arrows.

3.1 Great outdoors
Vectors are directions for getting from point A to point B. Directions
can be given in terms of street names and visual landmarks, or with
respect to a coordinate system.

While on vacation in British Columbia, you want to visit a certain
outdoor location your friend told you about. Your friend isn’t avail-
able to take you there himself, but he has sent you directions for how
to get to the place from the bus stop:

Sup G. Go to bus stop number 345. Bring a compass.

Walk 2 km north then 3 km east. You will find X there.

This text message contains all the information you need to find X.

Act 1: Following directions

You arrive at the bus station,
::::
stop,

::::::
which

:::
is located at the top of a

hill. From this height you can see the whole valley, and along the
hillside below spreads a beautiful field of tall crops. The crops are
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so tall they prevent anyone standing in them from seeing too far;
good thing you have a compass. You align the compass needle so
the red arrow points north. You walk 2 km north, then turn right
(east)

:::
90˝

::
to

::::
the

::::
right

:::
so

::::::
you’re

::::::
facing

::::
east,

:
and walk another 3 km

::
in

:::
that

:::::::::
direction. You arrive at X

::
as

::::::::
promised

:::
by

:::::
your

::::::
friend.

Okay, back to vectors. In this case, the directions can be also writ-
ten as a vector ~d, expressed as:

~d “ 2km N̂ ` 3km Ê.

This is the mathematical expression that corresponds to the direc-
tions “Walk 2 km north then 3 km east.” Here, N̂ is a direction and
the number in front of the direction tells you the distance to walk in
that direction.

Act 2: Equivalent directions

Later during your vacation, you decide to return to the location
X

:::::::
because

::::
you

::::
like

::::
the

::::::::::
vegetation

::::
that

::::::
grows

:::::
there. You arrive at

the bus stop to find there is a slight problem. From your position,
you can see a kilometre to the north, where a group of armed and
threatening-looking men stand, waiting to ambush anyone who tries
to cross what has now become a trail through the crops. Clearly the
word has spread about X and constant visitors have drawn too much
attention to the location.

Well, technically speaking, there is no problem at X. The problem
lies on the route that starts north and travels through the ambush
squad. Can you find an alternate route that leads to X?

"Use math, Luke! Use math!"

Recall the commutative property of number addition: a ` b “ b ` a.
Maybe an analogous property holds for vectors? Indeed, it does:

~d “ 2km N̂ ` 3km Ê “ 3km Ê ` 2km N̂.

The
::::::::::::
displacements

:::
in

:::
the N̂ directions and the

:::
and

:
Ê directions obey

the commutative property. Since the directions can be followed in
any order, you can first walk the 3 km east, then walk 2 km north
and arrive at X again.

Act 3: Efficiency

It takes 5 km of walking to travel from the bus stop to X, and another
5 km to travel back to the bus stop. Thus, it takes a total of 10 km
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210 VECTORS

walking every time you want to go to X. Can you find a quicker
route? What is the fastest way from the bus stop to the destination?

Instead of walking in the east and north directions, it would be
quicker if you take the diagonal to the destination. Using Pythago-
ras’ theorem you can calculate the length of the diagonal. When
the side lengths are 3 and 2, the diagonal has length

?

32 ` 22 “
?

9 ` 4 “

?

13 “ 3.60555 . . .. The length of the diagonal route is
just 3.6 km, which means the diagonal route saves you a whole 1.4
km of walking in each direction.

But perhaps seeking efficiency is not always necessary! You could
take a longer path on the way back and give yourself time to enjoy
the great outdoors.

Discussion
Vectors are directions for getting from one point to another point. To
indicate directions on maps, we use the four cardinal directions: N̂,
Ŝ, Ê, Ŵ. In math, however, we will use only two of the cardinals—
Ê ” x̂ and N̂ ” ŷ

:::::
Ê “ x̂

::::
and

::::::
N̂ “ ŷ—since they fit nicely with the

usual way of drawing the Cartesian plane. We don’t need an Ŝ
direction because we can represent downward distances as negative
distances in the N̂ direction. Similarly, Ŵ is the same as negative Ê.

From now on, when we talk about vectors we will always rep-
resent them with respect to the standard coordinate system x̂ and ŷ,
and use bracket notation,

pvx, vyq”“: vx x̂ ` vy ŷ.

Bracket notation is nice because it’s compact, which is good since we
will be doing a lot of calculations with vectors. Instead of explicitly
writing out all the directions, we will automatically assume that the
first number in the bracket is the x̂ distance and the second number
is the ŷ distance.

3.2 Vectors
Vectors are extremely useful in all areas of life. In physics, for ex-
ample, we use a vector to describe the velocity of an object. It is not
sufficient to say that the speed of a tennis ball is 20m/s

:::
200

::::::::::
kilometres

:::
per

:::::
hour: we must also specify the direction in which the ball is mov-

ing. Both of the two velocities

~v1 “ p20200
:::

, 0q and ~v2 “ p0, 20200
:::

q
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3.2 VECTORS 211

describe motion at the speed of 20m/s
:::
200

::::::::::
kilometres

:::
per

:::::
hour; but

since one velocity points along the x-axis, and the other points along
the y-axis, they are completely different velocities. The velocity vec-
tor contains information about the object’s speed and

::
its

:
direction.

The direction makes a big difference. If it turns out the tennis ball is
hurtling toward you, you’d better get out of the way!

This section’s main idea
:::
The

::::::
main

::::
idea

:::
in

::::
this

::::::::
chapter is that

vectors are not the same as numbers. A vector is a special kind of
mathematical object that is made up of numbers. Before we begin
any calculations with vectors , weneed to think about the basic
mathematical operations that

:::::
We’ll

::::
start

::::
by

::::::::
defining

:::::
what

:::::::
vectors

:::
are.

::::::
Then

::::::
we’ll

::::::::
describe

:::
all

::::
the

::::::::::::
mathematical

:::::::::::
operations

:
we can

perform on vectors. We will define
::::
with

::::::::
vectors,

:::::::
which

:::::::
include

vector addition ~u `~v, vector subtraction ~u ´~v, vector scaling a~v, and
other operations. We will also discuss two different notions of vector
product, which have useful geometric properties

::
In

:::::::
Section

:::
3.4

:::::
we’ll

::::
also

:::
talk

::::::
about

::::
two

::::::::
different

:::::
kinds

:::
of

::::::
vector

::::::::
products.

Definitions
The

:
A
:
two-dimensional vector ~v P R2 is equivalent

::
~v

:::::::::::
corresponds to

a pair of numbers~v ” pvx, vyq. We call
:
:

~v “ pvx, vyq,
::::::::::

::::::
where vx the x-component of ~v,

:
is

:::
the

::::::::::::
x-component

::
of

:::
the

::::::
vector

:
and

vy is the y-component of ~v.

Vector representations

::
its

:::::::::::
y-component

:
.
:::
We

:::::::
denote

:::
the

:::
set

::
of

::::::::::::::::
two-dimensional

::::::
vectors

:::
as

:::
R2,

::::
since

::::
the

:::::::::::
components

:::
of

:
a
::::::::::::::::

two-dimensional
::::::
vector

::::
are

::::::::
specified

:::
by

:::
two

::::
real

:::::::::
numbers.

:
We’ll use three equivalent ways to denote vectors:

• ~v “ pvx, vyq: component notation, where the vector is represented
as a pair of coordinates with respect to the x-axis and the y-axis.

• ~v “ vxı̂ ` vy ‚̂: unit vector notation. The vector is expressed in
terms of the unit vectors ı̂ “ p1, 0q and ‚̂ “ p0, 1q.

• ~v “ }~v}=q: length-and-direction notation, where the vector is
expressed in terms of its length }~v} and the angle q that the
vector makes with the x-axis.
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::::::::::::
mathematical

::::::::::
shorthand

::::::
~v P R2

::
to

:::::::
define

:
a
::::::::::::::::
two-dimensional

::::::
vector

::
~v.

:::::::
Vectors

::
in

:::
R2

:::
can

:::
be

:::::::::::
represented

::
as

:::::::
arrows

::
in

:::
the

:::::::::
Cartesian

::::::
plane.

:::
See

:::
the

::::::
vector

:::::::::
~v “ p3, 2q

:::::::::
illustrated

:::
in

::::::
Figure

:::
3.1.

:

These three notations describe different aspects of vectors, and
we will use them throughout the rest of the book. We ’ll learn
how to convert between them—both algebraically (with pen, paper,
and calculator) and intuitively (by drawing arrows)

:::
We

::::
can

::::
also

::::::
define

::::::::::::::::
three-dimensional

:::::::
vectors

::::
like

:::
the

::::::
vector

::::::::::::::::::
~v “ pvx, vy, vzq P R3,

:::::
which

::::
has

::::::
three

::::::::::::
components.

:::::::::::::::::::
Three-dimensional

:::::::
vectors

::::
can

:::
be

::::::::::
represented

:::
as

:::::::
arrows

:::
in

:
a
:::::::::::

coordinate
:::::::
system

::::
that

::::
has

:::::
three

:::::
axes,

:::
like

::::
the

:::
one

:::::::
shown

::
in

::::::
Figure

::::
3.10

:::
on

:::::
page

::::
223.

::
A
:::::::::::::::::

three-dimensional
:::::::::
coordinate

::::::::
system

::
is

:::::::
similar

:::
to

::::
the

:::::::::
Cartesian

:::::::::::
coordinate

:::::::
system

::::::
you’re

:::::::
familiar

:::::
with,

::::
and

::::::::
includes

:::
the

:::::::::
additional

::::::
z-axis

::::
that

::::::::
measures

:::
the

::::::
height

::::::
above

:::
the

::::::
plane.

:::
In

::::
fact,

::::::
there’s

:::
no

:::::
limit

::
to

:::
the

::::::::
number

::
of

::::::::::
dimensions

:::
for

::::::::
vectors.

::::
We

:::
can

:::::::
define

:::::::
vectors

::
in

:::
an

:::::::::::::
n-dimensional

:::::
space:

:::::::::::::::::::::::
~v “ pv1, v2, . . . , vnq P Rn.

:::::
For

::::
the

:::::
sake

:::
of

::::::::::
simplicity,

:::::
we’ll

::::::
define

:::
all

::::
the

::::::
vector

::::::::::
operation

:::::::::
formulas

::::::
using

::::::::::::::::
two-dimensional

:::::::
vectors.

:::::::
Unless

:::::::::
otherwise

:::::::::
indicated

::
in

::::
the

::::
text,

:::
all

:::
the

:::::::::
formulas

:::
we

::::
give

:::
for

:::::::::::::::
two-dimensional

:::::::
vectors

::::::
~v P R2

::::
also

::::::
apply

::
to

:::::::::::::
n-dimensional

::::::
vectors

:::::::
~v P Rn.

Vector operations

Consider two vectors, ~u “ pux, uyq and ~v “ pvx, vyq, and assume that
a P R is an arbitrary constant. The following operations are defined
for these vectors:

• Addition: ~u `~v “ pux ` vx, uy ` vyq
:::::::::
Addition:

:::::::::::::::::::::::
~u `~v “ pux ` vx, uy ` vyq

• Subtraction: ~u ´~v “ pux ´ vx, uy ´ vyq
:::::::::::
Subtraction:

::::::::::::::::::::::
~u ´~v “ pux ´ vx, uy ´ vyq

• Scaling: a~u “ paux, auyq
:::::::
Scaling:

::::::::::::::
a~u “ paux, auyq

• Dot product:
:::
Dot

::::::::
product: ~u ¨~v “ uxvx ` uyvy

• Length:
:::::::
Length: }~u} “

?

~u ¨~u “

b
u2

x ` u2
y. We will also

sometimes simply
::::
The

:::::::
vector’s

::::::
length

::
is
::::
also

::::::
called

:::
the

:::::
norm

::
of

:::
the

::::::
vector.

:::
We

::::::::::
sometimes

:
use the letter u to denote the length of

:::
the

::::::
vector~u. Cross product: ~u ˆ~v “ puyvz ´ uzvy, uzvx ´ uxvz, uxvy ´ uyvxq.

::::
Note

:::::
there

::
is
:::
no

::::::
vector

::::::::
division

:::::::::
operation.

:

:::
For

:::::::
vectors

::
in

:
a
:::::::::::::::::
three-dimensional

:::::
space

::::::::::::::::::
~u “ pux, uy, uzq P R3

::::
and

::::::::::::::::::
~v “ pvx, vy, vzq P R3,

:::
we

::::
can

::::
also

::::::
define

:::
the

:::::
cross

::::::::
product

::::::::
operation

The cross product is only defined for three-dimensional vectors like
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~u “ pux, uy, uzq and~v “ pvx, vy, vzq
:::::::::::::::::::::::::::::::::::::::::::
~u ˆ~v “ puyvz ´ uzvy, uzvx ´ uxvz, uxvy ´ uyvxq.

:::
The

::::
dot

::::::::
product

:::
and

::::
the

:::::
cross

:::::::
product

::::
are

::::
new

::::::::::
operations

::::
that

::::
you

::::::::
probably

:::::::
haven’t

:::::
seen

:::::::
before.

::::::
We’ll

::::
talk

:::::
more

::::::
about

::::
dot

::::::::
products

:::
and

::::
the

:::::
cross

:::::::::
products

::
in

:::::::
Section

::::
3.4.

::::
For

:::::
now

::::
let’s

:::::
start

:::::
with

:::
the

::::::
basics.

::::::
Vector

::::::::::::::
representations

::::
We’ll

::::
use

:::::
three

::::::::::
equivalent

:::::
ways

::
to

::::::
denote

:::::::
vectors

::
in

::::
two

:::::::::::
dimensions:

•
:::::::::::
~v “ pvx, vyq:

:::::::::::
component

:::::::::
notation.

:::::
The

:::::::
vector

::
is

:::::::
written

:::
as

:
a
::::
pair

:::
of

:::::::::
numbers

::::::
called

:::
the

::::::::::
components

::
or

::::::::::
coordinates

::
of

:::
the

::::::
vector.

•
::::::::::::
~v “ vxı̂ ` vy ‚̂:

::::
unit

::::::
vector

::::::::
notation.

::::
The

::::::
vector

::
is

:::::::::
expressed

:::
as

:
a

:::::::::::
combination

::
of

::::
the

::::
unit

:::::::
vectors

::::::::
ı̂ “ p1, 0q

::::
and

::::::::
‚̂ “ p0, 1q.

:

•
:::::::::
~v “ }~v}=q:

::::::::::::::::::::
length-and-direction

::::::::
notation

::::::
(polar

::::::::::::
coordinates).

:::
The

::::::
vector

::
is
::::::::::
expressed

::
in

::::::
terms

::
of

:::
its

:::::
length

:::
}~v}

:::
and

::::
the

:::::
angle

:
q
::::
that

:::
the

::::::
vector

::::::
makes

:::::
with

:::
the

::::::
x-axis.

x

y

}~v}

q

~v “ pvx, vyq

vxı̂

vy ‚̂

ı̂

‚̂

Figure 3.3:
:::
The

:::::
vector

:::::::::::::::::::::::::::
~v “ pvx, vyq “ vxı̂ ` vy ‚̂ “ }~v}=q.

Pay careful attention to the dot product and the cross product.
Although they’re called products, these operations behave much
differently from taking the product of two numbers. Also note, there
is no notion of vector division

:::
We

:::
use

::::
the

:::::::::::
component

::::::::
notation

:::
for

:::::
doing

::::::
vector

:::::::
algebra

:::::::::::
calculations

:::::
since

::
it
::
is
:::::
most

:::::::::
compact.

::::
The

::::
unit

::::::
vector

::::::::
notation

::::::
shows

:::::::::
explicitly

:::::
that

:::
the

:::::::
vector

::
~v

::::::::::::
corresponds

::
to

:::
the

::::
sum

:::
of

:::
vxı̂

:::
(a

::::::::::::
displacement

:::
of

:::
vx :::::

steps
:::
in

:::
the

:::::::::
direction

:::
of

:::
the

::::::
x-axis)

::::
and

::::
vy ‚̂

::
(a

:::::::::::::
displacement

::
of

:::
vy:::::

steps
:::

in
:::
the

:::::::::
direction

:::
of

:::
the

::::::
y-axis).

::::
The

:::::::::::::::::::
length-and-direction

::::::::
notation

:::::::::
describes

:::
the

::::::
vector

:
~v
:::
as

:
a

::::::::::::
displacement

::
of

:::
}~v}

:::::
steps

::
in

::::
the

::::::::
direction

::
of

::::
the

:::::
angle

::
q.

:::::
We’ll

::::
use

::
all

::::
three

::::::
ways

::
of

::::::::
denoting

:::::::
vectors

:::::::::::
throughout

:::
the

::::
rest

::
of

::::
the

:::::
book,

::::
and

::::
we’ll

:::::
learn

:::::
how

::
to

:::::::
convert

::::::::
between

:::::
them.
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Conversely, we can think of the vector ~v as being twice as long as
the vector ~w.

~v = (3, 2)

~w = (1.5, 1)

Figure 3.6: Vectors ~v and ~w are related by the equation ~v “ 2~w.

:::::::::::
Multiplying

:
a
::::::
vector

:::
by

:
a
::::::::
negative

::::::::
number

::::::::
reverses

::
its

:::::::::
direction.

Length-and-direction representation
So far, we’ve seen how to represent a vector in terms of its compo-
nents. There is also another way of representing

:::::::::::::::
two-dimensional

vectors: we can specify a vector
:::::::
describe

::::
the

::::::
vector

::::::
~v P R2

:
in terms

of its length ||~v|| and its direction—the
::
}~v}

::::
and

:::
its

:::::::::
direction

::::::
q—the

angle it makes with the x-axis. For example, the vector p1, 1q can
also be written as

?

2=45˝ . This magnitude-and-direction
::
in

:::::
polar

:::::::::::
coordinates.

:::::
This

::::::::::::::::::
length-and-direction

:
notation is useful because it

makes it easy to see the “size” of vectors. On the other hand, vec-
tor arithmetic operations are much easier to carry out in the com-
ponent notation. We will use the following

:::
It’s

::::::::
therefore

::::::
good

::
to

:::::
know

:::
the

:
formulas for converting between the two notations

:::::
vector

::::::::::::::
representations.

To convert the length-and-direction vector }~r}=q
:::::::::
~v “ }~v}=q

:
into

an x-component and a y-component prx, ryq
:::::::
pvx, vyq, use the formulas

rv
:x “ }~v} cos q and rv

:y “ }~v} sin q.

To convert from component notation prx, ryq
::::::::::
~v “ pvx, vyq to length-

and-direction }~r}=q, use
::::::
}~v}=q,

:::
use

:

r “}~v} “

b
r2

x ` r2
yand

b
v2

x ` v2
y ,

:::::::::

q “ tan´1ry

rx
.

$
’’&

’’%

tan´1` vy
vx

˘
if vx ° 0,

180˝
` tan´1̀ vy

vx

˘
if vx † 0,

90˝ if vx “ 0 and vy ° 0,
´90˝ if vx “ 0 and vy † 0.



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE
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x

y

q

~v

}~v} cos q

}~v} sin q

Figure 3.7: The x- and y-coordinates
:::::::::::
-components of a vector with length

r and
::

}~v}
::
in
::::

the
:
direction q are given by rx “ r cos q

:::::::::::
vx “ }~v} cos q

:
and

ry “ r sin q
::::::::::
vy “ }~v} sin q.

Note that the second part of the equation involves the inverse
tangent function. By convention, the function tan´1 returns values
between p{2 (90˝) and ´p{2 (´90˝). You should be careful when
finding the q of vectors with an angle outside of this range. Specifically,
for vectors with vx † 0, you must add p (180˝) to tan´1`

ry{rx
˘

to
obtain the correct

:::::
We’ve

::::::::
already

::::
seen

:::::
these

:::::::::
formulas

::
in

:::::::
Section

::::
1.17

:::::
(page

:::::
122),

::::::
when

::::
we

:::::::
learned

::::::
about

::::
the

:::::::::::::::
transformations

::::::::
between

::::::::
Cartesian

::::
and

:::::
polar

:::::::::::
coordinates

:::
for

::::::
points.

::::
The

::::::::::
conversion

::::::::::
procedure

:::
for

:::::::
vectors

::
is
::::::::

exactly
::::
the

::::::
same,

:::::::::
including

::::
the

::::::::::
trickiness

:::::::
around

::::::::::
calculating

:
q

:::::
when

:::
vx::

is
:::::::::

negative
:::
or

:::::
zero.

::
I
::::::
invite

::::
you

:::
to

::::::
revisit

:::::::
exercise

:
E1.31

::
on

:::::
page

::::
128

:::
to

:::::::
review

::::
the

:::::::::::
conversion

::::::::::
operations

:::::::
between

:::::::::
Cartesian

:::::::::::
coordinates

::::
and

:::::
polar

:::::::::::
coordinates.

Unit vector notation
In three

:::
two

:
dimensions, we can think of a vector ~v “ pvx, vy, vzq

::::::::::
~v “ pvx, vyq

:
as a command to “Go a distance vx in the x-direction ,

:::
and

:
a distance vy in the y-direction, and vz in the z-direction.”

::
.” To write this set of commands more explicitly, we can use mul-

tiples of the vectors ı̂, ‚̂, and k̂
:̂
ı
::::
and

:̂
‚. These are the unit vectors point-

ing in the x , y, and z directions, respectively:
::::
and

:
y
::::::::::
directions:

:

ı̂ “ p1, 0, 0q,
:::
and ‚̂ “ p0, 1, 0q,and “ p0, 0, 1q.

Any number multiplied by ı̂ corresponds to a vector with that num-
ber in the first coordinate. For example, 3ı̂ ” p3, 0, 0q. Similarly,
4 ‚̂ ” p0, 4, 0q and 5k̂ ” p0, 0, 5q

::::::::
3ı̂ “ p3, 0q

::::
and

::::::::::
4 ‚̂ “ p0, 4q.

In physics, we tend to perform a lot of numerical calculations
with vectors; to make things easier, we often use unit vector notation:

vxı̂ ` vy ‚̂`vzô ô pvx, vy, vzq.
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3.2 VECTORS 219

Now find the y-component of the net force using the sin of the angles:

Fnet,y “ Wy ` Ny ` Ff ,y

“ 300 sinp´90˝
q ` 260 sinp120˝

q ` 50 sinp30˝
q

“ ´49.8.

Combining the two components of the vector, we
::::
you get the final

answer:

~Fnet”“
:

pFnet,x, Fnet,yq

“ p´86.7, ´49.8q “ ´86.7ı̂ ´ 49.8 ‚̂

“ 100=209.9˝.,

::::::
where

::::
you

::::::
found

:::
the

::::::
angle

::::::
209.9˝

:::
by

:::::::::::
computing

:::::::::::::::
tan´1

p49.8{86.7q

:::
and

:::::::
adding

:::::
180˝

:::::
since

:::
the

:::::::::::::
x-component

::
is

::::::::
negative.

:
Bam! Just like

that you’re done, because you overstand them vectors!

Relative motion example

A boat can reach a top speed of 12 knots in calm seas. Instead of
cruising through a calm sea, however, the boat’s crew is trying to sail
up the St-Laurence river. The speed of the current is 5 knots.

If the boat travels directly upstream at full throttle 12ı̂, then the
speed of the boat relative to the shore will be

12ı̂ ´ 5ı̂ “ 7ı̂,

since we must “deduct” the speed of the current from the speed of
the boat relative to the water. See the vector diagram in Figure 3.8.

Figure 3.8: A boat travels with speed 12 knots against a current of 5 knots.

If the crew wants to cross the river perpendicular to the current
flow, they can use some of the boat’s thrust to counterbalance the
current, and the remaining thrust to push across. The situation is
illustrated in Figure 3.9. In what direction should the boat sail to
cross the river? We are looking for the direction of ~v the boat should
take such that, after adding in the velocity of the current, the boat
moves in a straight line between the two banks (in the ‚̂ direction).
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Figure 3.9: Part of the boat’s thrust cancels the current.

Let’s analyze the vector diagram. The opposite side of the tri-
angle is parallel to the current flow and has length 5. We take the
up-the-river component of the speed

:::::::
velocity

:
~v to be equal to 5ı̂, so

that it cancels exactly the ´5ı̂ flow of the river. The hypotenuse has
length 12 since this is the speed of the boat relative to the surface of
the water.

From all of this we can answer the question like professionals.
You want the angle? Well, we have that opp

hyp “
5

12 “ sinpqq, where q

is the angle of the boat’s course relative to the straight line between
the two banks. We can use the inverse-sin function to solve for the
angle:

q “ sin´1` 5
12

˘
“ 24.62˝.

The across-the-river component of the velocity can be calculated us-
ing vy “ 12 cospqq “ 10.91, or from Pythagoras’ theorem if you prefer
vy “

a
}~v}2 ´ v2

x “

?

122 ´ 52 “ 10.91.

Vector dimensions
::::::::::::
Discussion

The most common types of vectors are two-dimensional vectors
(like the ones

:::
We

::::
did

:
a
:::
lot

::
of

:::::::::
hands-on

:::::::::
activities

::::
with

:::::::
vectors

::
in

::::
this

::::::
section

::::
and

::::::::
skipped

:::::
over

:::::
some

::
of

::::
the

::::::::::
theoretical

:::::::
details.

:::::
Now

::::
that

::::::
you’ve

:::::
been

::::::::
exposed

::
to

:::
the

:::::::::
practical

::::
side

::
of

::::::
vector

::::::::::::
calculations,

:::
it’s

:::::
worth

:::::::::
clarifying

:::::::
certain

::::::
points

::::
that

:::
we

:::::::
glossed

:::::
over.

:

:::::::
Vectors

:::
vs.

::::::
points

:::
We

:::::
used

:::
the

::::::::
notation

:::
R2

::
to

::::::::
describe

::::
two

::::::
kinds

::
of

:::::
math

::::::::
objects:

:::
the

::
set

:::
of

::::::
points in the Cartesian plane ), and three-dimensional vectors

(directions in 3D space). 2D and 3D vectors are easier to work
with because we can visualize themand draw them in diagrams. In
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general, vectors can exist in any number of dimensions. An example
of

::
the

::::
set

::
of

:::::::
vectors

:::
in

:
a n-dimensional vectoris

:::::::::::::::
two-dimensional

:::::
space.

:::::
The

::::::
point

:::::::::::
P “ pPx, Pyq

::::
and

::::
the

::::::
vector

:::::::::::
~v “ pvx, vyq

:::
are

:::::
both

::::::::::
represented

::::
by

:::::
pairs

:::
of

:::::
real

:::::::::
numbers,

::::
so

:::
we

:::::
use

::::
the

::::::::
notation

::::::
P P R2

::::
and

:::::::
~v P R2

:::
to

::::::::
describe

::::::
them.

::::::
This

:::::::
means

::::
that

::
a
::::
pair

:::
of

::::::::
numbers

:::::::::
p3, 2q P R2

::::::
could

:::::::::
represent

:::
the

::::::::::
coordinates

::
of

::
a

:::::
point,

:::
or

:::
the

::::::::::
components

::
of

:
a
:::::::
vector,

::::::::::
depending

:::
on

:::
the

:::::::
context.

:

::::
Let’s

:::::
take

::
a
::::::::
moment

:::
to

:::::::
review

::::
the

::::::::::
definitions

:::
of

:::::::
points

::::
and

::::::
vectors

::::
and

::::::
clarify

::::
the

:::::
types

::
of

::::::::::
operations

:::
we

::::
can

:::::::
perform

:::
on

::::::
them:

•
:::::
Space

:::
of

::::::
points

:::
R2

:
:
:::
the

:::
set

:::
of

::::::
points

:::::::::::
P “ pPx, Pyq

:::::::::::
corresponds

::
to

:::::::::
locations

::
in

::::
the

:::::::::
Cartesian

:::::::
plane.

:::::
The

::::::
point

:::::::::::
P “ pPx, Pyq

:::::::::::
corresponds

:::
to

:::
the

::::::::::
geometric

::::::::::::
instructions:

::::::::::
“Starting

::
at

::::
the

:::::
origin

::::::
p0, 0q,

:::::
move

:::
Px :::::

units
:::::
along

::::
the

:::::
x-axis

::::
and

:::
Py :::::

units
:::::
along

:::
the

:::::::
y-axis.”

:::::
The

::::::::
distance

::::::::
between

::::::
points

::
P

::::
and

::
Q

::
is

::::::::
denoted

:::::::
dpP, Qq.

•
::::::
Vector

::::::
space

::::
R2:

:::::
the

:::
set

:::
of

::::::::
vectors

:::::::::::
~v “ pvx, vyq

:::::::::
describes

:::::::::::::
displacements

::
in

::::
the

:::::::::
Cartesian

::::::
plane.

::::
The

::::::
vector

:::::::::::
~v “ pvx, vyq

:::::::::::
corresponds

::
to

::::
the

:::::::::::
instructions:

:::::::::
“Starting

::::::::::
anywhere,

::::::
move

::
vx

::::
units

::::::
along

::::
the

:::::
x-axis

::::
and

:::
vy:::::

units
::::::
along

:::
the

::::::::
y-axis.”

:::::::
Vectors

:::
can

:::
be

::::::::::
combined

::::
and

::::::::::::
manipulated

::::::
using

:::
the

:::::::
vector

:::::::
algebra

:::::::::
operations

::::::
~u `~v,

:::::
~u ´~v,

::::
a~u,

::::
~u ¨~v,

::::
and

::::
}~v}.

:

::::
Note

::::
the

::::::::::
geometric

:::::::::::
instructions

::::
for

:::::::
points

::::
and

:::::::
vectors

::::
are

:::::
very

:::::::
similar;

:::
the

::::
only

::::::::::
difference

::
is

:::
the

:::::::
starting

::::::
point.

::::
The

::::::::::
coordinates

:::
of

:
a

:::::
point

:::::::
pPx, Pyq

::::::
specify

::
a
::::
fixed

:::::::
position

:::::::
relative

::
to

::::
the

:::::
origin

::::::
p0, 0q,

:::::
while

:::
the

:::::::::::
components

:::
of

::
a

::::::
vector

:::::::
pvx, vyq

::::::::
describe

::
a
:::::::
relative

:::::::::::
displacement

:::
that

::::
can

:::::
have

::::
any

:::::::
starting

::::::
point.

::::
Let’s

:::::
look

::
at

:::::
some

:::::::::
examples

:::
of

:::::::::::
calculations

::::
that

::::::::
combine

::::::
points

:::
and

::::::::
vectors.

::::::::
Consider

::::
the

::::::
points

:
P
::::
and

::
Q

::
in

::::
the

::::::::
Cartesian

::::::
plane,

::::
and

:::
the

::::::::::::
displacement

::::::
vector

::::
~vPQ ::::::::

between
:::::
them.

::::
The

::::::::::::
displacement

::::::
vector

:::
~vPQ::::::

gives
:::
the

::::::
“move

:::::::::::::
instructions”

:::
for

::::::
getting

:::::
from

::::::
point

::
P

::
to

:::::
point

::
Q

::::
and

:
is
::::::::
defined

::
by

::::
the

::::::::
equation:

:

~vPQ “ Q ´ P.
::::::::::::

::::
This

::::::::
equation

:::::
says

::::
that

:::::::::::
subtracting

::::
two

:::::::
points

:::::::::
produces

:
a
:::::::

vector,
:::::
which

::::::
make

::::::
sense

:
if
:::::

you
:::::
think

::::::
about

::::::
it—the

::::::::::::
“difference”

::::::::
between

:::
two

::::::
points

::
is
::
a
::::::::::::
displacement

:::::::
vector.

