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You can annotate the concept map with your current knowledge of
each concept to keep track of your progress through the book.

— Add a single dot (e) next to all concepts you've heard of.
— Add two dots (ee) next to concepts you think you know.

— Add three dots (eee) next to concepts you've used in exercises
and problems.

By collecting some dots every week, you'll be able to move through

If you don’t want to mark up your book, you can download a
rintable version of the concept map here: bit.ly/mathphyscmap,_

This is a new idea to "gamify" the reading.

The idea is for readers to actively mark up
concepts as unknown, known, and used and
observe the progress: from a giant map with
scary unknown terminology

to a bunch of "completed levels" made
up of concepts the reader knows well.

Looking for feedback about this idea
from anyone who tries it out.
Did it feel motivational or just a chore?
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Preface

This book contains lessons on topics in math and physics, written in
a style that is jargon-free and to the point. Each lesson covers one
concept at the depth required for a first-year university-level course.
The main focus of this book is to highlight the intricate connections
between the concepts of math and physics. Seeing the similarities
and parallels between the concepts is the key to understanding.

Why?

The genesis of this book dates back to my student days when I was
required to purchase expensive textbooks for my courses. Not only
are these textbooks expensive, they are also tedious to read. Who
has the energy to go through thousands of pages of explanations? I
began to wonder, “What's the deal with these thick books?” Later, I
realized mainstream textbooks are long because the textbook indus-
try wants to make more profits. You don’t need to read 1000 pages to
learn calculus; the numerous full-page colour pictures and the repet-
itive text that are used to “pad” calculus textbooks are there to make
the $200 price seem reasonable.

Looking at this situation, I said to myself, “Something must be
done,” and I sat down and wrote a modern textbook to explain math
and physics concepts clearly, concisely, and affordably. There was no
way I was going to let mainstream publishers ruin the learning expe-
rience of these beautiful subjects for the next generation of students.

How?

The sections in this book are self-contained tutorials. Each section
covers the definitions, formulas, and explanations associated with a
single topic. You can therefore read the sections in any order you find
logical. Along the way, you will learn about the connections between
the concepts of calculus and mechanics. Understanding mechanics is
much easier if you know the ideas of calculus. At the same time, the

vii
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Non-students, don’t worry: you don’t need to be taking a class
in order to learn math. Independent learners interested in learn-
ing university-level material will find this book very useful. Many
university graduates read this book to remember the calculus they
learned back in their university days.

In general, anyone interested in rekindling their relationship with
mathematics should consider this book as an opportunity to repair
the broken connection. Math is good stuff; you shouldn’t miss out on
it. People who think they absolutely hate math should read Chapter 1
as therapy.

About the author

I have been teaehmgmmath and physms for more than 15

tere*p%aﬁ*reeﬂeept&that—peep}e—fmdedﬁﬁeu}tuﬁ ears Throu h
th1s experience, I learned to break complicated ideas 1nto smaller,

tmpeftaﬂt—thﬂnﬂﬂemeﬂ%mg%aetsthmk the best way to teach math
and physics is to clearly define concepts and show the paths that

connect them. It's not about how many equations you know, but
about knowing how to get from one equation to another.

I completed my undergraduate studies at McGill University in
electrical engineering, then did a M.Sc. in physics, and recently com-
pleted a Ph.D. in computer science. In my career as a researcher, I've
been fortunate to learn from very inspirational teachers, who had
the ability to distill the essential ideas and explain things in simple
language. With my writing, I want to recreate the same learning ex-
perience for you. I founded the Minireference—Co~ Minireference
Co. to revolutionize the textbook industry. We make textbooks that
don’t suck.

Ivan Savov
Montreal, 2614-2020
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Introduction

The last two-centurieshavecentury has been marked by tremendous
technological advances. Every sector of the economy has been trans-
formed by the use of computers and the advent of the internet. There
is no doubt technology’s importance will continue to grow in the
coming years.

The best part is that you don’t need to know how technology
works to use it. You need not understand how internet protocols
operate to check your email and find original pirate material. You
don’t need to be a programmer to tell-a—eomputer-use computers
to automate repetitive tasks and increase your productivity. How-
ever, when it comes to building new things, understanding how
technology works becomes important. One particularly useful
skill is the ability to ereate—mathematical-models—ofreal-world
situationscreate mathematical models of real-world situations. The
techniques of mechanics and calculus are powerful building blocks
for understanding the world around us. This is why these courses
are taught in the first year of university studies: they contain keys
that unlock the rest of science and engineering.

Calculus and mechanics can be difficult subjects. Understand-
ing the material isn’t hard per se, but it takes patience and practice
to become comfortable with the new ideas. Calculus and mechan-
ics become much easier to absorb when you break dewn-the ma-

terial into manageable chunks. It-is-mostimportant-yotlearn-the
eontections between-conceptsThe concept map in Figure 1 (page v)
shows an overview of all the concepts and topics we'll discuss in the
book. There are a lot of new things to learn, but don’t worry—we'll
navigate the material step by step and it will all make sense in the

end.

Before we start with the equations, it's worthwhile to preview the
material covered in this book. After all, you should know what kind
of trouble you're getting yourself into.

Chapter 1 is a comprehensive review of math fundamentals in-

cluding algebra, equaﬂeﬁse}vmg—aﬂérfuﬁeﬁeﬂsgm@m,
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2 INTRODUCTION

geometry, and trigonometry. The exposition of each topic is brief
to make for easy reading. This chapter is highly recommended for
readers who haven’t looked at math recently; if you need a refresher
on math, Chapter 1 is for you. It is extremely important to firmly
grasp the basics. What is sin(0)? What is sin(7r/4)? What does the

graph of sin( ) look hke’ Aftsrstudeiﬁtﬁn%efes%edﬂﬁeiﬁtehmgthe&

AW chapter as therapy to recover from
any damaging-educational-traumatizing math learning experiences
they may have encountered in high school.

In Chapter 2, we’ll look at how techniques of high school math
can be used to describe and model the world. We’ll learn about
the basic laws that govern the motion of objects in-one-dimension
and the mathematical equations that describe the motion. By the
end of this chapter, you'll understand the concepts of velocity and
acceleration, and be able to predict the flight time of a ball thrown in
the air.

In Chapter 3, we’ll learn about vectors. Vectors describe direc-
tional quantities like forces and velocities. We need vectors to prop-
erly understand the laws of physics. Vectors are used in many areas
of science and technology, so becoming comfortable with vector cal-
culations will pay dividends when learning other subjects.

Chapter 4 is all about mechanics. We'll study the motion of ob-
jects, predict their future trajectories, and learn how to use abstract
concepts like momentum and energy. Science students who “hate”
physics can study this chapter to learn how to use the 20 main equa-
tions and laws of physics. You'll see physics is actually quite simple.

Chapter 5 covers topics from differential calculus and integral
calculus. We'll study limits, derivatives, integrals, sequences, and
series. You'll find that $20-130 -130 pages are enough to cover all the
concepts in calculus,

practice-exereisesincluding practical applications.

Chapter 1 — Chapter 2

N

Chapter 3 —# Chapter 4 — Chapter 5

Figure 2: The prerequisite structure for the chapters in this book.

Calculus and mechanics are often taught as separate subjects. It
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3

shouldn’t be like that! If you learn calculus without mechanics, it
will be boring. If you learn physics without calculus, you won't truly
understand. The exposition in this book covers both subjects in an

integrated manner and aims-te-highlight-highlights the connections
between them.

Are you ready for this? Let’s dig in-!
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8 MATH FUNDAMENTALS

These categories of numbers should be somewhat familiar to you.
Think of them as neat classification labels for everything that you
would normally call a number. Each group in the above list is a set.
A set is a collection of items of the same kind. Each collection has
a name and a precise definition for which items belong in that col-
lection. Note also that each of the sets in the list contains all the sets
above it, as illustrated in Figure 1.2. For now, we don’t need to go
into the details of sets and set notation, but we do need to be aware
of the different sets of numbers.

DD aOR e

Figure 1.2: An illustration of the nested containment structure of the dif-
ferent number sets. The set of natural numbers is contained in the set of
integers, which in turn is contained in the set of rational numbers. The set of
rational numbers is contained in the set of real numbers, which is contained
in the set of complex numbers.

Why do we need so many different sets of numbers? The-answer
is-partly-historical-and-partly-mathematieal—Each set of numbers is
associated with more and more advanced mathematical problems.

The simplest numbers are the natural numbers IN, which are suf-
ficient for all your math needs if all you're going to do is count things.
How many goats? Five goats here and six goats there so the total is
11 goats. The sum of any two natural numbers is also a natural num-
ber.

As soon as you start using subtraction (the inverse operation of
addition), you start running into negative numbers, which are num-
bers outside the set of natural numbers. If the only mathematical op-
erations you will ever use are addition and subtraction, then the set of
integers Z = {...,—2,-1,0,1,2,...} will be sufficient. Think about
it. Any integer plus or minus any other integer is still an integer.

You can do a lot of interesting math with integers. There is an en-
tire field in math called number theory that deals with integers. How-
ever, to restrict yourself solely to integers is somewhat limiting—You
Romados, which offers-limiting—a rotisseric menu that offers } of
a chicken ;wotld-be-completely-would be totally confusing.

If you want to use division in your mathematical calculations,

you'll need the rationals Q. The rationals-are-the set-ofset of rational
numbers corresponds to all numbers that can be expressed as frac-
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1.2 NUMBERS 9
tions of integers:

Q= {all z such that z = § where x and y arein Z, and y # 0}.

the form ” where m and n are integers, and n # 0. You can add,

subtract, multiply, and divide rational numbers, and the result will
always be a rational number. However, even the rationals are not
enough for all of math!

In geometry, we can obtain irrational quantities like v/2 (the di-
agonal of a square with side 1) and 7 (the ratio between a circle’s
circumference and its diameter). There are no integers x and y such

that /2 = —Thefefefe—v@—ls—ﬁet—pﬁef—ﬂﬁﬁe{—‘@—&ﬂd»m
we say that \ﬁ is irrational (not in the set Q). An irrational number
has an infinitely long decimal expansion that doesn’t repeat. For ex-
ample, 7 = 3.141592653589793 . .. where the dots indicate that the
decimal expansion of 7 continues all the way to infinity.

Combining the irrational numbers with the rationals gives us all
the useful numbers, which we call the set of real numbers R. The set
R contains the integers, the fractionsrational numbers Q, as well as
irrational numbers like v/2 = 1.4142135.... By using the reals you
can compute pretty much anything you want. From here on in the
text, when I say number, ] mean an element of the set of real numbers
R.

The only thing you can’t do with the reals is to take the square
root of a negative number—you need the complex numbers C for
that. We defer the discussion on C until the end of Chapter 3.

Operations on numbers
Addition

You can add and-subtract-numbers. Iwill-assume-youare Il assume
you're familiar with this kind-ef stuff:-stuff:

2+3=5,__45+56 =101, 65—-66 =—1, 9999 +1 = 10000.

You can visualize numbers as sticks of different length. Adding num-
bers is like adding sticks together: the resulting stick has a length
equal to the sum of the lengths of the constituent sticks, as illustrated
in Figure 1.3.

L 1 J + L 1 1 J = L 1 1 1 1 J

Figure 1.3: The addition of numbers corresponds to adding lengths.
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10 MATH FUNDAMENTALS

Addition is commutative, which means that a + b = b+ a. In other
words, the order of the numbers in a summation doesn’t matter. It is
also associative, which means that if you have a long summation like
a + b+ ¢ you can compute it in any order (a +b) +cora+ (b+c),
and you’ll get the same answer.

Subtraction

Subtraction is the inverse operation of addition:_

Unlike addition, subtraction is not a commutative operation. The
expression a — b is not equal to the expression b —a, or written

a-b#b-a

Instead we have b —a = —(a — b), which shows that changing the

order of 2 and b in the expression changes its sign.
Subtraction is not associative either:

(@a-b)—c#a-(b-o.

For example (7 —2) —3 =2 while7 — (2 —-3) = 8.

Multiplication

The visual way to think about multiplication is as an area calculation.
The area of a rectangle of width a and height b is equal to ab. A
rectangle with a height equal to its width is a square, and this is why
we call aa = a? “a squared.”

Figure 1.4: The area of a rectangle with width 3 m and height 2 m is equal to
6 m2, which is equivalent to six squares with area 1 m? each.

Multiplication of numbers is also commutative, ab = ba;-, and asso-
ciative, abc = (ab)c = a(bc). In modern math notation, no special
symbol is used-required to denote multiplication; we simply put the
two factors next to each other and say the multiplication is implicit.
Some other ways to denote multiplication are a - b, a x b, and, on
computer systems, a * b.
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1.2 NUMBERS 11
Division

Division is the inverse operation of multiplication.

Division is not a commutative operation since /b is not equal
to b/a. Division is not associative either: =b) = = (b=+0).
For example, whena =6, b = 3, and ¢ = 2, we get (6/3)/2 = 1 while
6/B/2)=4.

Note that you cannot divide by 0. Try it on your calculator or
computer. It will say “error divide by zero” because this action
simply doesn’t make sense. After all, what would it mean to divide
something into zero equal parts?

Exponentiation

The act of multiplying a number by itself many times is called expo-
nentiation.

To visualize how exponents work, we can draw a connection be-
tween the value of exponents and the dimensions of geometric ob-
jects. Figure 1.5 illustrates how the same length 2 corresponds to
different geometric objects when raised to different exponents. The
number 2 corresponds to a line segment of length two, which is a ge-
ometric object in a one-dimensional space. If we add a line segment
of length two in a second dimension, we obtain a square with area 22
in a two-dimensional space. Adding a third dimension, we obtain a
cube with volume 22 in a three-dimensional space. Indeed, raising a
base a to the exponent 2 is commonly called “a squared,” and raising
a to the power of 3 is called “a cubed.”

The geometrical analogy about one-dimensional quantities as
lengths, twe-dimensional-two-dimensional quantities as areas, and
three-dimensional-three-dimensional quantities as volumes is good
to keep in mind.

L7

1 1
21=2 22-4 28=8

Figure 1.5: Geometric interpretation for exponents 1, 2, and 3. A length
raised to exponent 2 corresponds to the area of a square. The same length
raised to exponent 3 corresponds to the volume of a cube.

Our visual intuition works very well up to three dimensions, but
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1.3 NUMBER REPRESENTATIONS 13

and the associated mnemonic “Please Excuse My Dear Aunt Sally,”
might help you remember the order of operations.

For instance, the expression 5 - 32 + 13 is interpreted as “First find
the square of 3, then multiply it by 5, and then add 13.” Parentheses
are needed to carry out the operations in a different order: to multi-
ply 5 times 3 first and then take the square, the equation should read
(5-3)? + 13, where parentheses indicate that the square acts on (5 - 3)
as a whole and not on 3 alone.

Exercises

E1.1 Solve for the unknown x in the following equations:

a)3x+2-5=4+2 b)lx-3=v3+12-3
2 +1=8-2 d)5x—2+3=3x—5

E1.2 Indicate all the number sets the following numbers belong to.
a) -2 o 8+ 854 a3
b) /-3 e 5

E1.3 Calculate the vallies of the following expressions:
a)2°3 -3 b) 23(3 - 3) o) 52(6-7—41)

- too complicated!
1.3 Number representations

We use the letters “a, b, ¢, ...” to write words. In a similar fashion,
we use the digits 0,1,2,3,4,5,6,7,8, and 9 to write numbers in the
language of math. You can think of the digits 0 through 9 as the “let-
ters” used to write numbers. For example, the number 334 consists
of the digits 3, 3, and 4. Note that the same digit 3 denotes two dif-
ferent quantities depending on its position within the number. The
first digit 3 corresponds to the value three hundred, while the second
digit 3 corresponds to the value thirty.

Concepts
In this section, we’ll review three important number representations:

o The decimal notation for integers, rationals, and real numbers
consists of an integer part and a fractional part separated by
a decimal point. For example, the decimal 32.17 consists of the
integer 32 and the fractional part 0.17.

o The fraction notation for integers and rational numbers consists
of a numerator divided by a denominator. Here are some sam-
ple math expressions with fractions: %, %, % = 1%, and %.
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14 MATH FUNDAMENTALS

o The number line is a graphical representation for numbers that
allows us to visualize numbers as geometric points on a line.

The same number a can be represented in multiple equivalent ways.
It is often convenient to convert from one representation to another
depending on the calculations we need to perform. For example, the
number three can be expressed as the numeral 3, the decimal 3.0,
the fraction 2, or as the point that lies three units to the right of the
origin on the number line. All these representations refer to the same
quantity, but each representation is useful in different contexts.

The goal of this section is to get you comfortable working with

all the number representations. The-decimal-representation—for
| . . Jaytife: e tikelvalread

Positional notation for numbers

The Hindu—Arabic numeral system is the most widely used system
for writing numbers today. It is a decimal positional system. The term
decimal refers to the fact that it uses 10 unique symbols (the digits
0 through 9) to represent numbers. The system is positional because
the value of each digit depends on its position within the number.
Positional number systems are also called place-value systems.