:::
We

:::
can

::::
use

:::
the

::::::::::::
displacement

::::::
vector

::::
~vPQ:::

in
:::::::::::
calculations

:::
like

:::::
this:

P`
::

~vPQ
::

“ P`
:::

pv1, v2, . . . , vnQ ´ P
:::::

qP Rn
“ Q
::::

.

The rules of vector algebra apply in higher dimensions, but our
ability to visualize stops at three dimensions

:
In

:::::::
words,

:::
this

:::::::::::
calculation
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222 VECTORS

::::::
shows

::::
that

::::::::
“Starting

::
at

::::
the

:::::
point

::
P

::::
and

:::::::
moving

:::
by

::::
~vPQ::::::

brings
:::
us

::
to

:::
the

:::::
point

::::
Q.”

:::
The

:::::::
above

:::::::::
equations

::::
use

:::::::::
addition

::::
and

:::::::::::
subtraction

::::::::::
operations

:::::::
between

:::
a

::::
mix

:::
of

:::::::
points

::::
and

::::::::
vectors.

::::::
This

:::
is

::::::
rather

:::::::::
unusual:

::::::::
normally

::::
we

::::
only

::::
use

::::::::::
operations

:::::
like

::::
“+”

::::
and

:::
“-”

:::::::::
between

:::::
math

::::::
objects

::
of

::::
the

:::::
same

:::::
kind.

:::
In

::::
this

:::::
case,

::::::
we’re

:::::::
allowed

:::
to

::::
mix

::::::
points

:::
and

:::::::
vectors

::::::::
because

:::::
they

::::
both

::::::::
describe

:::::::
“move

::::::::::::
instructions”

:::
of

:::
the

:::::
same

:::::
kind.

::::
Let’s

:::::
keep

::::::
going.

::::::
What

::::::
other

::::::
useful

:::::::::::
calculations

::::
can

:::
we

:::
do

:::
by

:::::::::
combining

:::::::
points

::::
and

::::::::
vectors?

::::::::::
Suppose

::::
we

:::::::
wanted

:::
to

::::
find

::::
the

::::::::
midpoint

:::
M

::::
that

::::
lies

:::::::
exactly

:::
in

:::
the

:::::::
middle

:::::::::
between

::::::
points

::
P

::::
and

::
Q.

::::
We

::::
can

::::
find

:::
the

:::::::::
midpoint

:::
M

:::::
using

::::
the

::::::::::::
displacement

::::::
vector

::::
~vPQ

:::
and

::::::
some

:::::
basic

::::::
vector

::::::::
algebra.

:::
If

:::::::
starting

:::::
from

::
P
:::::

and
:::::::
moving

:::
by

:::
~vPQ:::::::

brings
::
us

:::
all

::::
the

::::
way

::
to

::::
the

:::::
point

:::
Q,

:::::
then

:::::::
starting

:::::
from

::
P
::::
and

:::::::
moving

:::
by

:::::

1
2~vPQ ::::

will
:::::
bring

::
us

:::
to

:::
the

:::::::::
midpoint:

::::::::::::::
M “ P `

1
2~vPQ.

Coordinate system

:::
The

:::::::::::::
mathematical

:::::::
bridge

::::::::
between

::::::
points

::::
and

:::::::
vectors

:::::::
allows

:::
us

::
to

:::
use

::::::
vector

:::::::::::
techniques

:::
to

:::::
solve

::::::::::
geometry

:::::::::
problems.

:::::
By

::::::::
learning

::
to

::::::::
describe

::::::::::
geometric

:::::::
objects

::::
like

:::::::
points,

:::::
lines,

:::::
and

::::::
circles

::::::
using

:::::::
vectors,

:::
we

::::
can

:::
do

:::::::::::
complicated

:::::::::
geometry

:::::::::::
calculations

::::::
using

::::::
simple

::::::::
algebraic

::::::::::::::
manipulations

::::
like

::::::
vector

::::::::::
operations.

::::::
This

::::::::::
exemplifies

::
a

:::::::
general

:::::::
pattern

::
in

:::::::::::::
mathematics:

::::::::
applying

:::::::::::
techniques

::::::::::
developed

::
in

:::
one

::::::::
domain

::
to

:::::
solve

:::::::::
problems

::
in

:::::::
another

::::::::
domain.

:

Vector components depend on the coordinate system in which
the vectors are represented. Throughout this section we used the x,
y,

::::::::
Example

:::
You

::::::
come

::
to

:::::
class

::::
one

:::::
day

::::
and

:::::::
there’s

:
a
::::::::

surprise
:::::

quiz
:::
that

:::::
asks

::::
you

::
to

::::::
write

:::
the

::::::::
formula

:::
for

:::
the

::::::::
distance

:::::::
dpP, Qq

::::::::
between

:::
two

:::::::
points

:::::::::::
P “ pPx, Pyq

:
and z axes as the coordinate system, and

we described vectorsas components along each of these axes. This
is a very convenient coordinate system ; we have a set of three
perpendicular axes,

::::::::::::
Q “ pQx, Qyq.

::::
You

:::::
don’t

::::::::::
remember

::::
ever

::::::::
learning

:::::
about

:::::
such

:
a
::::::::
formula

:::
and

::::
feel

::::::
caught

:::
off

:::::::
guard.

:::::
How

:::
can

:::
the

:::::::
teacher

:::
ask

:::
for

::
a
::::::::

formula
:::::

they
:::::::
haven’t

::::::::
covered

:::
in

:::::
class

::::
yet?

::::::
This

::::::
seems

::::::
totally

::::::
unfair!

:

:::::
After

:
a
:::::::
minute

::
of

::::::::
stressing

::::
out,

::::
you

::::
take

:
a
:::::
deep

:::::::
breath,

:::::
come

::::
back

::
to

::::
your

:::::::
senses,

::::
and

:::::::
resolve

::
to

:::::
give

:::
this

::::::::
problem

::
a
:::::
shot.

::::
You

::::
start

:::
by

::::::::
sketching

::
a
::::::::::

coordinate
::::::::

system,
:::::::
placing

:::::::
points

::
P and a set of

::
Q

::
in

::
it,

::::
and

::::::::
drawing

::::
the

::::
line

::::
that

::::::::
connects

::::
the

::::
two

::::::
points.

:::::::
What

::
is

:::
the

:::::::
formula

::::
that

:::::::::
describes

:::
the

::::::
length

::
of

::::
this

:::::
line?
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3.2 VECTORS 223

:::
The

::::
line

::::::
from

::
P

::
to

:::
Q

::::::
looks

::::
like

:::
the

:::::::::::
hypotenuse

:::
of

::
a
::::::::
triangle,

:::::
which

:::::::
makes

:::
you

:::::
think

::::
that

::::::::::::
trigonometry

::::::
could

:::::::::
somehow

::
be

:::::
used

::
to

::::
find

:::
the

:::::::
answer.

:::::::::::::
Unfortunately,

::::::
trying

::
to

::::::::::
remember

:::
the

::::::::::::
trigonometry

::::::::
formulas

::::
has

::::
only

::::
the

:::::
effect

:::
of

::::::::::
increasing

:::::
your

:::::
math

:::::::
anxiety.

:::::
You

::::
take

::::
this

::
as

::
a

::::
sign

::::
that

::::
you

:::::::
should

::::
look

::::
for

:::::
other

::::::::
options.

::
In

::::::
math,

:::
it’s

:::::::::
important

::
to

:::::
trust

:::::
your

:::
gut

::::::::
instincts.

:

::
By

::
a
:::::::::
fortunate

:::::::::::
coincidence,

::::
you

:::::
were

::::::::
recently

:::::::
reading

::::::
about

:::
the

::::::::::
connection

::::::::
between

::::::
points

::::
and

::::::::
vectors,

::::
and

:::::::::::
specifically

::::::
about

:::
the

::::::::::::
displacement

::::::
vector

::::::::::::
~vPQ “ Q ´ P.

::::
The

::::
line

::
in

:::::
your

::::::
sketch

:::::::::
represents

:::
the

::::::
vector

:::::
~vPQ.

::::
You

:::::::
realize

::::
that

:::
the

::::::::
distance

::::::::
between

::::
the

::::::
points

::
P

:::
and

::
Q
::
is
::::
the

:::::
same

::
as

:::
the

::::::
length

:::
of

:::
the

::::::
vector

::::
~vPQ.

::::
You

::::::::::
remember

:::
the

:::::::
formula

:::
for

:::
the

:::::::
length

::
of

:
a
::::::
vector

::
~v

::
is

::::::::::::::
}~v} “

b
v2

x ` v2
y ::::

and
::::
you

:::::
know

:::
the

:::::::
formula

:::
for

::::
the

::::::::::::
displacement

::::::
vector

::
is

:::::::::::::::::::::::
~vPQ “ pQx ´ Px, Qy ´ Pyq,

::
so

::::
you

::::::::
combine

:::::
these

::::::::
formulas

::
to

::::::
obtain

:::
the

::::::::
answer:

::::::::::::::::::::::::::::::::::::::::
dpP, Qq “

››~vPQ
›› “

b
pQx ´ Pxq2 ` pQy ´ Pyq2.

::::
One

:::::
more

::::
win

:::
for

::::
the

::::::
“don’t

::::::
worry

::::
and

:::
try

:::
it”

::::::::
strategy

:::
for

:::::::
solving

:::::
math

:::::::::
problems!

:

:::::::
Vectors

::
in

:::::
three

:::::::::::
dimensions

::
A

:::::::::::::::::
three-dimensional

:::::::::::
coordinate

:::::::
system

:::::::::
consists

:::
of

:::::
three

::::::
axes:

:::
the

:::::::
x-axis,

::::
the

::::::
y-axis,

:::::
and

::::
the

::::::
z-axis.

::::::
The

::::::
three

:::::
axes

:::::
point

:::
in

:::::::::::::
perpendicular

:::::::::
directions

::
to

:::::
each

::::::
other,

::
as

::::::::::
illustrated

::
in

:::::::
Figure

::::
3.10.

:::::
Look

::::::
around

::::
you

::::
and

::::
find

::
a
::::::
corner

::
of

::::
the

:::::
room

::::::
you’re

::
in

::::::
where

::::
two

:::::
walls

::::
and

:::
the

:::::
floor

::::::
meet.

:::::
The

::::::
x-axis

::::
and

:::
the

::::::
y-axis

::::
are

:::
the

::::::
edges

::::::
where

:::
the

:::::
floor

::::::
meets

:::
the

::::::
walls.

:::::
The

:::::::
vertical

:::::
edge

::::::
where

::::
the

::::
two

:::::
walls

:::::
meet

:::::::::
represents

:::
the

::::::
z-axis.

:

x

y

z

Figure 3.10:
:
A
:::::::::::::::
three-dimensional

:::::::::
coordinate

::::::
system

::::
with

::
x,

::
y,

::::
and

:
z
::::
axes.

:::
The

::::::
vector

::::::::::::::::::
~v “ pvx, vy, vzq P R3

:::::::::
describes

:::
the

:::::::::
following

::::::::::::
displacement

:::::::::::
instructions:

:::::::
“Move

::
vx:::::

units
::
in

:::
the

:::::::::
direction

::
of

:::
the

::::::
x-axis,

:::::
then

:::::
move

::
vy:::::

along
::::
the

::::::
y-axis,

:::
and

::::::
finally

::::::
move

::
vz::

in
:::
the

:::::::::
direction

::
of

:::
the

:::::::
z-axis.”

::
In

:::::
three

::::::::::::
dimensions,

:::::
there

:::
are

:
three unit vectors tı̂, ‚̂, k̂u that point
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along
:::
that

::::::::
describe

:::::
unit

:::::
steps

::
in

::::
the

:::::::::
direction

::
of

:
each of the three

axis directions. Every vector is implicitly defined
::::
axes:

:

ı̂ “ p1, 0, 0q, ‚̂ “ p0, 1, 0q and k̂ “ p0, 0, 1q.
::::::::::::::::::::::::::::::::::::::::::

:::
We

:::
can

:::::::::
therefore

::::::::
describe

:::
the

:::::::
vector

:::::::::::::
~v “ pvx, vy, vzq

:
in terms of this

coordinate system. When we talk about the vector ~v “ 3ı̂ ` 4 ‚̂ ` 2k̂,
we are really saying, “Start from the origin p0, 0, 0q, move 3

:::
unit

::::::
vectors

:::
as

:::::::::::::::::
~v “ vxı̂ ` vy ‚̂ ` vzk̂.

:

:::::::::::::::::
High-dimensional

:::::::
vectors

:::
The

::::::
most

::::::::
common

::::::
types

::
of

:::::::
vectors

::::::
you’ll

::::::::::
encounter

:::
in

:::::
math

::::
and

:::::::
physics

:::
are

:::::::::::::::
two-dimensional

::::
and

::::::::::::::::
three-dimensional

::::::::
vectors.

::
In

:::::
other

:::::
fields

::
of

:::::::
science

::::
like

::::::::
genetics

::::
and

::::::::
machine

::::::::
learning,

:::
it’s

:::::::::
common

::
to

:::
see

:::::::
vectors

::::
with

::::::
many

:::::
more

::::::::::::
dimensions.

::::
For

:::::::::
example,

::
in

::::::::
machine

:::::::
learning

:::
we

::::::
often

::::::::
represent

:::::
“rich

::::::
data”

:::
like

::::::::
images,

::::::
videos,

::::
and

::::
text

::
as

:::::::
vectors

::::
with

::::::::::
thousands

::
of

:::::::::::
dimensions.

:

:::
An

::::::::
example

::
of

:::
an

:::::::::::::
n-dimensional

::::::
vector

::
is

~v “ pv1, v2, . . . , vnq P Rn.
:::::::::::::::::::::

:::
The

::::::
vector

::::::::
algebra

:::::::::
operations

::::
you

::::::::
learned

::
in

::::
this

::::::
section

:::::
also

:::::
apply

::
to

:::::
these

::::::::::::::::
high-dimensional

:::::::
vectors.

:

:::::::
Vectors

::::
and

::::::
vector

:::::::::::
coordinates

::::
One

::::
final

:::::
point

:::
we

:::::
need

::
to

::::::
clarify

::
is

:::
the

:::::::::
difference

::::::::
between

::::::::::
real-world

::::::
vector

:::::::::
quantities

:::
like

:::
the

::::::::
velocity

::
of

:
a
::::::
tennis

::::
ball

:
~v
::::
and

::
its

:::::::::::::
mathematical

:::::::::::::
representation

::
as

::
a
::::::::::
coordinate

:::::::
vector

::::::::::
pvx, vy, vzq.

:::
If

::::
you

::::::
know

:::
the

:::::::::
coordinate

:::::::
vector

::::::::::
pvx, vy, vzq

:::::
then

::::
you

::::::
know

:::::
what

::::
the

::::::::::
real-world

:::::::
velocity

::
is,

::::::
right?

::::
Not

::::::
quite.

::::
Let’s

::::
say

::::::
you’re

:::::
doing

::
a
:::::::
physics

::::::::
research

::::::
project

:::
on

::::::
tennis

::::::
serves.

:::
You

:::::::
define

:::
an

::::::::::::::
xyz-coordinate

:::::::
system

::::
for

:::
the

:::::::
tennis

::::::
court,

::::::
which

::::::
allows

::::
you

::
to

::::::::
represent

::::
the

:::::
ball’s

:::::::
velocity

::
~v

::
as

:
a
::::::
triple

::
of

:::::::::::
components

:::::::::
pvx, vy, vzq

::::::::::
interpreted

:::
as:

:::::
“The

::::
ball

::
is

::::::::
moving

::::
with

::::::::
velocity

::
vx:units

in the x-direction, then move 4
::
vy:units in the y-direction, and finally

move 2
::
vz:units in the z-direction.” It is simpler to express these

directions as ~v “ p3, 4, 2q, while remembering that the numbers in
the bracket measure distances relative to

::::::::
Suppose

::::
you

:::::
want

::
to

::::::::
describe

::::
the

::::::::
velocity

::::::
vector

::
~v

::
to

::
a
::::::
fellow

::::::::
physicist

:::
via

::::
text

:::::::::
message.

:::::::::
Referring

:::
to

:::::
your

:::::
sheet

::
of

::::::::::::
calculations,

:::
you

:::::
find

:::
the

::::::
values

::::::::::::::
~v “ p60, 3, ´2q,

::::::
which

::::
you

:::::
know

:::::
were

:::::::::
measured

::
in

::::::
metres

::::
per

:::::::
second.

::::
You

:::::
send

:::
this

:::::::::
message:
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3.2 VECTORS 225

\DIFadd{The velocity is (60,3,-2) measured in metres per second. }

::
A

:::
few

::::::::
minutes

:::::
later

:::
the

:::::::::
following

:::::
reply

::::::
comes

:::::
back:

:

\DIFadd{Wait whaaat? What coordinate system are you using? }

::::::
Indeed

::::
the

:::::::::::
information

::::
you

::::
sent

::
is

:::::::::::
incomplete.

:::::::
Vector

:::::::::::
components

:::::::
depend

::
on

::::
the

:::::::::
coordinate

:::::::
system

::
in

::::::
which

:::
the

:::::::
vectors

:::
are

:::::::::::
represented.

:::
The

::::::
triple

::
of

:::::::::
numbers

:::::::::
p60, 3, ´2q

:::::
only

::::::
makes

::::::
sense

::::
once

::::
you

::::::
know

:::
the

:::::::::
directions

:::
of

:::
the

:::::
axes

::
in

:
the xyz-coordinate system.

::::::::
Realizing

::::
your

::::::::
mistake,

::::
you

:::::
send

:
a
::::
text

:::::
with

::
all

::::
the

::::::::
required

:::::::::::
information:

:

\DIFadd{Using the coordinate system centred at the south post of

the net, with the x-axis pointing east along the court,

the y-axis pointing north along the net, and the z-axis

pointing up, the velocity is (60,3,-2) in metres per second. }

::
A

:::
few

::::::::
seconds

:::::
later,

::::
you

:::
get

:::
the

::::::
reply:

\DIFadd{OK got it now. Thx! }

::::
This

:::::::::::
hypothetical

::::::::
situation

:::::::::
illustrates

::::
the

::::::::::
importance

::
of

:::
the

::::::::::
coordinate

:::::::
systems

:::
for

::::::::::
describing

:::::::
vectors.

::
If

::::
you

:::::
don’t

:::::
know

:::::
what

:::
the

::::::::::
coordinate

::::::
system

:::
is,

::::::::
knowing

:::
the

:::::::::::
coordinates

:::::::::
pvx, vy, vzq

:::::::
doesn’t

:::
tell

::::
you

::::::
much.

::::
Only

::::::
when

::::
you

:::::
know

::::
the

:::::::::
directions

::
of

:::
the

::::
unit

:::::::
vectors

::̂
ı,

:̂
‚,
::::
and

::̂
k

:::
can

:::
you

:::::::::
interpret

:::
the

:::::::::::
instructions

:::::::::::::::::
~v “ vxı̂ ` vy ‚̂ ` vzk̂.

:

It turns out, using the xyz-coordinate system and the
::::
with

:::
the

::::
three

:
vectors tı̂, ‚̂, k̂u is just one of many possible ways we can repre-

sent vectors. We can represent a vector ~v as coefficients
::::::::::
coordinates

pv1, v2, v3q with respect to any basis tê1, ê2, ê3u as follows:
:::::
using

:::
the

:::::::::
expression

:
~v “ v1 ê1 ` v2 ê2 ` v3 ê3. What is

:
,
:::::
which

::::::::::::
corresponds

::
to

:::
the

:::::::::::
instructions:

:::::::
“Move

::
v1:::::

units
:::
in

:::
the

:::::::::
direction

::
of

:::
ê1,

:::::
move

:::
v2 :::::

units
::
in

:::
the

::::::::
direction

::
of

:::
ê2,

::::
and

:::::
move

:::
v3 :::::

units
::
in

:::
the

:::::::::
direction

::
of

::::
ê3.”

::::::
What’s

:
a basis, you ask? I’m glad you asked, because this is the

subject of the next section.

Exercises

Given the vectors ~v1 “ p2, 1q, ~v2 “ p2, ´1q, and ~v3 “ p3, 3q, calculate
the following expressions: a) ~v1 `~v2

b) ~v2 ´ 2~v1
c) ~v1 `~v2 `~v3
a) p4, 0q. b) p´2, ´3q. c) p7, 3q.
Express the following vectors as components: a) ~v1 “ 10=30˝

b) ~v2 “ 12=´90˝

c) ~v3 “ 3=170˝

a)~v1 “ p5
?

3, 5q “ p8.66, 5q. b)~v2 “ p0, ´12q. c)~v3 “ p´2.95, 0.52q.
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Express the following vectors in length-and-direction notation:
a) ~u1 “ p4, 0q

b) ~u2 “ p1, 1q

c) ~u3 “ p´1, 3q

a) ~u1 “ 4=0˝. b) ~u2 “

?

2=45˝. c) ~u3 “

?

10=108.43˝.

3.3 Basis
One of the most important concepts in the study of vectors is the
concept of a basis. Consider the three-dimensional vector space R3.
A basis for R3 is a set of vectors tê1, ê2, ê3u that can be used as a coordi-
nate system for R3. If the set of vectors tê1, ê2, ê3u is a basis, then you
can represent any vector ~v P R3 as coefficients

:::::::::::
coordinates pv1, v2, v3q

with respect to that basis:

~v “ v1 ê1 ` v2 ê2 ` v3 ê3.

The vector ~v is obtained by measuring out a distance v1 in the ê1
direction, a distance v2 in the ê2 direction, and a distance v3 in the ê3
direction.

You are already familiar with the standard basis tı̂, ‚̂, k̂u, which is
associated with the xyz-coordinate system. You know that any vector
~v P R3 can be expressed as a triple pvx, vy, vzq with respect to the basis
tı̂, ‚̂, k̂u through the formula ~v “ vxı̂ ` vy ‚̂ ` vzk̂.

::::
The

::::::
whole

:::::
point

::
of

:::
this

:::::::
section

::
is

::
to

:::
let

::::
you

::::::
know

::::
that

:::::
other

:::::
bases

:::::::::::
(coordinate

::::::::
systems)

:::::
exist,

:::
and

:::
to

:::
get

::::
you

::::
into

:::
the

:::::
habit

::
of

:::::::
asking,

::::::
“With

:::::::
respect

::
to

::::::
which

:::::::::
coordinate

:::::::::
system?”

::::::
every

::::
time

::::
you

:::
see

::
a

::::::::::
coordinate

::::::
vector

:::::::
pa, b, cq.

An analogy
Let’s start with a simple example of a basis. If you look at the HTML
source code behind any web page, you’re sure to find at least one
mention of the colour stylesheet directive such as color:#336699;.
The numbers should be interpreted as a triple of values p33, 66, 99q,
each value describing the amount of red, green, and blue needed to
create a given colour. Let us call the colour described by the triple
p33, 66, 99q CoolBlue. This convention for colour representation is
called the RGB colour model and we can think of it as the RGB basis.
A basis is a set of elements that can be combined together to express
something more complicated. In our case, the R, G, and B elements
are pure colours that can create any colour when mixed appropri-
ately. Schematically, we can write this mixing idea as

CoolBlue “ p33, 66, 99qRGB “ 33R ` 66G ` 99B,



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



3.3 BASIS 227

where the coefficients
:::::::::
components determine the strength of each

colourcomponent. .
:
To create the colour, we combine its components

as symbolized by the ` operation.
The cyan, magenta, and yellow (CMY) colour model is another

basis for representing colours. To express the “cool blue” colour in
the CMY basis, you will need the following coefficients

:::::::::::
components:

p33, 66, 99qRGB “ CoolBlue “ p222, 189, 156qCMY “ 222C ` 189M ` 156Y.

The same colour CoolBlue is represented by a different set of
coefficients

:::::::::::
components

:
when the CMY colour basis is used.

Note that a triple of coefficients by itself does not
:::::::::::
components

::
by

:::::
itself

::::::::
doesn’t

:
mean anything unless we know the basis being

used. For example, if we were to interpret the triple of coordinates
:::::::::::
components

:
p33, 66, 99q with respect to the CMY basis, will

::
we

would obtain a completely different colour, which would not be cool
at all.

A basis is required to convert mathematical objects like the triple
pa, b, cq into real-world ideas like colours. As exemplified above, to
avoid any ambiguity we can use a subscript after the bracket to indi-
cate the basis associated with each triple of coefficients

:::::::::::
components.

:::::::
Writing

::::::::::::::::
p222, 189, 156qCMY::::

and
:::::::::::::
p33, 66, 99qRGB:::::::

clarifies
::::::
which

:::::
basis

::
to

:::
use

:::
for

:::::
each

:::::
triple

::
of

:::::::::::
components.

Discussion
It ’s

::::::
would

::
be

:
hard to over-emphasize the importance of the basis—

the coordinate system you will use to describe vectors. The choice
of coordinate system is the bridge between real-world vector quan-
tities and their mathematical representation in terms of components.
Every time you solve a problem with vectors

::::
start

:
a
:::::

new
::::::::
problem

:::
that

:::::::::
involves

::::::
vector

:::::::::::
calculations, the first thing you should do is

draw a coordinate system . Always keep in mind the coordinate
system you’re using when computing

::::::
choose

:::
the

::::::::::
coordinate

:::::::
system

:::
you

:::::
want

:::
to

::::
use,

::::
and

:::::::
indicate

::
it

::::::
clearly

::
in

::::
the

::::::::
diagram.

:

:::::
Using

::
a

::::::::::::
non-standard

::::::::::
coordinate

:::::::
system

:::
can

::::::::::
sometimes

::::::::
simplify

:::
the

:::::::::
equations

::::
you

:::::
have

::
to

::::::
solve.

::::
For

:::::::::
example,

::::
let’s

:::
say

::::
we

:::::
want

::
to

:::::
study

:::
the

:::::::
motion

:::
of

:
a
:::::
block

:::::::
sliding

::::::
down

::
an

:::::::
incline

:::::
with

:::::::
velocity

::
~v,

::
as

:::::::::
illustrated

:::
in

::::::
Figure

::::
3.11.

::::::
Using

:::
the

::::::::
standard

:::::::::
xy-basis,

:::
the

:::::::
velocity

::::::
vector

::
is

:::::::::::
represented

::
as

::::::::::::::::::
pv cos q, ´v sin qqxy,

::::::
which

::::
has

:::::::::::
components

::
in

:::::
both

:::
the

:::
x-

::::
and

::::::::::::
y-directions

::::
and

::::::::
requires

::::::
using

:::::::::::::
trigonometric

:::::::::
functions.

::
If
:::::::
instead

::::
you

::::
use

:::
the

:::::::::::::
non-standard

::::::::::
x1y1-basis, the com-

ponents of vectors
:::
the

:::::::
velocity

:::::
will

::
be

:::::::::
pv, 0qx1y1 .

::::::
Note

:::
the

::::::::
velocity

::::
only

:::
has

::
a
:::::::::::
component

:::::
along

:::
the

::::::::::::
x1-direction,

::::::
which

::::
will

:::::::
simplify

:::
all

::::::::::
subsequent

::::::::::::
calculations.
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x

y y 1

x 1

~v ~v
q q

Figure 3.11:
:::
The

:::::
vector

::
~v

:
is
:::::::::

described
::
by

:::
the

::::::::::
coordinates

:::::::::::::::
pv cos q, ´v sin qqxy

::::
with

::::::
respect

::
to

:::
the

:::::::
standard

:::::
basis

:::
xy.

:::
The

:::::
same

:::::
vector

::
~v

::
is

::::::::
described

::
by

:::
the

:::::::::
coordinates

:::::::
pv, 0qx1y1

::::
with

::::::
respect

:::
to

::
the

:::::::
“tilted”

::::
basis

::::
x1y1.

:::::
Recall

::::
the

::::::
polar

:::::::::::
coordinates

::::::::::::::
representation

::::
we

:::::
used

:::
to

::::::::
describe

::::::
points

::::
r=q

::::
and

:::::::
vectors

:::::::
}~v}=q

::
in

::::
two

::::::::::::
dimensions

::::
(see

:::::
page

:::::
216).

::::
This

::
is

::::::::
another

::::::::
example

::
of

:::
an

::::::::::
alternative

:::::::::::
coordinate

:::::::
system

:::::
that’s

:::::
useful

::::
for

::::::::::
describing

:::::::::
rotations

::::
and

:::::::
circular

::::::::
motion.

::::::
Note

:::::::
certain

:::::::::
textbooks

::::
will

:::::
write

::::
the

:::::
polar

:::::::::::
coordinates

:::
of

:::
the

::::::
vector

::::::::::
~v “ }~v}=q

:::::
using

::::
the

:::::::
bracket

::::::::
notation

::::::::
p}~v}, qq,

::::::
which

::::
can

::::::
easily

:::
be

:::::::::
confused

::::
with

:::
the

:::::::::
Cartesian

:::::::::::
coordinates

:::
of

:::
the

::::::
vector

::::::::
pvx, vyq.

::::::::::
Indicating

:::
the

:::::::::
coordinate

:::::::
system

:::
as

::
a
:::::::::
subscript

:::::
after

::::
the

:::::::
bracket

::::
can

::::::
avoid

::::
any

:::::::::
confusion:

:::::::::::::::::::::::
~v “ p}~v}, qqrq “ pvx, vyqxy.

:

::::::
Links

[
:::::::
Vectors

::::
and

::::::
vector

:::::::::
operations

::::::::::
explained

::
by

:::::::::::::
3Blue1Brown ]

https://www.youtube.com/watch?v=fNk_zzaMoSs

[
:::::
More

::::::
vector

:::::::::::
illustrations

::::
and

::::::::::
definitions

:::::
from

:::::::::
Wikipedia

:
]

https://en.wikipedia.org/wiki/Euclidean_vector

::::::::::
Exercises

E3.1
::::::
Given

:::
the

::::::::
vectors

:::::::::::
~v1 “ p2, 1q,

::::::::::::
~v2 “ p2, ´1q,

:::::
and

::::::::::
~v3 “ p3, 3q,

::::::::
calculate

:::
the

:::::::::
following

:::::::::::
expressions:

:

::
a)

::::::
~v1 `~v2: ::

b)
::::::::
~v2 ´ 2~v1 ::

c)
::::::::::
~v1 `~v2 `~v3:

E3.2
:::::::
Express

:::
the

:::::::::
following

:::::::
vectors

::
as

::::::::::::
components:

:

::
a)

:::::::::::
~v1 “ 10=30˝

: ::
b)

:::::::::::::
~v2 “ 12=´90˝

: ::
c)

:::::::::::
~v3 “ 3=170˝

:

E3.3
:::::::
Express

:::
the

:::::::::
following

:::::::
vectors

::
in

:::::::::::::::::::
length-and-direction

::::::::
notation:

::
a)

:::::::::
~u1 “ p4, 0q

: ::
b)

:::::::::
~u2 “ p1, 1q

: ::
c)

:::::::::::
~u3 “ p´1, 3q
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3.4 Vector products

Since adding two vectors ~v and ~w corresponds to adding their
components pvx ` wx, vy ` wy, vz ` wzq, you might logically think
thatthe product of two vectors also corresponds to the product
of their components pvxwx, vywy, vzwzq, but this type of product
is not used. Instead, we’ll

::::
We’ll

:::::
now

:
define the dot product and

the cross product, which allow us to perform useful geometric
operations with :

:::::
two

::::::::::
geometric

::::::::::
operations

:::::::
useful

::::
for

::::::::
working

::::
with

:::::::::::::::::
three-dimensional vectors.