© 8o
Ob &
\}%’b 0& S &

A S
a = a3  a; @M ag

10° 10? 10 1

Figure 1.7: The place-value representation of the number a = azaa;4ay.

Note the terminology used to refer to the individual digits of the
numeral: we call a3 the thousands, a; the hundreds, a4; the tens, and
ag the units.

Any natural number a € IN, no matter how large, can be written
as a sequence of digits:

a==ay - - - aa14a9

—a,-10"+ - +ay-10°+a;-10+ap - 1,
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1.3 NUMBER REPRESENTATIONS 15

where the digits ag, 41, ...come from the set {0,1,2,3,4,5,6,7,8,9}.
For example, the numeral 4235 corresponds to this calculation:

4235 =4-10° +2-10°+3-10+5-1
=4-10004+2-100 +3-10+5-1
= 4000 + 200 + 30 + 5.

Note how the English pronunciation of the number, “four thousand,
two hundred and thirty-five,” literally walks you through the calcu-
lation.

Decimal representation

We-ean—use-Any number a less than one can be written as a decimal
notationpoint

fe«repfeseﬂ{—mtegefs—faﬁeﬂa}s—aﬁéﬂppfe*mﬂaﬁeﬂﬁfe
real-numbers—Thedecimal-point followed by a sequence of digits, as
illustrated in Figure 1.8.

a=0.a_1a_pa_3---

oy =1 =2 03
+101+102+103+

The decimal point indicates the beginning of the fractional part of
a number. The place values of the digits to the right of the decimal

point correspond to different decimal fractions. For example@qT%AGF

of 10-each-time-we-take-a“step”to-th ﬂgh%d1 it 7 corres onds to
three different decimal fractions depending on its position within

the number:

07 =—, 007 = — , and 0.007 = —— .
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16 MATH FUNDAMENTALS

decimal point

Figure 1.8: The decimal representation of a number smaller than one.

The first digit to the right of the decimal point a_; represents the
tenths, the second digit a_, represents the hundredths, the third the
thousandths, and so on. We-can—use-decimal-notation—to-deseribe
fractions-like-one-half (0:5);-one-quarter(0:25),—and-three-quarters
t0:75)—

In general, a number written in decimal notation has both an in-
teger part and a fractional part:

a=day---dxajapg.a_1a4_La_3---
a_on a_s
10"+ tap 102 44y 10+ ag + ok 4 222 T8
" 2 v °7 100 T 102 T 108
The decimal point appears in the middle of the digits and acts as a
separator. The digits to the left of the decimal point, a; - - - apa149,
correspond to the integer part of the number, while the digits to the
right of the decimal, 0.a_ja_pa_3---, correspond to the fractional
part of the number.

o Xx°
N
S &
5 55 &‘0% & 0%
& & & x°
&F e @ S e?o S
T S & & &
a = a4 a a d a4, 4, A ---
10 102 10 1 o s

decimal point

Figure 1.9: The decimal number a consists of an integer part azaza1a9 and a
fractional part 0.a_1a_j - - - separated by the decimal point.

Note the names for the different digits in the fractional part of the
decimal in Figure 1.9. These names are used when we describe the
fractional part of a decimal in words:




DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE


1.3 NUMBER REPRESENTATIONS 17

e “1.4” is read “one and four tenths,” or you could informally
describe the decimal as you see it written: “one point four.”

e “45.37” is read “forty-five and thirty-seven hundredths,” or
sometimes “forty-five point three seven.”

o A length measurement like “0.345 inin” is read “three-hundred
forty-five thousandths of an inch.”

We can wii L forirrational ] e decimal
notationuse_decimal notation to represent rational numbers like
one-half (0.5), one-quarter (0.25), and three-quarters (0.75). We
can also use decimal notation to write approximations to irrational
numbers. For example, the irrational number v/2 (the diagonal of
a square with length one) is approximatively-approximately equal
to 1.41421. We say the approximation 1.41421 is “accurate to five
decimals,” because this is how many digits there are in its fractional
part.

* % %

So far we “ve-discussed-numberrepresentations-that you-are familiar
with-from—your-reviewed the decimal representation for numbers,

which is very familiar to us from everyday life. Perhaps you're start-
ing to think that math isn’t so bad after all? Some of you must be say-

ing, “Wonderful, I'm becoming friends with numbers while avoiding
uncomfortable topics like fractions.” Sorry, but you're not getting off
so easily because this is exactly what’s coming up next. That’s right,
we’re about to make friends with fractions, too.

Fractions

}EﬁSE fet S.fe”]e“ E}]‘e dEfﬁ“fm“ of the set 8: fa.m“ﬂ;} numbers @:

Q—{’Zmandnareinlandn#O},

Fractions describe what happens when a whole is cut into n equal
parts and we are given m of those parts. For example, the fractionN%
describes having three parts out of a whole cut into eight parts, hence

the name “three-eighths.”

It’s important to understand fractions because many math
concepts like rational numbers (Q), ratios, percents, and probabilities
are best described in the language of fractions.
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18 MATH FUNDAMENTALS

i

Figure 1.10: The fraction % can be visualized as three slices from a pizza that
has been cut into eight equal slices.
Definitions

The fraction “a over b” can be written three different ways:

a/b==a -+ b=

SR

~

The top and bottom parts of a—fraction-the fraction ? have special
W\MMMM»b\,
names:

e b is called the denominator of the fraction. It tells us how many
parts make up the whole.

o ais called the numerator. It tells us the number of parts we have.

Fractions are the most natural way to represent rational numbers.
Why natural? Check out these simple fractions:

1=10

3=05

1=033333...=03

1=025

=02

£ =0.166666... = 0.16

1 =0.14285714285714285 . .. = 0.142857

—The fractional notation
on the left is preferable because it shows the underlying structure
of the number while avoiding the need to write infinitelytong

deeimalscomplicated decimals.
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1.3 NUMBER REPRESENTATIONS 19

When written as decimal numbers, certain fractions have infinitel
long decimal expansions. We use the overline notation to indicate

the digit(s) that repeat infinitely in the decimal, as in the case of 0.3,
0.16, and 0.142857 shown above.

Fractions allow us to carry out precise mathematical calculations eas-
ily with pen and paper, without the need for a calculator.

Example Calculate the sum of % and %

Let’s say we decide, for reasons unknown, that it’s a great day for
decimal notation—we’d have to write our calculation as Wow that
was complicated! This calculation is much simpler if we use frac-
tions: Want to know how we did that? We multiplied the first term
by % = 1and the second term by 7 = 1 in order to obtain two equiva-
lent fractions with the same denominator. This is one of the standard
strategies when performing fraction acditionoperations: rewriting
them as equivalent fractions that have the same denominator. Let’s

Lok at o 1o for addine frmetions: etai]

Equivalent fractions

The fractions 2, &, and 12 all correspond to the same number. Think

about it—if you cut a pizza in 8 pieces and take 3 of them (see
Figure 1.10), or you cut a pizza in 16 equal pieces and take 6 of them,
you'll get the same amount of pizza in the end. All fractions of the
form 3¢ are equivalent to the fraction 3, meaning they correspond to

the same number.

Reciprocals

The mathematical term reciprocal is used to describe the notion

of “flipping” a number. The reciprocal of v is 1, which is read

“one over y.” Multiplication by the reciprocal 1 is the same
as division by 1. The product of any number and its reciprocal
equals one: y x 1 =¥ — 1. The reciprocal of the fraction ™ is the

“flipped” fraction Z. The product of 2 and its reciprocal equals one:

Mo L= M,

Another way to denote the notion of “flipping” a number is to use
the exponent negative one. The reciprocal of the number v is denoted

—1 and equals 1. The reciprocal of the fraction 2 is denoted (%)~!
and equals 2, Using the negative exponent notation for reciprocals,
we can write the “flip and multiply” rule for dividing fractions as
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20 MATH FUNDAMENTALS

Ay l_a,d

4 = 2 We'll discuss negative exponents
more generally in Section 1.8.

Adding fractions

Suppose we are asked to find the sum of the two fractions ; and §.
If the denominators are the same, then we can add just the top parts:
1+ 2 = . It makes sense to add the numerators since they refer to
parts of the same whole.

However, if the denominators are different, we cannot add the
numerators directly since they refer to parts of different wholes. Be-
fore we can add the numerators, we must rewrite the fractions so
they have the same denominator, called a common denominator. We
can obtain a common denominator by multiplying the first fraction
by % = 1 and the second fraction by % = 1 in order to make the
denominator of both fractions the same:

a,c _ oafdy cfby _ ad b
b d— —b\d d\b)— —~bd bd
Now that we have fractions with the same denominator, we can add

their numerators. Note it’s okay to change the denominator of a frac-
tion as long as we also change the numerator in the same way. Mul-

tiplying the tops-and-bottoms-of the-fractions-top and the bottom of

a fraction by the same number é’m%hi%ease%eﬁ%}is the same as
multiplying by 1. So while the numbers of the fractions change, their

equivalency is preserved:

ad bc ad + bc

—bd b bd

+S =
Go.=

ISl IR
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! GCDb,d)is Liosi (l LA the]

Example To add } 5 and 15, we cotilecan use the product of the
two denominators as the common denommatork 6 x 15 = 90-

the fraction addition as follows:

1 1 5x11 15 1x2

| =

" Il by oo 2b 2 6 A
6 15- 5x66 15 15x2 15 6

3090 730 90~ - 90

U1

1 1 15x1 1x6 15 6 21 7

6715  15x6 15x6 90 90 90 _ 30°

I removed this section because it's not
essential material, and readers found it
confusing and stopped reading here...
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Whole-and-fraction notation

A fraction greater than 1 like % can also be denoted 1 2, which is read

as “one and two-thirds.” Similarly, Z = 31. We write the integer

part of the number first, followed by the fractional part.

There is nothing wrong with writing fractions like % and %
However, some teachers call these fractions improper and demand
that all fractions are written in the whole-and-fraction way, as in 13

and 3%. At the end of the day, both notations are correct.

-~ =03=0333...; ; = 0.142857 = 0.14285714285714 . . ..

Number line

The number line is a very useful visual representation for numbers.
Every number from the sets IN, Z, Q, and R corresponds to some
point on the number line. Developing a visual representation for
numbers allows us to instantly compare the numbers’ sizes based on
their positions on the number line.
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1.3 NUMBER REPRESENTATIONS 23

Figure 1.11 shows the natural numbers represented as equally
spaced netehes-points on the number line. We can construct the en-
tire set of natural numbers by starting from 0 and taking steps of
length one to the right on the number line. That’s what counting
is—we just keep adding one.

Note that natural numbers never end. We can always keep
adding one to every number and obtain a larger number. The
number line therefore extends to the right to infinity.

\4

0 1 2 3 4 5
Figure 1.11: The natural numbers IN.

Numbers to the left of zero are negative, while numbers to the right
of zero are positive. The number line extends indefinitely on both
sides, going to negative infinity on the left side-and positive infinity
on the rightside.

A
A4

-5 -4 -3 -2 -1 0 1 2 3 4 5
Figure 1.12: The integers Z.

The set of integers corresponds to a diserete setofset of equally-spaced
points on the number line —Observe-there-are-with gaps of empty

space between each integer. Therationalnumbers-Q-and-We need
the real numbers R to fill these gaps.

ef—#he—raﬂeﬁalrﬂumber—a—The set of real numbers R is the com lete
representation of all possible points on the number line;go-to-the

hveﬁ%h&ﬂﬁefva}%ehﬁeef’r& every real number corresponds to
some point on the number hne, and %?hemﬁeﬂa}ﬁimbefs—ge%
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The—rational-numbers—have—the—same—structure—everywhere
mon the number 11r1e —Nefna%ter—whiehﬂﬂ%efva%e%%he

use-a-thiek-Hine-to-fillin-corresponds to some real number. Visually,
the set of real numbers fills the entire number line a&fﬂus%fateérm

bold, as shown in Figure 1.13. Basmaﬂy—the%aﬁeﬂa}s—afefepfeseﬂ%eé

by-pointsIn other words, there are real numbers everywhere!

|
[\S[e8)
NI—=
N
o
3
[\SNe)

Figure 1.13: The rationals-Q-and-the realsreal numbers R densely-fill-cover

the entire number line.

The-Recall that the set of real numbers R-includes all the rationals

eﬂm&wmmwmm irra-
tional numbers like

XY

H%%—Theﬂﬁi&krepfesa%&ﬁeﬂ—feﬁhefea}sﬂsﬁeﬂﬁea%
to-the rationals:they-also-filk the-entirey/2, ¢, and 71. This means any
number you are likely to run into when solving math problems can
be visualized as a point on the number line. The number line can also
be used to represent subsets of the real numbers. We'll talk about
that in Section 1.23. For example, the subset of real numbers that
are greater than two and smaller than four is shown in Figure 1.81
(page 159).

Discussion

Since we're still on the topic of number representations, I want to
add some footnotes with “bonus material” related to the ideas we've
covered in this section. Feel free to skip to the next section if you're
in a hurry, because this is definitely not going to be on the exam!
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i : __12x20 240 _
Continuing the above example,we find-HEM(12;26) GCD(12,20) 1 66-
. bt 12 divides60-and-akse20-divides60-

The prime numbers are super cool, but not

essential to anything else we'll cover in

the book, so decided to cut.

I'm working on a separate handout on number
theory and "math object kinds" where this text
will be reused.
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Elementary arithmetic procedures

The four basic arithmetic operations are addition, subtraction, mul-
tiplication, and division. We can perform these operations for nu-
merals a and b of any size using only pen and paper. It is sufficient
to follow one of the well-defined procedures (called algorithms) for
manipulating the individual digits that make up the numbers. The
Wikipedia articles on elementary arithmetic and long division offer
an excellent discussion of these procedures.

[ Algorithms for performing elementary arithmetic ]
https://en.wikipedia.org/wiki/Elementary_arithmetic
https://en.wikipedia.org/wiki/Long_division

Computer representations

Whenever you want to store a number on a computer, you must
choose an appropriate computer representation for this number. The
two most commonly used types of numbers in the computer world
are integers (int) and floating point numbers (f1loat). Computer in-
tegers can accurately describe the set of mathematical integers Z, but
there are limitations on the maximum size of numbers that comput-
ers can store. We can use floating point numbers to store decimals
with up to 15 digits of precision. The int and float numbers that
computers provide are sufficient for most practical computations,
and you probably shouldn’t worry about the limited precision of
computer number representations. Still, I want you to be aware of
the distinction between the abstract mathematical concept of a num-
ber and its computer representation. The real number +/2 is irrational
and has an infinite number of digits in its decimal expansion. On a
computer, v/2 is represented as the approximation 1.41421356237310
(a float). For most purposes the approximation is okay, but some-
times the limited precision can show up in calculations. For example,
float(sqrt(2))*float(sqrt(2)) = 2.0000000000000004 # 2 and
float(0.1)+float(0.2) = 0.30000000000000004 # 0.3. The result
of the computer’s calculation is only accurate up to the 15" digit.
That’s pretty good if you ask me.

Scientific notation

In science we often work with very large numbers like the speed of

light (e—=299-792458m+s299792458), and very small numbers like

the permeability of free space ( 20.000001256637).
It can be difficult to judge mbers and to
carry out calculations on the al notation.

Greek lettlers and complicated units
were confusing for nothing

e magnitude of suc
using the usual deci
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Dealing with such numbers is much easier if we use scientific

notation. Fer-example,—the-The speed of light can be written as
6=2.99792458 5 108m/52.99792458 x 108, and the permeability of
free space is denoted as #—1+256637«10=0N/A21.256637 x 107°.
In both cases, we express the number as a decimal number be-
tween 1.0 and 9.9999. .. followed by the number 10 raised to some
powerexponent. The effect of multiplying by 10 is to move the dec-
imal point eight steps to the right, making the number bigger. Mul-
tiplying by 10~° has the opposite effect, moving the decimal point to
the left by six steps and making the number smaller. Scientific nota-
tion is useful because it allows us to clearly see the size of numbers:
1.23 x 10° is 1230 000 whereas 1.23 x 10~ is 0.000 000 000 123. With
scientific notation you don’t need to count the zeros!

The number of decimal places we use when specifying a certain
physical quantity is usually an indicator of the precision with which
we are able to measure this quantity. Taking into account the pre-
cision of the measurements we make is an important aspect of all
quantitative research. Since elaborating further would be a digres-
sion, we won’t go into a full discussion about the topic of significant
figures here. Feel free to read the Wikipedia article on the subject to
learn more.

Computer systems represent numbers using scientific notation,
too. When entering a floating point number into the computer, sep-
arate the decimal part from the exponent by the character e, which
stands for “exponent.” For example, the speed of light is written as
2.99792458e8 and the permeability of free space is 1.256637e-6.

EinksExercises

E1.4 Compute the value of the following expressions:
JEER] DECS EX1 93342=3

I encourage you to check the

fe%uﬂdfed&e#erfhehtepte&n%maﬂoﬁ
Wikipedia-links provided below fer-interesting-historical-contextto
learn more about numbers and number representations.

[ History of the Hindu—Arabic system for representing numbers ]
https://en.wikipedia.org/wiki/Hindu-Arabic_numeral_system

[ Positional number representation systems ]
https://en.wikipedia.org/wiki/Positional_notation
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[ Decimal representation ]
https://en.wikipedia.org/wiki/Decimal_representation

[ More general-numberrepresentationsystems-details on scientific
notation ]

https://en.wikipedia.org/wiki/NumeralScientific_systemnotation

[ Info about significant figures calculations ]
https://en.wikipedia.org/wiki/Significant_figures

1.4 Variables

In math we use a lot of variables and constants, which are placeholder
names for any number or unknown. Variables allow us to perform
calculations without knowing all the details.

Example You're having tacos for lunch today and wondering how
many you can eat without going over your caloric budget. Your goal
is to eat 800 calories for lunch and you want to do the calculation
before getting to the restaurant because you fear your math abilities
might be affected in the presence of tacos. You're not sure how many
calories each taco contains, so you invent the variable c to denote this
unknown. You also define the variable x to represent the number
of tacos you will eat, and come up with the equation 800 = cx to
represent the total number of calories of your lunch. Solving for x,
you find the total number of tacos you should order is x = %. If the
restaurant serves tacos that contain ¢ = 200 calories each, then you

should order x = 288 = 4 of them. If the restaurant serves only giant

tacos worth ¢ = 400 calories each, then you can only eat x = % =2
of them. Observe we were able to solve for x even before knowing

the value of c.

Variable names

There are common naming patterns for variables:

o x name used for the unknown in equations(alse

’ s 7

We also use x to denote function inputs and the position of
objects in physics.
e i,j,k,m,n: common names for integer variables
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a,b,c,d: letters near the beginning of the alphabet are often
used to denote constants (fixed quantities that do not change).
0, ¢: the Greek letters theta and phi are used to denote angles

C: costs in business, along with P for profit, and R for revenue

X: arandom-variable-capital letters are used to denote random
variables in probability theory

Variable substitution

We can often change variables and replace one unknown variable with
another to simplify an equation. For example, say you don’t feel
comfortable around square roots. Every time you see a square root,
you freak out until one day you find yourself taking an exam trying
to solve for x in the following equation:

6
5—4/x
Don’t freak out! In crucial moments like this, substitution can help

with your root phobia. Just write, “Let u = {/x” on your exam, and
voila, you can rewrite the equation in terms of the variable u:

— V.

6
5—u

=u,

which contains no square roots.
The next step to solve for u is to undo the division operation.
Multiply both sides of the equation by (5 — u) to obtain

6
ﬂ(5 —u) =u(5-—u),

which simplifies to
6 = 5u —u’.

This can be rewritten as the equation u?> — 5u + 6 = 0, which in tern
turn can be rewritten as (4 —2)(u — 3) = 0 —using the techniques

We now see that the solutions are u; = 2 and up = 3are-the
solutions. The last step is to convert our u-answers into x-answers
by using u = +/x, which is equivalent to x = u?. The final answers
are x; = 22 = 4and x, = 3% = 9. Try plugging these x values into
the original square root equation to verify that they satisfy it.
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Compact notation

Symbolic manipulation is a powerful tool because it allows us to
manage complexity. Say you're solving a physics problem in which
you're told the mass of an object is m = 140 kg. If there are many
steps in the calculation, would you rather use the number 140 kg in
each step, or the shorter symbol m? It’s much easier in-thelongrun
to use m throughout your calculation, and wait until the last step
to substitute the value 140 kg when computing the final numerical
answer.

1.5 Functions and their inverses

As we saw in the section on solving equations, the ability to “undo”
functions is a key skill for solving equations.

Example Suppose we're solving for x in the equation

f(x)=¢

where f is some function and ¢ is some constant. We're looking for
the unknown x such that f(x) equals c. Our goal is to isolate x on
one side of the equation, but the function f stands in our way.

By using the inversefunetion-inverse function (denoted f~!) we
“undo” the effects of f. We apply the inverse function f~! to both
sides of the equation to obtain

FHf) =2 =f(0).

By definition, the inverse function f~! performs the opposite action
of the function f, so together the two functions cancel each other out.
We have f~!(f(x)) = x for any number x.

Provided everything is kosher (the function f~! must be defined
for the input c), the manipulation we made above is valid and we

have obtained the answer x—F=1{e}x = f~1(c).

The above example introduces the notation f~! for denoting
the funetion’s—inwverseinverse function. This notation is berrowed
&mﬁﬁ%emwseﬂmb&%l@%cm%mm
reciprocals. Recall that multiplication by the reciprocal number
a~! is the inverse operation of multiplication by the number a:
a—lax = 1x = x. In the case of functions, however, the negative-one

exponent does not refer to “one over-f(x)” as in % = (f(x)7}

rather, it refers to the function’s-inverse-inverse function. In other
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1.5 FUNCTIONS AND THEIR INVERSES 31

words, the number f~!(y) is equal to the number x such that
flx) =y.

Be careful: sometimes applying-the-inverseleads-te-an equation
can have multiple solutions. For example, the function f(x) = x2

maps two input values (x and —x) to the same output value x> =

f(x) = f(—x). The inverse function of f(x) = x?is f—-zy=—~/f _1(y) = /1,
but both x = +4/c and x = —/c are solutions to the equation x?=c.

In this case, this equation’s solutions can be indicated in shorthand
notation as x = +./c.

Formulas

Here is a list of common functions and their inverses:

function f(x) < _inverse f!(x)

—~

X+2 < x-—2
many readers

1
2x__ e 35X / are confused
by this one

-1x e —1x
¥ e +4x
2¥ < _log,(x)

3x+5__« _ I(x-5)

a* < log,(x)

exp(x)==¢* < _In(x)==log,(x)

sin(x) < sin~!(x)==arcsin(x)

~

cos(x) < _cos !(x)==arccos(x)

The function-inverse relationship is symmetric—if you see a function
on one side of the above table (pick a side, any side), you'll find its
inverse on the opposite side.

Don’t be surprised to see —1x < —1x in the list of function

inverses. Indeed, the opposite operation of multiplying by —1 is to
multiply by —1 once more: (—(—x) = x).

Example 1

If you want to solve the equation x — 4 = 5, you can apply the inverse
function of x — 4, which is x + 4. After adding four to both sides of
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the equation, x — 4 +4 = 5 + 4, we obtain the answer x = 9.

Discussion

The recipe I have outlined above is not universally applicable. Some-
times x isn’t alone on one side. Sometimes x appears in several places
in the same equation. In these cases, you can’t effortlessly work your
way, Bruce Lee-style, clearing bad guys and digging toward x—you
need other techniques.

The bad news is there’s no general formula for solving compli-
cated equations. The good news is the above technique of “digging
toward the x” is sufficient for 80% of what you are going to be do-
ing. You can get another 15% if you learn how to solve the quadratic
equation:

ax® + bx +c¢ = 0.

We'll show a formula for solving
quadratic equations in Section 1.7. Solving cubic equations like ax’ +
bx? + cx +d = 0 with-pen-and-paperusing a formula is also possible,
but at this point you might as well start using a computer to solve
for the unknowns. See page 524 in Appendix D.

There are all kinds of other equations you can learn how to solve:
equations with multiple variables, equations with logarithms, equa-
tions with exponentials, and equations with trigonometric functions.
The principle of “digging” toward the unknown by applying inverse
functions is the key for solving all these types of equations, so be sure
to practice using it.

Exercises

E1.5 Solve for x in the following equations:
a)3x =6 b) logs(x) = 2 ) log;y(vx) =1

E1.6 Find the function inverse and use it to solve the problems.

1.6 Basic rules of algebra

It's important that you know the general rules for manipulating
numbers and variables, a process otherwise known as—you guessed
it—algebra. This little refresher will cover these concepts to make
sure you're comfortable on the algebra front. We'll also review some
important algebraic tricks, like factoring and completing the square,
which are useful when solving equations.
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1.6 BASIC RULES OF ALGEBRA 33

Let’s define some terminology for referring to different parts of
math expressions. When an expression contains multiple things
added together, we call those things terms. Furthermore, terms are
usually composed of many things multiplied together. When a num-
ber x is obtained as the product of other numbers like x = abc, we
say “x factors into 4, b, and c.” We call a, b, and c the factors of x.

$ & $ $ $
X0 X0 o X0 X0
@ @ @
a b ¢ + d e =
term term
expression
equation

Figure 1.14: Diagram showing the names used to describe the different parts
of the equation abc + de = 0.

Given any fournumbers—a,b,¢,and-dthree numbers 4, b, and ¢,
we can apply the following algebraic properties:

1. Associative property: a +b+c = (a+b)+c=a+ (b+c) and
abc = (ab)c = a(bc)

2. Commutative property: a + b = b +aand ab = ba
3. Distributive property: a(b +c) = ab + ac

We use the distributive property every time we expand brackets. For
example a(b + ¢ +d) = ab + ac + ad. The brackets, also known as
parentheses, indicate the expression (b + ¢ + d) must be treated as a
whole; as a factor consisting of three terms. Multiplying this expres-
sion by a is the same as multiplying each term by a.

The opposite operation of expanding is called factoring, which
consists of rewriting the expression with the common parts taken
out in front of a bracket: ab + ac = a(b + c). In this section, we'll dis-
cuss beth-ef these-all algebra operations and illustrate what they’re
capable of.

Expanding brackets moved to after Example

(x+3)(x+2) = x(x +2) +3(x +2) = x> + x2 + 3x + 6.
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1.6 BASIC RULES OF ALGEBRA 35

We see t is contained in both terms on the right-hand side, so we can

v

rewrite“factor it out” by rewriting the equation as
21 + 44 = £(66 — 28)t.

The answer is within close reach: t = %éf%g = %.

Expanding brackets

To expand a bracket is to multiply each term inside the bracket
by the factor outside the bracket. The key thing to remember
when _expanding brackets is to apply the distributive property:
a(x +y) = ax + ay. For longer expressions, we may need to appl

the distributive property several times, until there are no more
brackets left:

@b ty+z)=alx+y+z) +bxty+2)

= ax +ay +az + bx + by + bz.

After expanding the brackets in this expression, we end up with
six_terms—one _term for each of the six possible combinations of
products between the terms in (4 + b) and the terms in (x +y + 2)._
The distributive property is often used to manipulate expressions
containing different powers of the variable x. For instance,

(3t =x(xt2) 132 =2’ + 124 3x 16

We can use the commutative property on the second term x2 = 2x,
then combine the two x terms into a single term to obtain

(x+3)(x +2) = x> + 5x + 6.

The bracket-expanding and simplification techniques demonstrated
above are very common in math, and I recommend you solve some
algebra_practice problems to _get the hang of them. Most math
textbooks skip simplification steps and jump straight to the answer,
since_they_assume readers are capable of doing simplifications
on their own. It would be too long (and annoying) to show the
longer sentence, “We can apply the distributive property twice on
(x +.3)(x + 2) then combine the terms with the same power of x to

etx2 +5x+6.”
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36 MATH FUNDAMENTALS

It’s not unusual for people to make math mistakes when expanding
brackets_and manipulating long algebra_expressions. _To avoid
mistakes, use a step-by-step approach and apply only one operation
in each step. Write legibly and keep the equations “organized” so it’s
easy to check the calculations performed in each step. Consider this
slightly-more-complicated algebraic expression and its expansion:_

(ra@r ex v d)= 2o textd) vabx tex +d)

= b2 e gdx 3 abx® facx 4 ad

Note how we sorted the terms in the final expression according to the
different powers of x, with the terms containing x° grouped together,
and the terms containing x grouped together. This approach helps
keep things organized when dealing with expressions containing

many terms.

Factoring

Factoring involves “taking out” the common parts of a complicated
expression in order to make the expression more compact. Suppose
we're given the expression 6x2y + 15x. We can simplify this expres-
sion by taking out the common factors and writing-moving them in
front of a bracket. Let’s see how this-is-dene-to do this, step by step.
The-expression-

The expression 6x%y + 15x has two termsand-eachterm—ean-be

split-. Let’s split each term into its constituent factors:
6x%y + 15x = (3)(2)(x)(x)y + (5)(3)x.

Since factors x and 3 appear in both terms, we can factor them out te
thefrontlike this:

6x%y + 15x = 3x(2xy + 5).
The expression on the right shows 3x is common to both terms.

Here’s another example wherefactoring-is-usedof factoring—mnotice

the common factors are taken out and moved in front of the bracket:

2x%y + 2x + 4x = 2x(xy + 1 +2) = 2x(xy + 3).
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1.6 BASIC RULES OF ALGEBRA 37

Factoring quadratic expressions

A_quadratic_expression is_an_expression of the form ax” +bx tc.
When doal i ratic fanction, ttis.of ol ;
the—funetion—as—a—produect-of two—factorsThe expression contains
a quadratic term ax?, a linear term bx, and a constant term c. The
numbers a, b, and c are called coefficients: the quadratic coefficient is

a, the linear coefficient is b, and the constant coefficient is c. Suppose
7 : . . 2

To factor the quadratic expression ax? + bx + ¢ is to rewrite it as
the product of a constant and two factors like (x + p) and (x + g):

Rewriting quadratic expressions in factored form helps us better
understand and describe their properties.

Example Suppose we're asked to describe its-properties—Whatare
theroots of this-function 2 In-other-wordsfor what-values-ofxis-this

fuﬁeﬁeﬁeqﬂal%e—zefel%ﬁwhieh—va}ue&e%ﬁﬁhe—&meﬁeﬂpeﬂkwe
and-—for-which-the_properties of the function f(x) = x> —5x t6.
Specifically, we're asked to find the function’s roofs, which are the
values of x is-thefunetion-negative?—for which the function equals

Zero.
Factormg the expression x2 — 5x + 6 wilthelp-ussee the properties
a-helps us see its properties

more clearly, and makes our job of finding the roots of f(x) easier.

The factored form of this quadratic expression is to-express-it-as-the
product-of two-factors:

flx) = x> —5x+6=(x—2)(x —3).

We-now-Now we can see at a glance that the values of x for which

x) =0are x =2 and x = 3. When x = 2, the factor (x — 2) is zero
and hence f(x) = 0. Similarly, when x = 3, the selutions{theroots)

the overali funetion negativefactor (x - 3) is zero so f(x) = 0.
For-certain-How did we know that the factors of x* — 5x + 6 are

x —2) and (x —3) in the above example? For simple quadratics like
the one above, yotr-we can simply guess what-the-factors-will-bethe
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38 MATH FUNDAMENTALS

values of p and g in the equation x> — 5x + 6 = (x + p)(x + q). Before

we start guessing, let’s look at the expanded version of the product
between (x + p) and (x + q):

Note the linear term on the right-hand side contains the sum of the
unknowns (p +¢), while the constant term contains their product
pq. If we want the equation x — 5x + 6 = x> + (p + 9)x + pq to hold,
we must find two numbers p and g whose sum equals —5 and whose
product equals 6. After a couple of attempts we find p = —2 and
the factoring problems we will likely be asked to solve, since math
teachers often choose simple numbers like +1, +£2, £3, or £4 for
the constants p and g. For more complicated quadratic expressions,
youwe'll need to use the ;—which—will-be-the subject-of thenext
section—For-now-let-us-continue-with-more-algebra-trieksquadratic

formula, which we'll talk about in Section 1.7.

Common quadratic forms Make terminology explicit
Let’s look at some common variations of quadratic expressions you
might encounter when doing algebra calculations.

The quadratic expression xZ — p? is called a difference of squares,
and it can be obtained by multiplying the factors (x + ») and (x — p):

(x +p)(x — p) = x* —xp £p% — p* = 2% — p*.

There’s no linear term because the —xp term cancels the +px term.
Any time you see an expression like x2 — p2, you can know it comes

from a product of the form (x + p)(x — p).

A perfect square is a quadratic expression that can be written as
the product of repeated factors (x + »):

Note x2 — 2gx + g? = (x — g)? is also a perfect square.

Completing the square NEW SECTION
. . 2 . .
el ! iy :
A(;: o ssmf EHE“SHMSE. i ;m]d“ I]hﬁ Ff;;ss;s )
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1.6 BASIC RULES OF ALGEBRA 39

#-In_this section we'll learn about an ancient algebra_ technique
called completing the square, which allows us to rewrite any quadratic
expression of the form x> + Bx + C as a perfect square plus some
constant correction factor (x + p)” + k._This algebra technique was
described in one of the first books on aljabr (algebra), written by
Al:Khwarizmi around the year 800 CE. The name “completing the
square” comes from the ingenious geometric construction used by
this procedure. Yes, we can use geometry to solve algebra problems!