Dot product
The dot product takes two vectors as inputs and produces a single,
real number as an output:

¨ : R3
ˆ R3

Ñ R.

The dot product between two vectors
:::
the

::::::
vector

:::::::::::::
~v “ pvx, vy, vzq

::::
and

:::
the

::::::
vector

:::::::::::::::
~w “ pwx, wy, wzq

:
can be computed using either the alge-

braic formula,
~v ¨ ~w ” “:: vxwx ` vywy ` vzwz,

or the geometric formula,

~v ¨ ~w ” “:: }~v}}~w} cospjq, :

where j is the angle between the two vectors. Note the value of the
dot product depends on the vectors’ lengths and the cosine of the
angle between them.

The name dot product comes from the symbol used to denote it. It
is also known as the scalar product, since the result of the dot product
is a scalar number—a number that does not change when the basis
changes. The dot product is also sometimes called the inner product.

We can combine the algebraic and the geometric formulas for the
dot product to obtain the formula,

cospjq “
~v ¨ ~w

}~v}}~w}
“

vxwx ` vywy ` vzwz

}~v}}~w}
and j “ cos´1

pcospjqq.

This formula makes it possible to find the angle between two vectors
if we know their components.
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The geometric factor cospjq depends on the relative orientation
of the two vectors as follows:

• If the vectors point in the same direction, then
cospjq “ cosp0˝

q “ 1, so ~v ¨ ~w “ }~v}}~w}.

• If the vectors are perpendicular to each other, then
cospjq “ cosp90˝

q “ 0, so ~v ¨ ~w “ 0.

• If the vectors point in exactly opposite directions, then
cospjq “ cosp180˝

q “ ´1, so ~v ¨ ~w “ ´}~v}}~w}.

The dot product is defined for vectors of any dimension; as long as
two vectors have the same number of components

:::
are

:::::::
defined

:::::
with

::::::
respect

:::
to

:::
the

:::::
same

:::::
basis, we can compute their dot product

:::
the

:::
dot

:::::::
product

::::::::
between

:::::
them.

Cross product
The cross product takes two vectors as inputs and produces another
vector as the output:

ˆ : R3
ˆ R3

Ñ R3.

The cross product of two vectors is perpendicular to both vectors:

~v ˆ ~w “ t a vector perpendicular to both ~v and ~w u P R3.

If you take the cross product of one vector pointing in the x-direction
with another vector pointing in the y-direction, the result will be a
vector in the z-direction: ı̂ ˆ ‚̂ “ k̂. The name cross product comes
from the symbol used to denote it. It is also sometimes called the
vector product, since the output of this operation is a vector.

The cross products of individual basis elements are defined as

ı̂ ˆ ‚̂ “ k̂, ‚̂ ˆ k̂ “ ı̂, k̂ ˆ ı̂ “ ‚̂.

:::::
Look

::
at

::::::
Figure

::::
3.10

:::
on

:::::
page

::::
223

::::
and

::::::::
imagine

:::
the

:::::::
vectors

::̂
ı,

::
‚̂,

::::
and

:̂
k

::::::::
pointing

:::::
along

::::
each

:::::
axis.

:::
Try

:::
to

::::::::
visualize

:::
the

:::::
three

:::::::::
equations

:::::::
above.

The cross product is anticommutative, which means swapping the
order of the inputs introduces a negative sign in the output:

‚̂ ˆ ı̂ “ ´k̂, k̂ ˆ ‚̂ “ ´ı̂, ı̂ ˆ k̂ “ ´ ‚̂.

It’s likely that, until now, the products you’ve seen in math have
been commutative, which means the order of the inputs doesn’t mat-
ter. The product of two numbers is commutative ab “ ba, and the
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dot product
::
of

::::
two

:::::::
vectors is commutative ~u ¨~v “ ~v ¨~u, but the cross

product of two vectors is anticommutative ~v ˆ ~w “ ´~w ˆ~v.
For two arbitrary vectors ~a “ pax, ay, azq and ~b “ pbx, by, bzq, the

:::::
Given

:::::
two

:::::::
vectors

:::::::::::::::::
~a “ axı̂ ` ay ‚̂ ` azk̂

::::
and

:::::::::::::::::
~b “ bxı̂ ` by ‚̂ ` bzk̂,

:::::
their

cross product is calculated as

~a ˆ~b: “ p
:

aybz ´ azby, qı̂`p
::

azbx ´ axbz, q ‚̂`p
::

axby ´ aybxqk̂.

The cross product ’s output has a length that is proportional to the
sine of the angle between the vectors:

}~a ˆ~b} “ }~a}}~b} sinpjq.

The direction of the vector p~a ˆ~bq
::::::::::
Computing

::::
the

:::::
cross

::::::::
product

:::::::
requires

::
a
:::::::
specific

::::::::::::
combination

::
of

:::::::::::::::
multiplications

::::
and

:::::::::::
subtractions

::
of

:::
the

::::::
input

:::::::
vectors’

::::::::::::
components.

::::
The

::::::
result

::
of

::::
this

::::::::::::
combination

::
is

:::
the

::::::
vector

:::::
~a ˆ~b

::::::
which is perpendicular to both~a and~b.

:::
The

:::::::
length

::
of

:::
the

:::::
cross

::::::::
product

::
of

::::
two

:::::::
vectors

::
is

::::::::::::
proportional

::
to

:::
the

::::
sine

::
of

:::
the

::::::
angle

::::::::
between

:::
the

::::
two

:::::::
vectors:

:

}~a ˆ~b} “ }~a}}~b} sinpjq.
::::::::::::::::::::

The right-hand rule

Consider the plane formed by the vectors~a and~b. There are actually
two vectors perpendicular to this plane: one above the plane and one
below the plane. We use the right-hand rule to figure out which of
these vectors corresponds to the cross product~a ˆ~b.

Make a fist with your right hand and then extend your thumb,
first finger, and middle finger. When your index finger points in the
same direction as the vector ~a and your middle finger points in the
direction of ~b, your thumb will point in the direction of ~a ˆ~b. The
relationship encoded in the right-hand rule matches the relationship
between the standard basis vectors: ı̂ ˆ ‚̂ “ k̂.

Links
[ A nice illustration

::::
Nice

:::::::::::
illustrations of the cross product ]

http://1ucasvb.tumblr.com/post/76812811092/
https://www.youtube.com/watch?v=eu6i7WJeinw
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The phase, also known as the argument of the complex number
z “ a ` bi is

:::::
given

:::
by

:::
the

:::::::
formula

:

jz”“: arg z “ atan2(b,a) “
: tan´1

pb{aq.

$
’’&

’’%

tan´1` b
a
˘

if a ° 0,
p ` tan´1̀ b

a
˘

if a † 0,
p
2 if a “ 0 and b ° 0,
´

p
2 if a “ 0 and b † 0.

The phase corresponds to the angle that z forms with the real
axis. Note the equality labelled : is true only when a ° 0, because
the function tan´1 always returns numbers in the range r´

p
2 , p

2 s.
Manual corrections of the output of tan´1

pb{aq are required for
complex numbers with a † 0

:::
We

::::::::::
previously

::::
saw

::::
this

:::::::::::::::::::
complicated-looking

::::::::
formula

:::::
with

::::
four

:::::
cases

:::::
when

:::
we

:::::::
talked

:::::
about

::::::::::
converting

:::::
from

:::::::::
Cartesian

:::::::::::
coordinates

::
to

:::::
polar

::::::::::
coordinates

:::
for

::::::
points

::::::::
(Section

::::
1.17)

::::
and

:::::::
vectors

:::::::
(Section

::::
3.2).

:::::
When

::
a
:::::::
certain

:::::::
formula

:::::::
comes

:::
up

:::::
three

:::::
times

:::
in

:
a
::::::

math
:::::
book,

::::
this

::::::
should

::::
tell

::::
you

:::
the

:::::::
author

:::::
really

:::::
wants

:::::
you

::
to

::::::
know

::
it.

::::::::::
Seriously,

::
do

::::
me

::
a

::::::
favour

:::::
and

::::::
revisit

::::
the

:::::::
exercise

:
E1.31

:::::
(page

::::
128)

:::::
and

:::
the

:::::::
exercise E3.3

:::::
(page

::::
228).

Some programming languages
::::::::::
Computer

:::::::
algebra

::::::::
systems pro-

vide the two-input math function
:::::::
inverse

:::::::
tangent

::::::::
function atan2(y,x)that

correctly computes the angle that the vector px, yq makes with the
x-axis in all four quadrants. Because complex numbers behave
like two-dimensional vectors, you can use

:
,
::::::
which

:::
is

:::
the

:::::::
easiest

::::
way

::
to

:::::::::
calculate

:::
the

::::::
phase

:::
jz::::

for
:::
the

:::::::::
complex

:::::::
number

::::::::::
z “ a ` bi.

:::
The

:::::::::
function atan2 to compute their phase

:::::::
handles

:::
all

:::::
four

:::::
cases

::::::::::::
automatically

::::
and

:::::::
always

:::::::::
computes

:::
the

:::::::
correct

:::::
phase

:::
jz.

* * *

In addition to the vector-like properties of
:::::::::
operations

::::
we

::::
can

:::::::
perform

:::
on

:
complex numbers, like

:::::::::
computing

:::::
their

:
magnitude and

phase, we can also perform other operations with
::
on complex num-

bers that are not defined for vectors. The set of complex numbers
C is a field. This means, in addition to the addition and subtraction
operations, we can also perform multiplication and division with
complex numbers.

Multiplication

The product of two complex numbers is computed using the usual
rules of algebra:

pa ` biqpc ` diq “ pac ´ bdq ` pad ` bcqi.
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pa ` biqpc ` diq
::::::::::::

“ apc ` diq ` bipc ` diq
:::::::::::::::::::

“ ac ` adi ` bci ` bdi2
:::::::::::::::::::

“ pac ´ bdq ` pad ` bcqi.
:::::::::::::::::::::

In the polar representation, the product formula is

pp=fqpq=yq “ pq=pf ` yq.

To multiply two complex numbers, multiply their magnitudes and
add their phases.

::::::::
Example

:::::
Verify

::::
that

::::::::::::::::::
z z “ a2

` b2
“ |z|

2.

Division

Let’s look at the procedure for dividing complex numbers:

pa ` biq
pc ` diq

“
pa ` biq
pc ` diq

pc ´ diq
pc ´ diq

“ pa ` biq
pc ´ diq

pc2 ` d2q
“ pa ` biq

c ` di
|c ` di|2

.

In other words, to divide the number z by the complex number s,
compute s̄ and |s|

2
“ ss̄

:
s
::::
and

:::::::
|s|

2
“ ss

:
and then use

z{s “ z
s̄

|s|2
s

|s|2
:::

.

You can think of
s̄

|s|2 :::

s
|s|2

as being equivalent to s´1.

Cardano’s example One of the earliest examples of reasoning in-
volving complex numbers was given by Gerolamo Cardano in his
1545 book Ars Magna. Cardano wrote, “If someone says to you, di-
vide 10 into two parts, one of which multiplied into the other shall
produce 40, it is evident that this case or question is impossible.” We
want to find numbers x1 and x2 such that x1 ` x2 “ 10 and x1x2 “ 40.
This sounds kind of impossible. Or is it?

“Nevertheless,” Cardano said, “we shall solve it in this fashion:

x1 “ 5 `

?

15i :and :x2 “ 5 ´

?

15i.”

When you add x1 ` x2 you obtain 10. When you multiply the two
numbers the answer is

x1x2 “

´
5 `

?

15i
¯´

5 ´

?

15i
¯

“ 25 ´ 5
?

15i ` 5
?

15i ´

?

15
2
i2 “ 25 ` 15 “ 40.
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Hence 5 `

?

15i and 5 ´

?

15i are two numbers whose sum is 10 and
whose product is 40.

Example 2 Compute
:::::
Let’s

::::::::
compute the product of i and ´1 . Both

i and ´1 have a magnitude of 1 but different phases. The phase
of

::::
and

::
i.

::::
The

:::::::
answer

:::
is

:::::::::
obviously

:::
´i,

::::
but

:::::
let’s

::::
look

:::
at

:::
this

:::::::
simple

::::::::::
calculation

:::::::::::::
geometrically.

::::
The

::::::
polar

:::::::::::::
representation

:::
of

:::
the

::::::::
number

i is
::::
1= p

2 .
:::::::::::::::

Multiplication
::
of

::::
any

:::::::::
complex

:::::::
number

:::::::::::
z “ |z|=jz :::

by
:
i

:::::::::::
corresponds

::
to

:::::::
adding

:

p
2 (90˝), while ´1 has phase p (180˝). The

product of these two numbers is

piqp´1q “ p1= p
2 qp1=pq “ 1= p

p
2 ` pq “ 1= 3p

2 “ ´i.

Multiplication
::
to

:::
the

::::::
phase

::
of

:::
the

::::::::
number:

:

zi “ p|z|=jzqp1= p
2 q “ p|z| ¨ 1q=pjz `

p
2 q “ |z|=pjz `

p
2 q.

:::::::::::::::::::::::::::::::::::::::::::::::::

::
In

::::::
other

:::::::
words,

::::::::::::::
multiplication

:
by i is effectively a rotation by

:::::::::
equivalent

:::
to

::::::::
applying

::
a p

2 (90˝) to the left
::::::::::::::::
counterclockwise

:::::::
rotation

::
in

::::
the

::::::::
complex

:::::::
plane.

:::::
We

:::::
can

:::::::::
therefore

:::::::::
interpret

::::
the

:::::::
answer

:::::::::::
p´1qpiq “ ´i

:::
as

:::
the

:::::::::
complex

::::::::
number

::::::::::
´1 “ 1=p

::::::::::::
experiencing

::
a

::

p
2

:::::::
rotation

::
to

::::::
arrive

::
at

:::::::::::::::::::::::
1=pp `

p
2 q “ 1= 3p

2 “ ´i.

Example 3 Find the polar representation of z “ ´3 ´ i and compute
z6. Let’s denote the polar representation of z by z “ r=j as shown
in Figure 3.14. We find r “

?

32 ` 12 “

?

10 and j “ tan´1
p

1
3 q ` p “

0.322 ` p. Using the polar representation, we can easily compute z6:

z6
“ r6=p6jq “ p

?

10q
6= 6p0.322 ` pq “ 103=1.932 ` 6p “ 103=1.932.

Note we can ignore multiples of 2p in the phase. In component
form,

:::
We

::::
thus

:::::
find

::::
the

::::::
value

::
of

:
z6 is equal to 1000 cosp1.932q `

1000 sinp1.932qi “ ´353.4 ` 935.5i.

Re

Im

0
r1

3

z “ ´3 ´ i

j

Figure 3.14: The complex number z “ 3 ´ i has magnitude r “
?

10 and
phase j “ 0.322 ` p “ 3.463.
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3.5 COMPLEX NUMBERS 237

Fundamental theorem of algebra

The solutions to any polynomial equation a0 ` a1x ` ¨ ¨ ¨ ` anxn
“ 0

are of the form
:::::::::::
fundamental

::::::::
theorem

:::
of

:::::::
algebra

::::::
states

:::::
that

::::
any

::::::::::
polynomial

::
of

:::::::
degree

::
n,

:

z “ a ` bi.

In particular, any polynomial Ppxq of nth degree
:::::::::::::::::::::::::::::::
Ppxq “ anxn

` ¨ ¨ ¨ ` a2x2
` a1x ` a0,

can be written as

Ppxq “ an
:

px ´ z1qpx ´ z2q ¨ ¨ ¨ px ´ znq,

where zi P C are the polynomial’s complex roots.
:::::
roots.

::::
In

:::::
other

::::::
words,

:::
the

:::::::::
equation

::::::::
Ppxq “ 0

:::
has

::
n
:::::::::
solutions:

::::
the

::::::::
complex

::::::::
numbers

::
z1,

::::
z2,

::::
. . . ,

:::
zn.

::
Before today, you might have said the equation

x2
` 1 “ 0

::::::::
x2

` 1 “ 0
:

has no solutions. Now you know its solutions
are the complex numbers z1 “ i and z2 “ ´i.

The theorem is “fundamental” because it tells us wewon’t ever
::
’ll

:::::
never

:
need to invent any

:::::::
numbers

:
“fancier” set of

::::
than

:::
the

::::::::
complex

numbers to solve polynomial equations. Recall
::
To

:::::::::::
understand

::::
why

:::
this

::
is

::::::::::
important,

:::::
recall

:
that each set of numbers is associated with a

different class of equations.
:::::
Figure

::::
1.2

::
on

:::::
page

::
8
::::::
shows

::::
the

::::::
nested

:::::::::::
containment

:::::::::
structure

::
of

::::
the

:::::::
number

::::
sets

:::
N,

:::
Z,

:::
Q,

:::
R,

::::
and

:::
C.

:
The

natural numbers N appear as solutions of the equation m ` n “ x,
where m and n are natural numbers (denoted m, n P N). The integers
Z are the solutions to equations of the form x ` m “ n, where m, n P

N. The rational numbers Q are necessary to solve for x in mx “ n,
with m, n P Z. To find the solutions of x2

“ 2, we need the real num-
bers R. The process of requiring new types of numbers for solving
more complicated types of equationsstops at

::::
And

:::
in

::::
this

:::::::
section,

:::
we

:::::::
learned

::::
that

::::
the

::::::::
solutions

:::
to

:::
the

:::::::::
equation

::::::::
x2

“ ´1
:::
are

::::::::
complex

::::::::
numbers C; any polynomial equation—no .

:::
At

::::
this

:::::
point

::::
you

::::::
might

::
be

:::::::::::
wondering

::
if

::::::
you’re

:::::::::
attending

::::::
some

::::
sort

:::
of

:::::
math

::::::
party,

::::::
where

::::::::::::::
mathematicians

:::::
write

::::::
down

:::::::::::
complicated

:::::::::
equations

:::::::::
and—just

:::
for

:::
the

:::
fun

:::
of

:::::::::
it—invent

:::::
new

::::
sets

::
of

:::::::::
numbers

::
to

::::::::
describe

::::
the

:::::::::
solutions

::
to

:::::
these

:::::::::
equations.

::::
Can

::::
this

:::::::
process

::::::::
continue

::::::::::::
indefinitely?

:

:::::
Nope.

:::::
The

::::::
party

:::::
ends

:::::
with

:::
C.

:::::
The

::::::::::::
fundamental

:::::::::
theorem

::
of

:::::::
algebra

::::::::::
guarantees

::::
that

::::
any

:::::::::::
polynomial

:::::::::
equation

::::
you

::::::
could

:::::
come

::
up

:::::::::
with—no

:
matter how complicated it is—has solutions that are

complex numbers C.

Euler’s formula

You already know cos q is a shifted version of sin q, so it’s clear these
two functions are related. It turns out the exponential function is also
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related to sin and cos
::::::
related

::
to

:::
the

:::::::::
functions

::::
sine

::::
and

::::::
cosine. Lo and

behold, we have Euler’s formula
::::::
Euler’s

::::::
formula:

eiq
“ cos q ` i sin q .

Inputting an imaginary number to the exponential function outputs
a complex number that contains both cos and sin. Euler’s formula
gives us an alternate notation for the polar representation of complex
numbers: z “ |z|=jz “ |z|eijz .

If you want to impress your friends with your math knowledge,
plug q “ p into the above equation to find

eip
“ cosppq ` i sinppq “ ´1,

which can be rearranged into the form, epi
` 1 “ 0. This equation

::
to

::::::
obtain

::::
the

:::::::::
equation

:::::::::::
eip

` 1 “ 0.
::::::

The
:::::::::

equation
:::::::::::

eip
` 1 “ 0

::
is

:::::
called

:::::::
Euler’s

:::::::
identity,

::::
and

::
it
:
shows a relationship between the five

most important numbers in all of mathematics: Euler’s number
e “ 2.71828 . . . , p “ 3.14159 . . ., the imaginary number i, 1, and zero.
It’s kind of cool to see all these important numbers reunited in one
equation, don’t you agree?

::::
One

::::
way

::
to

:::::::::::
understand

:::
the

::::::::
equation

:::::::::::
eip

` 1 “ 0,
::
is

::
to

:::::
think

::
of

:::
eip

::
as

:::
the

:::::
polar

::::::::::::::
representation

::
of

::::
the

::::::::
complex

:::::::
number

:::::::::::::::
z “ 1eip

“ 1=p,
:::::
which

::
is
::::
the

:::::
same

::
as

::
1

:::::::
rotated

:::::::::::::::
counterclockwise

:::
by

::
p

:::::::
radians

::::::
(180˝)

::
in

:::
the

::::::::
complex

::::::
plane.

:::
We

::::::
know

:::::::::::::::
eip

“ 1=p “ ´1
::::
and

::
so

:::::::::::
eip

` 1 “ 0.

De Moivre’s formula

By replacing q in Euler’s formula with nq, we obtain de Moivre’s
formula:

pcos q ` i sin qq
n

“ cos nq ` i sin nq.

De Moivre’s formula makes sense if you think of the complex num-
ber z “ eiq

“ cos q ` i sin q, raised to the nth power:

pcos q ` i sin qq
n

“ zn
“ peiq

q
n

“ einq
“ cos nq ` i sin nq.

Setting n “ 2 in de Moivre’s formula, we can derive the double angle
formulas (page 117) as the real and imaginary parts of the following
equation:

pcos2 q ´ sin2 qq ` p2 sin q cos qqi “ cosp2qq ` sinp2qqi.

Links
[ Mini tutorial on the complex numbers

:::::::
Intuitive

::::::
proof

:::
of

::::
the

:::::::::::
fundamental

::::::::
theorem

::
of

::::::::
algebra ]

:::::::::::::::::::::::::::::::::::::::::::::
https://www.youtube.com/watch?v=shEk8sz1oOw
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P3.8 Find a unit vector that is perpendicular to both ~u “ p1, 0, 1q and ~v “

p1, 2, 0q.
Hint: Use the cross product.

P3.9 Find a vector that is orthogonal to both ~u1 “ p1, 0, 1q and ~u2 “ p1, 3, 0q,
and whose dot product with the vector ~v “ p1, 1, 0q is equal to 8.

P3.10 Compute the following expressions:

a)
?

´4 b)
2 ` 3i
2 ` 2i

c) e3i
p2 ` iqe´3i

P3.11 Solve for x P C in the following equations:

a) x2
“ ´4 b)

?
x “ 4i

c) x2
` 2x ` 2 “ 0 d) x4

` 4x2
` 3 “ 0

Hint: To solve d), use the substitution u “ x2.

P3.12 Given the numbers z1 “ 2 ` i, z2 “ 2 ´ i, and z3 “ ´1 ´ i, compute

a) |z1| b)
z1
z3

c) z1z2z3

P3.13 A real business is a business that is profitable. An imaginary business
is an idea that is just turning around in your head. We can model the real-
imaginary nature of a business project by representing the project state as a
complex number p P C. For example, a business idea is described by the
state po “ 100i. In other words, it is 100% imaginary.

To bring an idea from the imaginary into the real, you must work on it.
We’ll model the work done on the project as a multiplication by the complex
number e´iah, where h is the number of hours of work and a is a constant
that depends on the project. After h hours of work, the initial state of the
project is transformed as follows:

::
po:::

has
:::::::

become
:
p f “ e´iah po. Working

on the project for one hour “rotates” its state by ´a rad
:::
rad, making it less

imaginary and more real
::::
more

::::
real

:::
and

::::
less

::::::::
imaginary.

If you start from an idea po “ 100i and the cumulative number of hours
invested after t weeks of working on the project is hptq “ 0.2t2, how long
will it take for the project to become 100% real? Assume a “ 2.904 ˆ 10´3.
Hint: A project is 100% real if Retpu “ p.

P3.14 A farmer with a passion for robotics has built a prototype of a robotic
tractor. The tractor is programmed to move with a speed of 0.524 km/h and
follow the direction of the hour-hand on a conventional watch. Assume the
tractor starts at 12:00 p.m. (noon) and is left to roam about in a field until 6:00
p.m. What is the shape of the trajectory that the tractor will follow? What is
the total distance travelled by the tractor after six hours?
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The radius of the trajectory traced by someone located at a latitude
of 45˝ is given by r “ R cosp45˝

q “ 4.5025 ˆ 106[m], where R “

6.3675 ˆ 106[m] is the radius of the Earth. Though it may not feel like
you’re moving, you are actually hurtling through space at a speed of

vt “ rw “ 4.5025 ˆ 106
ˆ 7.2921 ˆ 10´5

“ 328.32[m/s],

which is equal to 1181.95[km/h]. Imagine that! You can attempt to
present this fact if you are ever stopped by the cops for a speeding
infraction: “Yes officer, I was doing 130[km/h], but this is really a
negligible speed relative to the 1200[km/h] the Earth is doing around
its axis of rotation.”

Three dimensions
For some problems involving circular motion, we’ll need to consider
the z-direction in the force diagram. In these cases, the best approach
is to draw the force diagram as a cross section that is perpendicular
to the tangential direction. Your diagram should show the r̂ and ẑ
axes.

Using the force diagram, you can find all forces in the radial and
vertical directions, as well as

::::
and solve for accelerations ar ,

:::
and

:
az.

Remember, you can always use the relation ar “
v2

t
R , which connects

the value of ar with the tangential velocity vt and the radius of rota-
tion R.

Example Japanese people of the future design a giant racetrack for
retired superconducting speed trains. The shape of the race track is
a big circle with radius R “ 3[km]. Because the trains are magnet-
ically levitated, there is no friction between the track and the train
µs “ 0, µk “ 0. What is the bank angle required for the racetrack so
trains moving at a speed of exactly 400[km/h] will stay on the track
without moving laterally?

We begin by drawing a force diagram that shows a cross section
of the train in the r̂ and ẑ directions (see Figure 4.16). The bank angle
of the racetrack is q. This is the unknown we’re looking for. Be-
cause of the frictionless-ness of levitated superconducting suspen-
sion, there cannot be any force of friction Ff . Therefore, the only
forces acting on the train are its weight ~W and the normal force ~N.

The next step is to write two force equations that represent the r̂
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4.7 UNIFORM CIRCULAR MOTION 291

Figure 4.16: Force diagram
:::::::
Diagram showing the forces acting on a magnet-

ically levitating train
:::
that

::
is travelling on a circular racetrack of radius R and

bank angle q.

and ẑ directions:

ÿ
Fr “ N sin q “ mar “ m

v2
t

R
ñ N sin q “ m

v2
t

R
,

ÿ
Fz “ N cos q ´ mg “ 0 : ñ N cos q “ mg.

Note how the normal force ~N is split into two parts. The verti-
cal component counterbalances the train’s weight so it doesn’t slide
down the track. The component of ~N in the r̂-direction is the force
that causes the train’s rotational motion.

We want to solve for q in the above equations. It’s a common
trick to solve equations containing multiple trigonometric functions
by dividing one equation by the other. Doing this, we obtain

N sin q

N cos q
“

m v2
t

R
mg

ñ tan q “
v2

t
Rg

.

The final answer is q “ tan´1
´

v2
t

gR

¯
“ tan´1

ˆ
p400ˆ

1000
3600 q2

9.81ˆ3000

˙
“ 22.76˝. If

the angle were any steeper, the trains would fall toward the track’s
centre. If the bank angle were any shallower, the trains would fly off
to the side. The angle 22.76˝ is just right.

Discussion
Radial acceleration

In the kinematics section we studied problems involving linear accel-
eration, in which an acceleration~a acted in the direction of the veloc-
ity, causing a change in the magnitude of the velocity ~v.

Circular motion deals with a different situation in which the ob-
ject’s speed }~v} remains constant while its velocity ~v changes direc-
tion. At each point along the circle, the object’s velocity points along
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Chapter 5

Calculus

Calculus is useful math. We use calculus to solve problems in physics,
chemistry, computing, biology, and many other areas of science. You
need calculus to perform the quantitative analysis of how functions
change over time (derivatives), and to calculate the total amount of
a quantity that accumulates over a time period (integrals).

The language of calculus will allow you to speak precisely about
the properties of functions and better understand their behaviour.
You will learn how to calculate the slopes of functions, how to find
their maximum and minimum values, how to compute their inte-
grals, and other tasks of practical importance.

5.1 Introduction
In Chapter 2, we developed an intuitive understanding of integrals.
Starting with the knowledge of an object’s acceleration function over
time, we used the integration operation to calculate the object’s ve-
locity function and its position function. We’ll now take a closer look
at the techniques of calculus using precise mathematical statements,
and study how these techniques apply to other problems in science.

A strong knowledge of functions is essential for your understand-
ing of the new calculus concepts. I recommend revisiting Section 1.12
(page 75) to remind yourself of the functions introduced therein. I
insist on this. Go! Seriously, there is no point in learning that the
derivative of the function sinpxq is the function cospxq if you don’t
have a clue what sinpxq and cospxq are.

Before we introduce any formal definitions , formulasor derivations
:::
and

::::::::
formulas, let’s demonstrate how calculus is used in a real-world ex-
ample.

331



DIFFCHANGE



DIFFCHANGE



5.2 OVERVIEW 335

use the variables u, t, and t to denote the inputs. The function’s out-
put is denoted f pxq and is usually identified with the y-coordinate in
graphs.

The derivative function, denoted f 1
pxq, d

dx f pxq, d f
dx , or dy

dx , describes
the rate of change of the function f pxq. For example, the constant func-
tion f pxq “ c has derivative f 1

pxq “ 0 since the function f pxq does
not change at all.

The derivative function describes the slope of the graph of the
function f pxq. The derivative of a line f pxq “ mx ` b is f 1

pxq “ m
since the slope of this line is equal to m. In general, the slope of a
function is different at different values of x. For a given choice of
input x “ x0, the value of the derivative function f 1

px0q is equal to
the slope of f pxq as it passes through the point px0, f px0qq.

x

f pxq

0 1 2 3

1

2

3

f pxq “
1
2 x2

f 1
p1q “ 1

f 1
p2q “ 2

f 1
p´0.5q “ ´0.5

Figure 5.2: The diagram illustrates how to compute the derivative of the
function f pxq “

1
2 x2 at three different points on the graph of the function.

To calculate the derivative of f pxq at x “ 1, we can “zoom in” near the
point p1, 1

2 q and draw a line that has the same slope as the function. We can
then calculate the slope of the line using a rise-over-run calculation, aided
by the mini coordinate system that is provided. The derivative calculations
for x “ ´

1
2 and x “ 2 are also shown. Note that the slope of the function

is different for each value of x. What is the value of the derivative at x “ 0?
Can you find the

:
Is

:::::
there

:
a
:
general pattern

:::
that

::::::::
describes

:::
the

:::::
slope

::
of

:::
the

:::::
graph

::
for

:::
all

:
x?