We assume the starting point for the procedure is a quadratic

expression whose quadratic coefficient is one, 1x2 + Bx + C, and
use ca ital letters B and leeaﬁbeﬁﬁeﬂafeted—geeme%ﬂeaﬂyﬂfrfhe

Mm%wmmm
letters are to avoid any confusion with the quadratic expression
%@W&MW
W@%WMand kin-more-detailin-Seetion1-13
{page 95)—Fornow, let'sfocus-on-thealgebrasteps—; with C. .
Let'stry-tofind-thevaluesof kand-fintheexpression{x—h)~—+*k
the-two-expressions-are-equal,-and-then-expand-the bracketFirst let’s
rewrite the quadratic expression x> + Bx + C by splitting the linear

*+8x+8x+C

We can interpret the first three terms geometrically as follows: the x2
term corresponds to a square with side length x, while the two Zx

terms correspond to rectangles with sides 2 and x. See the left side
of Figure 1.15 for an illustration.
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x x 8
1 L3 I T
B
7
= _ B
x |:| + C X |:| .7 + C
X g X %

e PEPE .. L P CE ] . 2 n 1
rIgure 1.157 10 COIMIPIETE e SqUAIE 1TT TIE EXPIESSIOIN X" + DX +— L, WE TIEEd

to add the quantity (2)2, which corresponds to a square (shown in darker
colour) with sides equal to half the coefficient of the linear term. We also

subtract ()2 so the overall value of the expression remains unchanged.

The square with area x% and the two rectangles can be positioned to

form a larger square with side length (x + £). Note there’s a small

: B

iece of sides & by £ missing from the corner. To complete the square,
2 i . .
we can add a term (£)” to this expression. To preserve the equality,
2 . .
we also subtract (2)” from the expression to ebtain-

x® +5x +6=A(x —h)? +k

= A(x* —2hx + 1?) + k

= Ax? —2Ahx + AW® + k.

~ ] o the ol .o Orbothsidesofd

i i i i 2 (obtain:

RRANAARANA

Pelxrlrrc- Prlrrdar () - (8) 4 C

The right-hand side of this equation describes the area of the square

with side length (x + 2), minus the area of the small square (2 2,
lus the constant C, as illustrated on the right side of Figure 1.15.
We can summarize the entire procedure in one equation:

x2+Bx+C=(x + 5 )2 + C —(g)z.
(1) (2

~—

There are two things to remember when you want to apply the
complete-the-square trick: (1) choose the constant inside the bracket

to be B (half of the linear coefficient), and (2) subtract (2 ® outside

the bracket in order to keep the equation balanced.
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1.6 BASIC RULES OF ALGEBRA 41

Solving quadratic equations

Suppose we want to solve the quadratic equation x> + Bx +C = 0.
It’s not possible to solve this equation with the digging-toward-the-x
approach from Section 1.1 (since x appears in both the quadratic
term )-onetermthatecontains—x.(x?> and the linear term }-and

e ) I theng e o

all-theterms—must-be-equal— By focusing-on—the quadratic terms
in-the-equation—{they-are-underlined)-we-see-A—1Bx). Enter the

Example Let’s find the solutions of the equation x* +5x + 6 = 0.
The coefficient of the linear term is B = 5, so we rewrite the-equation

B

as-choose 3 = 3 for the constant inside the bracket, and subtract

B)2 _ (5)2 outside the bracket to keep the equation balanced.

Completing the square gives

2
x2+5x@g+6=(x2—2hx+h§> +k6-(3)2=0.

Next we look-atthelinear-terms{underlined)andinferthath—=—25-

: ting. biai orinwhich kst ]
unknown:

X2 +5x +6 = x* —2(—2.5)x + (—2.5)% + k.

2 — —
k=6—(-252=6-(252=6-(3)" =6x3-2 =225 _ -1

X2 +5x+6=(x+257%-1

Fhe—use fraction arithmetic to simplify the constant terms in the
. 2 _ _
expression: 6 — (2) =6-42 25 _ 2425 _ -1 _ _(95
We're left with the equation

which we can now solve by digging toward x. First move 0.25 to
the right-hand side of-the-expression—abovetells-us—ourfunction
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. . ] ] ] . E . 2 ].E 12'5 . ] ] E
4 ’ . . .
ever-had—to—draw—thegraph-of-thisfuncon—you—~could-simply

. 2 . . . - ’\tg

et (x +2.5)% = 0.25. Then take the square root on both sides to

obtain (x + 2.5) = +0.5, which simplifies to x = —2.5 +0.5. The two

solutions are x = ~25+05= -2 and x = =25-05= 3. You
can verify these solutions by substituting the values in the original

Congratulations, yvou just solved a quadratic equation using a
1200-year-old algebra technique!

his ol 1 e ST,
to leverage the complete-the-square trick to obtain a general-purpose
formula for quickly solving quadratic equations.

Tal ; : c (ves,rigl 0

expressions: 42— 6x—+ 13— — 312+ dand a2 +4x+t—{x+2)2 3

Exercises

E1.7 Factor the following quadratic expressions:
a) x> —8x+7 b) x2 + 4x + 4 AJx2-9

Hint: Guess the values » and g in the expression (x +

E1.8 Expand-thefollowing—expressions:—Solve the equations b
completing the square.

a) fa—+bya2 £ 20~ 15 = 0 Can—you—spot—a—pattern—in
5 . he-costhic e it
-{a+byk is-a-general formula for(atby12 I forme
e+ b Pydxt1=0
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1.7 SOLVING QUADRATIC EQUATIONS 43

1.7 Solving quadratic equations

What would you do if asked to solve for x in the quadratic equation
x2—45x+232x% = 4x + 6? This is called a quadratic equation since it
contains the unknown variable x squared. The name comes from the
Latin quadratus, which means square. Quadratic equations appear
often, so mathematicians created a general formula for solving them.
In this section, we'll learn about this formula and use it to put some
quadratic equations in their place.

Before we can apply the formula, we need to rewrite the equation
we are trying to solve in the following form:

ax?> +bx+c=0.

We-reach-This is called the standard form of the quadratic equation.
We obtain this form by moving all the numbers and xs to one side

and leaving only 0 on the other side. This-is-called-thestandardform:
efhth&quae}mﬂeeq&&ﬁefﬁFor example, to transform the quadratic
equation ¥2—45x+23-2x> = 4x + 6 into standard form, subtraet
45x+23-we subtract 4x 4 6 from both sides of the equation to obtain

2 —45¢—23—02x> —4x — 6 = 0. What are the values of x that
satisfy this equation?

Quadratic formula
Claim

_The solutions to the equation ax? + bx + ¢ = 0 arefor a # 0 are

—b+ Vb% —4ac —b — /b2 —4ac
S PR = - 20

Thisresultis-called-theguadratic formtaand-The quadratic formula
is usually abbreviated x = —ttybi—tac 322_4’”, where the sign “+” stands
for both “+” and “—.” The notation “+” allows us to express both
solutions x1 and x, in one equation, but you should keep in mind
there are really two solutions.

Let’s see how the quadratic formula is used to solve the equa-
tion x2—45x—23-—02x> — 4x — 6 = 0. Finding the two solutions re-
quires the simple mechanical task of identifying #—-1;b—=—45;and
e=—23a =2, b = —4, and c = —6, then plugging these values into

AR AAAASAANAAAS AN A A AT
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4 MATH FUNDAMENTALS
changed numbers so prob.

can be solved by hand

the two parts of the formula:

45 + /452 — 4(1)(—23) 4 + /42 — 4(2)(—6) 4+4/16+48 -
x| = =455054,.. — Y 2T
2 4 E— 4
45 — /452 — 4(1)(—23) 4 — /42 — 4(2)(—6) 4 —+/16 + 48
Xy = = 05054, . — Y 2T _
2 4 —_— 4
Verify-using-your-caleulator-that both-of the-values-above-We can
easily verify that value x; = 3 and x, = —1 both satisfy the original
equation x2-=45x+232x2 = 4x + 6.

Proof of elaimthe quadratic formula

Every cla1m made by a mathemat1c1an comes with a pfeefm
which is a step-by-step argument that shows why the claim is true.

It's ﬂe%ﬂeeessafyﬂfekﬂewifhepfeef&ef—ﬁ#
wi}kbeeeiﬁe—{’é&eas;%espe%ggmwhere a proof starts and

where a proof ends in mathematical texts. Each proof begins with
the heading Proof (usually in italics) and has the symbol “s0” at its

end. The purpose of these demarcations is to give readers the option
to skip the proof. It's usually-okayto-skip-proofs-whenreadinga

a a VW O ae—wW

wﬂwﬁwﬁéﬂwﬁeeﬁwwwﬁﬂmwmw&
the proofs of all math statements, but reading proofs can often lead
you to a more solid understanding of the material.

I want you to see the proof of the quadratic formula because
it’s an important result that you'll use very often to solve math
problems. Reading the proof will help you understand where the
quadratic formula comes from. This-proofis—an-exampleof-an

" mcoleswhid i bas

%&%%e%aﬂyhaﬂd»}efhﬁ'—?hepfeeﬂtse&The roof rehes on the

completing-the-square technique from the previous section—, and

some basic algebra operations. You can totally handle this!

Proof. Starting-We're starting from the quadratic equation ax? + bx +

¢ = 0, we-and we're making the additional assumption that a # 0.
We want to find the value or values of x that satisfy this equation.
The first thing we want to do is divide by a to obtain the

equivalent equation

b c
X2 -x+-=0.
a a
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Nextwell oo t] by-askine “What are-the val ¢

(x—h)?+k = x N
a a

b
x> —2hx+h* +k = x2+ax+§.

sides-of-the-equation—We-have —2h——_—and-henee h——-We are

allowed to divide by a since we assumed that a # 0.

beth—StéeSﬁHheeqﬁaﬂefkafeeqtm%ﬂﬂd—themsela%ekM
the complete the square trick to the quadratic expression, to obtain an
completing the square is to choose the number inside the bracket to
be half the coefficient of the linear term of the quadratic expression,
which is 5, in this case. We must also subtract the square of this
term outside the bracket in order to maintain the equality. After

b? c c b
— = - k=--—.
4a? Tk a - a__ 4a®
Havinef w 1 ¢ botht 1l o]
. 2 / — O—int} form (3; ;132 k—0-as—follows:
b » C b2
(x + Z) + PR 0.
From hereon;we-—can-, we use the standard procedurefor“digging”
toward-the digging-toward-the-x -which-wesaw-inSeetiont-tprocedure.

Move all constants to the right-hand side:-

x_l'_g 2*_54_&
20) a 442
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2q¢) 442 a’

Next,

7L

20 N a 442
B e e e ey
24 40> g

Since any number and its opposite have the same square, taking the

square root gives us two possible solutions, which we denote usin
Next we subtract £ from both sides of the equation to isolate

b /2

x and obtain x = — €. We tidy up the mess under the

square root:-

| b2 b2 4ac + b2 _V b2 — 4ac
4a2 4a2 2a '

We-obtain-

and add the fractions on the right-hand side to obtain x — —2Evb>—dac,

The solutions to the quadratic equation ax2 + bx + ¢ = 0 are

—b /b2 — 4dac —b + Vb2 — dac —b + Vb* — 4ac —b — V/b?
X = and Xy =

2020 20 T 2a P
This completes the proof of the quadratic formula. O

The expression b? — 4ac is called the discriminant of the equation.
The discriminant tells us important information about the solutions
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1.7 SOLVING QUADRATIC EQUATIONS 47

of the equation ax” + bx + ¢ = 0. The solutions x; and x, correspond
to real numbers if the discriminant is positive or zero: b” — 4ac > 0.
When the discriminant is zero (b” — 4ac = 0), the equation has only
one solution since x; = ¥ = 7. If the discriminant is negative,

b? — 4ac < 0, the quadratic formula requires computing the square
root of a negative number, which is not allowed for real numbers.

Alternative proofef-eclaim

To have-a—preefprove the quadratic formula, we don’t necessarily
need to show the derivation-of-algebra steps we followed to obtain

the formula as outlined above. The elaim-quadratic formula states
that x; and x, are solutions. To prove the elaim-formula is correct
we can simply plug x; and x; into the quadfaﬁeequaﬁeﬂﬂﬂd#eﬂ%y
that-the-answers-are zereequation ax” + bx + ¢ = 0 to verify that x;
and x; are solutions. Verify this on your own.

Applications
The golden ratio

The golden ratio is an essential proportion in geometry, art, aesthet-

ics, biology, and mysticism, and is usually denoted as ¢ = 1%6 =
1.6180339. ... This ratio is determined as the positive solution to the
quadratic equation

X2 —x-1=0.

Applying the quadratic formula to this equation yields two solu-
tions,

1+¢§_¢ 1-v5 1

X1 = 5 and Xy = 5 = —6.

You can learn more about the various contexts in which the golden
ratio appears from the Wikipedia article on the subject. We’ll discuss
the golden ratio again on page 447 in Chapter 5.

Explanations
Multiple solutions

Often, we are interested in only one of the two solutions to the
quadratic equation. It will usually be obvious from the context
of the problem which of the two solutions should be kept and
which should be discarded. For example, the time of flight of a ball
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thrown in the air from a height of 3 metres with an initial veloc-
ity of 12 metres per second is obtained by solving the equation
(—4.9)t> + 12t + 3 = 0. The two solutions of the quadratic equation
are f; = —0.229 and t; = 2.678. The first answer t; corresponds to
a time in the past so we reject it as invalid. The correct answer is £;.
The ball will hit the ground after t = 2.678 seconds.

Relation to factoring

In the previous section we discussed the quadratic factoring opera-
tion by which we could rewrite a quadratic function as the product

of two terms f({x} — ax? —bx — ¢ — (x — x1}(x — x2). a constant and

two factors:

f) =ax’ thxre=alx - x)(x - x).

The two numbers x; and x5 are called the roots of the function: these
points are where the function f(x) touches the x-axis.

You now have the ability to factor any quadratic equation—Use-:
use the quadratic formula to find the two solutions, x; and x;, then
rewrite the expression as x—axH{x—x)a(x — x1)(x — x

Some quadratic expressions cannot be factored, however. These
“unfactorable” expressions correspond to quadratic functions whose
graphs do not touch the x-axis. They have no real solutions (no
roots). There is a quick test you can use to check if a quadratic func-
tion f(x) = ax? + bx + ¢ has roots (touches or crosses the x-axis) or
doesn’t have roots (never touches the x-axis). If b*> —4ac > 0 then
the function f has two roots. If b> — 4ac = 0, the function has only
one root, indicating the special case when the function touches the
x-axis at only one point. If b?> — 4ac < 0, the function has no roots.
In this case, the quadratic formula fails because it requires taking
the square root of a negative number, which is not allowed —Think

number?—(for now). We'll come back to the idea of takin square
roots of negative numbers in Section 3.5 (see page 232).

Links
[ Intuitive—visual-derivation—Algebra explanation of the quadratic
formula |

https://www.youtube.com/watch?v=r3SEkdtpobo
[ Visual explanation of the quadratic formula derivation ]
https://www.youtube.com/watch?v=EBbtoFMJvFc
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Formulas

The following properties follow from the definition of exponentia-
tion as repeated multiplication.

Property 1 Multiplying together two exponential expressions that
have the same base is the same as adding the exponents:

b™b"™ = bbb - --bb bbb - - - bb = bbbbbbb - - - bh = """,
—_— -

m times n times m+n times

Property 2 Division by a number can be expressed as an exponent
of minus one:

b—l

Sl

~

Any number times its reciprocal gives one: bb—! = £ = 1. A negative

exponent corresponds to a division:

.1
b =

Property 3 By combining Property 1 and Property 2 we obtain the

following rule:
bm
3
In particular we have b"b~" = b"~" = b = 1. Multiplication by the
number b~" is the inverse operation of multiplication by the number
b". The net effect of the combination of both operations is the same

as multiplying by one;i-e-the-identity-operation.

— bm—fl.

Property 4 When an exponential expression is exponentiated, the
inner exponent and the outer exponent multiply:

(™) = (bbb - - - bb)(bbb - - - bb) - - - (bbb - - - bb) = b™.
—_— N —_—

m times m times m times

n times

Property 5.1
n — ... — ... .. p—t npyn
(ab)" = (ab)(ab)(ab) - -- (ab)(ab) = gaa---aabbb---bb = a"b".

n times n times n times
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Property 1

The first property states that the sum of twelogarithms-the logarithms
of two numbers is equal to the logarithm of the product of the

argutertsnumbers:
log(x) +log(y) = log(xy).

log(x¥) = klog(x),

log(x) —log(y) = log (;)

Proof. We need to show that the expression on the left is equal to

the expression on the right. We met logarithms a—very-short-time
agovery recently, so we don’t know each other too well yet. In fact,
the only thing we know about logs is the inverse relationship with
the exponential function. The only way to prove this property is to
use this relationship.