The derivative function f 1
pxq describes the slope of the graph of the
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function f pxq for all inputs x P R. The derivative function is a func-
tion of the form f 1 : R Ñ R. In our study of mechanics, we learned
about the position function xptq and the velocity function vptq, which
describe the motion of an object over time. The velocity is the deriva-
tive of the object’s position with respect to time vptq “

dx
dt “ x1

ptq.
The derivative function f 1

pxq is a property of the original function
f pxq. Indeed, this is where the name derivative comes from: f 1

pxq is
not an independent function—it is derived from the original function
f pxq. In mechanics, the function xptq describes an object’s position as
a function of time, and the velocity function vptq describes one prop-
erty of the position function, namely, how fast the object’s position is
changing. Similarly, the acceleration function aptq describes the rate
of change of the function vptq.

The derivative operator, denoted d
dx or simply D, takes as input

a function f pxq and produces as output the derivative function
f 1

pxq. The derivative operator notation is useful because it show the
derivative is an operation you do to a function :

:::::
makes

::
it
:::::
clear

::::
that

:::::::::::::
differentiation

::
is

::
an

::::::::
operation

:::
you

::::
can

:::::
apply

::
to

::::
any

::::::::
function

::
to

::::::
obtain

::
its

::::::::::
derivative:

:

f 1
pxq”“:

d
dx

f pxq.

The derivative operator
::

d
dx acts on the original function f pxq to pro-

duce the derivative function f 1
pxq, which describes the rate of change

of f for all x. Applying the derivative operator to a function is also
called “taking the derivative” of a function.

For example, the derivative of the function f pxq “
1
2 x2 is the func-

tion f 1
pxq “ x. We can describe this relationship as p

1
2 x2

q
1

“ x or as
d

dx p
1
2 x2

q “ x. You should flip back to Figure 5.2 and use the graph
to prove to yourself that the slope of f pxq “

1
2 x2 is described by

f 1
pxq “ x everywhere on the graph.

Differentiation techniques

Section 5.6 will
:::::
We’ll formally define the derivative operation

::
in

::::::
Section

::::
5.6. Afterward, we’ll develop

::::::
various

:
techniques for com-

puting derivatives, or taking derivatives. Computing derivatives is
not a complicated task once you learn how to use the derivative for-
mulas. If you flip ahead to Section 5.7 (page 364), you’ll find a table
of formulas for taking the derivatives of common functions. In Sec-
tion 5.8, we’ll learn the basic

:::::::
general rules for computing derivatives

of sums, products, and compositions of the basic functions.
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Sequences
So far, we’ve studied functions defined for real-valued inputs x P R.
We can also study functions defined for natural number inputs n P

N. These functions are called sequences.
A sequence is a function of the form a : N Ñ R. The sequence’s

input variable is usually denoted n or k, and it corresponds to the
index or number in the sequence. We describe sequences either by
specifying the formula for the nth term in the sequence or by listing
all the values of the sequence:

an, n P N : ô :
pa0, a1, a2, a3, a4, . . . q .

Note the new notation for the input variable as a subscript. This is
the standard notation for describing sequences. Also note the se-
quence continues indefinitely.

An example of a sequence is

an “
1
n2 , n P N`

˚

:: ô :

ˆ
1
1

,
1
4

,
1
9

,
1
16

,
1

25
, . . .

˙
.

This sequence is only defined for strictly positive natural numbers
N` “ t1, 2, 3, 4, . . .u

:::::::::::::::::
N˚

“ t1, 2, 3, 4, . . .u
:
as the input n “ 0 yields a

divide-by-zero error.
The fundamental question we can ask about sequences is

whether they converge in the limit when n goes to infinity. For
instance, the sequence an “

1
n2 converges to 0 as n goes to infinity.

We can express this fact with the limit expression lim
nÑ8

1
n2 “ 0.

We’ll discuss sequences in more detail in Section 5.18.

Series
Suppose we’re given a sequence an and we want to compute the sum
of all the values in this sequence.

To describe the sum of
::
the

:
3rd,

::
the

:
4th, and

:::
the

:
5th elements of

::
in

the sequence an, we turn to summation notation:

a3 ` a4 ` a5”“
:

ÿ

3§n§5
an”“

:

5ÿ

n“3
an .

The capital Greek letter sigma stands in for the word sum, and the
range of index values included in this sum is denoted below and
above the summation sign.

The partial sum of the sequence values an ranging from n “ 0
until n “ N is denoted as

SN “

Nÿ

n“0
an “ a0 ` a1 ` a2 ` ¨ ¨ ¨ ` aN´1 ` aN .
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The series
∞

an is the sum of all the values in the sequence an:

ÿ
an”“: S8 “ lim

NÑ8

SN “

8ÿ

n“0
an “ a0 ` a1 ` a2 ` a3 ` a4 ` ¨ ¨ ¨ .

Note this is an infinite sum.

Series techniques

The main mathematical question we’ll study with series is the ques-
tion of their convergence. We say a series

∞
an converges if the infinite

sum S8 ”
∞

nPN an ::::::::::::
S8 “

∞
nPN an:equals some finite number L P R.

:
:

S8 “

8ÿ

n“0
an “ L ñ the series

ÿ
an converges.

We call L the limit of the series
∞

an.
If the infinite sum S8 ”

∞
nPN an grows to infinity

:::::::::::::
S8 “

∞
nPN an

::::
does

::::
not

::::::::
converge, we say the series

∞
an diverges.

S8 “

8ÿ

n“0
an “ ˘8 ñ the series

ÿ
an diverges.

:::::::::
Examples

::
of

:::::::::
divergent

:::::
series

:::::::
include

::::::
series

:::
that

::::::
“blow

::::
up”

::
to

:::::::
infinity

::
or

::::::::
negative

:::::::
infinity,

:::
or

::::::
series

::::
that

:::::::
oscillate

:::::::::
between

::::::::
different

::::::
values

:::
and

::::
fail

::
to

::::::
“settle

:::::::
down”

:::::
close

::
to

:
a
::::::
single

:::::
value

:::
L.

The main series technique you need to learn is how to spot the
differences between series that converge and series that diverge.
You’ll learn how to perform different convergence tests on the terms
in the series, which will indicate whether the infinite sum converges
or diverges.

Applications

Series are a powerful computational tool. We can use series to com-
pute approximations to numbers and functions.

For example, the number e can be computed as the following se-
ries:

e “

8ÿ

n“0

1
n!

“ 1 ` 1 `
1

2 ¨ 1
`

1
3 ¨ 2

`
1

4 ¨ 3 ¨ 2
`

1
5 ¨ 4 ¨ 3 ¨ 2

` ¨ ¨ ¨ .

The factorial operation n! is the product of n times all integers
smaller than n: n! “ npn ´ 1qpn ´ 2q ¨ ¨ ¨ 3 ¨ 2 ¨ 1. As we compute more
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348 CALCULUS

at e either. The number e is a limit. We can only compute numbers
that approach e.

The computer scientist can obtain approximations to e by com-
puting the partial sum of the first N

:::::
N ` 1

:
terms in the series:

eN “

Nÿ

n“0

1
n!

“ 1 ` 1 `
1
2!

`
1
3!

`
1
4!

` ¨ ¨ ¨ `
1

N!
.

Let us denote as e the required precision of the approximation. The
more terms she adds, the more accurate the approximation eN will
become. She can always choose a value for N such that the approxi-
mation eN satisfies |eN ´ e| † e.

The computer scientist’s first answer has a precision of e “ 10´15.
To obtain an approximation to e with this precision, it is sufficient
to compute

:::::::
accurate

::
to

:::
15

:::::::::
decimals,

:::
the

::::::::::
computer

:::::::
scientist

:::::
uses

:::
the

:::::::::
parameter

:
N “ 19 terms in the series:

::
in

::::
the

:::::::
general

::::::::
formula,

::::
and

:::::::::
computes

:::
the

::::::::::
summation

:

e19 “

19ÿ

n“0

1
n!

“ 1 ` 1 `
1
2!

`
1
3!

` ¨ ¨ ¨ `
1

19!
.

The resulting approximation e19 is a number somewhere in the in-
terval pe ´ 10´15, e ` 10´15

q. We can also say the absolute value of
the difference between e19 and the true value of e is smaller than e:
|e19 ´ e| § 10´15.

When the mathematician asks for a precision of e1
“ 10´25, the

computer scientists takes
:::::::
scientist

::::
sets

:::
the

::::::::::
parameter

::
to N “ 26 terms

in the series to produce
::::::::
formula:

e26 “

26ÿ

n“0

1
n!

“ 1 ` 1 `
1
2!

`
1
3!

` ¨ ¨ ¨ `
1

19!
` ¨ ¨ ¨ `

1
26!

,

which satisfies |e26 ´ e| § e1. In the third step, the mathematician
demands a precision e2

“ 10´50, and the CS student computes
:::::::::
computer

:::::::
scientist

:::::
uses N “ 42 terms in the series

::
in

::::
her

:::::::
formula, to

produce an approximation satisfying
:::
e42 ::::

that
:::::::
satisfies

:
|e42 ´ e| § e2.

In principle, the game can continue indefinitely because the com-
puter scientist has figured out a process for computing increasingly
accurate approximations.

This scenario embodies precisely how mathematicians think about
limits. It’s a bit like a game: the e,N-game. The object of the game
is for the CS student to convince the mathematician she knows the
number e. The mathematician chooses the precision e. To prove



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



354 CALCULUS

Remember, the two-sided limit limxÑa requires both the left and the
right limit to exist and to be equal. Thus, the definition of continuity
implies the following equality:

lim
xÑa´

f pxq “ f paq “ lim
xÑa`

f pxq.

Consider
::
In

:::::::
words,

::::
this

::::::
means

:::::
that

:
a
:::::::::

function
::::
f pxq

::
is
:::::::::::

continuous
::
at

:::::
x “ a

::
if
::::
the

:::::
limit

:::::
from

:::
the

::::
left

::::::::::::
limxÑa´ f pxq

:::::
and

:::
the

:::::
limit

:::::
from

:::
the

:::::
right

::::::::::::
limxÑa` f pxq

:::
are

:::::
both

:::::
equal

::
to

::::
the

:::::
value

:::
of

:::
the

::::::::
function

::
at

:::::
x “ a.

:

::::
Take

::
a
::::::::
moment

:::
to

:::::
think

::::::
about

:
the mathematical definition of

continuity given in the equation above
:
at

::
a
::::::

point. Can you see
how it connects

:::::::
connect

:::
the

:::::
math

:::::::::
definition

:
to the intuitive idea of

continuous functions as functions that
::::
that

:::::::::
functions

:::
are

::::::::::
continuous

:
if
:::::
they can be drawn without lifting the pen?

Most functions we’ll study in calculus are continuous, but not all
functions are. Functions that are not defined for some value, as well
as functions that make sudden jumps, are not continuous.

For example, consider the function
:::::::::::::
f : Rzt0u Ñ R

:::::::
defined

:::
by

f pxq “
|x ´ 3|

x ´ 3
“

"
1 if x ° 3,

´1 if x † 3.

This function
:::
The

::::::::
function

::
f
::
is

:::::::::::
continuous

:::::::::::
everywhere

:::
on

:::
the

::::
real

:::
line

:::::::
except

::
at

::::::
x “ 3.

:::::::
Since

::::
this

::::::::
function

::
f
::
is
::::::::::

“missing”
:::::
only

::
at

::
a

:::::
single

::::::
point,

:::
we

::::
can

:::
try

::
to

:::::::
“patch

:::
it”

::
by

::::::
filling

::
in

::::
the

:::::::
missing

::::::
value.

::::::::
Consider

:::
the

::::::::
function

::::::::::
g : R Ñ R

:::::::
defined

::
as

:

gpxq “

$
&

%

1 if x ° 3,
1 if x “ 3,

´1 if x † 3.
::::::::::::::::::::::

:::
The

::::::::
function

::
g
:
is continuous from the right at the point x “ 3, since

limxÑ3` f pxq “ 1 “ f p3q
:::::::::::::::::::::
limxÑ3` gpxq “ 1 “ gp3q. However, taking

the limit from the left, we find limxÑ3´ f pxq “ ´1 ‰ f p3q. Therefore,
the function

::::::::::::::::::::::::
limxÑ3´ gpxq “ ´1 ‰ gp3q,

::::::
which

::::
tells

::
us

:
g
:
is not contin-

uous . The function f pxq is continuous everywhere on the real line
except

::::
from

::::
the

::::
left.

:::
We

:::
say

::::
the

:::::::
function

::
g
::::
has

:
a
:::::
jump

:::::::::::
discontinuity at

x “ 3.

Example 3 We can calculate the limit lim
xÑ5

2x ` 1
x

as follows:

lim
xÑ5

2x ` 1
x

“
2p5q ` 1

5
“

11
5

.
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360 CALCULUS

Both the numerator and the denominator help drive the ratio to zero.
Alternately, if you ever obtain a fraction of the form 8

0 as a limit,
where both the large numerator and the small denominator make
the fraction grow to infinity, you can write 8

0 “ 8.
Sometimes, when evaluating limits of fractions f pxq

gpxq
, you might

end up with a fraction like

0
0

or
8

8
.

These are called undecidable conditions. They are undecidable be-
cause we cannot tell whether the function in the numerator or the
denominator is bigger. One way to compute limits with undecidable
conditions is to compare the ratio of the derivatives of the numerator
and the denominator. This is called L’Hopital’s rule:

lim
xÑa

f pxq

gpxq
:

H.R.
“ : lim

xÑa

f 1
pxq

g1pxq
.

You can find the derivative formulas you’ll need for using L’Hopital’s
rule in the table of derivative formulas on page 364.

Example Consider the calculation of the limit of the ratio x3

ex as x
goes to infinity. Both functions grow to infinity. We can calculate the
limit of their ratio by using L’Hopital’s rule three times:

lim
xÑ8

x3

ex
H.R.
“ lim

xÑ8

3x2

ex
H.R.
“ lim

xÑ8

6x
ex

H.R.
“ lim

xÑ8

6
ex “

6
8

“ 0.

Example 2 Calculate the limit limxÑ0
sin´1

pxq

x . Both the numerator
and the denominator go to zero as x goes to zero. We can find the
derivative formula for sin´1

pxq in the table on page 364, then apply
L’Hopital’s rule:

lim
xÑ0

sin´1
pxq

x
H.R.
“ lim

xÑ0

1?
1´x2

1
“ lim

xÑ0

1
?

1 ´ x2
“

1
?

1 ´ 0
“ 1.

Links
[
::::::
Visual

:::::::::::
explanation

::
of

:::
the

:::::::::
e,d-game

:::
for

:::::
limits

::::
and

::::::::::
L’Hopital’s

::::
rule

:
]

:::::::::::::::::::::::::::::::::::::::::::::::::::
https://www.youtube.com/watch?v=kfF40MiS7zA&t=523

[ See the Wikipedia page for more examples of limits ]
https://en.wikipedia.org/wiki/Limit_of_a_function
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364 CALCULUS

The tangent line T1pxq is the best linear approximation to the
function f pxq near the coordinate x “ x0. Written informally, this
statement says,

f pxq « T1pxq for x near x0.

We previously used this type of linear approximation to derive the
simple harmonic motion equation for a pendulum on page 315. The
small angle approximation states that

f pqq “ sin q « q “ T1pqq, for q near 0.

Discussion
Now that you know what derivatives are and what they are used for,
it’s time to learn how to compute them.

5.7 Derivative formulas
The table below shows the derivative formulas for a number of
commonly used

:::::::
common

:
functions. You’ll be using these derivative

formulas a lot in the remainder of this chapterso it’s a good idea to
memorize them

:
,
::
so

::::::
you’ll

:::
get

::
to

::::::
know

:::::
them

:::::
very

::::
well.

f pxq ´ derivative Ñ f 1
pxq

a d
dx Ñ 0

a f pxq ` bgpxq
d

dx Ñ a f 1
pxq ` bg1

pxq

x d
dx Ñ 1

xn d
dx Ñ nxn´1

1
x

”“: x´1 d
dx Ñ

´1
x2 ”“: ´ x´2

?
x”“: x

1
2 d

dx Ñ
1

2
?

x
”“:

1
2

x´
1
2

ex d
dx Ñ ex

ax d
dx Ñ ax lnpaq

lnpxq
d

dx Ñ
1
x

logapxq
d

dx Ñ px lnpaqq
´1

sinpxq
d

dx Ñ cospxq

cospxq
d

dx Ñ ´ sinpxq

tanpxq
d

dx Ñ sec2
pxq”“

:
cos´2

pxq
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368 CALCULUS

Explanations
Derivation of the product rule

By definition, the derivative of f pxqgpxq is

r f pxqgpxqs
1

“ lim
dÑ0

f px ` dqgpx ` dq ´ f pxqgpxq

d
.

Consider the numerator of the fraction. If we add and subtract
f pxqgpx ` dq, we can factor the expression into two terms, like this:

f px ` dqgpx ` dq

“0hkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkj
´ f pxqgpx ` dq ` f pxqgpx ` dq ´ f pxqgpxq

: “ r f px ` dq ´ f pxqsgpx ` dq ` f pxqrgpx ` dq ´ gpxqs.

The expression for the derivative of the product becomes

r f pxqgpxqs
1
“ lim

dÑ0

"
r f px ` dq ´ f pxqs

d
gpx ` dq ` f pxq

rgpx ` dq ´ gpxqs

d

*
.

This looks almost exactly like the product rule formula, except here
we have gpx ` dq instead of gpxq. This difference is okay since we
assume gpxq is a continuous function. Recall that a continuous func-
tion gpxq obeys limdÑ0 gpx ` dq “ gpxq for all x. Using the continuity
property of gpxq, we obtain the final form of the product rule:

r f pxqgpxqs
1

“ f 1
pxqgpxq ` f pxqg1

pxq.

Proving the correctness of the chain rule for derivatives is a
bit more complicated. Actually, it is a lot more complicated. The
argument presented in the next section is the most technical part
of this book, and it’s totally fine if you’re not able to follow all the
details. It’s my duty as your calculus teacher to prove to you that
the formula r f pgpxqqs

1
“ f 1

pgpxqqg1
pxq is correct, but the proof is

included only for readers who insist on seeing the full, excruciating
details. Other readers should feel free to skip the next section and
continue reading on page ??.

Derivation of the chain rule

Assume f pxq and gpxq are differentiable functions. We want to show
that the derivative of f pgpxqq equals f 1

pgpxqqg1
pxq, which is the chain

rule for derivatives:
:
.

r f pgpxqqs
1

“ f 1
pgpxqqg1

pxq.
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Before we begin, I’d like to comment on the notation used to
define derivatives. I happen to like the Greek letter d (lowercase
delta), so I defined the derivative of f pxq as

f 1
pxq “ lim

dÑ0

f px ` dq ´ f pxq

d
.

Instead, we could also use the variable D (uppercase delta) and write

f 1
pxq ” lim

DÑ0

f px ` Dq ´ f pxq

D
.

In fact
:::::
Using

:::
the

:::::::::
definition

::
of

::::
the

:::::::::
derivative, we can use any variable

for the limit expression. All that matters is that we divide by the same
non-zero quantity as

:::::
write

:::
the

::::::::::
derivative

::
of

::::
the

::::::::
function

:::::::
f pgpxqq

::
as

:::::::
follows:

:

r f pgpxqqs
1

“ lim
dÑ0

f pgpx ` dqq ´ f pgpxqq

d
.

::::::::::::::::::::::::::::::::::

:::
The

:::::
next

::::
step

::
in

::::
the

:::::
proof

::
is

::
to

:::::
split

:::
the

::::::::::
expression

:::::::::::::::

f pgpx`dqq´ f pgpxqq

d

:::
into

:::::
two

:::::::
factors

::
F1:::::

and
:::
F2,

:::::
that

::::
will

:::::
later

:::::
turn

::::
into

:
the quantity

added to x inside the function, and that this quantity goes to zero. If
we’re not careful with our choice of limit variable we could run into
trouble. Specifically, the definition of a limit depends on a “small,
nonzero number D,” which is then used in the limit D Ñ 0. The
condition D ‰ 0 is essential because the expression f px`Dq´ f pxq

D is
not well defined when D “ 0, since it leads to a

::::::
factors

:::::::
f 1

pgpxqq
::::
and

::::
g1

pxq
:::
in

:::
the

:::::
chain

::::
rule

::::::::
formula,

:::::
after

:::
we

::::
take

:::
the

::::::
limit:

f pgpx ` dqq ´ f pgpxqq

d
“ F

`
gpxq, gpx ` dq

˘
looooooooomooooooooon

F1

gpx ` dq ´ gpxq

dloooooooomoooooooon
F2

.

:::::::::::::::::::::::::::::::::::::::::::::::::::

:::
The

:::::::
second

:::::
term

::
F2::::::::::::

corresponds
::
to

::::
the

::::::::::::
rise-over-run

::::::::::
calculation

:::
for

:::
the

::::::::
function

::
g

::
at

::::
the

:::::
input

::
x.
:::::

The
::::
first

:::::
term

:::
F1 :::::::::::

corresponds
:::
to

:::
the

::::::::::::
rise-over-run

::::::::::
calculation

:::
for

:::
the

::::::::
function

:
f
::
at

:::
the

:::::
input

:::::
gpxq,

:::
but

:::::
we’ll

:::::::::
introduce

:
a
:::::
new

::::::::
quantity

::::::
Fpa, bq

:::
in

:::::
order

:::
to

::::::
handle

::::
the

::::
case

:::
of

:::
the

::::::::
zero-run

::::::::::
calculation

::::::::
correctly.

::::
We

::::::
define

::::::
Fpa, bq

::
as

::::::::
follows:

Fpa, bq
def
“

# f pbq´ f paq

b´a if a ‰ b,

f 1
paq if a “ b.

:::::::::::::::::::::::::::::

::
In

::::::
words,

::::
the

:::::::
quantity

::::::
Fpa, bq

::::
tells

:::
us

:::
the

::::::::::::
rise-over-run

::::::::::
calculation

:::
for

:::
the

::::::::
function

::
f
:::::::::
computed

::::::::
between

::::
the

::::::
points

::::::::
pa, f paqq

::::
and

::::::::
pb, f pbqq.
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:::::
We’ve

::::
just

::::::::::
“patched”

:::
the

::::::::
formula

::
so

::
it

:::::::
doesn’t

::::::
result

::
in

:
a
:
divide-by-

zero error.
In order to avoid any possibility of such errors, we define the

following piecewise function:

Rpy, bq ”

# f pyq´ f pbq

y´b if y ‰ b,

f 1
pbq if y “ b.

Observe the function Rpy, bq is continuous in y, when wetreat b
as a constant. This follows from the definition of the derivative
formula and the assumption that f pxq is differentiable. Using the
function Rpy, bq, we can write the formula for the derivative of f pxq

as f 1
pxq “ limDÑ0 Rpx ` D, xq. Note this formula is valid even

::::
error

in the case D “ 0
::::
a “ b.

To prove the chain rule
:::
For

:::
the

:::::
sake

:::
of

:::::::
brevity, we’ll need the

function R
`
gpx ` dq, gpxq

˘
, which is defined as follows:

R
`
gpx ` dq, gpxq

˘
”

# f pgpx`dqq´ f pgpxqq

gpx`dq´gpxq
if gpx ` dq ‰ gpxq,

f 1
pgpxqq if gpx ` dq “ gpxq.

Okay, we’re done with the preliminaries, so we can get back to
proving the chain rule, r f pgpxqqs

1
“ f 1

pgpxqqg1
pxq. We start with the

limit expression for the left-hand side of the equation:

r f pgpxqqs
1

“ lim
dÑ0

f pgpx ` dqq ´ f pgpxqq

d
.

Observe that the fraction inside the limit can be written as

f pgpx ` dqq ´ f pgpxqq

d
“ R

`
gpx ` dq, gpxq

˘ gpx ` dq ´ gpxq

d
.

This is the trickiest part of the proof, so let’s analyze carefully why
this equation holds. We must check that the equation holds in the
two special cases in the definition of R

`
gpx ` dq, gpxq

˘
.

Case A Whenever gpx ` dq ‰ gpxq, we have:

f pgpx ` dqq ´ f pgpxqq

d
“

f pgpx ` dqq ´ f pgpxqq

d

gpx ` dq ´ gpxq

gpx ` dq ´ gpxq

“
f pgpx ` dqq ´ f pgpxqq

gpx ` dq ´ gpxq

gpx ` dq ´ gpxq

d

“ R
`
gpx ` dq, gpxq

˘ gpx ` dq ´ gpxq

d
.
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Case B For points where gpx ` dq “ gpxq, we have:

f pgpx ` dqq ´ f pgpxqq

d
“

0
d

“ 0,

::::
skip

:::
the

::::::::
detailed

:::::::
analysis

::
of

::::
the

::::::::
function

::::::
Fpa, bq,

::::
and

:::
the

:::::::::::
calculations

::
of

:::
the

::::::
limits

::
of

:::
the

::::
two

::::::
factors

:::::::::::::::::::
limdÑ0 F1 “ f 1

pgpxqq
:
and

R
`
gpx ` dq, gpxq

˘ gpx ` dq ´ gpxq

d
“ f 1

pgpxqq
0
d

“ 0.

Thus, the equation f pgpx`dqq´ f pgpxqq

d “ R
`
gpx ` dq, gpxq

˘ gpx`dq´gpxq

d
holds in both cases.

We can now rewrite the limit expression for r f pgpxqqs
1 using the

equation established above:

r f pgpxqqs
1
“ lim

dÑ0

f pgpx ` dqq ´ f pgpxqq

d

“ lim
dÑ0

¨

˚̊
˝R

`
gpx ` dq, gpxq

˘
looooooooomooooooooon

F1

gpx ` dq ´ gpxq

dloooooooomoooooooon
F2

˛

‹‹‚.

We’re trying to evaluate a limit expression that is
::::::::::::::::
limdÑ0 F2 “ g1

pxq.
::::
Let’s

:::::
jump

::::::::
directly

::
to

:::
the

:::::
final

:::::
steps

::
in

::::
the

:::::
proof,

::::::
when

:::
we

::::::::
evaluate

:::::::::::
limdÑ0 F1F2.

::
In

:::::::
Section

:::
5.5

::::
(see

:::::
page

::::
359)

:::
we

:::::::
learned

::::
that

:::
the

:::::
limit

::
of

the product of two factors ; limdÑ0 F1F2 . The limit of a product exists
if

:
is

::::::
equal

::
to

:::
the

:::::::
product

:::
of the limits of both factors—

::
the

::::::::::
individual

::::::
factors limdÑ0 F1 and limdÑ0 F2—exist. Before we proceed, we must
evaluate the limit d Ñ 0 for both factors to ensure the limits exist.
:::::
Using

::::
this

::::::::
property

:::
of

:::::
limits

:::
we

:::::
find:

lim
dÑ0

F1F2 “
`

lim
dÑ0

F1
˘`

lim
dÑ0

F2
˘

“ f 1
pgpxqq g1

pxq,
::::::::::::::::::::::::::::::::::::::::

:::::
which

::::::::::
completes

:::
the

:::::
proof

::
of

:::
the

::::::
chain

::::
rule

::::::::::::::::::::::
r f pgpxqqs

1
“ f 1

pgpxqqg1
pxq.

To obtain the limit of the first factor, we’ll rely on the continuity
of the functions gpxq and Rpy, bq:

lim
dÑ0

gpx ` dq “ gpxq and lim
DÑ0

R
`
b ` D, bq “ R

`
b, b

˘
“ f 1

pbq.

We define the quantity D ” gpx ` dq ´ gpxq and using the continuity
of gpxq, we can establish D Ñ 0 as d Ñ 0. We are therefore allowed



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



372 CALCULUS

to change the limit variable from d to D, and evaluate the limit of the
first factor as follows:

lim
dÑ0

F1“ lim
dÑ0

R
`
gpx ` dq, gpxq

˘

“ lim
DÑ0

R
`
gpxq ` D, gpxq

˘

“ R
`
gpxq, gpxq

˘
“ f 1

pgpxqq.

We also know the limit of the second factor exists because it
corresponds to the derivative of gpxq:

lim
dÑ0

F2 “ lim
dÑ0

gpx ` dq ´ gpxq

d
“ g1

pxq,

and, since we assumed gpxq is differentiable, its derivative must
exist

:::::::
Readers

::::::::::
interested

::
in

::::::::
learning

:::
the

:::::::::
technical

::::::
details

:::
of

:::
the

:::::
parts

::
of

:::
the

:::::
proof

:::
we

::::::::
skipped

::::
can

::::::
watch

:::
the

:::::
video

:::::::
tutorial

::::::
below.

Since the limits of both factors—limdÑ0 F1 and limdÑ0 F2—exist
and are well defined, we can now complete the proof :

r f pgpxqqs
1
“ lim

dÑ0

ˆ
R

`
gpx ` dq, gpxq

˘ gpx ` dq ´ gpxq

d

˙

“

ˆ
lim
dÑ0

R
`
gpx ` dq, gpxq

˘˙̂
lim
dÑ0

gpx ` dq ´ gpxq

d

˙

“ f 1
pgpxqqg1

pxq.

This establishes the validity [
::::::::
Technical

::::::
details

:::
of

:::
the

::::::
proof

:
of the

chain rule r f pgpxqqs
1

“ f 1
pgpxqqg1

pxq. ]
https://www.youtube.com/watch?v=ydjj0crm34w

Alternate
::::::::::
Alternative

:
notation

The presence of so many primes and brackets can make derivative
formulas difficult to read. As an alternative, we sometimes use the
Leibniz notation for derivatives. The three rules of derivatives in Leib-
niz notation are written as follows:

• Linearity: d
dx pa f pxq ` bgpxqq “ a d f

dx ` b dg
dx :::::::::::::::::::::::::::::::

d
dx pa f pxq ` bgpxqq “ a d f

dx ` b dg
dx



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE

https://www.youtube.com/watch?v=ydjj0crm34w


5.9 HIGHER DERIVATIVES 373

• Product rule: d
dx p f pxqgpxqq “

d f
dx gpxq ` f pxq

dg
dx

• Chain rule: d
dx p f pgpxqqq “

d f
dg

dg
dx :::::::::::::::::::

d
dx p f pgpxqqq “

d f
dg

dg
dx

Some authors prefer the notation d f
dx for the derivative of f pxq be-

cause it is more evocative of a rise-over-run calculation.

::::::
Links

[
:::::::::
Geometric

::::::::::::
explanations

::
of

::::::::::
derivative

::::::::
formulas

:::
by

::::::::::::
3Blue1Brown

:
]

:::::::::::::::::::::::::::::::::::::::::::::
https://www.youtube.com/watch?v=S0_qX4VJhMQ

[
::::::
Visual

:::::::::::
explanations

:::
of

:::
the

:::::
chain

::::
and

::::::::
product

:::::
rules

:::
for

::::::::::
derivatives ]

:::::::::::::::::::::::::::::::::::::::::::::
https://www.youtube.com/watch?v=YG15m2VwSjA

5.9 Higher derivatives
In the previous section we learned how to calculate the derivative
f 1

pxq of any function f pxq. The second derivative of f pxq is the
derivative of the derivative of f pxq, and is denoted

f 2
pxq”

def
“

“
f 1

pxq
‰1

”“:

d
dx

f 1
pxq”“:

d2

dx2 f pxq.

This process can be continued to calculate higher derivatives of f pxq.
In practice, the first and second derivatives are most important

because they have a geometric interpretation. The first derivative of
f pxq describes the slope of f pxq while the second derivative describes
the curvature of f pxq.