The following statement is true for any base b:

bm bn _ bern )

This follows from first principles. Recall that exponentiation is noth-
ing more than repeated multiplication. If you count the total number
of bs multiplied on the left side, you'll find a total of m + n of them,
which is what we have on the right.

If we define some new variables x and y such that o™ = x and
b" =y, then we can rewrite the equation b™b" = b™*" as

xy = b"
Taking the logarithm of both sides gives us

log;, (xy) = log, (b"™") = m +n = log;,(x) + log, (y)-

The last step above uses the definition of the log function again,
which states that

V" =x < _m=1log,(x) and V'=y < _n=log,(y).

We have thus shown that log(x) + lo = log(xy). O
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Using this property, we can derive two other useful formulas:

and

Property 2

This property helps us change from one base to another.
We can express the logarithm in any base B in terms of a ratio of
logarithms in another base b. The general formula is

_ log, (%)
log,,(B)

For example, the logarithm base 10 of a number S can be expressed
as a logarithm base 2 or base e as follows:

log,,(S)  logyy(S) log,(S) In(S)
logyo($) = =7 :1og1100(10):1og22(10):1n(10)'

logp(x)

This property is helpful when you need to compute a logarithm in a
base that is not available on your calculator. Suppose you're asked to

compute log,(S), but your calculator only has a loéé button. You

can simulate log; (S) by computing log;,(S) and dividing by log;,(7).

Exercises

E1.16 Use the properties of logarithms to simplify the expressions
a) log(x) + log(2y) b) log(z) —log(z?) o log(x) + log(y/x)
d) log,(8) e) log3(21—7) f) log;,(10000)

1.10 The Cartesian plane

The Cartesian plane, named after famous philosopher and mathe-
matician René Descartes, is used to visualize pairs of numbers (x, ).

Recall the number line representation for numbers that we intro-
duced in Section 1.3.
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P=(-3,2) y

U3=(—1,-2) Uy=(—-1,-2)

Figure 1.18: A Cartesian plane which shows the point P = (—3,2) and the
vectors 71 = (3,1) and ¥, = 73 = (—1,-2).

mark where the vector starts and where it ends. Note that vectors
¥, and 73 illustrated in Figure 1.18 are actually the same vector—the
“displace left by 1 and down by 2” vector. It doesn’t matter where
you draw this vector, it will always be the same whether it begins at
the plane’s origin or elsewhere.

Graphs of functions

The Cartesian plane is great for visualizing functions. You can think
of a function as a set of input-output pairs (x, f(x)). You can draw
the graph of a function by letting the y-coordinate represent the func-

tion’s output value:
(x,y) = (x, f(x)).
2

For example, with the function f(x) = x
the set of points

, we can pass a line through

(x,y) = (x,x%),
and obtain the graph shown in Figure 1.19.
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Ty

—4 -3 -2 -1 0 1 2 3 4

v

Figure 1.19: The graph of the function f(x) = x2 consists of all pairs of points

x,y) in the Cartesian plane that satisfy y = x2.

When plotting functions by setting y = f(x), we use a special
terminology for the two axes. The x-axis represents the independent
variable (the one that varies freely), and the y-axis represents the de-
pendent variable f(x), since f(x) depends on x.

. 2 .

2

To draw the graph of any function f(x), use the following procedure.
Imagine making a sweep over all of the possible input values for the
function. For each input x, put a point at the coordinates (x,y) =
(x, f(x)) in the Cartesian plane. Using the graph of a function, you
can literally see what the function does: the “height” y of the graph
at a given x-coordinate tells you the value of the function f(x).

Dimensions

The number line is one-dimensionalone-dimensional. Every number
x can be visualized as a point on the number line. The Cartesian
plane has two dimensions: the x dimension and the y dimension.
If we need to visualize math concepts in 3D, we can use a three-
dimensional coordinate system with x, y, and z axes (see Figure 3.10

on page 223).
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1.11 Functions

We need to have a relationship talk. We need to talk about functions.
We use functions to describe the relationships between variables. In
particular, functions describe how one variable depends on another.

For example, the revenue R from a music concert depends on the
number of tickets sold n. If each ticket costs $25, the revenue from
the concert can be written as a function of n as follows: R(n) = 25n.
Solving for n in the equation R(n) = 7000 tells us the number of
ticket sales needed to generate $7000 in revenue. This is a simple
model of a function; as your knowledge of functions builds, you'll
learn how to build more detailed models of reality. For instance, if
you need to include a 5% processing charge for issuing the tickets,
you can update the revenue model to R(n) = 0.95-25-n. If the
estimated cost of hosting the concert is C = $2000, then the profit
from the concert P can be modelled as

P(n)=R(n) — C
—095-$25.-n — $2000

The function P(n) = 23.75n — 2000 models the profit from the concert
as a function of the number of tickets sold. This is a pretty good
model already, and you can always update it later as you learn more
information.

The more functions you know, the more tools you have for mod-
elling reality. To “know” a function, you must be able to understand
and connect several of its aspects. First you need to know the func-
tion’s mathematical definition, which describes exactly what the
function does. Starting from the function’s definition, you can use
your existing math skills to find the function’s demain,—its-image;
and-its-inverse-functionproperties. You must also know the graph
of the function; what the function looks like if you plot x versus f(x)
in the Cartesian plane. It’s also a good idea to remember the values
of the function for some important inputs. Finally—and this is the
part that takes time—you must learn about the function’s relations
to other functions.

Definitions

A function is a mathematical object that takes numbers as inputs and
produces numbers as outputs. We use the notation

f:A—>B
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to denote a function from the input set A to the output set B. In this
book, we mostly study functions that take real numbers as inputs
and give real numbers as outputs: f: R — R.

A B

Figure 1.20: An abstract representation of a function f from the set A to the

set B. The function f is the arrow which maps each input x in A to an output

x) in B. The output of the function f(x) is also denoted y.

A function is not a number; rather, it is a mapping from numbers to

numbers. We say “f maps x to f(x).” For any input x, the output
value of f for that input is denoted f(x), which is read as “f of x.”

We’ll now define some fancy technical terms used to describe the
input and output sets of functions.

o The-A; the source set of the function describes the types of
numbers that the function takes as inputs.

e Dom(f): the domain of a function is the set of allowed input
values for the function.

o B: the target set of a function describes the type of outputs the
function has. The target set is sometimes called the codomain.

. Im(f): the image errange of the function f-is the set of all
possible output values of the function.

o The The image is sometimes called the range.

of introducing all this math terminology is so we’ll have words
to distinguish the general types of inputs and outputs of the
function (real numbers, complex numbers, vectors) from the specific
properties of the function like its domain and image.

Let’s look at an example to illustrate the difference between
the source set and the domain of a functiondeseribes—the-type-of
outputs—thefunction—has—. _ Consider the square root function
[+ R — R defined as f(x) = y/x, which is shown in Figure 1.22. The
source set of f is the set of real numbers—yet only nonnegative real
numbers are allowed as inputs, since y/x is not defined for negative
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Dom(f) Im(f)

Figure 1.21: lllustration of the input and output sets of a function f: A — B.
The source set is denoted A and the domain is denoted Dom(f). Note that the
function’s domain is a subset of its source set. The farget set is denoted B and
the image is denoted Im(f). The image is a subset of the target set.

numbers. Therefore, the domain of the square root function is onl
the nonnegative real numbers: Dom(f) =R, = {x e R | x > 0}.

Knowing the domain of a function is essential to using the function
correctly. In this case, whenever you use the square root function,
ou need to make sure that the inputs to the function are nonnegative

numbers,
The complicated-looking expression between the curly brackets

uses _set_notation to define the set of nonnegative numbers R.
In words, the expression Ry = {x € R | x > 0} states that “IR, is

defined as the set of all real numbers x such that x is greater than
or equal to zero.” We’ll discuss set notation in more detail in
Section 1.23. For now, you can just remember that R ; represents the

set of nonnegative real numbers.

- fx) = V= N
Ry R,
f

Figure 1.22: The input and output sets of the function f(x) = +/x. The

domain of f is the set of nonnegative real numbers R . and its image is R .

To illustrate the subtle-difference between the image of a func-
tion and its eedomain,—consider-target set, let’s look at the function
flx) = x% shown in Figure 1.23. The quadratic function is of the form
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f: R — R. The function’s demain-source set is R (it takes real num-
bers as inputs) and its eocdomain-target set is R (the outputs are real

numbers too); however, not all eutptits-arepossiblereal numbers are

ossible outputs. The image of the function f(x) = x? consists only
of the nonnegative real numbers {0;66)={1cR{=0}
o ; it o £ ]

7

denotedF{x)Ry = {ye R |y > 0}, since f(x) > 0 for all x.

Figure 1.23: The function f(x) = x? is defined for all reals: Dom(f) = R. The
image of the function is the set of nonnegative real numbers: Im(f) = R, .

" 7
7

Function properties

We'll now introduce some additional terminology for describin

three important function properties. Every function is a mappin

from a source set to a target set, but what kind of mapping is it?
o A-function-is-one-to-one or-A function is injective if-it-maps

different-inputs—to-different-outputs—if it maps two different

inputs to two different outputs. If x; and x, are two input
values that are not equal x; # Xy, then the output values of an
injective function will also not be equal f(x1) # f(x

* A function is surjective if its image is equal to its target set. For

at least one input x in its domain such that f(x) =

o A function is bijective if it is both injective and surjective.

I know this seems like a lot of terminology to get acquainted with,
but it’s important to have names for these function properties. We’ll
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need this terminology to give a precise definition of the inverse
unction in the next section.

that_transport fluids between containers. Since fluids cannot be
compressed, the “output container” must be at least as large as
the “input container.” If there are two distinct points x; and x;
in_the input container of an injective function, then there will be
two distinct points f(x1) and f(xz) in the output container of the
function as well. In other words, injective functions don’t smoosh
things together.

In contrast, a function that doesn’t have the injective property can
map several different inputs to the same output value. The function
f(x) = 22 is not injective since it sends inputs x and —x to the same
output value f(x) = f(—x) = x2, as illustrated in Figure 1.23.

The maps-distinct-inputs-to-distinct-outputs property of injective
injective function y, there is only one input x such that f(x) =

If a second input x’ existed that also leads to the same output

x) = f(x') = y, then the function f wouldn’t be injective. For each

of the outputs y of an injective function f, there is a unigue input

x such that f(x) =vy. In other words, injective functions have a
unique-input-for-each-output property.

Surjective property A function is entoor-if-it-coverstheentire-outpit
set(in-other-wwordsif the-image-surjective if its outputs cover the entire
target set: every number in the target set is a possible output of
the function for some input. For example, the function f: R — R
defined by f(x) = x> is surjective; for every number y in the target
set IR, there is an input x, namely x = 3, such that f(x) =

The function f(x) = x3 is surjective since its image is equal to

thefunetion’s-codomain)—its target set, Im(f) = R, as shown in
Figure 1.24.

On the other hand, the function f: R — R defined by the

equation f(x) = x2 is not surjective since its image is only the

nonnegative numbers Ry and not the whole set of real numbers
(see Figure 1.23). The outputs of this function do not include the
negative numbers of the target set, because there is no real number
x that can be used as an input to obtain a negative output value.

Bijective property A function is bijective if it is both injective and
surjective. In-this—ease;—f—is-When a function f : A — B has both
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o0

Figure 1.24: For the function f(x) = x° the image is equal to the target set of

the function, Im(f) = IR, therefore the function f is surjective. The function
maps two different inputs x; # x» to two different outputs f(xq) # f(x2), so
is injective. Since f is both injective and surjective, it is a bijective function.

the injective and surjective properties, it defines a one-to-one cor-
respondence between the input-set-and-the-output-set:—for-each—of

7

the-possible-outputs-i-c-Y{sutrjective-part);there-exists-exactly-one
input-eX;numbers of the source set A and the numbers of the
target set B. This means for every input value x, there is exactly one
corresponding output value y, and for every output value y, there
is exactly one input value x such that f(x) = y(injectivepart)— _An
example of a bijective function is the function f: R — R defined by
f(x) = x° (see Figure 1.24). For every input x in the source set R, the

corresponding output v is given by v = f(x) = x3. For every output

value vy in the target set R, the corresponding input value x is given
by x = Y.

¥] < .. . . ]] . E ] ]glg . PR

inputs—to-A_function is not bijective if it lacks one of the required
roperties. Examples of non-bijective functions are f(x) = 1/x,
which is not surjective and f(x) = x°, which is neither injective nor

Counting solutions Another way to understand the injective,
surjective, and bijective properties of functions is to think about the
solutions to the equation f(x) = b, where b is a number in the target

set B. The function f is injective if the equation f(x) = b has at most
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one solution for every number b. The function f is surjective if the
equation f(x) = b has at least one solution for every number b. If the

function f is bijective then it is both injective and surjective, which

means the equation f(x) = b has exactly one solution.

Inverse function

We used inverse functions repeatedly in previous chapters, each time
describing the inverse function informally as an "undo” operation.
Now that we have learned about bijective functions, we can give a
the precise definition of the inverse function and explain some of the
details we glossed over previously.
Recall that a bijective function f : A — B is a one-to-one correspondence

between the numbers in the source set A and numbers in the target
set B: for every output y, there is exactly one corresponding input

value x such that f(x) = y. The inverse function, denoted f~1, is the
function that takes any output value v in the set B and finds the
corresponding input value x that produced it f 1 = X.

Figure 1.25: The inverse f ! undoes the operation of the function f.

For every bijective function f : A — B, there exists an inverse
function f~1: B — A that performs the inverse mapping of f. If we

-1

start from some x, appl and then appl , we'll arrive—full

circle—back to the original input x:
) ==

In Figure 1.25 the function f is represented as a forward arrow, and

the inverse function f~! is represented as a backward arrow that
uts the value f(x) back to the same-outputx it came from.

Similarly, we can start from an in the set B and appl

followed by f to get back to the original y we started from:
W) =y

-1
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In words, this equation tells us that f is the “undo” operation for the

function f~1 the same way ! is the “undo” operation for f. For
. 2 . . . . .

property then itisn’t bijective and it doesn’t have an inverse. Without
the injective property, there could be two inputs 2-and—2-are-both
mapped-to-the-output-value4x and x’ that both produce the same

output f(x) = f(x') = y. In this case, computing f~1(y) would be

impossible since we don’t know which of the two possible inputs
x or x’ was used to produce the output y. Without the surjective
property, there could be some output y’ in B for which the inverse
function f~ is not defined, so_the equation f(f~'(y)) =y would
not hold for all y in B. The inverse function f " exists only when the

function f is bijective.

Wait a minute! We know the function f(x) = x? is not bijective
and therefore doesn’t have an inverse, but we’ve repeatedly used
going on here? Are we using a double standard like a politician that
espouses one set of rules publicly, but follows a different set of rules
in their private dealings? Is mathematics corrupt?

Don’t worry, mathematics is not corrupt—it’s all legit. We can
use inverses for non-bijective functions by imposing restrictions on
the source and target sets. The function f(x) = x? is not bijective
when defined as a function f : R — IR, but it is bijective if we define
it as a function from the set of nonnegative numbers to the set of
nonnegative numbers, f: Ry — Ry. Restricting the source set to
R, ={xeR | x>0} makes the function injective, and restrictin
the target set to IR also makes the function surjective. The function
f:Ry = R, defined by the equation f(x) = x? is bijective and its
applied when solving equations. For example, solving the equation
x? = ¢ by restricting the solution space to nonnegative numbers will
add the negative solution x = —+/c in order to obtain the complete
solutions: x = ¢, which is usually written x = +4/c.
The possibility of multiple solutions is present whenever we solve

Function composition

We can combine two simple functions by chaining them together to
build a more complicated function. This act of applying one function
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after another is called function composition. Consider for example the

composition:
feg(x)==f(g(x)) = z.

Figure 1.26: The function composition fog describes the combina-
tion of first applying the function g, followed by the function f:
= o X) = (x )

Figure 1.26 illustrates this-econeceptthe concept of function composition.
First, the function § : A — B acts on some input x to produce

an intermediary value y = g(x) in the set B. The intermediary
value v is then passed through the function f : B — C to pro-
duce the final output value z = f(y) = f(g(x)) in the set C. We
can think of the composite function f o g as a function in its own
right. The function fog : A — C is defined through the formula

Don’t worry too much about the “o”

symbol—it’s just a conve-

nient math notation I wanted you to know about. Writing f o g is just
as-good-the same as writing f(g(x)). The important takeaway from
Figure 1.26 is that functions can be combined by using the outputs
of one function as the inputs to the next. This is a very useful idea
for building math models. You can understand many complicated
input-output transformations by describing them as compositions of
simple functions.
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Example1 Consider the functiong: R — R givenb =/x,
and the function f: R — R, defined b x) = x2. The composite
function fo ¢ (x) = (1/x)? = x is defined for all nonnegative reals.

The composite function ¢ o f is defined for all real numbers, and we
have x) = Va2 = |x|.