Definitions
• f pxq: the original function

• f 1
pxq: the first derivative of the function f pxq. The first deriva-

tive contains information about the slope of the function f pxq.

• f 2
pxq: the second derivative of the function f pxq. The second

derivative contains information about the curvature of the func-
tion f pxq.

ô If f 2
pxq ° 0 for all x, the function f pxq is convex.

Convex functions open upward, like f pxq “ x2.
ô If f 2

pxq † 0 for all x, the function f pxq is concave.
Concave functions open downward, like f pxq “ ´x2.
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Later in this chapter, we will learn how to compute the Taylor
series of a function, which is a procedure used to find polynomial
approximations to any function f pxq:

f pxq « c0 ` c1x ` c2x2
` c3x3

` c4x4
` ¨ ¨ ¨ ` cnxn.

The values of the coefficients c0, c1, . . ., cn in the approximation re-
quire us to compute higher derivatives of f pxq. The coefficient cn tells
us whether f pxq is more similar to `xn (cn ° 0), or to ´xn (cn † 0),
or to neither of the two (cn “ 0).

Example Compute the third derivative of f pxq “ sinpxq.
The first derivative is f 1

pxq “ cospxq. The second derivative will
be f 2

pxq “ ´ sinpxq so the third derivative must be f 3
pxq “ ´ cospxq.

Note that f p4q
pxq “ f pxq.

::::::
Links

[
::::::
Visual

:::::::::::
explanation

::
of

:::
the

:::::::
second

:::::::::
derivative

:::
by

::::::::::::
3Blue1Brown

:
]

:::::::::::::::::::::::::::::::::::::::::::::
https://www.youtube.com/watch?v=BLkz5LGWihw

Optimization: the killer app of calculus
Knowing your derivatives will allow you to optimize any function—
a crucial calculus skill. Suppose you can choose the input of f pxq

and you want to pick the best value of x. The best value usually
means the maximum value (if the function measures something de-
sirable like profits) or the minimum value (if the function describes
something undesirable like costs). We’ll discuss the optimization al-
gorithm in more detail in the next section, but first let us look at an
example.

Example
The boss of a large drug organization has recently run into problems
with the authorities. The more drugs he sells, the more money he
makes; but if he sells too much, the authorities will start to regulate
his operations and he loses money. When you’re in the drug busi-
ness, the last thing you want is to attract undue attention!

Fed up with this situation, he decides to find the optimal amount
of drugs to push: as much as possible, but not enough to run into
trouble with the law. One day he tells all his advisors and under-
bosses to leave the room, he picks up a pencil and a piece of paper,
takes a deep breath, and sits down to do some calculus.
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• minimum: a place where the function reaches a low point at the
bottom of a valley. The global minimum is the lowest point over-
all, whereas a local minimum is the minimum in some neigh-
bourhood.

• extremum: a general term to describe both maximum and min-
imum points.

• saddle point: a place where f 1
pxq “ 0 at a point that is neither

a max nor a min. For example, the function f pxq “ x3 has a
saddle point at x “ 0.

Suppose some function f pxq has a global maximum at x˚, and the
value of that maximum is f px˚

q “ M.

Algorithm for finding extrema
Input: a function f pxq and a constraint region C “ rxi, x f s

Output: the locations and values of all maxima and minima of f pxq

Follow this algorithm step-by-step to find the extrema of a function:

1. First, look at f pxq. If you can plot it, plot it. If not, try to imagine
what the function looks like.

2. Find the derivative f 1
pxq.

3. Solve the equation f 1
pxq “ 0. Usually, there will

:::::
There

:::
can

:
be

multiple solutions. Make a list of them. We’ll call this the list
of candidates.

4. For each candidate x˚ in the list, check to see whether it is a
maximum, a minimum, or a saddle point:

• If f 1
px˚

´ 0.1q is positive and f 1
px˚

` 0.1q is negative, then
the point x˚ is a maximum. The function goes up, flattens
at x˚, then goes down after x˚. Therefore, x˚ must be a
peak.

• If f 1
px˚

´ 0.1q is negative and f 1
px˚

` 0.1q is positive, the
point x˚ is a minimum. The function goes down, flattens,
then goes up, so the point must be a minimum.

• If f 1
px˚

´ 0.1q and f 1
px˚

` 0.1q have the same sign, the
point x˚ is a saddle point. Remove it from the list of can-
didates.

5. Now go through the list one more time and reject all candi-
dates x˚ that do not satisfy the constraints C. In other words, if
x P rxi, x f s, the candidate stays; but if x R rxi, x f s, we remove it
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What is implicit in this derivative calculation is the assumption that
y is a function of x. The expression dy

dx refers to the derivative of this
implicit function ypxq. After isolating dy

dx , we obtain an expression
that describes the slope of the circle at any point P “ pxP, yPq. You
can check that the slope predicted for the point at top of the circle
p0, Rq is zero. Also note the slope is infinite at pR, 0q since the tangent
to the circle is vertical at that point.

Let’s now look at an example involving implicit differentiation.

Example In the corporate world, an executive officer’s ego E is re-
lated to the executive’s salary S by the following equation:

E2
“ S3.

Suppose both E and S are functions of time. What is the rate of
change of the executive’s ego when the executive’s salary is 60k and
the salary increases at a rate of 5k per year?

This is called a related rates problem. We know the relation E2
“

S3 and the rate dS
dt “ 5000 and we’re asked to find the rate of change

dE
dt when S “ 60000. First, take the implicit derivative of the salary-
to-ego relation:

d
dt

”
E2

ı
“

d
dt

”
S3

ı
,

2E
dE
dt

“ 3S2 dS
dt

.

We’re interested in the point where S “ 60000. To find the ego points,
solve for E in the relation E2

“ S3; E “

?

600003 “ 14696938.46
ego points when S “ 60000. Substituting all known values into the
derivative of the relation, we find

2p14696938.46q
dE
dt

“ 3p60000q
2
p5000q.

The executive’s ego is growing at dE
dt “

3p60000q2p5000q

2p14696938.46q
“ 1837117.31

ego points per year. Yay, ego points! I wonder what you can redeem
these for .

:::::
What

:::
are

:::::
they

:::::
good

:::
for

::::::
again?

:

Total derivative
Consider again a relation gpx, yq “ 0, but this time assume that both
x and y are implicit functions of a third variable t. To compute the
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r

y t
dy
dt

dr
dy

x t
dx
dt

dr
dx

Figure 5.14: Computing the total derivative of rpxptq, yptqq with respect to t.

When t “ 6, x “ 13
:::::::
x “ 121 and y “ 207, and the answer is dr

dt “

65.346.

Differentials
The differential of a quantity Q is the same as the derivative but with-
out specifying the “with respect to” variable. The differential dQ
represents the change in Q that will result for a given change in the
variable (or variables) that Q depends on. The rules for computing
differentials are analogous to the rules for computing derivatives:

Q “ axn
ñ dQ “ nxn´1dx.

You can think of differentials as incomplete derivatives: if we later
discover that x depends on t, we can divide both sides of the above
equation by dt to obtain the derivative expression dQ

dt “ nxn´1 dx
dt .

Application of differentials to computing error bars
In science, when we report the results of an experimental measure-
ment of some quantity Q, we write Q ˘ dQ, where dQ is an estimate
of the error of the measurement. The measurement error dQ is rep-
resented graphically as an “error bar” as shown in Figure 5.15. The
precision of a measurement is defined as the ratio of the error of the
measurement divided by the size of the quantity being measured dQ

Q ,
or as a percentage.

Figure 5.15: The error bars dQ are a visual representation of the uncertainty
of the quantity Q.

Suppose the quantity Q depends on the variables x and y. We can
express the dependence between the error in the measurement of Q
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and the error in the measurement of x and y as the formula:

dQ “
dQ
dx

dx `
dQ
dy

dy.

This is the total differential of Q. Note the similarity of the total differ-
ential formula to the total derivative formula.

Example You want to calculate the kinetic energy of a particle us-
ing the formula K “

1
2 mv2. You measure the particle’s mass m with

precision 3%, and the particle’s velocity with precision 2%. What is
the precision of your kinetic energy calculation?

We want to find dK
K and we’re told dm

m “ 0.03 and dv
v “ 0.02. The

first step is to calculate the total differential of the kinetic energy:

dK “ d
ˆ

1
2

mv2
˙

“
dK
dm

dm `
dK
dv

dv “
1
2

v2
pdmq ` mvpdvq,

in which we used the product rule and the chain rule for derivatives.
To obtain the relative error, divide both sides by K to obtain

dK
K

“

1
2 v2 dm ` mv dv

1
2 mv2

1
2 v2 dm ` mv dv

1
2 mv2

:::::::::::::::

“
dm
m

` 2
dv
v

.

The precision of the kinetic energy calculation in your experiment
is dK

K “ 0.03 ` 2p0.02q “ 0.07 or 7%. Note the error in the velocity
measurement dv contributes twice as much as the error in the mass
measurement dm, since it appears with exponent two in the formula.

::::::
Links

[
::::::
Visual

:::::::::::
explanation

::
of

:::::::
implicit

:::::::::::::
differentiation

:::
by

::::::::::::
3Blue1Brown

:
]

:::::::::::::::::::::::::::::::::::::::::::::
https://www.youtube.com/watch?v=qb40J4N1fa4

Discussion
We have reached the half-point of the calculus chapter. We learned
about derivatives and described applications of derivatives to opti-
mization problems, finding tangent lines, related rates, etc.

Before you continue reading about integrals in the second half of
the chapter, I highly recommend you attempt to solve some of the
derivative problems starting on page 462.

:::::::
Another

::::::
thing

::
I
:::::::
would

:::::::::::
recommend

:::
is

::
to

:::::::
watch

::::::
some

::
of

::::
the

:::::::
lectures

::
of

::::
the

:::::::::
Highlights

::
of

::::::::
Calculus

::::::
course

::
by

:::::
Prof.

::::::::
Gilbert

::::::
Strang

:::
(see

:
https://youtube.com/playlist?list=PLBE9407EA64E2C318

:
).
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Solving 3c “ 1, we find c “
1
3 and so the answer to this indefinite

integral problem is ª
x2 dx “

1
3

x3
` C.

You can verify that d
dx

”
1
3 x3

` C
ı

“ x2.
Did you see what just happened? We were able to take an integral

using only derivative formulas and “reverse engineering.”

Example 2 Since we know

Fpxq “ x4
d

dx
›Ñ F1

pxq “ 4x3
”“: f pxq,

then it must be that

f pxq “ 4x3
≥
dx

›Ñ Fpxq “

ª
4x3 dx “ x4

` C.

Example 3 Let’s look at some more integrals:

• The indefinite integral of f pxq “ cos q is

Fpxq “

ª
cos q dq “ sin q ` C,

since d
dq sin q “ cos q.

• Similarly, the integral of f pxq “ sin q is

Fpxq “

ª
sin q dq “ ´ cos q ` C,

since d
dq r´ cos qs “ sin q.

• The integral of f pxq “ xn for any number n ‰ ´1 is

Fpxq “

ª
xn dx “

1
n ` 1

xn`1
` C,

since d
dq xn

“ nxn´1.
• The integral of f pxq “ x´1

“
1
x is

Fpxq “

ª
1
x

dx “ ln |x| ` C,
:::
for x ‰ 0.

:::::

:::::
When

::::::
x ° 0,

:::
we

::::::
know

::::::::::::::::

≥ 1
x dx “ ln x ` C, since d

dx ln x “
1
x .

:::
For

:::::
x † 0,

::::
we

::::
can

:::
use

::::
the

::::::::::
symmetry

::
in

::::
the

::::::
graph

::
of

:::::::::
f pxq “

1
x ::

to

::::::
obtain

:::
the

::::::::
formula

:::::::::::::::::::

≥ 1
x dx “ ln p´xq ` C.

:::::
The

::::::::
absolute

::::::
value

:::
lets

:::
us

::::::::
combine

:::::
these

::::
two

:::::::
special

:::::
cases

::::
into

::
a
::::::
single

::::::::
formula.
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(a) n “ 25 (b) n “ 50

Figure 5.19: An approximation to the area under the graph of the function
f pxq “ x3

´ 5x2
` x ` 10 using n “ 25 and n “ 50 rectangles.

For n “ 100, the sum of the rectangles’ areas starts to look pretttty
much like the function. The calculation gives us

::::::
shown

::
in

::::::
Figure

::::
5.20

:::::::::::
corresponds

::
to

:::
the

::::::::::::::
approximation S100pa, bq “ 12.7906.

Figure 5.20: An approximation of the area under the function f pxq “ x3
´

5x2
` x ` 10 between x “ ´1 and x “ 4 using n “ 100 rectangles.

Using n “ 1000 rectangles, we obtain an approximation to the
area S1000p´1, 4q “ 12.9041562, which is accurate to the first decimal.

In the long run, when n grows really large, the Riemann sum ap-
proximations will get better and better and approach the true value
of the area under the curve. Imagine cutting the region into n “

10000 rectangles; isn’t S10000p´1, 4q a pretty accurate approximation
of the actual area Ap´1, 4q?

The integral as a limit

In the limit as the number of rectangles n approaches 8, the Riemann
sum approximation to the area under the curve becomes arbitrarily
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close to the true area:

lim
nÑ8

nÿ

k“1
f pa ` kDxqDx “ Apa, bq.

The definite integral between x “ a and x “ b is defined as the limit
of a Riemann sum as n goes to infinity:

ª b

a
f pxq dx ” lim

nÑ8

nÿ

k“1
f pa ` kDxqDx ” Apa, bq.

ª b

a
f pxq dx def

“ lim
nÑ8

nÿ

k“1
f pa ` kDxqDx “ Apa, bq.

::::::::::::::::::::::::::::::::::::::::::

Perhaps now the weird notation we use for integrals will start to
make more sense to you. An integral is, literally, the sum of the
function at the different sample points! In the limit as n Ñ 8, the
summation sign

∞
becomes an integral sign

≥
, and the step size Dx

becomes an infinitely small step dx.
It is not computationally practical to make n Ñ 8; we can simply

stop at some finite n which produces the desired accuracy of approx-
imation. The approximation using 1 million rectangles is accurate
to the fourth decimal place, which you can verify by entering the
following commands on live.sympy.org:

>>> n = 1000000

>>> xk = -1 + k*5/n

>>> sk = (xk**3-5*xk**2+xk+10)*(5/n)

>>> summation( sk, (k,1,n) ).evalf()

12.9166 541666563

>>> integrate( x**3-5*x**2+x+10, (x,-1,4) ).evalf()

12.9166 666666667

Formal definition of the integral

We rarely compute integrals using Riemann sums. The Riemann
sum is

::::::::
important

:::
as

:
a theoretical construct like the rise-over-run cal-

culation that we use to define the derivative operation:

f 1
pxq“

def
“ lim

dÑ0

f px ` dq ´ f pxq

d
.
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5.14 THE FUNDAMENTAL THEOREM OF CALCULUS 405

The integral is defined as the approximation of the area under the
curve with infinitely many rectangles:

ª b

a
f pxq dx”

def
“ lim

nÑ8

nÿ

k“1
f pa ` kDxqDx, Dx “

b ´ a
n

.

It is usually much easier to refer to a table of derivative formulas (see
page 364) rather than compute a derivative starting from the formal
definition and taking the limit d Ñ 0. Similarly, it is easier to refer to a
table of integral formulas (also see page 364), rather than computing
the integral by taking the limit as n Ñ 8 of a Riemann sum.

* * *

Now that we have established a formal definition of the integral,
we’ll be able to understand why integral formulas are equivalent to
derivative formulas applied in the opposite direction. In the next
section we’ll give a formal proof of the inverse relationship between
the derivative operation and the integral operation.

Links
[ A Riemann sum demonstration ]
:::::::::::::::::::::::::::::::::::::
https://www.geogebra.org/m/jF23GzmS

[ Riemann sum wizard ]
::::::::::::::::::::::::::::::::::::::::::::::
http://mathworld.wolfram.com/RiemannSum.html

5.14 The fundamental theorem of calculus
In Section 5.12 we defined the integral function A0pxq that corre-
sponds to the calculation of the area under f pxq starting from x “ 0:

A0pxq”
def
“

ª x

0
f ptq dt.

We also discussed the notion of an antiderivative function: the func-
tion Fpxq is an antiderivative of f pxq if F1

pxq “ f pxq.
A priori, there is no reason to suspect the integral function would

be related to the derivative operation. The integral corresponds to
the computation of an area, whereas the derivative operation com-
putes the slope of a function. The fundamental theorem of calculus
describes the relationship between derivatives and integrals.
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Discussion
Integration and differentiation are inverse operations

You previously studied the inverse relationship for functions. Recall
that for any bijective function f (a one-to-one relationship) there exists
an inverse function f ´1 that undoes the effects of f :

p f ´1
˝ f qpxq”“: f ´1

p f pxqq “ 1x

and also
p f ˝ f ´1

qpyq”“: f p f ´1
pyqq “ 1y.

The integral is the “inverse operation” of the derivative. If you per-
form the integral operation followed by the derivative operation on
some function, you’ll obtain the same function:

ˆ
d

dx
˝

ª
dx

˙
f pxq”“:

d
dx

ª x

c
f puq du “ f pxq.

Note we need a new variable u inside the integral since x is already
used to denote the upper limit of integration.

Alternately, if you compute the derivative followed by the inte-
gral, you will obtain the original function f pxq (up to a constant):

ˆª
dx ˝

d
dx

˙
f pxq”“:

ª x

c
f 1

puq du “ f pxq ` C.

What next?

::::::
Links

[
::::
Nice

::::::
visual

::::::::::::
explanations

:::::
about

:::::::::
integrals

::
by

:::::::::::::
3Blue1Brown ]

:::::::::::::::::::::::::::::::::::::::::::::
https://www.youtube.com/watch?v=rfG8ce4nNh0

:::::::::::::::::::::::::::::::::::::::::::::
https://www.youtube.com/watch?v=FnJqaIESC2s

::::::
What

::::::
next?

If integration is nothing more than backward differentiation, and if
you already know differentiation inside out from differential calcu-
lus, you might be wondering what you are going to do during an
entire semester of integral calculus. For all intents and purposes, if
you understand the conceptual material in this section, you under-
stand integral calculus. Give yourself a pat on the back—you are
done.

The Establishment, however, not only wants you to know the
concepts of integral calculus; you must also become proficient in
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in her room, crunching calculus while hundreds of dangling inte-
grals scream for attention, keeping her from hanging with friends.

Actually, it is not that bad. There are, like, four tricks to learn. If
you practice, you can learn all of them in a week or so. Mastering
these four tricks is essentially the purpose of the entire integral cal-
culus course. If you understand the material in this section, you’ll be
done with integral calculus and you’ll have two months to chill.

Substitution
Say you’re integrating some complicated function that contains a
square root

?
x. You wonder how to compute this integral:

ª
1

x ´
?

x
dx “ ?

Sometimes you can simplify an integral by substituting a new vari-
able into the expression. Let u “

?
x. Substitution is like search-and-

replace in a word processor. Every time you see the expression
?

x,
replace it with u:

ª
1

x ´
?

x
dx “

ª
1

u2 ´ u
dx.

Note we also replaced x “ p
?

xq
2 with u2.

We’re not done yet. To change from the x variable to the u vari-
able, we must also change dx to du. Can we simply replace dx with
du? Unfortunately no, otherwise it would be like saying the “short
step” du is equal in length to the “short step” dx, which is only true
for the trivial substitution u “ x

:
a

::::::
trivial

:::::::::::
substitution

::::
like

:::::::::
u “ x ` a,

::::::
where

:
a
::
is

:
a
::::::::
constant.

To find the relation between the small step du and the small step
dx, we take the derivative:

upxq “
?

x ñ u1
pxq “

du
dx

“
1

2
?

x
.

For the next step, I need you to stop thinking about the expression du
dx

as a whole, and instead think about it as a rise-over-run fraction that
can be split. Let’s move the run dx to the other side of the equation:

du “
1

2
?

x
dx.

Next, to isolate dx, multiply both sides by 2
?

x:

dx “ 2
?

x du “ 2u du,
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where we use the fact that u “
?

x in the last step.
We now have an expression for dx expressed entirely in terms of

the variable u. After the substitution, the integral looks like
ª

1
x ´

?
x

dx “

ª
1

u2 ´ u
2u du “

ª
2

u ´ 1
du.

We can recognize the general form of the function inside the integral,
f puq “

2
u´1 , to be similar to the function f puq “

1
u . Recall that the

integral of 1
u is lnpuq

::::::::
ln |u| ` C. Accounting for the ´1 horizontal shift

and the factor of 2 in the numerator, we obtain the answer:
ª

1
x ´

?
x

dx “

ª
2

u ´ 1
du “ 2 ln p|u ´ 1q| “ 2 ln p

ˇ̌
ˇ̌?x ´ 1q

ˇ̌
ˇ̌ .

Note in the last step, we changed back to the x variable to give the
final answer

:::::::
variable

::
x. The variable u exists only in our calculation.

We invented it
::::::::
invented

::
u out of thin air when we said, “Let u “

?
x”

in the beginning,
:::
so

:::
we

:::::
must

:::::::
convert

:::::
back

::
to

:::
the

::::::::
original

:::::::
variable

::
x

:::::
when

:::::::::
reporting

:::
the

::::
final

:::::::
answer.

Thanks to the substitution, the integral became simpler: we were
able to eliminate the square roots. The extra u that came from the
expression dx “ 2u du canceled

::::::::
cancelled

:
with one of the us in the

denominator, thus making the expression even simpler. In practice,
substituting x with u inside f is the easy part. The hard part is mak-
ing sure our choice of substitution leads to a replacement for dx that
helps to simplify the integral.

For definite integrals—that is, integrals with limits of integration—
there is an extra step we need to take when changing variables: we
must change the x-limits of integration to u-limits. In our expression,
when changing to the u variable, we write

ª b

a

1
x ´

?
x

dx “

ª upbq

upaq

2
u ´ 1

du.

Say we are asked to compute the definite integral between x “ 4
and x “ 9 for the same expression. In this case, the new limits are
u “

?

4 “ 2 and u “

?

9 “ 3, and we have
ª 9

4

1
x ´

?
x

dx “

ª 3

2

2
u ´ 1

du “ 2 ln p|u ´ 1q|

ˇ̌
ˇ̌
3

2
“ 2plnp2q ´ lnp1qq “ 2 lnp2q.

Let’s recap. Substitution involves three steps:

1. Replace all occurrences of upxq with u.
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5.15 TECHNIQUES OF INTEGRATION 421

q

a

x? a2
` x2

Figure 5.24: Triangle associated with the substitution x “ a tan q.

Example Calculate
≥ 1

x2`1 dx.

The denominator of this function is equal to
´?

1 ` x2
¯2

. The

form 1 ` x2 suggests we can probably substitute x “ tan q , then use
the identity 1 ` tan2 q “ sec2 q . Testing this substitution, we obtain
dx “ sec2 q dq. Thus,

ª
1

x2 ` 1
dx “

ª
1

tan2 q ` 1
sec2 q dq

“

ª
1

sec2 q
sec2 q dq

“

ª
1 dq

“ q

“ tan´1
pxq ` C.

Obfuscated example What if the denominator doesn’t look like
x2

` 1? What if, instead, we have a general second-degree polyno-
mial, such as

1
y2 ´ 6y ` 10

?

How do we integrate a this function? If there were no ´2y
::::
´6y term,

we’d be able to use the tan substitution. Or perhaps you could look
up the formula

≥ 1
x2`1 dx “ tan´1

pxq in the table of integrals. Alas,
there is no formula to be found in the table for

ª
1

y2 ´ 6y ` 10
dy.

We’ll need another route, and we’ll start by following the good old
substitution technique u “ . . ., along with a high school algebra trick
called “completing the square.” This route will help us rewrite the
fraction inside the integral so the integral looks like py ´ hq

2
` k with

no linear term.
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::::::
Which

::::::::::::
substitution

::
to

:::
use

:::::
There

::::
are

:::::
three

::::::::
possible

::::::::
triangles

:::::
you

::::::
might

:::::
need

:::::
when

:::::::::
applying

:::
the

::::::::::::
trigonometric

:::::::::::
substitution

::::::::::
technique

::
to

::::::::
compute

:::
an

::::::::
integral.

:::
See

::::::
Figure

::::
5.22,

:::::::
Figure

:::::
5.24,

::::
and

::::::
Figure

:::::
5.25.

:::
In

:::
all

::::::
cases,

::::
one

:::::
side

::
of

:::
the

:::::::
triangle

::::::::::::
corresponds

::
to

:::
the

::::::::
constant

::
a,

::::::::
another

::::
side

:::::::::::
corresponds

::
to

:::
the

::::::::
variable

:::
x,

::::
and

:::
the

:::::::
length

::
of

::::
the

:::::
third

::::
side

::
is
::

a
:::::::::::

square-root

:::::::::
expression

::::::::::
involving

::
a2

:::::
and

:::
x2.

::
I
:::::::::
wouldn’t

:::::::::::
recommend

:::::::
trying

::
to

:::::::::
memorize

:::
the

:::::
sides

:::
of

:::::
these

::::::::
triangles.

::::::::
Instead,

::::
you

::::
can

::::
rely

::
on

:::::
your

::::::::::
knowledge

::
of

:::::::::::::
trigonometry

::
to

:::::::
choose

::::
the

:::::::::::
appropriate

::::::
labels

:::::
using

::::
trial

::::
and

:::::
error.

::::::
Draw

::
a
:::::
little

:::::::
triangle

::::
and

:::::
label

:::
its

:::::
sides

:::
so

::::
that

:::
the

::::::::::
square-root

::::::::::
expression

::::::::::::
corresponds

::
to

::::
the

:::::::
integral

:::::::
you’re

::::::
trying

::
to

::::::::
compute.

:

Interlude
By now, things are

::
it’s

:
starting to get pretty tight

:::::::
difficult

:
for your

calculus teacher . You are beginning to understand how to “handle ”
any kind of integral he

::
to

::::::::
surprise

:::
you

:::::
with

::
an

::::::::
integral

::::::::
problem.

::::
You

:::::
know

::::
how

:::
to

::::::
handle

:::::
most

::::::
kinds

::
of

::::::::
integrals

:::::
your

:::::::
teacher can throw

at you: polynomials, fractions with x2 , plus or minus a2, and square
roots. He

::::
Your

:::::::
teacher

:
can’t even fool you with dirty trigonometric

tricks involving sin, cos, and tan
:::::::::::
substitutions, since you know about

these, too. Are there any integrals left that he can drop on the exam
to trick you up

::::
your

:::::::
teacher

:::
can

::::
use

::
to

::::
trip

::::
you

:::
up

::
on

::::
the

:::::
exam?

Substitution is the most important integration technique. Recall
the steps involved: (1) the choice of substitution u “ . . . ,

:
(2) the asso-

ciated dx to du change, and (3) the change in the limits of integration
required for definite integrals. With medium to advanced substitu-
tion skills, you’ll score at least an 80% on your integral calculus final.

What will the remaining 20% of the exam depend on? How many
more techniques could there possibly be? I know all these integration
techniques that I’ve been throwing at you during the last 10 pages
may seem arduous and difficult to understand, but this is what you
got yourself into when you signed up for the course “integral calcu-
lus.” In this course, there are lots of integrals and you calculate them.

The good news is that we are almost done. Only one more “trick”
remains, and afterward, I’ll finally tell you about the integration by
parts procedure, which is very useful.

Don’t bother memorizing the steps in each of the examples dis-
cussed: the correct substitution of u “ . . . will be different in each
problem. Think of integration techniques as general recipe guide-
lines you must adapt based on the ingredients available to you at the
moment of cooking. When faced with a complicated integral prob-
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Then apply a trig substitution y “

?

k tan q to obtain

1
a

ª
1

y2 ` k
dy “

1
a
?

k
tan´1

ˆ
y

?

k

˙
“

1
a
?

k
tan´1

ˆ
x ´ h
?

k

˙
.

Example Find
≥ 1

px`1qpx`2q2 dx.

Here, Ppxq “ 1 and Qpxq “ px ` 1qpx ` 2q
2. If I wanted to be

sneaky, I could have asked for
≥ 1

x3`5x2`8x`4 dx instead—which is the
same question, but you’d need to do the factoring yourself.

According to the recipe outlined above, we must look for a split
fraction of the form

1
px ` 1qpx ` 2q2 “

A
x ` 1

`
B

x ` 2
`

C
px ` 2q2 .

To make the equation more explicit, let’s add the fractions on the
right. Set all of them to the least common denominator and add:

1
px ` 1qpx ` 2q2 “

A
x ` 1

`
B

x ` 2
`

C
px ` 2q2

“
Apx ` 2q

2

px ` 1qpx ` 2q2 `
Bpx ` 1qpx ` 2q

px ` 1qpx ` 2q2 `
Cpx ` 1q

px ` 1qpx ` 2q2

“
Apx ` 2q

2
` Bpx ` 1qpx ` 2q ` Cpx ` 1q

px ` 1qpx ` 2q2 .

The denominators are the same on both sides of the above equation,
so we can focus our attention on the numerator:

Apx ` 2q
2

` Bpx ` 1qpx ` 2q ` Cpx ` 1q “ 1.

We can evaluate this equation for three different values of x to find
the values of A, B, and C:

x “ 0 1 “ 22 A ` 2B ` C
x “ ´1 1 “ A
x “ ´2 1 “ ´C

so A “ 1, B “ ´1, and C “ ´1. Thus,
1

px ` 1qpx ` 2q2 “
1

x ` 1
´

1
x ` 2

´
1

px ` 2q2 .

We can now calculate the integral by integrating each of the terms:
ª

1
px ` 1qpx ` 2q2 dx “ ln p|x ` 1q| ´ ln p|x ` 2q| `

1
x ` 2

` C.

The partial fractions technique for integrating rational functions is
best understood using using a hands-on approach. Try solving the
following exercises to see if you can apply the techniques.
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will contain the factors required for the integral on the right-hand
side of the integration by parts formula.

::::::
There’s

:::
no

::::::::
general

::::
rule

::
to

::::::
follow

::::::
when

:::::::::
choosing

::::::
which

:::::
parts

::
of

:::
the

:::::::
integral

:::
to

:::::
label

::
u

::::
and

::::::
which

:::::
parts

:::
to

:::::
label

:::
dv.

:::::
You

::::
just

:::::
have

::
to

:::::
solve

::::
lots

::
of

::::::::
practice

:::::::::
problems

::
to

::::
get

:::
the

:::::
hang

::
of

:::
it.

::::
My

:::::::
general

::::::
advice

::::::
would

:::
be

:::
to

::::::
focus

:::
on

::::
the

:::
dv

:::::
part.

::::::
Look

:::
for

::::::
parts

::
of

::::
the

:::::::
integral

::::
that

::::
you

:::::
know

::::
how

::
to

:::::::::
integrate

::::
and

::::
label

:::::
them

:::
dv,

:::::
then

::::
label

::::::::
whatever

::::::::
remains

::
as

:::
u.

:::
It’s

:::::
very

::::::::
common

::
to

::::
get

:::
the

::::::
choice

::
of

::
u
::::
and

::
dv

::::::
wrong

:::
on

::::
the

::::
first

::::::::
attempt.