= NDNSE , . f B4 . .
f&ﬂeﬁeﬁ{—B—»%—whie%rpeffefm&%heﬁwﬁsewaﬁ%ﬁg of—If
yourstart-from-somex,apply -

Example 2 The composite functions fog and then—apply =
yewﬂﬂfﬂve—ftﬂ}ﬁde—baek%eﬂ%eﬂgma%tﬁpufﬁmw

different operations. If =In(x) and f(x) = x?, the functions

o f(x) =1In(x?) and f o ¢ (x) = (Inx)? have different domains and
roduce different outputs, as you can verify using a calculator.

Using the notation “o” for function composition, we can give a
concise description of the properties of a bijective function f : A — B

and its inverse function f~1: B — A:

for all x iteamefromin A and all y in B.

Function names

We use short symbols like +, —, x, and + to denote most of the im-
portant functions used in everyday life. We also use the weire s
o squiggle notation y/_for square roots
and superscripts to denote exponents. All other functions are identi-
fied and denoted by their name. If I want to compute the cosine of the
angle 60° (a function describing the ratio between the length of one
side of a right-angle triangle and the hypotenuse), I write cos(60°),
which means I want the value of the cos function for the input 60°.
Incidentally, the function cos has a nice output value for that
specific angle: eeﬂég%%lmwv\(@gav:v}&. Therefore, seeing cos(60°)

somewhere in an equation is the same as seeing 1. To find other
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values of the function, say cos(33.13°), you'll need a calculator. All

scientific calculators have a convenient little button for this
very purpose.

Handles on functions

When you learn about functions you learn about the different “han-
dles” by which you can “grab” these mathematical objects. The main
handle for a function is its definition: it tells you the precise way to
calculate the output when you know the input. The function defini-
tion is an important handle, but it is also important to “feel” what
the function does intuitively. How does one get a feel for a function?

Table of values

One simple way to represent a function is to look at a list of input-
output pairs: {{in = xj,out = f(x1)}, {in = x, out = f(x2)},
{in = x3,0out = f(x3)},... }. A more compact notation for the input-
output pairsis {(x1, f(x1)), (x2, f(x2)), (x3, f(x3)), ...}—Yeueanmake
your-ownlittle-,_where the first number of each pair represents an
input value and the second represents the output value given by the
function.

We can also build a table of values by pickingsome random
inputswriting the input values in one column and recording the

output-of the funetion-in-the-second-column:-
input = x — f(x) = output
0 - f0O
1 - ()

5 - f(55

# =100, ——1;and-any-other-corresponding output values in a
second column. You can choose inputs at random or focus on the
important-looking x-valuex values in the function’s domain.

You can create a table of values for any function you want to
study. Follow the example shown in Table 1.1. Use the input values
that interest you and fill out the right side of the table by calculating
the value of f(x) for each input x.




DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE


72 MATH FUNDAMENTALS

input = x - f(x) = output

(USSSS A )
1o — )
E’S’ijmf\@

Yy o flx)

Table 1.1: Table of input-output values of the function f(x). The input values

x=0.x=1and x = 55 are chosen to “test” what the function does.

Function graph

One of the best ways to feel a function is to look at its graph. A graph
is a line on a piece of paper that passes through all input-output pairs
of a function. Imagine you have a piece of paper, and on it you draw
a blank coordinate system as in Figure 1.27.

y

Figure 1.27: An empty (x,y)-coordinate system that you can use to plot-the

graphofany draw function f{zx)graphs. The graph of f(x) consists of all the
points for which (x,y) = (x, f(x)). See Figure 1.19 on page 60 for the graph

of f(x) = x2.

The horizontal axis ;sometimes-called-theabseissa-is used to mea-
sure x. The vertical axis is used to measure f(x). Because writing out
f(x) every time is long and tedious, we use a short, single-letter alias
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to denote the output value of f as follows:
y==f(x) = output.

Think of each input-output pair of the function f as a point (x,y) in
the coordinate system. The graph of a function is a representational
drawing of everything the function does. If you understand how
to interpret this drawing, you can infer everything there is to know
about the function.

Facts and properties

Another way to feel a function is by knowing the function’s prop-
erties. This approach boils down to learning facts about the
function and its relation—connections to other functions. An ex-

ample of a mathematical %aet—t&sm%@—):ﬁ%ea@mp}eﬁ%ﬁ
mathematieat relation-connection is the equation sin®x—+eos?x¥ =1,

which—indieates-logr(x) = %, which describes a link between

the sinfunetion—-and-theecosfunetionlogarithmic function base B

and the logarithmic function base b.
The more you know about a function, the more “paths” your
brain builds to connect to that function. Real math knowledge

is not about memorization; it requires—establishing—a—graph—is
about establishing a network of associations between different

areas of information in your brain. Eﬂeh—eefnsept—is—&—ﬁﬂde in-this

the conce t maps on page v for an 1llustrat10n of the paths that
hnk math concepts. Mathematlcal thought is the usage of this

pfeefsthese assoc1at10ns to_carr out calculatlons and roduce
mathematlcal arguments. For example, byheem&eeﬁng—ye&r—lﬂ%ewledge

o 1
= =1
o 3 : 2 a2
e&ﬁ—shﬁw—f}‘a%—e@sgg—);——%&efe—ﬂieﬂﬁﬁ{aﬂeﬁ—ﬁﬂ—wwz.
. 2 . . . . .

{sinfxp=knowing about the connection between logarithmic functions
will allow you compute the value of log, (%), even though calculators

don’t have a button for logarithms base 7. We find log,(¢3) = Ing _ 3

which can be computed using the| In |button.
To develop mathematical skills, it is vital to practice path-
bulldmg between fe}a%ed—concepts by solving exercisesand-reacing
. With this book, I will introduce
you to some of the many paths hnkmg math concepts;-, but it’s up

to-on you to reinforce these paths byLﬂSﬂag—xﬂaa{—yewe%e&meér%e
practicesolving problemsthrough practice.
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Example

Example 3 Consider the function f from the real numbers to the
real numbers (f: R — RR) defined by-the guadraticexpression;

f(x) = x% +2x + 3.

as f(x) = x> + 2x — 3. The value of f when x = 1is f{1}=+2+2(H+3=1+2-

When x = 2, the output is {2} =22+2(2}+3=4+4+3=11£(2) = 22 + 2(2
What is the value of f when x = 0? You can use algebra to rewrite

this function as f(x x 4+ 3)(x — 1), which tells you the graph of
W
above will help you plot the graph of f(x).
Example2
Example 4 Consider the exponential function with base 2 +-

flx) =2%

defined by f(x) = 2. This function is crucial to computer systems.
For instance, RAM memory chips come in powers of two because

the memory space is exponential in the number of “address lines”
used on the chip. When x = 1, f(1) = 2! = 2. When x is 2 we have
f(2) = 22 = 4. The function is therefore described by the following
input-output pairs: (0,1), (1,2), (2,4), (3,8), (4,16), (5,32), (6,64),
(7,128), (8,256), (9,512), (10,1024), (11,2048), (12,4096), etc. Recall
that any number raised to exponent 0 gives 1. Thus, the exponential
function passes through the point (0,1). Recall also that negative

exponents lead to fractions—(—1; 211 = %),( 2; 212 = 411>'( 3; 213 = é),

so we have the points (—1, 1 , (=2, 1 , (=3, 1 , etc. You can plot these
x, f(x)) coordinates in the Cartesian plane to obtain the graph of the

function.

Discussion

To describe a function we specify its source and target sets f: A — B,
then give an equation of the form f(x) = “expression involving x”

that defines the function. Since functions are defined using equations,
does this mean that functions and equations are the same thing?
Let’s take a closer look.

In general, any equation containing two variables describes a rela-
tion between these variables. For example, the equationx —3 =y — 4
describes a relation between the variables x and y. We can isolate
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the variable y in this equation to obtain y = x + 1 and thus find the
obtain x = y — 1 and use this equation to find x when the value of
y is given. In the context of an equation, the relationship between
the variables x and y is symmetrical and no special significance is
attached to either of the two variables.

We also can describe the same relationship between x and y as
a function f : R — IR. We choose to identify x as the input variable
and v as the output variable of the function f. Having identified

with the output variable, we can interpret the equation y = x + 1 as
the definition of the function f(x) = x £ 1.

Note that the equation x — 3 = y — 4 and the function f(x) = x + 1
describe the same relationship between the variables x and y. For
example, if we set the value x =5 we can find the value of y by
solving the equation 5 — 3 =y — 4 to obtain y = 6, or by computing
same answer f(5) = 6. In both cases we arrive at the same answer,
but modelling the relationship between x and y as a function allows
us to use the whole functions toolbox, like function composition and

* % %

In this section we talked a lot about functions in general but we
haven’t said much about any function specifically. There are many
useful functions out there, and we can’t discuss them all here. In the
next section, we’ll introduce 10 functions of strategic importance for
all of science. If you get a grip on these functions, you'll be able to
understand all of physics and calculus and handle any problem your
teacher may throw at you.

To build matl Lintuition, it i ] 1 1

1.12 Functions reference

Your function vocabulary determines how well you can express your-
self mathematically in the same way that-your English vocabulary
determines how well you can express yourself in English. The fol-
lowing pages aim to embiggen your function vocabularyse-youyot,
so you'll know how to handle the situation when a teacher tries to
pull some trick on you at the final.

If youare-'re seeing these functions for the first time, don’t worry
about remembering all the facts and properties on the first reading.
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Wewill- 11 use these functions throughout the rest of the bookse-you
it Whave plenty of time to become familiar with them. Just
remember-Remember to return to this section if you ever get stuck
on a function.

To build mathematical intuition, it's essential you understand
functions’ graphs. Memorizing the definitions and properties of
functions _gets a lot easier with visual accompaniment. Indeed,
remembering what the function “looks like” is a great way to train

the eraphs of some of the most important functions we’ll use in this
book.

LT \L .19 1Y
-2 4 -4
1 = 3 -3 —
0 2 3 4 5 \ 2 / 2 — =
et 1 z [t X
i w20l 123 [0 1233455
(@ f(x)=2x-3 (b) f(x)=x2 (@ flx)=vx
Y v y
5 5 —-3
4 4 / 12 p—
3 3 —-1 — =
2 2/ ol /1 23 45
! £3 7 I = o
LSl
S323H0 Rl 23 3 2HOEIA24D \
(d)  f(x) =1« (e) f(x)=e" () f(x) =In(x)
y y v
3 3 3 |
2 2 2
1 , 1]/
N i P el NE /
S22 A 12 3N\ 34 o] 1 3 32 g 1 2 /5
5 5 MR
(g) f(x)=sin(x) (h) f(x) = cos(x) (i) f(x) =tan(x)

Figure 1.28: We'll see many types of function graphs in the next pages.
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Line

The equation of a line describes an input-output relationship where
the change in the output is proportional to the change in the input.
The equation of a line is

f(x) =mx+b.

The constant m describes the slope of the line. The constant b is called
the y-intercept and it eorresponds-te-s the value of the function when
x=0.

—Consider
what relationship the equation of f(x) describes for different values
of m and b. What happens when m is positive? What happens when
m is negative?

Graph
y
4
2
15,0
(15,0) A
-0 -8 -6 -4 -2 0 2 4 6 8 10
(0,-3) 2
—4

Figure 1.29: The graph of the function f(x) = 2x — 3. The slope is m = 2.
The y-intercept of this line is at+——3b = —3. The x-intercept is at x = %

Properties

e Domain: #€IR—IR. The function f(x) = mx + b is defined for
all inputsx<IRreals.

o Image: xeR-R if m # 0. If m = 0 the function is constant
f(x) = b, so the image set contains only a single number {b}.

e x = —b/m: the x-intercept of f(x) = mx + b. The x-intercept is
obtained by solving f(x) = 0.
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o A—uniquetine—passes—through—any—two—peints{xy—and
e The inverse to the line f(x) = mx +bis f~1(x) = %(x —b),
which is also a line.

General equation

A line can also be described in a more symmetric form as a relation:
Ax+ By = C.

This is known as the general equation of a line. The general equation
for the line shown in Figure 1.29 is 2x — 1y = 3.
Given the general equation of a line Ax + By = C with B # 0, you

can convert to the function form y = f(x) = mx +b ﬁsing—bz—g—aﬂé
by computing the slope m = _TA and the y-intercept b = &.
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Square

The function x squared, is also called the quadratic function, or
parabola. The formula for the quadratic function is

f(x) = x2.

The name “quadratic” comes from the Latin quadratus for square,

since the expression for the area of a square with side length x is x2.
5/\ y
(_2/ 4) (2/ 4)
———————————————————— fx) = x2
| |
| |
| |
: 3 :
| |
| |
| |
| |
l 2 l
| |
| |
: ('1/ 1) (1/ 1) :
| N | |
| | | |
| | | |
| | | | X
| | | | \
-4 -3 -2 -1 0 1 2 3 4’

Figure 1.30: Plot of the quadratic function f(x) = x%. The graph of the
function passes through the following (x,y) coordinates: (—2,4), (—1,1),
(0,0), (1,1), (2,4), (3,9), etc.

Properties

e Domain: #€R—IR. The function f(x) = x? is defined for all
input-valuesxeRnumbers.
e Image: f(x}= 0, Ro = {yc R |y >0} The outputs are

nevernegative: nonnegative numbers since x> > 0, for all
*<IRreal numbers x.

e The function x? is the inverse of the square root function /x.

e f(x) = x? is two-to-one: it sends both x and —x to the same
output value x? = (—x)2.

o The quadratic function is convex, meaning it curves upward.

The set expression {y € IR > 0} that we use to define the nonnegative
real numbers (IR, ) is read “the set of real numbers that are greater
than or equal to zero.”
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Square root

The square root function is denoted

1

f(x) = Va==x2.

The square root +/x is the inverse function of the square function x2

forx—=-0when the two functions are defined as f : R, — R,. The
symbol +/c refers to the positive solution of x*> = c. Note that —/c is
also a solution of x2 = c.

Graph
5TV
f(x)=+x
(16,4)
g .
T T T T T 79,3) :
i 42) | |
Way ! i
1 | r

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 1.31: The graph of the function f(x) = 4/x. The domain of the func-

tion is x-e-{0;ec)—YorR | because we can’t take the square root of a negative
number.

Properties

e Domain: xef85c)—R; = {xeR | x >0}. The function
f(x) = 4/x is only defined for nonnegative inputsx=0—.

There is no real number y such that y? is negative, hence the
function f(x) = y/x is not defined for negative inputs x.

o Image: Fx)ef0c-R, = {y € R | y > 0}. The outputs of the

function f(x) = /x are nevernegative:nonnegative numbers
since y/x > Oforallxe{0,).

1
In addition to square root, there is also cube root f—&ﬁ% W

which is the inverse function for the cubic function f(x) =
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have v/8 = 2 since 2 x 2 x 2 = 8. More generally, we can define the
n'h-root function {/x as the inverse function of x".

Absolute value

The absolute value function tells us the size of numbers without pay-
ing attention to whether the number is positive or negative. We can
compute a number’s absolute value by ignoring the sign of the num-
ber. A number’s absolute value corresponds to its distance from the
origin of the number line.

Another way of thinking about the absolute value function is to
say it multiplies negative numbers by —1 to “cancel” their negative
sign:

x ifx=0,
f(x)—|x—{ —x ifx <0
Graph
y
4
f(x)=x]
3
2
1
X
—4 -3 -2 -1 0 1 2 3 4
Figure 1.32: The graph of the absolute value function f(x) = |x|.
Properties
o Always—returns—anonnegative number—Domain: IR. The
function f(x) = |x| is defined for all inputs.

e Image: R, ={yeR|y>0
e The combination of squaring followed by square-root is equiv-
alent to the absolute value function:

Vad==|x],
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You can add two polynomials by adding together their coefficients:
f(x)+g(x) = (anx" + - +a1x +ag) +_(bpx" + -+ byx + by)
= (@n +by)X" + - + (a1 + by)x + (ag + bo).

The subtraction of two polynomials works similarly. We can also
multiply polynomials together using the general algebra rules of-for

expanding brackets. The-notion-of-polynemial-division-alse-exists;
but-that's-a—more-advanced—topic-that-we-won’t-discuss—for-now-
Instead-et’sfocus-on-the-basies—

Solvi 1 a1 .
Solving polynomial equations

Very often in math, you will have to solve polynomial equations of
the form
A(x) = B(x),

where A(x) and B(x) are both polynomials. Recall from earlier that
to solve, we must find the walue-values of x that makes-make the
equality true.

Say the revenue of your company is a function of the number of
products sold x, and can be expressed as R(x) = 2x* + 2x. Say also
the cost you incur to produce x objects is C(x) = x? + 5x + 10. You
want to determine the amount of product you need to produce to
break even, that is, so that revenue equals cost: R(x) = C(x). To find
the break-even value x, solve the equation

2x% 4+ 2x = x% + 5x + 10.