::
If

::::
you

:::::
apply

::::
the

::::::::::::::::::
integration-by-parts

:::::::::::
substitutions

:::::
and

::::
end

:::
up

:::::
with

:::
an

::::::::
integral

::::::::::
calculation

::::::
that’s

:::::
more

:::::::::::
complicated

:::::
than

:::
the

::::::::
original

:::::::
integral

::::
you

:::::::
started

::::::
with,

:::
it’s

::
a

::::
sign

:::
you

:::::
need

::
to

:::::
start

::::
over

:::::
with

:
a
:::::::::
different

::::::
choice

::
of

::
u

:::
and

:::
dv.

:

Example 1 Find
≥

xex dx. We identify the good candidates for u
and dv in the original expression, and follow the steps to apply the
substitution:

u “ x dv “ ex dx,
du “ dx v “ ex.

Next, apply the integration by parts formula,
ª

u dv “ uv ´

ª
v du,

to obtain ª
xex dx “ xex

´

ª
ex dx

“ xex
´ ex

` C.

Example 2 Find
≥

x sin x dx. We choose the substitutions u “ x and
dv “ sin xdx. With these choices, we have du “ dx and v “ ´ cos x.
Integrating by parts gives us

ª
x sin x dx “ ´x cos x ´

ª
p´ cos xq dx

“ ´x cos x `

ª
cos x dx

“ ´x cos x ` sin x ` C.

Example 3 Often, you’ll need to integrate by parts multiple times.
To calculate

≥
x2ex dx, we start by choosing the following substitu-

tions:

u “ x2 dv “ ex dx
du “ 2x dx v “ ex.
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We can compute this integral as the following limit:

ª
8

1

1
x2 dx”“: lim

bÑ8

ª b

1

1
x2 dx “ lim

bÑ8

„
´1
x

⇢b

1
“ lim

bÑ8

„
´

1
b

`
1
1

⇢
“ 1.

This calculation describes an integration over a region with infinite
width. Because the height of the region ( f pxq “

1
x2 ) becomes smaller

and smaller, the region still has finite ,
::::

but
:::
we

::::
still

::::
end

::::
up

::::
with

::
a

:::::
finite

::::
total

:
area.

Definition
An improper integral is an integral in which one of the limits of in-
tegration goes to infinity. Improper integrals are evaluated as regu-
lar integrals, where infinity is replaced by a dummy variable, after
which a limit calculation is applied to take the dummy variable

::
we

::::
take

:::
the

:::::
limit

::
as

:::
the

::::::::
dummy

::::::::
variable

::::
goes

:
to infinity:

ª
8

a
f pxq dx”“: lim

bÑ8

ª b

a
f pxq dx “ lim

bÑ8

rFpbq ´ Fpaqs,

where Fpxq is the antiderivative function of f pxq.

Applications Later in this chapter, we’ll learn about the “integral
test” for the convergence of series, which requires the evaluation of
an improper integral.

5.18 Sequences
A sequence is an ordered list of numbers that follows some pattern,
much like “find the pattern” questions on IQ tests. We can study the
properties of sequences as mathematical objects. For example, by
checking whether the sequence converges to some limit.

Understanding sequences is a prerequisite for understanding se-
ries, which is an important topic we will discuss in the next section.

Definitions
• N: the set of natural numbers N ” t0, 1, 2, 3, . . .u

::::::::::::::::
N “ t0, 1, 2, 3, . . .u

• N` “ Nzt0u
:::::::::::
N˚

“ Nzt0u: the set of strictly positive natural
numbers t1, 2, 3, . . .u. The set N` :::

N˚

:
is the same as N, except

N` :::
N˚ starts from 1 instead of 0.
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5.18 SEQUENCES 445

• an: a sequence of numbers pa0, a1, a2, a3, a4, . . .q. You can also
think of each sequence as a function

a : N Ñ R,

where the input n is an integer (the index into the sequence)
and the output is some number an P R.

Examples of sequences
Consider the following common sequences.

Arithmetic progression

A sequence is an arithmetic progression if the terms of the sequence
differ by a constant amount. The terms in the simplest arithmetic
progression differ by one:

p0, 1, 2, 3, 4, 5, 6, . . .q.

This sequence is described by the formula

an “ n, n P N.

More generally, an arithmetic sequence can start at any value a0 and
make jumps of size d at each step:

an “ a0 ` nd, n P N.

Harmonic sequence

In a harmonic sequence, each element of the sequence is inversely
proportional to its index n:

ˆ
1,

1
2

,
1
3

,
1
4

,
1
5

,
1
6

, . . .
˙

an “
1
n

, n P N`
˚

:.

More generally, we can define
::::
refer

:::
to

:::
the

::::::::::
sequences

:::::
with

::::::
terms

:::
like

:::::::
an “

1
n ,

::::::::
an “

1
n2 ,

::::
and

:::::::
an “

1
n3:::

as
::::::::::::
p-sequences.

::
In

:
a p-sequencein

which
:
, the index n appears in the denominator raised to the power

p:
:
.
::::
The

:::::
terms

:::
in

:
a
::::::::::
p-sequence

::::
are

:::::::::
described

::
by

:

an “
1

np , n P N`
˚

:.
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Ratio convergence
The numbers in the Fibonacci sequence grow indefinitely large
( lim
nÑ8

an “ 8), while the ratio of an`1
an

converges to a constant:

lim
nÑ8

an`1
an

“ j “
1 `

?

5
2

« 1.618033 . . .

This constant is known as the golden ratio.

Calculus on sequences
If a sequence an is like a function f pxq, we should be able to per-
form calculus on it. We already saw how we can take limits of se-
quences, but can we also compute derivatives and integrals of se-
quences? Derivatives are

:::
The

::::::
usual

::::::::::
derivative

::::::
notion

:::
is

:
a no-go , because they depend

::::
since

:::
it

::::::::
depends

:
on the function f pxq being continuous, and se-

quences are only defined for integer values. We can take
:::::::
Instead

::
of

::::::::::
derivatives,

::::
we

::::
can

::::::::
compute

:::::
finite

:::::::::
differences

:
,
::::::
which

:::
are

::::::::::
sequences

::::::::
obtained

:::
by

::::::::::
subtracting

::::::::
adjacent

::::::
terms

::
in

::::
the

:::::::::
sequence.

:::::::
Given

:::
the

::::::::
sequence

:::::::::::::::::::
pa0, a1, a2, a3, a4, . . .q,

:::
the

:::::
first

::::::::::
differences

:::::::::
sequence

:::
is

:::
the

::::::::
sequence

::::::::::::::::::::::::::
pa1 ´ a0, a2 ´ a1, a3 ´ a2, . . .q.

::::::
Finite

::::::::::
differences

:::::
play

::
a

:::
big

:::
role

:::
in

:::
the

:::::
study

:::
of

::::::::::
differential

::::::::::
equations.

:::
We

:::
can

::::
also

:::::::::
compute integrals of sequences, however, and this is

the subject of the next section.

5.19 Series
Can you compute lnp2q using only a basic calculator with four oper-
ations, , , , and

::::
` ,

:::::
´ ,

::::
ˆ ,

::::
and

::::
˜ ? I can tell you one way to do

this; compute the following infinite sum:

lnp2q “ 1 ´
1
2

`
1
3

´
1
4

`
1
5

´
1
6

`
1
7

´
1
8

` ¨ ¨ ¨ .

Since the sum is infinite, it will take a while to obtain the value
of lnp2q, but if you keep adding more terms in the sum, you will
eventually obtain the answer lnp2q “ 0.693147 . . .

:::
can

::::::::
compute

::::
the

::::::
answer

::::::::::::::::::::
lnp2q “ 0.69314718 . . .

::
to

::::
any

::::::::
precision.

Let’s make the computer carry out the summation for us. First we
define the formula for the nth term in the series an “

p´1qn`1

n , then
we compute the sum of the first 100, 1000, and 1000000 terms:
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>>> def an_ln2(n): return (-1.0)**(n+1)/n

>>> sum([ an_ln2(n) for n in range(1,100) ])

0.698172179310195

>>> sum([ an_ln2(n) for n in range(1,1000) ])

0.6936474305598223

>>> sum([ an_ln2(n) for n in range(1,1000000) ])

0.6931476805602526

Observe how the approximation becomes
::::::::::::::
approximations

:::::::
become

more accurate as more terms are added in the sum.
::::
used

:::
in

:::
the

:::::::::::
summation.

::::
The

::::::::::::::
approximation

:::::
with

::::
100

:::::
terms

::
is
:::::::::

accurate
::
to

::::
two

::::::::
decimals

:::::::
0.69 . . .,

::::
the

::::::::::::::
approximation

::::::::::
computed

:::
by

:::::::::
summing

:::::
1000

:::::
terms

::
is

::::::::
accurate

::
to

:::::
three

:::::::::
decimals

::::::::
0.693 . . .,

::::
and

:::
the

::::::::::::::
approximation

::::
with

::::::::
1 000 000

::::::
terms

::
is

::::::::
accurate

::
to

:::
six

:::::
digits

:::::::::::
0.693147 . . ..

:

A lot of practical mathematical computations are performed in
this iterative fashion. In this section we’ll learn about a powerful
technique for calculating quantities to arbitrary precision by sum-
ming together more and more terms of a series.

Definitions
• N ” t0, 1, 2, 3, 4, 5, 6, . . .u

:::::::::::::::::::::
N “ t0, 1, 2, 3, 4, 5, 6, . . .u: the set of

natural numbers
• N` ” Nzt0u ” t1, 2, 3, 4, 5, 6, . . .u

:::::::::::::::::::::::::::::
N˚

“ Nzt0u “ t1, 2, 3, 4, 5, 6, . . .u:
the set of positive natural numbers

• an: a sequence of numbers pa0, a1, a2, a3, a4, . . .q
•
∞

: sum. This symbol indicates taking the sum of several ob-
jects grouped together. The summation sign is the short way to
express certain long expressions:

a3 ` a4 ` a5 ` a6 ` a7 “

ÿ

3§n§7
an “

7ÿ

n“3
an.

•
∞

an: the series an is the sum of all terms in the sequence an:

S8 “

8ÿ

n“1
an “ a1 ` a2 ` a3 ` a4 ` a5 ` a6 ` ¨ ¨ ¨ .

• n!: the factorial function n! “ npn ´ 1qpn ´ 2q ¨ ¨ ¨ 3 ¨ 2 ¨ 1, if n • 1.
We define 0! “ 1.

• f pxq “
∞

8

n“0 cnxn: the Taylor series approximation of the func-
tion f pxq. It has the form of an infinitely long polynomial c0 `

c1x1
` c2x2

` c3x3
` . . . where the coefficients cn are chosen so

as to encode the properties of the function f pxq.
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See problem P5.119 for the derivations of these formulas. The sum
of the first N terms in an arithmetic sequence is

Nÿ

n“1
pa0 ` ndq “ a0N `

NpN ` 1q

2
d.

Itwill be
:
’s

:
important to remember these formulas because they

can occur in calculus problems. For example, computing
::::
these

::::::::::
summation

:::::::::
formulas

:::
are

:::::
used

:::
to

::::
find

:
the integral of the function

f pxq “ ax2
` bx ` c using an infinite Riemann sumrequires these

formulas
::
by

::::::::::
computing

::::
the

::::
limit

:::
of

:
a
::::::::
Riemann

:::::
sum.

There are many other series whose infinite sum is described by an
exact formula.

::::
Over

::::
the

:::::
years,

:::::::::::::::
mathematicians

:::::
have

:::::
come

:::
up

:::::
with

various techniques
::
for

:::::::::::
computing

:::
the

::::::
values

:::
of

:::::::
infinite

::::::
series.

:
Be-

low, you’ll find some known formulasfor the sums of certain infinite
series

::
of

:::::
these

:::::::::
formulas.

:::
The

:::::::
p-series

::
is

:::
the

:::::
sum

::
of

:::
all

::::
the

:::::
terms

:::
in

::
a

:::::::::::
p-sequence,

::::::
which

:::
are

:::::::::
described

:::
by

::::
the

::::::::
formula

::::::::
an “

1
np ,

::::::
where

::
p
:::

is
:::
the

:::::::
power

::::
(the

:::::::::
exponent)

::
in

::::
the

::::::::::::
denominator

::::
(see

:::::
page

::::
445). The p-series involv-

ing even values of p can be computed
::::::
exactly:

8ÿ

n“1

1
n2 “

p2

6
,

8ÿ

n“1

1
n4 “

p4

90
,

8ÿ

n“1

1
n6 “

p6

945
.

Note you’re not required to memorize these formulas. They are
given here as examples of what is possible.

Other closed-form expressions for infinite series include:

8ÿ

n“1

p´1q
n`1

n2 “
p2

12
,

8ÿ

n“1

p´1q
n`1

n
“ lnp2q,

8ÿ

n“1

1
4n2 ´ 1

“
1
2

,

:

8ÿ

n“0

p´1q
n

2n ` 1
“

p

4
,

8ÿ

n“0

1
p2n ` 1q2 “

p2

8
,

8ÿ

n“0

p´1q
n

p2n ` 1q3 “
p3

32
.

Again, don’t worry about memorizing all these formulas; just think
of them as prizes in a trophy case—a representation of some math-
ematical success stories. Mathematicians experience great pride
whenever they manage to make sense of some complicated, infinite
sum expression by finding a simple formula to describe its value.
In general most infinite series do not have such closed-form expres-
sions, so you can understand mathematicians’ excitement and why
they’d want to build a trophy case of known formulas. The series
formulas shown above are analogous to the “trophy case” of integral
formulas on page 547.
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Exercises
E5.7 Compute the values of the following summations using the for-
mulas given above.

(a)
Nÿ

n“1
cpa ` bnq (b)

Nÿ

n“1
cpa ` bnq

2 (c)
8ÿ

n“1

6
n2

Convergence and divergence of series
Even when we can’t compute an exact expression for the infinite sum
of a series, it’s important to distinguish series that converge from
series that do not converge.

We say a series
∞

an converges if the infinite sum S8 ”
∞

nPN an

:::::::::::::
S8 “

∞
nPN an equals some finite number L P R.

S8 “

8ÿ

n“0
an “ L ñ the series

ÿ
an converges.

If the infinite sum S8 ”
∞

nPN an :::
We

:::
can

::::
also

:::
say

::::::
“
∞

an ::
is

:::::::::
convergent

:
,”

::::::::
applying

::::
the

:::::::::::::::::::::::::::::::::::::::
infinite-sum-of-its-terms-is-a-finite-number

:::::::::
property

::
as

:::
an

:::::::::
adjective.

:::::
The

::::::::
opposite

:::
of

:
a
:::::::::::

convergent
::::::
series

::
is

::
a

::::::::
divergent

:::::
series,

:::::::
which

:::::::::
describes

:::
all

:::::
series

::::
that

::::
are

::::
not

:::::::::::
convergent.

::
A
::::::

series
:::
can

:::
be

::::::::::
divergent

::
if

::
it

:
grows to infinity , we say the series

∞
an

diverges.

S8 “

8ÿ

n“0
an “ ˘8 ñ the series

ÿ
an diverges.

::
or

::
if

::
it

::::::
jumps

:::::::
around

::::::::
between

:::::::::
numbers.

:::
An

::::::::
example

::
of

::
a
:::::::::
divergent

:::::
series

::
is
::::

the
:::::::::

harmonic
:::::
series

::::::::::::

∞
8

n“1
1
n “ 8.

:::::
We

::::
say

::::
the

:::::::::
harmonic

:::::
series

::
is

::::::::::
divergent,

::::::::
because

:::
its

:::::::
infinite

:::::
sum

:::::::
doesn’t

:::::::::
converge

::
to

::
a

:::::
finite

:::::::
number

::::
but

::::::
keeps

::::::::
growing

:::::::::::
indefinitely.

:::::::::
Another

::::::::
example

::
of

:
a
:::::::::
divergent

::::::
series

::
is
::::::::::::::::::::::::::::::

∞
n“0p´1q

n
“ 1 ´ 1 ` 1 ´ 1 ` . . .,

::::::
whose

::::::
value

:::::::::
alternates

::::::::
between

:
1
::::
and

:
0
::::
and

::::::
never

:::::::
“settles

::::::
down”

:::::::
around

:
a
::::::
single

::::
limit

::
L,

:::
as

::
is

::::::::
required

:::
for

:
a
:::::::::::
convergent

::::::
series.

Convergence of a series is not the same as convergence of the un-
derlying sequence an:,::::::

which
:::
we

::::::
talked

:::::
about

:::
in

:::
the

::::::::
previous

:::::::
section.

:::
The

::::::::::::
calculations

::::
with

::::::
series

:::
are

:::::::::::
completely

::::::::
different. Consider the

sequence of partial sums SN “

N∞
n“0

an:

S0, S1, S2, S3, . . . ,
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where each of the terms in the sequencecorresponds to .
:::::

The
:::::
terms

::
in

:::
this

::::::::::
sequence,

S0, S1, S2, S3, . . . ,
::::::::::::::::

::::::::::
correspond

::
to

::::
the

:::::::::
following

:::::::::::
calculations:

:

a0, : a0 ` a1, : a0 ` a1 ` a2, : a0 ` a1 ` a2 ` a3, : . . . .

We say the series
∞

an converges if the sequence of partial sums SN
converges to a limit L:

lim
NÑ8

SN “ L.

This limit statement indicates that the partial sums SN approach the
number L as we include more terms in the series.

The precise meaning of the limit statement is as follows. For any
precision e ° 0, there exists a starting point Ne such that, for all
N ° Ne, it will be true that

|SN ´ L| † e.

The number Ne corresponds to how many terms of the series you
need for the partial sum SN to become e-close to the limit L.

Convergence tests
The main thing you need to know about series are the different tests
you can perform to check whether a series converges or diverges.

Divergence test

The only way the infinite sum
∞

8

n“0 an will converge is if the ele-
ments of the sequence an tend to zero for large n. This observation
gives us a simple series divergence test. If limnÑ8 an ‰ 0 then

∞
8

n“0 an
diverges. How could

:::
For

:::::::::
example,

:::::::::
consider

::::
the

:::::::::
sequence

:::
an :::::::

whose
:::::
limit

::
is
::::::

some

:::::::
number

::::::
` ‰ 0.

:::
To

::::
find

:::
the

:::::
limit

::
of

::::
the

:::::
series

::::::::::::::::
limNÑ8

∞N
n“0 an,

:::::
we’ll

::::
need

:::
to

:::::::::
compute an infinite sum of non-zero quantities add to a

finite number?

Absolute convergence

::::::::
numbers

::::
that

::::
are

:::::::::::::
approximately

::::::
equal

:::
to

::̀
.
::

If
∞

n |an| converges,∞
n an also converges. The opposite is not necessarily true, since the

convergence of an might be due to negative terms cancelling with
positive terms

:̀::
is

::::::::
nonzero

:::::
then

:::
the

::::::::
quantity

::::
N`

:::::::
“blows

::::
up”

:::
as

::
N

::::
goes

::
to

:::::::
infinity.
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A sequence an for which
∞

n |an| converges is called
:::::
Note

:::
the

::::::::
condition

::::::::::::::
limnÑ8 an “ 0

::::
for

:::
the

::::::
terms

:::
is

:
absolutely convergent. A

sequence bn for which
∞

n bn converges but
∞

n |bn| diverges is called
:::::::
required

:::
for

:::
the

::::::
series

::::::::

∞
8

n“0 an::
to

::::::::::
converge,

:::
but

::
it
:::::

isn’t
:
conditionally

convergent
:::::::
sufficient

:
.
:::::::

There
:::
are

::::
all

:::::
kinds

:::
of

::::::::::
sequences

::::
that

:::::::
satisfy

:::::::::::::
limnÑ8 an “ 0

::::
that

:::::
have

::::::::::
divergent

:::::
series

:::::::::

∞
8

n“0 an.
:::
In

::::
this

:::::::
section,

::::
we’ll

::::::
learn

:::::
about

::::::
some

:::::
other

:::::
tests

::::
that

::::
can

:::
tell

:::
us

::::::
which

::::::
series

:::
are

::::::::::
convergent,

::::
and

::::::
which

::::::
series

:::
are

:::::::::
divergent.

Decreasing alternating sequences

An alternating series an in which the absolute values of the terms is
decreasing (|an| ° |an`1|), and tend to zero (lim an “ 0

:::::::::::::
limnÑ8 an “ 0)

converges. For example, we know the series
∞

8

n“1
p´1qn`1

n “

1 ´
1
2 `

1
3 ´

1
4 `

1
5 ´

1
6 ` ¨ ¨ ¨ converges because it is a decreasing

alternating series and limnÑ8
1
n “ 0.

Integral test

If the integral
≥

8

a f pxq dx is finite,
::::::::
Consider

:::::
some

::::::::
function

::::::::::
f : R Ñ R

:::
that

::
is
::::::::::::
nonnegative

:::::::::
( f pxq • 0)

::::
and

:::::::::
decreasing

::::::::::::::::::::::
( f pxq ° f px ` dq, @d ° 0)

:::
for

::
all

::::::
values

:::
of

::
x,

::::::
x • 1.

::
If

:::
we

::::::::
evaluate

::::
this

:::::::
function

:::::
only

:::
for

::::::
inputs

:::
that

::::
are

::::::::
positive

:::::::::
integers,

:::::
then

:::
we

::::
can

::::::
think

::
of

::
it
:::

as
::

a
:::::::::

sequence
:::::::::::
f : N˚

Ñ R.
::::
The

::::::
terms

::
of

:::
the

:::::::::
sequence

::::
will

::
be

:::::
f p1q,

:::::
f p2q,

::::
f p3q,

:::::
f p4q,

:::
and

:::
so

:::
on.

:

:::::
Recall

::::
the

:::::::::
definition

::
of

:::::::::
improper

::::::::
integrals

:::
we

::::
saw

::
in

:::::::
Section

::::
5.17.

:::
The

:::::::::
improper

::::::::
integral

:::::::::

≥
8

1 f pxq dx
:::::::::::
corresponds

::
to

:::
an

:::::::
integral

:
then the

series
∞

n f pnq converges. If the integral
≥

8

a f pxq dx
::::::
where

:::
one

:::
of

:::
the

:::::::::
endpoints

::::
goes

:::
to

:::::::
infinity:

:

ª
8

1
f pxq dx “ lim

bÑ8

ª b

1
f pxq dx.

:::::::::::::::::::::::::

::::
This

:::::::::::
corresponds

:::
to

:::
the

::::::::::
calculation

:::
of

:::
the

:::::
area

::::::
under

::::
f pxq

:::::
over

:::
the

:::::
whole

:::::::
x-axis,

::
all

::::
the

::::
way

::
to

:::::::
infinity.

:

:::
The

:::::::
integral

::::
test

::::::::
describes

::
a
::::::::::
connection

::::::::
between

::::
the

:::::::::::
convergence

:::::::::
properties

::
of

:::
the

:::::::::
improper

:::::::
integral

::::::::::

≥
8

1 f pxq dx,
:::
and

::::
the

:::::::::::
convergence

::
of

:::
the

:::::
series

::::::::::

∞
8

n“1 f pnq.
::::::::::::

Specifically,
::
if

:::
the

:::::::
integral

:::::::::

≥
8

1 f pxq dx
:

diverges,
then the series

∞
n f pnq

:::::::

∞
n f pnq also diverges.

The improper integral is defined as a limit expression:

ª
8

a
f pxq dx ” lim

bÑ8

ª b

a
f pxq dx.
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454 CALCULUS

:
If
::::
the

:::::::
integral

:::::::::

≥
8

1 f pxq dx
::
is

:::::
finite,

:::::
then

:::
the

::::::
series

:::::::

∞
n f pnq

::::::::::
converges.

:

The p-series converges if p ° 1

The convergence conditions for p-series, an “
1

np , can be obtained
using the integral test.

The series
∞

8

n“1
1

np converges if p ° 1, and diverges if p § 1.
Note that p “ 1 corresponds to the harmonic series

∞
8

n“1
1
n which

diverges.

:::
The

::::::::::::
convergence

::::::::::
conditions

:::
for

:::::::
p-series,

::::::::
an “

1
np ,

:::
can

:::
be

::::::::
obtained

:::::
using

:::
the

::::::::
integral

::::
test.

Direct comparison test

Often times we can understand the convergence properties of a se-
ries

∞
nan by comparing it to another series

∞
nbn whose convergence

properties are known. One approach is to directly compare the val-
ues of each term. In particular, we can draw the following conclu-
sions

:::
for

:::
any

::::
two

::::::::::::
nonnegative

:::::::::
sequences

:::
an ::::

and
::
bn:

• If an § bn for all n, and
∞

nbn converges, then
∞

nan converges.
• If an • bn for all n, and

∞
nbn diverges

::::::::::

∞
nbn “ 8, then

∞
nan

diverges.

The first conclusion
::::
point

:
follows from the squeezing principle: since

bn is always above an, and
∞

nbn converges, then so must
∞

nan. The
second conclusion

::::
point

:
uses this reasoning in reverse: since

∞
nbn “

8 and an • bn, then we must also have
∞

nan “ 8.

Limit comparison test

We can also compare series by comparing the relative size of their
nth terms. Suppose lim

nÑ8

an
bn

“ L. We can draw the following conclu-

sions:

• If 0 † L † 8, then
∞

n an and
∞

n bn either both converge or
both diverge.

• If L “ 0 and
∞

n bn converges, then
∞

n an also converges.
• If L “ 8 and

∞
n bn diverges, then

∞
n an also diverges.

The nth root test

If r is defined by r “ lim
nÑ8

n
a

|an|, then
∞

n an diverges if r ° 1 and
converges if r † 1. If r “ 1, the test is inconclusive.
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The ratio test

The most useful convergence test is the ratio test. To use the ratio test,
compute the limit of the ratio of successive terms in the sequence:

R “ lim
nÑ8

ˇ̌
ˇ̌ an`1

an

ˇ̌
ˇ̌ .

The series
∞

8

n an converges if R † 1, and
∞

8

n an diverges if R ° 1. If
R “ 1, the test is inconclusive.

::::::::
Absolute

::::::::::::
convergence

:
If
:::::::

∞
n |an|

:::::::::::
converges,

::::::

∞
n an::::

also
:::::::::::

converges.
:::::

The
:::::::::

opposite
::
is
::::

not
::::::::::
necessarily

::::
true,

:::::
since

:::
the

::::::::::::
convergence

::
of

::
an::::::

might
::
be

::::
due

::
to

::::::::
negative

:::::
terms

:::::::::
cancelling

:::::::
positive

::::::
terms.

:

::
A

:::::::::
sequence

::
an::::

for
::::::
which

:::::::

∞
n |an|

::::::::::
converges

::
is

::::::
called

:::::::::
absolutely

:::::::::
convergent.

::::
A

::::::::
sequence

:::
bn::::

for
::::::
which

::::::

∞
n bn :::::::::

converges
::::

but
:::::::

∞
n |bn|

::::::::
diverges

:
is
::::::
called

:::::::::::
conditionally

::::::::::
convergent.

:

Taylor series
The Taylor series of a function f pxq approximates the function by an
infinitely long polynomial:

f pxq “

8ÿ

n“0
cnxn

“ c0 ` c1x ` c2x2
` c3x3

` c4x4
` ¨ ¨ ¨ .

Each term in the series is of the form an “ cnxn, where the coefficient
cn depends on the properties of the function f pxq. For example, the
Taylor series of the function sinpxq is

sinpxq “

8ÿ

n“0

p´1q
n

p2n ` 1q!
x2n`1

“ x ´
x3

3!
`

x5

5!
´

x7

7!
`

x9

9!
´

x11

11!
` ¨ ¨ ¨ .

sinpxq
:::::

“

8ÿ

n“0

p´1q
n

p2n ` 1q!
x2n`1

::::::::::::::::::

“ x ´
x3

3!
`

x5

5!
´

x7

7!
`

x9

9!
´

x11

11!
` ¨ ¨ ¨ .

:::::::::::::::::::::::::::::::::

How do the coefficients cn depend on the function f pxq? How can
we compute the Taylor series for other functions?
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456 CALCULUS

The general procedure for computing the coefficients cn in the
Taylor series of a function f pxq is to choose cn equal to the nth deriva-
tive of f pxq divided by n!:

f pxq “ f p0q ` f 1
p0qx `

f 2
p0q

2!
x2

`
f 3

p0q

3!
x3

`
f p4q

p0q

4!
x4

` ¨ ¨ ¨

“

8ÿ

n“0

f pnq
p0q

n!
xn.

Using this formula and your knowledge of derivatives, you can com-
pute the Taylor series of any function f pxq.

Example Find the Taylor series of f pxq “ ex. The formula for the

nth coefficient in the Taylor series of the function f pxq is cn “
f pnqp0q

n! .
The first derivative of f pxq “ ex is f 1

pxq “ ex. The second derivative
of f pxq “ ex is f 2

pxq “ ex. In fact, all the derivatives of f pxq will be
ex because the ex is a special function that is equal to its derivative!
The nth coefficient in the power

:::::
Taylor

:
series of f pxq “ ex at the point

x “ 0 is equal to the value of the nth derivative of f pxq evaluated at
x “ 0. In the case of f pxq “ ex we have f pnq

p0q “ e0
“ 1, so the

coefficient of the nth term is cn “
f pnqp0q

n! “
1
n! .

cn “
f pnqp0q

n! “
1
n! .

::::::::::::::

The Taylor series of f pxq “ ex is

ex
“

8ÿ

n“0

1
n!

xn
“ 1 ` x `

x2

2
`

x3

3!
`

x4

4!
`

x5

5!
` ¨ ¨ ¨

ex
:

“

8ÿ

n“0

1
n!

xn

:::::::::

“ 1 ` x `
x2

2
`

x3

3!
`

x4

4!
`

x5

5!
` ¨ ¨ ¨

::::::::::::::::::::::::::::::



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



5.20 CONCLUSION 461

Discussion
You can think of the Taylor series as containing the “similarity coef-
ficients” between f pxq and the different powers of x. We choose the
terms in the Taylor series of f pxq to ensure the series approximation
has the same nth derivative as the function f pxq. For a Maclaurin se-
ries, the similarity between f pxq and its power series representation

is measured at x “ 0, so the coefficients are chosen as cn “
f pnqp0q

n! .
The more general Taylor series allows us to build an approximation
to f pxq at any point x “ a, and its similarity coefficients are calcu-

lated to match the derivatives at that point: cn “
f pnqpaq

n! .
Another way of looking at the Maclaurin series is to imagine it is a

kind of X-ray picture for each function f pxq. The zeroth coefficient c0
in the Maclaurin series tells you how much of the constant function
is in f pxq. The first coefficient, c1, tells you how much of the linear
function x is in f ; the coefficient c2 tells you about the x2 contents
of f , and so on.

Now get ready for some crazy shit. I want you to go back to
page 456 and take a careful look at the Maclaurin series of ex, sinpxq,
and cospxq. As you will observe, it’s as if ex contains both sinpxq and
cospxq, the only difference being the presence of the alternating neg-
ative signs. How about that? Do you remember Euler’s formula
eix

“ cos x ` i sin x? Verify Euler’s formula (page 237) by substitut-
ing ix into the power series for ex.

Another interesting equation to think about in terms of series is
ex

“ cosh x ` sinh x.

Links
[ Animation showing Taylor series approximations to sinpxq ]
http

:::::
https://mathforum.org/mathimages

::::::::::::::::
.swarthmore.edu/index.php/Taylor_Series

[
::::::
Visual

:::::::::::
explanation

::
of

::::::
Taylor

::::::
series

::
by

:::::::::::::
3Blue1Brown ]

:::::::::::::::::::::::::::::::::::::::::::::
https://www.youtube.com/watch?v=3d6DsjIBzJ4

[ Good summary with many interesting examples ]
http://en.wikipedia.org/wiki/Series_(mathematics)

[ A comprehensive list of important math series ]
http://en.wikipedia.org/wiki/List_of_mathematical_series

5.20 Conclusion
Now you know how to take derivatives, calculate integrals, and find
sums of infinite series. These practical skills will come in handy in
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learned by trying to solve some calculus problems.
Calculus hasn’t changed much in the last hundred years. It is tes-

tament to this fact that many of the problems presented here were
adapted from the book “Calculus Made Easy” by Silvanus Thomp-
son, originally published1 in 1910. These problems remain as perti-
nent and interesting today as they were 100 years ago.

As much as calculus is about understanding things conceptually
and seeing the big picture (abstraction), calculus is also about prac-
tice. There are more than 120 problems to solve in this section. The
goal is to turn differentiation and integration into routine operations
that you can carry out without stressing out. You should vanquish as
many problems as you need to feel comfortable with the procedures
of calculus.

Okay, enough prep talk. Let’s get to the problems!

Limits problems
P5.1 Use the graph of the function f pxq shown in Figure 5.33 to calculate
the following limit expressions:

(1) lim
xÑ´5´

f pxq (2) lim
xÑ´5`

f pxq (3) lim
xÑ´5

f pxq

(4) lim
xÑ2´

f pxq (5) lim
xÑ2`

f pxq (6) lim
xÑ2

f pxq

(7) lim
xÑ5´

f pxq (8) lim
xÑ5`

f pxq (9) lim
xÑ5

f pxq

(10) Is the function f pxq continuous at x “ 5?

(11) What are the intervals where the function f pxq is continuous?

Figure 5.33: The graph of a piecewise-continuous function f pxq. The func-
tion f pxq has two jump discontinuities at x “ ´5 and x “ 2 and one remov-
able discontinuity at x “ 5.

1Full text is available at http:/gutenberg.org/ebooks/33283 (public domain).
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Conclusion
We managed to cover a lot of ground, explaining many topics and
concepts in a relatively small textbook. We reviewed high school
math and learned about mechanics and calculus. Above all, we ex-
amined math and physics material in an integrated manner.

If you liked or hated this book, be sure to send me feedback.
Feedback is crucial so I know how to adjust the writing, the con-
tent, and the attitude of the book for future learners of math.
Please take the time to drop me a line if you find a mistake or to
let me know what you thought. You can reach me by email at
ivan@minireference.com.

If you want to learn about other books in the No bullshit
guideseries and

:::
No

::::::::
Bullshit

::::::
Guide

:::::
series

::
or

:
hear about the technol-

ogy we’re using at Minireference Publishing
::::::::::::
Minireference

::::
Co.

to take over the textbook industry, check out the company blog at
minireference.com/blog/. You can also find us on the twitter
@minireference

:
and on the facebook

:
fb.me/noBSguide.
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aTp~v1q ` bTp~v2q. Using the standard notation for functions, we write
Tp~xq “ ~y to show the linear transformation T acting on an input
vector ~x P Rn to produce the output vector ~y P Rm. Every linear
transformation T can be represented as a matrix AT P Rmˆn, which is
an array of numbers with m rows and n columns. Computing Tp~xq

is equivalent to computing the matrix-vector product AT~x. Because
of the equivalence between linear transformations and matrices, we
can also say that linear algebra is the study of vectors and matrices.

Vectors and matrices are used all over the place! If your knowl-
edge of high-school math gave you modelling superpowers, then
linear algebra is the vector-upgrade that teaches you how to build
models in multiple dimensions.

[VIDEO LECTURES] Gilbert Strang. Linear Algebra, MIT Open-
CourseWare, 2010, online: http://bit.ly/StrangLAlectures.
[BOOK] Ivan Savov. No bullshit guide to linear algebra, Minireference
Publishing, Second edition, 2017, ISBN 978-0-9920010-2-5.

General mathematics
Mathematics is a hugely broad field. There are all kinds of topics
to learn about; some of them are fun, some of them are useful, and
some of them are totally mind expanding.

The following books
:::::::::
resources cover math topics of general in-

terest and serve as a great overview of all areas of mathematics. I
highly recommend you take a look at both books for some easy and
enlighteningreading

:::::
these

:::
for

::::::
further

:::::
math

::::::::::::
enlightening.

[
::::::
VIDEO]

:
A

:::::
map

:::
of

::::::::::::
mathematics

:::::
that

::::::
shows

::::
all

:::
the

:::::::::
subfields

:::
of

:::::::::::
mathematics

::::
and

:::::
their

::::::
objects

::
of

::::::
study:

:
https://youtu.be/OmJ-4B-mS-Y.

[
:::::::
VIDEOS]

:::::
Video

::::::::::
interviews

::::
and

:::::::
lessons

:::
by

:::::
some

:::
of

::::
the

::::
best

:::::
math

:::::::::
educators

::
in

:::
the

:::::::
world: https://youtube.com/user/numberphile.

:

[BOOK] Richard Elwes. Mathematics 1001: Absolutely Everything,
Firefly Books, 2010, ISBN 1554077192.
[BOOK] Alfred North Whitehead. An Introduction to Mathematics,
Williams & Norgate, 1911, www.gutenberg.org/ebooks/41568.

Probability
Probability distributions are a fundamental tool for modelling non-
deterministic behaviour. A discrete random variable X is associated
with a probability mass function pXpxq ” PrptX “ xuq

:::::::::::::::::::
pXpxq

def
“ PrptX “ xuq,

which assigns a “probability mass” to each of the possible outcomes
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of the random variable X. For example, if X represents the out-
come of the throw of a fair die, then the possible outcomes are
X “ t1, 2, 3, 4, 5, 6u and the probability mass function has the values
pXpxq “

1
6 , @x P X .

Probability distributions and random variables allow us to model
random processes like the roll of a die. We can’t predict the exact
outcome when two dice X1 and X2 are rolled, but we can predict the
probability of different outcomes. For example, the “pair of sixes”
outcome is described by the event tX1 ` X2 “ 12u. Assuming the
dice are fair, this outcome has probability PrptX1 ` X2 “ 12uq “

1
36 .

Probability theory is used all over the place
::
in

::::::
many

:::::::
places,

including in
:::::::::
gambling,

::::
risk

:::::::::
analysis,

:
statistics, machine learning,

quantum mechanics, gambling, and risk analysis
::::
and

:::::::::
quantum

::::::::::
mechanics.

[
::::::::
WEBSITE]

:
A

::::::
visual

::::::::::::
introduction

:::
to

:::
the

::::::
basic

:::::
ideas

:::
of

::::::::::
probability

::::::
theory:

:
https://seeing-theory.brown.edu/basic-probability/.

[
:::::
BOOK]

:::::::
Charles

:::
M.

::::::::::
Grinstead

:::::
and

::
J.

:::::::
Laurie

::::::
Snell.

::::::::::::
Introduction

::
to

::::::::::
Probability,

::::::::
Second

::::::::
Edition,

::::::
AMS,

::::::
1997,

::::::
ISBN

::::::::::::::
9780821894149.

https://open.umn.edu/opentextbooks/textbooks/21.

General physics
If you want to learn more about physics, I highly recommend the
Feynman lectures on physics. This three-tome collection covers all
of undergraduate physics and explains many more advanced topics.

[BOOK] Richard P. Feynman. The Feynman Lectures on Physics,
The Definitive and Extended Edition, Addison Wesley, 2005, ISBN
0805390456. Read online at: http://feynmanlectures.caltech.edu

Lagrangian mechanics
In this book we learned about Newtonian mechanics, that is, mechanics
starting from Newton’s laws. There is a much more general frame-
work known as Lagrangian mechanics that can be used to analyze
more complex mechanical systems. The following is an excellent
book on the subject.

[BOOK] Herbert Goldstein, Charles P. Poole Jr., John L. Safko.
Classical Mechanics, Addison-Wesley, Third edition, 2001, ISBN
0201657023.
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Appendix A

Answers and solutions

Chapter 1 solutions

Answers to exercises
E1.1 a) x “ 3; b) x “ 30; c) x “ 2; d) x “ ´3. E1.2 a) Z, Q, R, C; b) C;
c) N, Z, Q, R, C; d) Q, R, C; e) R, C. E1.3 a) 21; b) 0; c) 2

27 . E1.4
:
a)

::
5
6 ;

::
b)

:::::::
13
12 “ 1 1

12 ;

:
c)
:::::::

31
6 “ 5 1

6 . E1.5 a) x “ 2; b) x “ 25; c) x “ 100. E1.7 a) px ´ 1qpx ´ 7q; b) px ` 2q
2;

:
c)
:::::::::::
px ` 3qpx ´ 3q. E1.8 a) a2

` 2ab ` b2
:::::::::::::::::::::::
x2

` 2x ´ 15 “ px ` 1q
2

´ 16 “ 0,
:::::

which
:::
has

::::::
solutions

:::::
x “ 3

:::
and

:::::
x “ ´5; b) a3

` 3a2b ` 3ab2
` b3; c) a4

` 4a3b ` 6a2b2
` 4ab3

` b4;
d) a5

` 5a4b ` 10a3b2
` 10a2b3

` 5ab4
` b5.

::::::::::::::::::::::
x2

` 4x ` 1 “ px ` 2q
2

´ 3 “ 0,
::::::

with

::::::
solutions

::::::::::
x “ ´2 `

?
3
::::

and
::::::::::
x “ ´2 ´

?
3. E1.9 x1 “

3
2 and x2 “ ´1. E1.10

x “ ˘
?

2. E1.11 a) 8; b) a´1b´2c´3
“

1
ab2c3 ; c) 8a2; d) a6b´2. E1.12

a) 3; b) 12; c)
?

3; d) |a|. E1.13 a) 2p; b) 4 `
1
4 “ 4.25; c) 1; d) x2. E1.14

a) x “
?

a and x “ ´
?

a; b) x “
3?b; c) x “

4?c and x “ ´
4?c; d) x “

5?d.
Bonus points if you can also solve x2

“ ´1. We’ll get to that in Section 3.5.
E1.15 ke “ 8.988 ˆ 109. E1.16 a) logp2xyq. b) ´ logpzq. c) logpyq. d) 3.
e) ´3. f) 4. E1.17 Domain: x P R

:
R. Image: f pxq P r´2, 2s

:::::
r´2, 2s. Roots:

r. . . , ´
p
2 , p

2 , 3p
2 , 5p

2 , . . .s
:::::::::::::::::
t. . . , ´

p
2 , p

2 , 3p
2 , 5p

2 , . . .u. E1.18 a) ppxq is even and has degree
4. b) qpxq is odd and has degree 7. E1.19 a) x “ 5 and x “ ´3; b) x “ 1 `

?
3 and

x “ 1 ´
?

3. E1.20 a) pq ˝ f qpxq ” qp f pxqq “ px ` 5q
2
::::::::::::::::::::::
pq ˝ f qpxq “ qp f pxqq “ px ` 5q

2;
qpxq shifted five units to the left. b) p f ˝ qqpxq “ x2

` 5; qpxq shifted upward by five
units. c) pq ˝ gqpxq “ px ´ 6q

2; qpxq shifted six units to the right. d) pq ˝ hqpxq “ 49x2;
qpxq horizontally compressed by a factor of seven. E1.21 A “ 5, l “ 0.1, and
f “

p
8 . E1.22 f pxq “ x2

´ 2x ` 5. E1.23 gpxq “ 2
?

x ´ 3 ´ 2. E1.24 x “
?

21.
E1.25 V “ 33.51 and A “ 50.26. E1.26

:::::
Length

::
of

::::
track

:::::::::::::::
“ 5C “ 5pd “ 11.47

::
m. E1.27 x “ 5 cosp45˝

q “ 3.54, y “ 5 sinp45˝
q “ 3.54; C “ 10p. E1.28 a) p

6
rad

:::
rad; b) p

4 rad
:::
rad; c) p

3 rad
::
rad; d) 3p

2 rad
::
rad. E1.29 a) ´1; b) 1; c) 0. E1.30

a) 0; b) 1; c) 1
2 ; d) 1. E1.31 Length of track “ 5C “ 5pd “ 11.47m

::
a)

:::::::::
3.16=18.43˝;

::
b)

:::::::::::::::::::::::
2.24=243.43˝

“ 2.24=´116.57˝;
::
c)

::::::::::::::
6=270˝

“ 6=´90˝;
::
d)

:::::::
p8.66, 5q;

::
e)

::::::::
p9.66, 2.59q;

:
f)
::::::::

p´5, 8.66q. E1.32 px ´ 1q
2

` py ´ 4q
2

“ 9 or tpx, yq P R2
| x “ 1 ` 3 cos q,

y “ 4 ` 3 sin q, q P r0, 2pqu
::::
y “ 2. E1.33

::::::::::
c “

?
a2 ´ b2. E1.34

:::::::
y “

1
4 f x2. E1.35

:
a)
:::::
p1, 1

2 q.
::
b)

:::::
p1, 2q.

:
c)
::::::

p´2, 2q. E1.36 x “ 2, y “ 3. E1.37 x “ 5, y “ 6, and z “ ´3.
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488 ANSWERS AND SOLUTIONS

E1.38 p “ 7 and q “ 3. E1.39 a) $53 974.14; b) $59 209.77; c) $65 948.79. E1.40
$32 563.11. E1.41 a) t2, 4, 6, 7u; b) t1, 2, 3, 4, 5, 6u; c) t1, 3, 5u; d) H; e) t1, 2, 3, 4, 5, 6, 7u;
f) t7u; g) t2, 4, 6, 7u; h) H. E1.42 a) x P p´8, 3

2 q
::::::
p´8, 3

2 q; b) x P p´8, ´5s
:::::::
p´8, ´5s;

c) x P p´1, 4q
:::::
p´1, 4q; d) x P p4, 8q

::::
p4, 8q; e) x P r

14
3 , 8q

:::::
r

14
3 , 8q; f) p´8, ´4s Y r2, 8q

:::::::
p´8, ´4s

:
Y
:::::
r2, 8q.

Solutions to selected exercises
E1.4

:
a)

::
To

:::::::
compute

:::::
1
2 `

1
3 ,

::
we

::::::
rewrite

:::
both

:::::::
fractions

::::
using

:::
the

:::::::
common

:::::::::
denominator

:
6,
::::
then

:::::::
compute

::
the

::::
sum:

:::::::::::::::
1
2 `

1
3 “

3
6 `

2
6 “

5
6 .
::

b)
::::

You
:::
can

::
use

:::
the

::::::
answer

::::
from

:::
part

::
(a),

::
or
:::::::

compute
:::

the
:::::

triple
:::
sum

::::::
directly

:::
by

:::::
setting

:::
all

::::
three

:::::::
fractions

::
to

:
a
:::::::

common

::::::::::
denominator:

:::::::::::::::::::::::
1
2 `

1
3 `

1
4 “

6
12 `

4
12 `

3
12 “

13
12 .

::
c)

::::
Here

::
we

::::
first

:::::
rewrite

:::
3 1

2 ::
as

:
7
2 ,
::::

then

::
use

:::
the

:::::::
common

:::::::::
denominator

:
6
:::

for
::
the

::::::::::
computation:

::::::::::::::::::::::
7
2 ` 2 ´

1
3 “

21
6 `

12
6 ´

2
6 “

31
6 .
:

E1.15 If you’re using a very basic calculator, you should first compute the expres-
sion in the denominator, and then invert the fraction. Calculators that support
scientific notation have an “exp” or “E” button, which allows you to enter #0 as
8.854e-12. If your calculator supports expressions, you can type in the whole expres-
sion 1/(4*pi*8.854e-12). We report an answer with four significant digits because
we started from a value of #0 with four significant digits of precision.

E1.19 a) Rewrite the equation putting all terms on the right-hand side: 0 “ x2
´

2x ´ 15. We can factor this quadratic by inspection. Are there numbers a and b such
that a ` b “ ´2 and ab “ ´15? Yes, a “ ´5 and b “ 3, so 0 “ px ´ 5qpx ` 3q.
b) Rewrite the equation so all terms are on the left-hand side: 3x2

´ 6x ´ 6 “ 0.
Nice, the cubic terms cancel! We’ll use the quadratic formula to solve this equation

x “
6˘

?
p´6q2´4p3qp´6q

6 “
6˘6

?
3

6 “ 1 ˘
?

3.

E1.24 The cosine rule tells us x2
“ 42

` 52
´ 2p4qp5q cosp60˝

q “ 16 ` 25 ´ 40 1
2 “ 21

::::::::::::::::::::::::::
x2

“ 42
` 52

´ 2p4qp5q cosp60˝
q “ 21.

Therefore x “
?

21.

E1.25 The volume of the sphere with radius r “ 2 is V “
4
3 p23

“ 33.51. Its surface
area is A “ 4p22

“ 50.26.

E1.28 To convert an angle measure from degrees to radians we must multiply it by
the conversion ratio p

180 rad/˝.

E1.32
:::::::

Substitute
:::
the

::::::
formula

:::::::
sin q “

y
r::::

into
:::
the

:::::::
equation

::
to

:::::
obtain

::::::
r “

2r
y ,

:::::
which

:::::::
simplifies

::
to

:::::
y “ 2.

::::
The

:::::::
function

::::::::
rpqq “

2
sin q::

in
:::::

polar
:::::::::
coordinates

:::::::::
corresponds

::
to

::
the

:::
line

::::
with

:::::::
equation

:::::
y “ 2.

:::
See

:::::::::::::::::::::::::::::::
www.desmos.com/calculator/5n5zzoal2t

::
for

:::
the

:::::
graph.

E1.33
:::

First
:::::
define

:::
the

:::::
vertex

::::::::
V2 “ pa, 0q

:::::
which

::::::::::
corresponds

::
to

:::
the

::::
right

:::::::
extremity

:
of
:::

the
::::::

ellipse.
::::::::::

Considering
:::
the

::::::::
definition

::
of

:::
the

:::::
ellipse

::
at

:::
the

:::::
vertex

:::
V2,

:::
we

:::
find

::::::::::::::::::::::
r1 ` r2 “ pc ` aq ` pa ´ cq “ 2a.

::::::
Next,

::::::
consider

:::
the

:::::
vertex

::::::::
V3 “ p0, bq

::
at
:::

the
:::
top

::
of

::
the

::::::
ellipse.

:::
The

:::::::
distances

::
r1:::

and
::
r2::::

from
::
V3::

to
:::
the

::::
focal

::::
points

::
F1::::

and
::
F2 ::::::::

correspond

:
to
:::

the
:::::::::
hypotenuse

::
of

:
a
::::::

triangle
::::

with
::::
base

:
c
:::
and

:::::
height

::
b:
:::::::::::::::
r1 “ r2 “

?
c2 ` b2.

::::
Since

:::::::::::
r1 ` r2 “ const.

::
for

:::
all

:::::
points

::
on

:::
the

:::::
ellipse,

:::
we

:::
can

:::::
equate

::
the

::::::
results

::::::
obtained

::::
from

::
the

:::::
length

:::::::::
calculations

:::
for

::::
point

::
V2:::

and
::::
point

:::
V3.

:::
We

:::
find

::::::::::::
2a “ 2

?
c2 ` b2,

:::::
which

::
we

::
can

:::::
solve

::
for

:
c
::
to

:::::
obtain

::::::::::
c “

?
a2 ´ b2.

E1.34
::

For
:
a
:::::::

parabola
::::

with
::::

focal
::::::

length
::
f ,

:::
the

::::
focal

::::
point

::
is
::

at
::::::::

F “ p0, f q
:::
and

:::
the

::::::
directrix

::
is

::
the

::::
line

::::
with

::::::
equation

:::::::
y “ ´ f .

:::
The

:::::::
distance

::::
from

:::
the

::::
focal

::::
point

::
to

::
an

::::::
arbitrary

::::
point

:::
on

::
the

:::::::
parabola

:
is
:::::
given

::
by

r “ dpP, Fq “ d
´

px, yq, p0, f q

¯
“

b
x2 ` py ´ f q2.

::::::::::::::::::::::::::::::::::
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P1.48 The base of this triangle has length 2r and each side has length R ` r. If you split
this triangle through the middle, each half is a right triangle with an angle at the centre
360˝

24 “ 15˝, hypotenuse R ` r, and opposite side r. We therefore have sin 15˝
“

r
R`r .

After rearranging this equation, we find R
r “

1´sin 15˝
sin 15˝ “ 2.8637.

P1.51 The tank’s total capacity is 15 ˆ 6 ˆ 5 “ 450 m3. If 30% of its capacity is spent,
then 70% of the capacity remains: 315 m3. Knowing that 1 m3

“ 1000 L, we find there
are 315 000 L in the tank.

P1.52 The first tank contains 1
4 ˆ 4000 “ 1000 L. The second tank contains three times

more water, so 3000 L. The total is 4000 L.

P1.53 Let’s define w and h to be the width and the height of the hole. Define d to
be the distance from the hole to the sides of the lid. The statement of the problem
dictates the following three equations must be satisfied: w ` 2d “ 40, h ` 2d “ 30,
and wh “ 500. After some manipulations, we find w “ 5p1 `

?
21q, h “ 5p

?
21 ´ 1q

and d “
1
2 p35 ´ 5

?
21q.

P1.54 The amount of wood in a pack of wood is proportional to the area of a circle
A “ pr2. The circumference of this circle is equal to the length of the rope C “ `.
Note the circumference is proportional to the radius C “ 2pr. If we want double the
area, we need the circle to have radius

?
2r, which means the circumference needs to

be
?

2 times larger. If we want a pack with double the wood, we need to use a rope of
length

?
2`.

P1.55 In 10 L of a 60% acid solution there are 6 L of acid and 4 L of water. A 20% acid
solution will contain four times as much water as it contains acid, so 6 L acid and 24 L
water. Since the 10 L we start from already contains 4 L of water, we must add 20 L.

P1.56 The document must have a 768{1004 aspect ratio, so its height must be 6 ˆ

1004
768 “ 7.84375 inches.

P1.57 If we rewrite 1 ` 2 ` 3 ` ¨ ¨ ¨ ` 98 ` 99 ` 100 by pairing numbers, we obtain the
sum p1 ` 100q ` p2 ` 99q ` p3 ` 98q ` ¨ ¨ ¨ . This list has 50 terms and each term has the
value 101. Therefore 1 ` 2 ` 3 ` ¨ ¨ ¨ ` 100 “ 50 ˆ 101 “ 5050.

P1.62 An nAPR of 12% means the monthly interest rate is 12%
12 “ 1%. After 10 years

you’ll owe $5000p1.01q
120

“ $16501.93. Yikes!

P1.63 The graphs of the functions are shown in Figure ??
::
A.1. Observe that f pxq de-

creases to 37% of its initial value when x “ 2. The increasing exponential gpxq reaches
63% of its maximum value at x “ 2.

P1.64 We’re looking for the time t such that
::::
when

:
Qptq{Qo “

1
2 , which is the same

as e´5t
“ 0.5. Taking

:::
Take

:
logarithms of both sides we

:
to find ´5t “ lnp0.5q , and

solving
::
and

::::
solve

:
for t we find

:
to
:::
get t “ 0.14 s.

P1.65 We’re told Tp24q{To “
1
2 “ e´24{t , which we can rewrite as lnp

1
2 q “ ´24{t.

Solving for t, we find t “
24

ln 2 “ 34.625 min. To find the time the body takes to reach
1% of its initial temperature, we must solve for t in Tptq{To “ 0.01 “ e´t{34.625. We
find t “ 159.45 min.

P1.67 There exists at least one banker who is not a crook. Another way of saying the
same thing is “not all bankers are crooks”—just most of them.

P1.68 Everyone steering the ship at Monsanto ought to burn in hell, forever.

P1.69 a) Investors with money but without connections. b) Investors with connec-
tions but no money. c) Investors with both money and connections.
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P4.15 The period will decrease. P4.16 Fpush “ 4.71[N]. P4.17 The pulley with the
larger radius R will spin faster and have more Kr . P4.18 (1) v2 “ ´5.4[m/s]. (2) Not
elastic. P4.19 (1) See solution. (2) a1 “ 1[m/s2], a2 “ 0[m/s2], and a3 “ ´1[m/s2].
(3) F “ 40[N]. P4.20 vobj “

?
2 v [m/s]. P4.21 (1) T “ 4.9[N m].

:
(2) W “ 9.6[J].

P4.22 m “ 1.46[kg]. P4.23 }~F} “ 3[N]. P4.24 (1) h “ d.
:
(2) vi “ 19.8[m/s]

and thit “ 1.43[s]. P4.25 (1) µs •
M

m1`m2
.

:
(2) µs • 0.421.

:
(3) a “

Mg
m1`m2`M .

P4.26 (1) d “ 4.41[m]. (2) ~v2i “ 5=90˝[m/s]. P4.27 (1) Flift “ 158 ˆ 103[N]. (2) The
vertical acceleration is zero so the plane will maintain a horizontal trajectory. P4.28
v “ 10.2[m/s]. P4.29 (1) vi “ p

sin 30
tan 60 ` cos 30q

a
2dgµk . (2) vi “ 2.24[m/s], v1 “

1.12[m/s] and v2 “ 1.94[m/s]. (3) 0.233[m]. (4) The collision is elastic. P4.30
(1) T “ 3.6[N m]. (2) 18.9 revolutions. P4.31 The solid cylinder will reach the bottom
first. P4.32 tflight “ 2ttop “ 4.1[s]. P4.33 µk “

M2

m2
L
d . P4.34 Range is 0.65[m] greater

on the summit than on the North Pole. P4.35 xptq “ 2t2
` 10t ` 20 in metres. P4.36

The slug loses contact at R “
0.4g
w2 . P4.37 upward Ff s ° stationary Ff s ° downward

Ff s. P4.38 The coin farthest from the centre will fly off first. P4.39 (1) Ff “ 3000[N]
per wheel. (2) T “ 180[N m]. (3) 2.21 turns. (4) 2.7[m]. P4.40 x f “ 2.09

::::::
x f “ 2.85[m].

P4.41 ypxq “ ` sinpqmaxq cosppw{vqxq
:::::::::::::::::::::
ypxq “ ` sin

´
qmax cos

` ?g?
`v

x
˘¯

.

Solutions to problems
P4.1 When the y-axis points up, ay “ ´g and viy is positive. The opposite applies
when the y-axis is directed downward. The balloon moves at the same horizontal
speed as the cat; the balloon is always directly above the cat, and splashes the cat
when it comes back down. The cat is not happy about that.

P4.2 (1) ~F4 points right and is perpendicular to the left face of the block, (2) ~F4 points
up and is perpendicular to the bottom face of the block, and (3) ~F4 points left and
is perpendicular to the right face of the block. In each case, the sum of the forces
produces an~ablock in the desired direction.
P4.3 Calculate the momentum and energy using the formulas }~p} “ m}~v} and K “

1
2 mv2. Observe that two objects moving with equal momentum can carry different
amounts of kinetic energy; this problem shows momentum and energy are different
quantities.
P4.4 In each case, the sum ~pA `~pB after the separation equals the momentum of the
station before the compartments split apart: 2m~v “ m~vA ` m~vB.
P4.5 When there is a velocity, there is kinetic energy K. When the spring is stretched,
there is spring potential energy Us. When the position of the mass is above or below
y “ 0, there is gravitational potential energy Ug.
P4.6 The ball’s initial kinetic energy is the same on Earth and on the Moon. Because
of conservation of energy, when the ball returns to ground level, it will have the same
kinetic energy it had initially, regardless of the value of g.
P4.7 Define the zero potential-energy level to be at ground level. The bottom of the
10[m] pit has a lower potential energy on Earth because gEarth ° gMoon. The ball will
therefore gain more kinetic energy on Earth when it reaches the bottom of the pit and
thus have a higher speed.
P4.8 The rotation of the mass M is at a constant angular velocity so the net torque
on the mass is zero. Let us denote by Lrod, Lmass, and Lsys the angular momenta of
the rod, the mass M, and the total angular momentum of the mass-on-a-rod system.
Initially, Lsys “ Lrod ` Lmass. When the mass M detaches, its velocity ~v will remain
the same as before the moment it detached. This means its angular momentum Lmass
will remain the same after it detaches. This in turn implies the rod will also maintain
its angular momentum, so its angular velocity will remain w.
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500 ANSWERS AND SOLUTIONS

P4.30 Use a “ ra to find a, then use T “ Ia to find the torque. Use the angular
equations of motion to find qp4q. The number of revolutions is qp4q

2p .
P4.32 This is a kinematics question. Start from the equation vptq “ at ` vi and a “

´9.81. We know vpttopq “ 0, so we can solve to find ttop.

P4.33 First we use Ui “ K f for the pendulum, obtaining MgL “
1
2 Mv2

in and thus
vin “

a
2gL. Next we use a momentum reasoning ~pin “ ~pout where the incoming

momentum is that of the mass M and the outgoing momentum is that of the mass
m. The conservation of momentum equation becomes Mvin ` 0 “ 0 ` mvout, where
vout is the velocity of the mass m after the collision, and the momentum of the pen-
dulum is zero after the collision since it doesn’t bounce back. Solving for vout we find
vout “

M
m

a
2gL. Finally, we use an energy calculation Ki “ Wlost, which becomes

1
2 m

` M
m

a
2gL

˘2
“ mgµkd. After some simplifications, we find µk “

M2

m2
L
d .