This may seem complicated since there are xs all over the place. No
worries! We can turn the equation into its “standard form,” and then
use the quadratic formula. First, move all the terms to one side until
only zero remains on the other side:

Remember, if we perform the same operations on both sides of the
equation, the resulting equation has the same solutions. Therefore,
the values of x that satisfy

¥ —3x—-10=0,

x> —3x — 10 = 0, namely x = —2 and x = 5, also satisfy

2x% +2x = x% 4+ 5x + 10,
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2x? + 2x = x% 4+ 5x + 10, which is the original problem we're trying
to solve.

This “shuffling of terms” approach will work for any polynomial
equation A(x) = B(x). We can always rewrite it as C(x) = 0, where
C(x) is a new polynomial with coefficients equal to the difference of
the coefficients of A and B. Don’t worry about which side you move
all the coefficients to because C(x) = 0 and 0 = —C(x) have exactly
the same solutions. Furthermore, the degree of the polynomial C can
be no greater than that of A or B.

The form C(x) = 0 is the standard form of a polynomial, and we’ll
explore several formulas you can use to find its solution(s).

Formulas

The formula for solving the polynomial equation P(x) = 0 depends
on the degree of the polynomial in question.
For a first-degree polynomial equation, P;(x) = mx +b = 0, the
solution is x = _Wb: just move b to the other side and divide by m.
For a second-degree polynomial,

Py(x) = ax? +bx+c=0,
the solutions are x; = =tV b—dac VZZZ"L“C and x, = —b=br—dac W.
If b? — 4ac < 0, the solutions will involve taking the square root
of a negative number. In those cases, we say no real solutions exist.
There is also a formula for polynomials of degree 3 and 4, but

they are complicated. For polynomials with order > 5, there does
not exist a general analytical solution.

Using a computer

When solving real-world problems, you'll often run into much more
complicated equations. To find the solutions of anything more com-
plicated than the quadratic equation, I recommend using a computer
algebra system like SymPy: http://live.sympy.org.

To make SymPy solve the standard-form equation C(x) = 0, call
the function solve(expr,var), where the expression expr corre-
sponds to C(x), and var is the variable you want to solve for. For
example, to solve x> — 3x + 2 = 0, type in the following:

>>> solve(x**2 - 3%x + 2, x) # usage: solve(expr, var)
1, 2]

The function solve will find the reots-ofsolutions to any equation of

the form expr = 0. ; i 2 =

so-In this case we see the solutions are x = 1and x = 2are-.
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Another way to solve the equation is to factor the polynomial
C(x) using the function factor like this:

>>> factor(x**2 - 3%x + 2) # usage: factor(expr)
(x - D*(x - 2)

We see that x2 —3x +2 = (x — 1)(x — 2), which confirms the two

roots are indeed x = 1 and x = 2.

To learn more about SymPy, check out Appendix D on page 519,
which talks about all the SymPy functions that are available to you.

Substitution trick

Sometimes you can solve fourth-degree polynomials by using the
quadratic formula. Say you're asked to solve for x in

g(x) =x*—7x> +10=0.

Imagine this problem is on your exam, where you are not allowed to
use a computer. How does the teacher expect you to solve for x? The
trick is to substitute y = x? and rewrite the same equation as

8y) =y* =7y +10 =0,
which you can solve by applying the quadratic formula. If you ob-
tain the solutions ¥ = « and y = §3, then the solutions to the original
fourth-degree polynomial are x = ++/a and x = +/B, since y = x2.
Since we're not taking an exam right now, we are allowed to use
the computer to find the roots:

>>> solve(y**2 - Ty + 10, y)

[2, 5]

>>> solve(x**4 - T*x**2 + 10, x)
[sqrt(2), -sqrt(2), sqrt(5), -sqrt(5)]

Note how the second-degree polynomial has two roots, while the
fourth-degree polynomial has four roots.

Even and odd functions

The polynomials form an entire family of functions. Depending on
the choice of degree n and coefficients ag, 4y, ..., a,, a polynomial
function can take on many different shapes. Consider the following
observations about the symmetries of polynomials:
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Sine

The sine function represents a fundamental unit of vibration. The
graph of sin(x) oscillates up and down and crosses the x-axis multiple
times. The shape of the graph of sin(x) corresponds to the shape of a
vibrating string. See Figure 1.33.

In the remainder of this book, we’ll meet the function sin(x) many
times. We'll define the function sin(x) more formally as a trigono-
metric ratio in Section 1.15. In Chapter 3 we’ll use sin(x) and cos(x)
(another trigonometric ratio) to work out the components of vectors.
Later in Chapter 4, we'll learn how the sine function can be used to
describe waves and periodic motion.

At this point in the book, however, we don’t want to go into too
much detail about all these applications. Let’s hold off on the dis-
cussion about vectors, triangles, angles, and ratios of lengths of sides
and instead just focus on the graph of the function f(x) = sin(x).

Graph
YL@ f) =sin(x) | |
-2 -1 1 2 3 4 15 ! 7
I ! d
3777171) :
—2 ;i 27T

Figure 1.33: The graph of the function y = sin(x) passes through the fol-
lowing (x,y) coordinates: (0,0), (%,%), (%,%), (%,?), (5.1), (%’ﬂ?),
(3F,%2), (3£,1), and (7,0). For xefm 27} between 7 and 27, the

function’s graph has the same shape as-it has for x-e-{0;7-x between 0 and
1T, but with negative values.

Figure 1.34: The function f(x) = sin(x) crosses the x-axis at x = 7.
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Let’s start at x = 0 and follow the graph of the function sin(x)
as it goes up and down. The graph starts from (0,0) and smoothly
increases until it reaches the maximum value at x = % Afterward,
the function comes back down to cross the x-axis at x = 7. After 7,
the function drops below the x-axis and reaches its minimum value
of —1atx = 3. It then travels up again to cross the x-axis at x = 27.
This 27-long cycle repeats after x = 27. This is why we call the

function periodic—the shape of the graph repeats.

sin

VAL AR AN
SAALAAK

Figure 1.35: The graph of sin(x) from x = 0 to x = 27 repeats periodically
everywhere else on the number line.

Properties

e Domain: #€IR-IR. The function f(x) = sin(x) is defined for all
input valuesx<1R.

o Image: sinf¥}ef—H—{ye R | 1<y <1} The outputs of

the sine function are always between —1 and 1.

e Roots: +— — ..., =371
The function sin(x) has roots at all multiples of 7.

e The function is periodic, with period 27: sin(x) = sin(x + 271).
e The sin function is odd: sin(x) = —sin(—x)

e Relation to cos: sin® x + cos® x = 1

e Relation to csc: ese(x)}=—1—csc(x) = L (cscis read cosecant)

The inverse function of sin(x) is denoted as sin~!(x) or

arcsin(x), not to be confused with {sinfx)—1= qinlm =-esefx)
M 71 5 4 M 77
sin(x)) ! = 1 = cse(x).

o The number sin(f) is the length-ratio of the vertical side and
the hypotenuse in a right-angle triangle with angle 6 at the
base.
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Cosine

The cosine function is the same as the sine function shifted by 7 to
the left: cos(x) = sin(x + 7). Thus everything you know about the
sine function also applies to the cosine function.

Graph

Figure 1.36: The graph of the function y = cos(x) passes through the fol-
lowing (x,) coordinates: (0,1), (Z,%2), (£, %2), (L, 1), (%,0), (3%, -1),
(3, —2), (3%, —3), and (7, —1).

The cos function starts at cos(0) = 1, then drops down to cross the
x-axis at x = 7. Cos continues until it reaches its minimum value at
x = 7t. The function then moves upward, crossing the x-axis again

atx = 37”, and reaching its maximum value again at x = 27t.

Properties

e Domain: ¥ 1RIR_
o Tmage: costxyef—HHyeR] ~1<y<1}

e Roots: {5 L0 o0

e Relation to sin: sin? x + cos?x = 1

e Relation to sec: see(x}=—1—sec(x) = L (sec is read secant)
e The inverse function of cos(x) is denoted cos~!(x) or arccos(x).

e The cos function is even: cos(x) = cos(—x)

e The number cos(0) is the length-ratio of the horizontal side and
the hypotenuse in a right-angle triangle with angle 6 at the base
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Tangent
The tangent function is the ratio of the sine and cosine functions:

~ sin(x)
~cos(x)’

f(x) = tan(x)=

Graph

(S5}

f(x) = tan(x) = 22t 4

cos(x)

—
NN

-3

Figure 1.37: The graph of the function f(x) = tan(x).

Properties

Domain: {x e R | x # (ZnH)

Image: x e R-IR
The function tan is periodic with period 7.

foranyne Z} —

The tan function “blows up” at values of x where cosx = 0.

These are called asymptotes of the function and their locations

arex=...,_T3”,_T”,%,37”

e Valueat x = 0: tan(0) = 9 =0, because sin(0) = 0.

sin(§)
cos(§) 32

s\%

e Valueatx = F: tan (§) = =1.

e The number tan(f) is the length-ratlo of the vertical and the

horizontal sides in a right-angle triangle with angle 6.

e The inverse function of tan(x) is denoted tan~!(x) or arctan(x).
e The inverse tangent function is used to compute the angle at
the base in a right-angle triangle with horizontal side length ¢,

and vertical side length £,: 6 = tan™! (%’)
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Exponential

The exponential function base e = 2.7182818. .. . is denoted

f(x) = e*==exp(x).

Graph
gy
* / flx)=e*
i I /
/(Le)
2
o o A

Figure 1.38: The graph of the exponential function f(x) = e* passes through
the following {x;#)-coordinatespoints: (—2, elz), (-1, %), (0,1), (1,e), (2, 62),
(3763 =20:08-3(3,2%), {5,148:41—)(4, %), and-{10,22026:46-—etc.

Properties

e Domain: ¥ €1RIR_

e Image: e* {0, -{y e R |y > 0}
e f(a)f(b) = f(a+Db) since eet = e+t

A more general exponential function would be f(x) = Ae7*, where
A is the initial value, and v (the Greek letter gamma) is the rate of
the exponential. For ¢y > 0, the function f(x) is increasing, as in
Figure 1.38. For v < 0, the function is decreasing and tends to zero
for large values of x. The case v = 0 is special since e’ = 1, so f(x) is
a constant of f(x) = A1* = A.
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Links

[ The exponential function 2* evaluated ]
http://www.youtube.com/watch?v=e4MSN6IImpI
Natural logarithm

The natural logarithm function is denoted

f(x) =1In(x) = log,(x).

The function In(x) is the inverse function of the exponential e*.

Graph

—0.5

—15

Figure 1.39: The graph of the function In(x) passes through the fol-
lowing {z-4)—coordinates: (312'_2)' (2,— ), (1,0), e (e, 1), {e22)(e%,2),
Properties

* Domain: {x e R | x >0}

e Image: R

Exercises

E1.17 Find the domain, the image, and the roots of f(x) = 2 cos(x).

E1.18 What are the degrees of the following polynomials? Are they
even, odd, or neither?
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1.13 FUNCTION TRANSFORMATIONS

Y1, ’,
i f

1

1

2
! h=2

-2

97

Figure 1.42: The graph of the function g(x) = f(x —2) has the same shape

as the graph of f(x) translated to the right by two units.

Figure 1.42 shows the function f(x) = 6.75(x% — 2x% + x), as well
as the function g(x), which is shifted to the right by & = 2 units:

g(x) = f(x—2) =675 (x =2 = 2(x— 2 + (x - 2) |

The original function f gives us f(0) = 0 and f(1) = 0, so the new
function g(x) must give ¢(2) = 0 and g(3) = 0. The maximum at

x = § has similarly shifted by two units to the right, (2 + §) = 1.

Vertical scaling

To stretch or compress the shape of a function vertically, we can mul-

tiply it by some constant A and obtain
8(x) = Af(x).

) verticall

x) = 2f(x) looks like f(x

The graph of the function

Figure 1.43:
stretched by a factor of two.
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Figure 1.44 shows the function f{x}-=6:75{x>—2x2 =), as-well
as-thefunetion-g(x), which is f(x) compressed horizontally by a fac-

torof a = 2:
g(x)= f(2x)

- 6.75[(2x)3 —202x)% + (Zx)].

g(x) = f(2x) = 6.75[(2x)3 —2(2x)% + (Zx)] .

The x-intercept f(0) = 0 does not move since it is on the y-axis. The
x-intercept f(1) = 0 does move, however, and we have g(0.5) = 0.
The maximum at x = % moves to g(%) = 1. All points of f(x) are
compressed toward the y-axis by a factor of 2.

General quadratic function

The general-quadratie functiontakes-the fermAny quadratic function

can be written in the form:
f(x) = Aa(x —h)* +k,

where x is the input, and A#a, h, and k are the-parameters. This

is called the pararetersvertex form of the quadratic function, and the
coordinate pair (1, k)_is called the vertex of the parabola, This
equation can be obtained by starting from the basic_quadratic
function ¥ (see Figure 1.30) and applying three transformations:
a horizontal translation by / units, a vertical scaling by 4, and finally
a vertical translation by k units.

Parameters

o Aq: the slope multiplier
> The larger the absolute value of Ag, the steeper the slope.
> If A <04 < 0 (negative), the function opens downward.
e h: the horizontal displacement of the function. Netice-Note

that subtracting a number inside the bracket {}%-( )? (positive
h) makes the function go to the right.

o k: the vertical displacement of the function
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A y ‘ ‘
flx)=(x—1)*=2
2
1
-2 1 0 1 2 3 4 ’
-1
-2
(1/ _2)
|

Figure 1.45: The graph of the function f(x) = (x —1)? — 2 is the same as
the basiefunction f(x) = x2, but shifted one unit to the right and two units
down.

Graph

The graph in Figure 1.45 illustrates a quadratic function with param-
eters A—1a =1, h = 1 (one unit shifted to the right), and k = -2
(two units shifted down).

We can also write_a_quadratic function as a second-degree
polynomial f(x) = ax” + bx +c._This is called the standard_form
of the quadratic function. Given a quadratic expression in standard

form ax? + bx + ¢, we can find its equivalent expression in vertex
form a(x — h)? + k using the complete-the-square trick we learned in

If a quadratic function crosses the x-axis, it can be written in
factored-form=factored form:_

F(x) = Aa(x —ax —x)(x — bx — x9),
where a-and-b-x1 and x; are the two roots —Anethercommon-way-of
Preperties

of the quadratic. Given a quadratic function f(x) = ax% + bx + ¢, we

can find its roots using the quadratic formula: x; = —2tVb—4wc o q

xy = —b=VPP—dac (ge6 Section 1.7).
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General sine function

Introducing all possible parameters into the sine function gives us:

fx) = Asin(Fx —¢),

where A, A, and ¢ are the function’s parameters.

¥ f(x) =2sin(3fx - %)

——_—

>
Il
I

A
Y

Figure 1.46: The graph of the function f(x) = 2sin 27y — 7Y, which has
amplitude A = 2, wavelength A = 4, and phase shift ¢ = Z.

Parameters

e A: the amplitude describes the distance above and below the
x-axis that the function reaches as it oscillates. -

e ¢: is a phase shift, analogous to the horizontal shift &, which we
have seen. This number dictates where the oscillation starts.
The default sine function has zero phase shift (¢ = 0), so it
passes through the origin with an increasing slope.

The “bare” sine function f(x) = sin(x) has wavelength 27t and pro-
duces outputs that oscillate between —1 and +1. When we multiply
the bare function by the constant A, the oscillations will range be-
tween —A and A. When the input x is scaled by the factor 27", the
wavelength of the function becomes A.
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Exercises

E1.20 Given the functions f(x) = x + 5, g(x) = x — 6, h(x) = 7x, and
g(x) = x?, find the formulas for the following composite functions:

a)qof b) foq dqgog d)goh

In each case, describe how the graph of the composite function is
related to the graph of g(x).

E1.21 Find the amplitude A, the wavelength A, and the phase shlft gb
for the function f{x)}—=5sin{62:83t—3)f(x) = 5sin(62.83x — ¢

E1.22 Choose the coefficients 4, b, and ¢ for the quadratic function
f(x) = ax® + bx + c so that it passes through the points (0,5), (1,4),
and (2,5).

Hint: Find the equation f(x) = A(x — h)? + k first.

E1.23 Find the values « and B that will make the function g(x) =
24/x —a + 3 pass through the points (3, —2), (4,0), and (7,2).

1.14 Geometry

The word “geometry” comes from the Greek roots geo, which means
“earth,” and metron, which means “measurement.” This name is
linked to one of the early applications of geometry, which was to
measure the total amount of land contained within a certain bound-
ary region. Over the years, the study of geometry evolved to be more
abstract. Instead of developing formulas for calculating the area of
specific regions of land, mathematicians developed general area for-
mulas that apply to all regions that have a particular shape.