P4.34 We want to find the range—how far the ball will reach after being kicked—in
both situations. The first thing to calculate is the total time of flight by solving for t in
0 “ 0 ` viyt `

1
2 p´gqt2. The time of flight will be 4.347[s] on the Nevado Huascarán

summit, and 4.316[s] on the North Pole. The range in each case corresponds to d “

vix4.347 “ 92.21[m] and d “ vix4.316 “ 91.56[m]. The difference in range is 92.21 ´

91.56 “ 0.65[m].
P4.36 The normal force between the slug and the turntable is N “ mg. With the slug
located at radius R, the centripetal acceleration required to keep the slug on the disk
is Fr “ mar “ m pRwq2

R . The friction force available is Ff “ 0.4mg. The slug will fly off
when the friction force becomes insufficient, which happens at a distance of R “

0.4g
w2

from the centre.
P4.37 The equation for Ff s is Ff s “ µs N, where N is the normal force (the contact
force between the fridge and the elevator floor). The force diagram on the elevator
reads

∞
Fy “ N ´ mg “ may. When the elevator is static, ay “ 0 so N “ mg. If

ay ° 0 (upward acceleration), then we must have N ° mg; hence the friction force
will be larger than when the elevator is static. When ay † 0 (downward acceleration),
N must be smaller than mg, and consequently there will be less Ff s.
P4.38 The coin farthest from the centre will be the first to fly off the spinning turntable
because the centripetal force required to keep this coin turning is the largest. Recall
that Fr “ mar , ar “ v2

{R, and v “ wR. If the turntable turns with angular velocity w,
the centripetal acceleration required to keep a coin turning in a radius R is Fr “ mw2R.
This centripetal force must be supplied by the static force of friction Ff s between the
coin and the turntable. Larger Rs require more Ff s.
P4.39 (1) The friction force is proportional to the normal force. The friction on each
side of each disk is Ff “ 0.3 ˆ 5000 “ 1500[N] for a total friction force of Ff “ 3000[N]
per wheel. (2) The friction force of the brakes acts with a leverage of 0.06[m], so the
torque produced by each brake is T “ 0.06 ˆ 3000 “ 180[N m]. (3) The kinetic energy
of a 100[kg] object moving at 10[m/s] is equal to Ki “

1
2 100p10q

2
“ 5000[J]. We’ll use

Ki ´ W “ 0, where W is the work done by the brakes. Let qstop be the angle of rotation
of the wheels when the bike stops. The work done by each brake is 180qstop. It will
take a total of qstop “

5000
360 “ 13.8[rad] to stop the bike. This angle corresponds to 2.21

turns of the wheels. (4) Your stopping distance will be 13.8 ˆ 0.20 “ 2.7[m]. Yay for
disk brakes!
P4.40 The energy equation

∞
Ei “

∞
Ef in this case is Ui “ Uf ` K f , or mgp6 ´

6 cos 50˝
q “ mgp6 ´ 6 cos 10˝

q `
1
2 mv2, which can be simplified to v2

“ 12gpcos 10˝
´

cos 50˝
q. Solving for v we find v “ 4.48

::::::
v “ 6.345[m/s]. Now for the projectile

motion part. The initial velocity is 4.48
:::
6.345[m/s] at an angle of 10˝ with re-

spect to the horizontal, so ~vi “ p4.42, 0.778q
:::::::::::
~vi “ p6.24, 1.10q[m/s]. Tarzan’s ini-

tial position is pxi , yiq “ p6 sinp10q, 6r1 ´ cosp10qsq “ p1.04, 0.0911q[m]. To find
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the total time of flight, we solve for t in 0 “ ´4.9t2
` 0.778t ` 0.0911 and find

t “ 0.237
::::::::::::::::::::
0 “ ´4.9t2

` 1.10t ` 0.0911
:::
and

::::
find

::::::::
t “ 0.289[s]. Tarzan will land at

x f “ 6 sinp10q ` 4.42t “ 2.09
:::::::::::::::::::::
x f “ 6 sinp10q ` 6.24t “ 2.85[m].

P4.41 We begin by writing
::::
Based

:::
on

:::
the

::::::::
geometry

::
of

:::
the

::::::
setup,

:::
we

:::
see

:::
the

:::::::::::
y-displacement

:::::::
depends

:::
on

:::
the

:::::
angle

::
of
:::

the
:::::::::

pendulum
:::::::

through
:::
the

:::::::
equation

:::::::::::
ypqq “ ` sinpqq.

:::
We

::::
also

:::::
know the general equation of motion for a pendulum :

:
is
:
qptq “ qmax cospwtq, where w “

a
g{`. Enter the walkway, which is moving to the

left at velocity v. If we choose the x “ 0 coordinate at a time when qptq “ qmax, the
pattern on the walkwaycan be described by the equation ypxq “ ` sinpqmaxq cospkxq,
where k “ 2p{l, and l tells us how long (measured as a distance

::::::::
Combining

:::
the

:::
two

:::::::
equations,

:::
we

:::::
obtain

:
a
::::::
formula

::::
that

:::::::
describes

::
the

:::::::
bucket’s

::::::::
transversal

::::::::::
displacement

:
as
::

a
:::::::

function
::

of
:::::

time,
:::::::::::::::::::
yptq “ ` sin

`
qmax cospwtq

˘
.
::::::

Enter
:::

the
::::::::

walkway,
:::::
which

::
is

:::::
moving

:
in the x-direction ) it takes for the pendulum to complete one cycle. One

full swing of the bucket takes T “ 2p{ws. In that time, the moving walkway will
have moved a distance of vT metres. So one cycle in space (one wavelength) is
l “ vT “ v2p{w. We conclude that the equation of the paint on the moving sidewalk
is ypxq “ ` sinpqmaxq cosppw{vqxq

::::
with

::::::
velocity

:
v,
:::::::
meaning

:::
the

:::::::
x-position

::
of
:::
the

::::
point

::::
where

:::
the

::::
paint

::
is
:::::
falling

::
is

::::
given

:::
by

:::::
x “ vt.

:::
We

::::
want

::
to
::::::

rewrite
:::
yptq

::
as
::

a
::::::
function

:
of
::

x,
::::::

which
::
we

:::
can

:::
do

:::::
using

:::
the

:::::::::
substitution

:::::
t “

x
v .

:::
We

::::
thus

:::::
obtain

:::
the

::::::
answer

::::::::::::::::::::
ypxq “ ` sin

´
qmax cos

`
w x

v
˘¯

.

Chapter 5 solutions

Answers to exercises
E5.1 (a) 0. (b) 2. (c) 8. Each limit expression describes what happens to the ratio
of two functions for large values of the input variable. E5.2 (a) 2. (b) 8. (c) ´8.
(d) 3

4 . (e) 0. (f) 0. E5.3 Max at x “
1
3 ; f

´
1
3

¯
“

4
27 . E5.4 (a) 2

x´3 `
1

x`4 ,
≥

(a) dx “

2 lnpx ´ 3q ` lnpx ` 4q. (b) 1
x´1 `

2
x´2 ,

≥
(b) dx “ lnpx ´ 1q ` 2 lnpx ´ 2q. (c) 1

4px´1q ´

1
4px`1q `

1
2px`1q2 ,

≥
(c) dx “

1
4 lnpx ´ 1q ´

1
4 lnpx ` 1q ´

1
2

1
x`1 . E5.5 pR2h

3 . E5.6 pR2h
3 .

E5.7 (a) caN ` cb NpN`1q
2 . (b) ca2 N ` cabNpN ` 1q ` cb2 NpN`1qp2N`1q

6 . (c) p2.

Answers to problems
P5.1 (1) ´6. (2) 2. (3) Doesn’t exist. (4) 8.6 (eyeballing it). (5) ´5. (6) Doesn’t
exist. (7) ´2. (8) ´2. (9) ´2. (10) No. (11)r´10, ´5q, r´5, 2q, r2, 5q, p5, 10s.
P5.2 (a) 4. (b) 6. (c) 5. P5.4 (1) Doesn’t exist. (2) 0. (3) Doesn’t exist.
(4) 0. (5) Doesn’t exist. (6) 0. (7) 1. (8) 0. (9) 1. P5.5 (1) Doesn’t exist.
(2) 3. (3) 2a. P5.7 (1) dy

dx “ 13x12. (2) dy
dx “ ´

3
2 x´ 5

2 . (3) dy
dx “ 2axp2a´1q.

(4) du
dx “ 2.4x1.4. (5) dz

dx “
1
3 x´ 2

3 . (6) dy
dx “ ´

5
3 x´ 8

3 . (7) du
dx “ ´

8
5 x´ 13

5 .

(8) dy
dx “ 2axa´1. (9) dy

dx “
3
q x

3´q
q . P5.8 (1) dy

dx “ 3ax2. (2) dy
dx “ 13 ˆ

3
2 x

1
2 .

(3) dy
dx “ 6x´ 1

2 . (4) dy
dx “

1
2 c

1
2 x´ 1

2 . (5) du
dz “

an
c zn´1. (6) dy

dt “ 2.36t. P5.9 (a)
1 ` x `

x2

2 `
x3

6 `
x4

24 ` . . .;
:

(b) 2ax ` b;
:
(c) 3x2

` 6ax ` 3a2. P5.10 (1) dw
dt “ a ´ bt.

(2) dy
dx “ 2x. (3) 14110x4

´ 65404x3
´ 2244x2

` 8192x ` 1379. (4) dx
dy “ 2y ` 8.

(5) 185.9022654x2
` 154.36334. P5.11 (1) p1

pxq “
´5

p3x`2q2 . (2) q1
pxq “

6x4`6x3`9x2

p1`x`2x2q2 .

(3) r1
pxq “

ad´bc
pcx`dq2 . (4) s1

pxq “
anx´n´1`bnxn´1`2nx´1

px´n`bq2 . P5.12 (1) x?
x2`1

.
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Appendix C

Constants, units, and
conversion ratios

In this appendix you will find a number of tables of useful informa-
tion that you might need when solving math and physics problems.

Fundamental constants of Nature
Many of the equations of physics include constants as parameters of
the equation. For example, Newton’s law of gravitation says that the
force of gravity between two objects of mass M and m separated by a
distance r is Fg “

GMm
r2 , where G is Newton’s gravitational constant.

Symbol Value Units Name

G 6.673 84 ˆ 10´11 m3 kg´1s´2 gravitational constant
g 9.806 65 « 9.81 m s´2 Earth free-fall acceleration
mp 1.672 621 ˆ 10´27 kg proton mass
me 9.109 382 ˆ 10´31 kg electron mass
NA 6.022 141 ˆ 1023

::::::::::::::
6.022 14076 ˆ 1023

:
mol´1 Avogadro’s number

kB 1.380 648 ˆ 10´23 J K´1 Boltzmann’s constant
R 8.314 462 1 J K´1 mol´1 gas constant R “ NAkB
µ0 1.256 637 ˆ 10´6 N A´2 permeability of free space
#0 8.854 187 ˆ 10´12 F m´1 permittivity of free space
c 299 792 458 m s´1 speed of light c “

1?
µ0#0

e 1.602 176 ˆ 10´19 C elementary charge
h 6.626 069 ˆ 10´34 J s Planck’s constant
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Appendix D

SymPy tutorial

Computers can be very useful for dealing with complicated math ex-
pressions or when slogging through tedious calculations. Through-
out this book we used SymPy to illustrate several concepts from math
and physics. We’ll now review all the math and physics tools avail-
able through the SymPy command line. Don’t worry if you’re not
a computer person; we’ll only discuss concepts we covered in the
book, and the computer commands we’ll learn are very similar to
the math operations you’re already familiar with. This section also
serves as a final review of the material covered in the book.

Introduction
You can use a computer algebra system (CAS) to compute compli-
cated math expressions, solve equations, perform calculus proce-
dures, and simulate physics systems.

All computer algebra systems offer essentially the same func-
tionality, so it doesn’t matter which system you use: there are free
systems like SymPy, Magma, or Octave, and commercial systems like
Maple, MATLAB, and Mathematica. This tutorial is an introduction to
SymPy, which is a symbolic computer algebra system written in the
programming language Python

:::::::
Python. In a symbolic CAS, num-

bers and operations are represented symbolically, so the answers
obtained are exact. For example, the number

?

2 is represented in
SymPy as the object Pow(2,1/2), whereas in numerical computer alge-
bra systems like Octave, the number

?

2 is represented as the approx-
imation 1.41421356237310 (a float). For most purposes the approxi-
mation is okay, but sometimes approximations can lead to problems:
float(sqrt(2))*float(sqrt(2)) = 2.00000000000000044 ‰ 2.
Because SymPy uses exact representations, you’ll never run into such
problems: Pow(2,1/2)*Pow(2,1/2)“ 2.
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520 SYMPY TUTORIAL

This tutorial presents many explanations as blocks of code
::::
code

:::::::
snippets. Be sure to try the code examples on your own by typing the
commands into SymPy. It’s always important to verify for yourself!

Using SymPy
The easiest way to use SymPy, provided you’re connected to the inter-
net, is to visit http://live.sympy.org. You’ll be presented with an
interactive prompt into which you can enter your commands—right
in your browser.

If you want to use SymPy on your own computer, you must install
Python and the python

::::
first

::::::
install

:::::::
Python

::::
and

:::
the

:::::::
Python

:
package

sympy. You can then open a command prompt and start a SymPy

::::::
Python

:
session using:

you@host> python

Python X.Y.Z

[GCC a.b.c (Build Info)] on platform

Type "help", "copyright", or "license" for more information.

>>>

\DIFdelbegin \DIFdel{from sympy import *

>>>

}\DIFdelend

The >>> prompt indicates you’re in the Python
::::::
Python

:
shell which

accepts Python commands.
:::::::
Python

::::::::::
commands.

::::::
Type

:::
the

:::::::::
following

::
in

:::
the

:::::::
Python

:::::
shell:

:

\DIFadd{>>> from sympy import *

>>>

}

The command from sympy import * imports all the SymPy func-
tions into the current namespace. All SymPy functions are now avail-
able to you. To exit the python shell press CTRL+D.

I highly recommend you also install ipython, which is an
improved interactive python shell. If you have ipython and SymPy
installed, you can start an ipython shell with SymPy pre-imported
using the command isympy. For an even better experience, you can
try jupyter notebook, which is a web frontend for the ipython
shell.

::::::::
interface

:::
for

:::::::::
accessing

:::
the

:::::::
Python

::::::
shell.

:::::::
Search

:::
the

:::::
web

:::
for

:::::::
“jupyter

::::::::::
notebook”

::::
and

:::::::
follow

:::
the

:::::::::::
installation

:::::::::::
instructions

:::::::
specific

::
to

::::
your

:::::::::
operating

::::::::
system.

:::
It’s

::::::
totally

::::::
worth

::
it!

:

Each section in this appendix begins with a python import state-
ment for the functions used in that section. If you use the statement
from sympy import * in the beginning of your code, you don’t
need to run these individual import statements, but I’ve included
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them so you’ll know which SymPy vocabulary is covered in each
section.

:::::::::::::::::::
Fundamentals

:::
of

::::::::::::::::::
mathematics

Let’s begin by learning about the basic SymPy objects and the oper-
ations we can carry out on them. We’ll learn the SymPy equivalents
of

:::::
many

::::::
math

:::::
verbs

::::
like:

:
“to solve” (an equation), “to expand” (an

expression), “to factor” (a polynomial).

Numbers
>>> from sympy import sympify, S, evalf, N

In Python
::::::
Python, there are two types of number objects: ints and

floats.
>>> 3

3 # an int

>>> 3.0

3.0 # a float

Integer objects in Python
::::::
Python

:
are a faithful representation of the

set of integers Z “ t. . . , ´2, ´1, 0, 1, 2, . . .u. Floating point numbers
are approximate representations of the reals R. Regardless of its
absolute size, a

::
A

:
floating point number is only accurate to

:::
has

:
16

decimals
::
of

:::::::::
precision.

Special care is required when specifying rational numbers ,
because integer division might not produce the answer you want .
In other words, Python will not automatically convert the answer to
:
if
::::
you

:::::
want

:::
to

:::
get

:::::
exact

::::::::
answers.

:::
If

::::
you

:::
try

::
to

::::::
divide

::::
two

:::::::::
numbers,

::::::
Python

::::
will

:::::::::
compute a floating point number, but instead round the

answer to the closest integer:

>>> 1/7
0 # int/int gives int

::::::::::::::
approximation:

To avoid this problem, you can force float division by using the
number 1.0 instead of 1:

>>> \DIFdelbegin \DIFdel{1.0}\DIFdelend \DIFaddbegin \DIFadd{1}\DIFaddend /7

0.14285714285714285 # \DIFdelbegin \DIFdel{float/int gives }\DIFdelend \DIFaddbegin \DIFadd{a }\DIFaddend float

This result is better, but it’s still only
:::
The

::::::::
floating

:::::
point

::::::::
number

:::::::::::::::::::
0.14285714285714285

:
is
:
an approximation of the exact number 1

7 P Q,
:
. since a

::::
The float

:::::::::::::
approximation has 16 decimals while the decimal
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The first statement instructs python to convert 1/7 to 1.0/7 when
dividing, potentially saving you from any int division confusion.
The second statement imports all the SymPy functions. The remaining
:::::
other

:::::
three

:
statements define some generic symbols x, y, z, and t,

and several other symbols with special properties.
Note the difference between the following two statements:

>>> x + 2

x + 2 # an Add expression

>>> p + 2

NameError: name ’p’ is not defined

The name x is defined as a symbol, so SymPy knows that x + 2 is an
expression; but the variable p is not defined, so SymPy doesn’t know
what to make of p + 2. To use p in expressions, you must first define
it as a symbol:
>>> p = Symbol(’p’) # the same as p = symbols(’p’)

>>> p + 2

p + 2 # = Add(Symbol(’p’), Integer(2))

You can define a sequence of variables using the following notation:

>>> a0, a1, a2, a3 = symbols(’a0:4’)

You can use any name you want for a variable, but it’s best if you
avoid the letters Q,C,O,S,I,N and E because they have special uses
in SymPy: I is the unit imaginary number i ”

?
´1

::::::::
i def

“
?

´1, E is the
base of the natural logarithm, S() is the sympify function, N() is used
to obtain numeric approximations, and O is used for big-O notation.

The underscore symbol _ is a special variable that contains the
result of the last printed value. The variable _ is analogous to the ans
button on certain calculators, and is useful in multi-step calculations:

>>> 3+3
6
>>> _*2
12

Expressions
>>> from sympy import simplify, factor, expand, collect

You define SymPy expressions by combining symbols with basic math
operations and other functions:
>>> expr = 2*x + 3*x - sin(x) - 3*x + 42

>>> simplify(expr) \DIFaddbegin \DIFadd{# simplify the expression

}\DIFaddend 2*x - sin(x) + 42
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Recall that the roots of the polynomial Ppxq are defined as the solu-
tions to the equation Ppxq “ 0. We can use the solve function to find
the roots of the polynomial:
>>> roots = solve(P,x)

>>> roots

[1, 2, 3]

# let’s check if P equals (x-1)(x-2)(x-3)

>>> simplify( P - (x-roots[0])*(x-roots[1])*(x-roots[2]) )

0

Equality checking
In the last example, we used the simplify function

:::
on

:::
the

:::::::::
difference

::
of

::::
two

:::::::::::
expressions

:
to check whether two expressions

::::
they

:
were

equal. This way of checking equality works because P “ Q if
and only if P ´ Q “ 0.

::
To

::::::
know

::::::::
whether

:::::::
P “ Q,

:::
we

::::
can

::::::::
calculate

::::::::::::::
simplify(P-Q)

::::
and

:::
see

::
if
::::
the

:::::
result

:::::::
equals

::
0.

:
This is the best way

to check if
::::::::
whether two expressions are equal in SymPy because it

attempts all possible simplifications when comparing the expres-
sions. Below is a list of other ways to check whether two quantities
are equal

:
,
:
with example cases where they fail

:::::::
equality

:::::
fails

::
to

:::
be

::::::::
detected:

Trigonometry
from sympy import sin, cos, tan, trigsimp, expand_trig

The trigonometric functions sin and cos take inputs in radians:
>>> sin(pi/6)

1/2

>>> cos(pi/6)

sqrt(3)/2

For angles in degrees, you need a conversion factor of p
180 [rad/˝]:

>>> sin(30*pi/180) # 30 deg = pi/6 rads

1/2

The inverse trigonometric functions sin´1
pxq ” arcsinpxq and cos´1

pxq ” arccospxq

::::::::::::::::::
sin´1

pxq “ arcsinpxq
::::
and

:::::::::::::::::::
cos´1

pxq “ arccospxq are used as follows:
>>> asin(1/2)

pi/6

>>> acos(sqrt(3)/2)

pi/6

Recall that tanpxq ”
sinpxq

cospxq:::::::::::::
tanpxq “

sinpxq

cospxq
. The inverse function of

tanpxq is tan´1
pxq ” arctanpxq ”

:::::::::::::::::::::
tan´1

pxq “ arctanpxq “ atan(x)
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>>> z = 4 + 3*I

>>> z

4 + 3*I

>>> re(z)

4

>>> im(z)

3

The polar representation of a complex number is z”|z|=q ”|z|eiq
:::::::::::::
z“|z|=q “|z|eiq .

For a complex number z “ a ` bi, the quantity |z| “

?

a2 ` b2 is
known as the absolute value of z, and q is its phase or its argument:
>>> Abs(z)

5

>>> arg(z)

atan(3/4)

The complex conjugate of z “ a ` bi is the number z̄ “ a ´ bi
:::::::::
z “ a ´ bi,

:::::
which

::::
has

:::
the

:::::
same

::::::::
absolute

::::::
value

::
as

:
z
::::
but

::::::::
opposite

::::::
phase:

>>> conjugate( z )

4 - 3*I

Complex conjugation is important for computing the absolute value
of z (|z| ”

?
zz̄

::::::::
|z| “

?

zz) and for division by z ( 1
z ”

z̄
|z|2:::::::

1
z “

z
|z|2

).

Euler’s formula
>>> from sympy import expand, rewrite

Euler’s formula shows an important relation between the exponen-
tial function ex and the trigonometric functions sinpxq and cospxq:

eix
“ cos x ` i sin x.

To obtain this result in SymPy, you must specify that the number x
is real and also tell expand that you’re interested in complex expan-
sions:
>>> x = symbols(’x’, real=True)

>>> \DIFaddbegin \DIFadd{expand(}\DIFaddend exp(I*x)\DIFdelbegin \DIFdel{.expand(}\DIFdelend \DIFaddbegin \DIFadd{, }\DIFaddend complex=True)

cos(x) + I*sin(x)

>>> re( exp(I*x) )

cos(x)

>>> im( exp(I*x) )

sin(x)

Basically, cospxq is the real part of eix, and sinpxq is the imaginary
part of eix. Whaaat? I know it’s weird, but weird things are bound to
happen when you input imaginary numbers to functions.

Euler’s formula is often used to rewrite the functions sin and cos
in terms of complex exponentials. For example,

»> (cos(x)).rewrite(exp) exp(I*x)/2 + exp(-I*x)/2
Compare this expression with the definition of hyperbolic cosine.
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::::::::::
Vectors

A vector ~v P Rn is an n-tuple of real numbers. For example, consider
a vector that has three components:

~v “ pv1, v2, v3q P pR, R, Rq ” R3.

To specify the vector~v, we specify the values for its three components
v1, v2, and v3.

A matrix A P Rmˆn is a rectangular array of real numbers with
m rows and n columns. A vector is a special type of matrix; we
:::
you

:
can think of a vector ~v P Rn either as a row vector (

:::
the

::::::
vector

::::::
~v P Rn

::
as

::
a 1 ˆ n matrix) or a column vector (n ˆ 1 matrix). Because

of this equivalence between vectors and matrices, there is no need
for a special vector object in SymPy , and

:::
we

:::
use

:
Matrix objects are

used for vectorsas well
::
to

:::::::::
represent

:::::::
vectors.

This is how we define vectors and compute their properties:

Dot product
The dot product of the 3-vectors ~u and ~v can be defined two ways:

~u ¨~v”“: uxvx ` uyvy ` uzvzlooooooooooomooooooooooon
algebraic def.

”“: }~u}}~v} cospjqlooooooomooooooon
geometric def.

P R,

where j is the angle between the vectors ~u and ~v. In SymPy,
>>> u = Matrix([ 4,5,6])

>>> v = Matrix([-1,1,2])

>>> u.dot(v)

13

We can combine the algebraic and geometric formulas for the dot
product to obtain the cosine of the angle between the vectors

cospjq “
~u ¨~v

}~u}}~v}
“

uxvx ` uyvy ` uzvz

}~u}}~v}
,

and use the acos function to find the angle measure:
>>> acos(u.dot(v)/(u.norm()*v.norm())).evalf()

0.921263115666387 # in radians = 52.76 degrees

Just by looking at the coordinates of the vectors ~u and ~v, it’s diffi-
cult to determine their relative direction. Thanks to the dot product,
however, we know the angle between the vectors is 52.76˝, which
means they kind of point in the same direction. Vectors that are at
an angle j “ 90˝ are called orthogonal, meaning at right angles with
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each other. The dot product of vectors for which j ° 90˝ is negative
because they point mostly in opposite directions

:::::::
between

::::
two

:::::::
vectors

:
is
::::::::
negative

::::::
when

:::
the

::::::
angle

:::::::
between

::::::
them

:
is
::::::::

j ° 90˝.
The notion of the “angle between vectors” applies more gener-

ally to vectors with any number of dimensions. The dot product for
n-dimensional vectors is ~u ¨~v “

∞n
i“1 uivi. This means we can talk

about “the angle between” 1000-dimensional vectors. That’s pretty
crazy if you think about it—there is no way we could possibly “visu-
alize” 1000-dimensional vectors, yet given two such vectors we can
tell if they point mostly in the same direction, in perpendicular di-
rections, or mostly in opposite directions.

The dot product is a commutative operation ~u ¨~v “ ~v ¨~u:
>>> u.dot(v) == v.dot(u)

True

Cross product
The cross product, denoted ˆ, takes two vectors as inputs and pro-
duces a vector as output. The cross products of individual basis ele-
ments are defined as follows:

ı̂ ˆ ‚̂ “ k̂, ‚̂ ˆ k̂ “ ı̂, k̂ ˆ ı̂ “ ‚̂.

:::
The

:::::
cross

::::::::
product

::
is

:::::::
defined

:::
by

:::
the

:::::::::
following

:::::::::
equation:

~u ˆ~v “
`
uyvz ´ uzvy, uzvx ´ uxvz, uxvy ´ uyvx

˘
.

:::::::::::::::::::::::::::::::::::::::::::

Hereis
::
’s how to compute the cross product of two vectorsin SymPy: :

>>> u = Matrix([ 4,5,6])

>>> v = Matrix([-1,1,2])

>>> u.cross(v)

[4, -14, 9]

The vector ~u ˆ~v is orthogonal to both ~u and~v. The norm of the cross
product }~u ˆ~v} is proportional to the lengths of the vectors and the
sine of the angle between them:

(u.cross(v).norm()/(u.norm()*v.norm())).n()

0.796366206088088 # = sin(0.921..)

The name “cross product” is well-suited for this operation since it is
calculated by “cross-multiplying” the coefficients of the vectors:

~u ˆ~v “
`
uyvz ´ uzvy, uzvx ´ uxvz, uxvy ´ uyvx

˘
.
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By defining individual symbols for the entries of two vectors, we
can make SymPy show us the cross-product formula: »> u1,u2,u3 =
symbols(’u1:4’) »> v1,v2,v3 = symbols(’v1:4’) »> Matrix(u1,u2,u3).cross(Matrix(v1,v2,v3))
(u2*v3 - u3*v2), (-u1*v3 + u3*v1), (u1*v2 - u2*v1)

The cross product is anticommutative, ~u ˆ~v “ ´~v ˆ~u:

>>> u.cross(v)

[4, -14, 9]

>>> v.cross(u)

[-4, 14,-9]

::::::
Watch

:::
out

:::
for

::::
this,

:::::::
because

:::
it’s

::
a
::::
new

::::::
thing. The product of two num-

bers and the
:
a
::::
and

:
b
::
is

:::::::::::::
commutative:

:::::::
ab “ ba.

::::
The

:
dot product of two

vectors are commutativeoperations. The cross product , however,
:
~u

:::
and

::
~v

::
is

::::::::::::
commutative:

:::::::::::
~u ¨~v “ ~v ¨~u.

:::::::::
However

:::
the

:::::
cross

::::::::
product is not

commutative: ~u ˆ~v ‰ ~v ˆ~u,
::
it

::
is

::::::::::::::::
anticommutative:

::::::::::::::
~u ˆ~v “ ´~v ˆ~u.

::::::::::::::
Mechanics

The module called sympy.physics.mechanics contains elaborate
tools for describing mechanical systems, manipulating reference
frames, forces, and torques. These specialized functions are not nec-
essary for a first-year mechanics course. The basic SymPy functions
like solve, and the vector operations you learned in the previous
sections are powerful enough for basic Newtonian mechanics.

Dynamics
The net force acting on an object is the sum of all the external forces
acting on it ~Fnet “

∞~F. Since forces are vectors, we need to use vector
addition to compute the net force.

Compute ~Fnet “ ~F1 ` ~F2, where ~F1 “ 4ı̂[N] and ~F2 “ 5=30˝[N]:

>>> F_1 = Matrix( [4,0] )

>>> F_2 = Matrix( [5*cos(30*pi/180), 5*sin(30*pi/180)] )

>>> F_net = F_1 + F_2

>>> F_net

[4 + 5*sqrt(3)/2, 5/2]

\DIFdelbegin \DIFdel{# in Newtons

}\DIFdelend >>> F_net.evalf()

[8.33012701892219, 2.5] # in Newtons

To express the answer in length-and-direction notation, use norm to
find the length of ~Fnetand

:
,
::::
and

:::
use

::::
the

::::::::::
two-input

:::::::
inverse

:::::::
tangent
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:::::::
function

:
atan2 1 to find its

::
to

::::::::
compute

:::
the

:
direction:

>>> F_net.norm().evalf()

8.69718438067042 # |F_net| in [N]

>>> (atan2(F_net[1],F_net[0])*180/pi).n()

16.7053138060100 # angle in degrees

The net force on the object is ~Fnet “ 8.697=16.7˝[N].

Kinematics
Let xptq denote the position of an object, vptq denote its velocity, and
aptq denote its acceleration. Together xptq, vptq, and aptq are known
as the equations of motion of the object.

Starting from the knowledge of ~Fnet, we can compute aptq “
~Fnet
m ,

then obtain vptq by integrating aptq, and finally obtain xptq by inte-
grating vptq:

~Fnet
m

“ aptq
looooomooooon

Newton’s 2nd law

vi`
≥
dt

›Ñ vptq
xi`

≥
dt

›Ñ xptq.loooooooooooooooomoooooooooooooooon
kinematics

Uniform acceleration motion (UAM)
Let’s analyze the case where the net force on the object is constant.
A constant force causes a constant acceleration a “

F
m “ constant. If

the acceleration function is constant over time aptq “ a. We find vptq
and xptq as follows:

>>> t, a, v_i, x_i = symbols(’t a v_i x_i’)

>>> v = v_i + integrate(a, (t,0,t))

>>> v

a*t + v_i

>>> x = x_i + integrate(v, (t,0,t))

>>> x

a*t**2/2 + v_i*t + x_i

You may remember these equations from Section 2.4 (page 196).
They are the uniform accelerated motion (UAM) equations:

aptq “ a,
vptq “ vi ` at,
xptq “ xi ` vit `

1
2

at2.

1The function atan2(y,x) computes the correct direction for all vectors px, yq,
unlike atan(y/x) which requires corrections for angles in the range r

p
2 , 3p

2 s.
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548 FORMULAS

dy
dx

–› y ›Ñ

ª
y dx

Exponential and Logarithmic
ex ex ex

` C
x´1 ln x xpln x ´ 1q ` C

1
ln 10 x´1 log10 x 1

ln 10 xpln x ´ 1q ` C

ax ln a ax ax

ln a
` C

Trigonometric
cos x sin x ´ cos x ` C

´ sin x cos x sin x ` C
sec2 x tan x ´ ln cos x ` C

::::::::::::
´ ln |cos x| ` C

:

Inverse trigonometric
1a

p1 ´ x2q
sin´1

pxq x sin´1
pxq `

a
1 ´ x2 ` C

´
1a

p1 ´ x2q
cos´1

pxq x cos´1
pxq ´

a
1 ´ x2 ` C

1
1 ` x2 tan´1

pxq x tan´1
pxq ´

1
2 lnp1 ` x2

q ` C

Hyperbolic
cosh x sinh x cosh x ` C
sinh x cosh x sinh x ` C
sech2 x tanh x ln cosh x ` C

::::::::::::
ln pcosh xq ` C

Inverse hyperbolic

´
x

pa2 ` x2q
3
2

1a
a2 ` x2 :::::::::::::::::::::::::::::::

sinh´1
p

x
a q ` C “ lnpx `

a
a2 ` x2q ` C

:
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