In this section we'll present a—number—of-formulas for calcu-
lating the perimeters, areas, and volumes for various shapes (also
called “figures”) commonly encountered in the real world. For two-
dimensional figures, the main quantities of interest are the figures’
areas and the figures” perimeters (the length of the walk around the
figure). For three-dimensional figures, the quantities of interest are
the surface area (how much paint it would take to cover all sides
of the figure), and volume (how much water it would take to fill a
container of this shape). The formulas presented are by no means
an exhaustive list of everything there is to know about geometry,
but they represent a core set of facts that you want to add to your
toolbox.
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Cosine rule The cosine rules states the following equations are
true:

a% = b? + ¢* — 2bc cos(w),
b? = a® + c* — 2ac cos(B),

? = a® + b* — 2ab cos(7).

These equations are useful when you know two sides of a triangle
and the angle between them, and you want to find the third side.

Circle

The circle is a beautiful shape. If we take the centre of the circle at
the origin (0, 0), the circle of radius r corresponds to the equation

2yt =

This formula describes the set of points (x,y) with a distance from
the centre equal to 7.

Area

The area enclosed by a circle of radius 7 is given by A = 7172, A circle

of radius 7 = 1 has area 77,

Circumference and arc length
The circumference of a circle of radius r is given-by-theformula-

C = 27r.
e
C=2mr.

A circle of radius » = 1 has circumference 27t. This is the total length
ou can measure by following the curve all the way around to trace

the outline of the entire circle. For example, the circumference of a
circle of radius 3m is C = 27(3) = 18.85m. This is how far you'll

need to walk to complete a full turn around a circle of radius r = 3m.

iis What is the length of a part
of the circle? Say you have a piece of the circle, called an arc, and that
piece corresponds to the angle 6 = 57° as shown in Figure 1.49. What
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full 360° turn around the circle, then the arc length ¢ for a portion of

the circle corresponding to the angle 0 is

The arc length ¢ depends on 7, the angle 6, and a factor of 2Z.

6
=27Tr——.
AN

Figure 1.49: The arc length ¢ equals 27 of the circle’s circumference 27rr.

Radians

While scientists and engineers commonly use degrees as a measuremen

unit for angles, mathematicians prefer to measure angles in radians,

denoted rad._

Measuring an angle in radians is equivalent to measuring the arc

length ¢ on a circle with radius r = 1, as illustrated in Figure 1.50.

Figure 1.50: The angle § measured in radians corresponds to the arc length
on a circle with radius 1. The full circle corresponds to the angle 277 rad.

The conversion ratio between degrees and radians is

When the angle 0 is measured in radians, the arc length is given by:_

2rrrad = 360°.

Al = 7tr76.

4

t
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Cireles—are-To find the arc length ¢, we simply multiply the circle
radius r times the angle 6 measured in radians.
Note the arc-length formula with 6 measured in radians is

simpler than the arc-length formula with 8 measured in degrees,
since we don’t need the conversion factor of 360°.

The geometry of circles is so important that we dedicated a whole
section (Section 1.17) to thempursuing this topic in more detail.
For now, let’s continue discussing some other important geometric
shapes.

Sphere

A sphere of radius r is described by the equation x? + 12 + z2 = 2.

The surface area of the sphere is A = 477, and its volume is given
by V = %m’?’.

Figure 1.51: A sphere of radius r has surface area 4717 and volume %mﬁ.

Cylinder

The surface area of a cylinder consists of the top and bottom circular
surfaces, plus the area of the side of the cylinder:

A= 2(7‘[1’2> + (27r)h.

The volume of a cylinder is the product of the area of the cylinder’s
base times its height:

V= (nr2> I

Example You open the hood of your car and see 2.0 L written on
top of the engine. The 2.0 L refers to the combined volume of the
four pistons, which are cylindrical in shape. The owner’s manual
tells you the radius of each piston is 43.75 mm, and the height of
each piston is 83.1 mm. Verify the total engine volume is 1998789
mm?3 ~ 2 L.
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P

h

Figure 1.52: A cylinder with radius  and height / has volume 7tr2h.

Cones and pyramids

The volume of a square pyramid with side length a and height & is
given by the formula V = 1a%h. The volume of a cone of radius r
and height & is given by the formula V = %m’zh. Note the factor %
appears in both formulas. These two formulas are particular cases of
the general volume formula that applies to all pyramids:

1
V = gAh,

where A is the area of the pyramid’s base and # is its height. This
formula applies for pyramids with a base that is a triangle (triangu-
lar pyramids), a square (square pyramids), a rectangle (rectangular
pyramids), a circle (cones), or any other shape.

Figure 1.53: The volumes of pyramids and cones are described by the for-
mula V = 1 Ah, where A is the area of the base and / is the height.
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Exercises

E1.24 Find the length of side x in the triangle below.

Hint: Use the cosine rule.
E1.25 Find the volume and the surface area of a sphere with radius 2.

E1.26 On a rainy day, Laura brings her bike indoors, and the wet
bicycle tires leave a track of water on the floor. What is the length
of the water track left by the bike’s rear tire (diameter 73 cm) if the

wheel makes five full turns along the floor?

1.15 Trigonometry

rfLIf one of the ﬁmﬁg}eﬁng}esm is equal to 90O we
call this triangle a right-angle triangle.

In this section we'll discuss right-angle triangles in great detail
and get to know their properties. We'll learn some fancy new terms
like hypotenuse, opposite, and adjacent, which are used to refer to the
different sides of a triangle. We’ll also use the functions sine, cosine,
and tangent to compute the ratios of lengths in right triangles.

Understanding triangles and their associated trigonometric func-
tions is of fundamental importance: you’ll need this knowledge
for your future understanding of mathematical subjects—concepts

like vectors and complex numbers;-as-wel-as-physies-subjeetslike

Opposite

c Adjacent B

Figure 1.54: A right-angle triangle. The angle at the base is denoted 6 and
the names of the sides of the triangle are indicated.
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Concepts

e A, B, C: the three vertices of the triangle

o 0: the angle at the vertex C. Angles can be measured in degrees
or radians.

Pythagoras’ theorem
In a right-angle triangle, the length of the hypotenuse squared is

equal to the sum of the squares of the lengths of the other sides:

ladﬂz +| oppJ2 =] hypjz.

If we divide both sides of the above equation by lhyp/Zhyp?, we
obtain
jadj* ad®  |opp|* opp

hyp[® hyp? ~ [hyp[® hyp*

11

whieh-Since i _ cos @ and 2PP — sin 6, this equation can be rewrit-

ten as
cos? 0 + sin?6 = 1.

This is a powerful trigonometric identity that describes an important
relationship-relation between sine and cosine functions. In case

ou’ve never seen this notation before, the expression cos? 6 is used
to denote (cos(9))?.

Sin and cos

Meet the trigonometric functions, or trigs for short. These are your
new friends. Don’t be shy now, say hello to them.

“Hello.”

“Hi.”

“S000000, you are like functions right?”

“Yep,” sin and cos reply in chorus.

“Okay, so what do you do?”

“Who me?” asks cos. “Well I tell the ratio. .. hmm. .. Wait, are you
asking what I do as a function or specifically what I do?”

“Both I guess?”

“Well, as a function, I take angles as inputs and I give ratios as
answers. More specifically, I tell you how ‘wide’ a triangle with that
angle will be,” says cos all in one breath.

“What do you mean wide?” you ask.
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“Oh yeah, I forgot to say, the triangle must have a hypotenuse of
length 1. What happens is there is a point P that moves around on
a circle of radius 1, and we imagine a triangle formed by the point
P, the origin, and the point on the x-axis located directly below the
point P.”

“I am not sure I get it,” you confess.

“Let me try explaining,” says sin. “Look en—the-nextpage—at
Figure 1.55 and you'll see a circle. This is the unit circle because it
has a radius of 1. You see it, yes?”

“Yes.”

“Now imagine a point P that moves along the circle of radius 1,
starting from the point P(0) = (1,0). The x and y coordinates of the
point P{6)—(Pr{6)Py{61)-P(0) = (Pc(0), Py(0)) as a function of 6

are

P(0) = (Px(0), Py(0)) = (cos0, sin®).

So, either you can think of us in the context of triangles, or in the
context of the unit circle.”

“Cool. I kind of get it. Thanks so much,” you say, but in reality
you are weirded out. Talking functions? “Well guys. It was nice to
meet you, but I have to get going, to finish the rest of the book.”

“See you later,” says cos.

“Peace out,” says sin.

The unit circle

The unit circle is a circle of radius one centred at the origin. The unit

circle consists of all points (x, y) that satisfy the equation x? +y? = 1.
A point P—={Px ;)P on the unit circle has coordinates (Py, P;) =
(cos@,sin f), where 6 is the angle P makes with the x-axis.

(Px, Py) = (cos6,sin0) J Sy

// /// \\\

1 4 .
A/ / sin 6
SN I’ N v

/0 \l N : 9\‘ \l .
0 1 1 0 |cos® 11

\\ 1
\ K

4yt =1 N Pt

Figure 1.55: The unit circle corresponds to the equation x> +y> = 1. The
coordinates of the point P on the unit circle are Py = cos 6 and P, = sin6.

Figure 1.56 shows the
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Figure 1.56: The function f() = sinf describes the vertical position of a
point P that travels along the unit circle. The first-half-graph shows the

values of a-eyele-isshownthe function f(6) = sin 6 for angles between § = 0

and 0 = 7.

raph of the function f(0) = sinf. The values sin 6 for the angles 0,
T (30°), Z (60°), and Z (90°) are marked. There are three values to

remember: sinf = 0 when 6§ = 0, sinf = 1 when # = Z (30°), and
of sinf_that shows a complete cycle around the circle. Also_see

Instead of trying to memorize the values of the functions cos6
and eosfor-allangles-thatare-multiples-ofsin f separately, it’s easier
to remember them as a combined “package” (cos@,sinf), which
describes the x- and y-coordinates of the point P for the angle 6.
Figure 1.57 shows the values of cos and sin for the angles 0,
(30°)er-, T (45°)—Al-of them-are shown-inFigure .58, 7 (60°), and
2.90°). These are the most common angles that often show up on
homework and exam questions. For each angle, the x-coordinate
(the first number in the bracket) is cos 6, and the y-coordinate (the

second number in the bracket) is sin 6.
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Figure 1.57: The unit-cirele—The-combined (cos0,sinf) coordinates ef-for
the point-points on the unit circle {ees@a&m@—}—afe«mdiea’fed—fefﬁevefa}
oy T o

important-values-of-at the angle-fmost common angles: 0, Z
Z (60°), and % (90°).

sin(30°) = sin(Z) =

N[ =

Knowing-this;youcan-determine-all-the-other-angles—het’s-start
with-eos(309—We know-that-at30%-pointP-Note the values of cos 0
and sin 0 for the angles shown in Figure 1.57 are all combinations

of the fractions J, %?, and *?. The square roots appear as a
consequence of the trigonometric identity cos® +sin*6 = 1. This
identity tells us that the sum of the squared coordinates of each
point on the unit circle has-the-vertical-eoordinate+—-sin{30°)—We
e ] ) ooline for s, L definition. 4

P = (cos(30),sin(30%)).

cos? 0 +sin0 =1,

hichi for-all aneles 0 Movinethi L biai
cos(307) = \/l —sin?(30°) = \/1 -1= \/E = §

TFofind—the—is equal to one. Let’s look at what this equation
tells us for the angle = Z (30°). Remember that sin(30°) = %
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the length of the dashed line in Figure 1.57). We can plug this
value into the equation cos?(30°) + sin%(30°) = 1 to find the value:

The coordinates ﬁ, V2 for the angle 0 = X (45°) are obtained
from a similar calculation. We know the values of sin6 and cos

must be equal for that angle, so we’re looking for the number
a that satisfies the equation a? +a? =1, which is a = L = ﬁ.

The values of cos(60°) and sin(60°) -observe-the symmetry-of-the
&fd&—ée—degf%iﬂeaﬁﬁ an be obtained from a symmetr

argument. Measuring 60° from the x-axis is the same as 30-degrees
measured—measuring 30° from the y-axis—From—this;—we know

.80 cos(60°) = sin(30°) = 2 .—?here%we,—s&&{é@%:—zegyj

sin(60°) = cos(30°) = ¥3.
Tofind-thevaluesof sinand-eosfor We can extend the calculations
described above for all other angles that are multiples of Z (30°) and

Z (45°-weneed-to-find-the value #-such-that-

%%ﬁmmwﬁwmmww%m
unit circle, as shown in Figure 1.58.
pLz sTAY Don’tbeintimidated by all the information shown in Figure 1.58!
CaLM  You're not expected to memorize all these values. The primary
AND reason for including this figure is so you can appreciate the symmetries.
UNIT  of the sine and cosine values that we find as we go around the circle.
CIRCLE The values of sinf and cosf for all angles are the same as the
values for the angles between 07 and 907, but one or more of their
components-coordinates has a negative sign. For example, 150° is

just like 30°, except its xcomponentis-negative-—DPon’t memorize-all
the-values-of sin-and-cos;if yotrever need-to-determine-their-values;
and-eos-components-coordinate is negative since the point lies to the
left of the y-axis. Another use for Figure 1.58 is to convert between
angles measured in degrees and radians, since both units for angles

are indicated.
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Figure 1.58: The coordinates of the point on the unit circle (cos,sinf) are
indicated for all multiples of Z (30°) and Z (45°). Note the symmetries.

Non-unit circles

Consider a point Q(6) at an angle of 6 on a circle with radius r # 1.
How can we find the x- and y-coordinates of the point Q(6)?

We saw that the coefficients cos 6 and sin 6 correspond to the x-
and y-coordinates of a point on the unit circle (r = 1). To obtain
the coordinates for a point on a circle of radius #, we must scale the
coordinates by a factor of :

Q(0) = (Qx(6), Qy(#)) = (rcosh,rsinb).

The take-away message is that you can use the functions cos 0
and sin 6 to find the “horizontal” and “vertical” components of any
length r. From this point on in the book, we'll always talk about the

length of the adjacent side as ++—=+<costx = r cos f, and the length of
the opposite side as #;=+sinfy = rsinf. It is extremely important

you get comfortable with this notation.
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y
I 5
2.
>
0
| r cos X

Figure 1.59: The x- and y-coordinates of a point at the angle 6 and distance
of r from the origin are given by x = rcos 8 and y = rsin#.

The reasoning behind the above calculations is as follows:

cosf = a—d] N x =rcosb,
hyp r
and
sinf = % = % = y =rsinf.
Calculators

Mal letd ! o f » ”
of angle measures when using calculators and computers. Make
sure you know what kind of angle units the functions sin, cos, and

tan expect as inputs, and what kind of outputs the functions sin !,

cos !, and tan"! return._

For example, let’s see what we should type into the calculator
to compute the sine of 30 degrees?If-our-. If the calculator is set

to degrees, we simply type: ;- g , 5 and obtain the

answer 0.5.
If yyour-the calculator is set to radians, yotrwe have two options:

1. Change the mode of the calculator so it works in degrees.

2. Convert 30° to radians

27t [rad] 27 rad - % [rad] rad,

0L 36017 a60e

and type: on the calcula-
tor.
Try computing cos(60°), cos(Z rad), and cos— (1) usin our

calculator to make sure you know how it works.
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Exercises

E1.27 Given a circle with radius r = 5, find the x- and y-coordinates
of the point at 8 = 45°. What is the circumference of the circle?

E1.28 Convert the following angles from degrees to radians.
a) 30° b) 45° c) 60° d) 270°

Links

[ Unit-circle walkthrough and tricks by patrick]MT on YouTube ]
http://bit.1y/1mQgdCj and— and http://bit.1ly/1hvA702

1.16 Trigonometric identities

There are a number of important relationships between the values
of the functions sin and cos. Here are three of these relationships,
known as trigonometric identities. There about a dozen other identities
that are less important, but you should memorize these three.

The three identities to remember are:

1. Unit hypotenuse
sin? (0) + cos? (6) =1.
The unit hypotenuse identity is true by the Pythagoras theorem and

the definitions of sin and cos. The sum of the squares of the sides of
a triangle is equal to the square of the hypotenuse.

2. sico—+sicoSine angle sum
sin(a + b) = sin(a) cos(b) + sin(b) cos(a).

The mnemonic for this identity is “sico + sico.”

3. coco—sisiCosine angle sum
cos(a + b) = cos(a) cos(b) — sin(a) sin(b).

The mnemonic for this identity is “coco — sisi.” The negative sign is
there because it’s not good to be a sissy.

Derived formulas

If you remember the above three formulas, you can derive pretty
much all the other trigonometric identities.
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Double angle formulas

Starting from the sico + sico identity and setting @ = b = x, we can
derive the following identity:

sin(2x) = 2sin(x) cos(x).
Starting from the coco-sisi identity, we obtain
cos(2x) = cos?(x) — sin®(x)

= 2cos?(x)—1 =2 <1 - sinz(x)) —1 =1-2sin?(x).

The formulas for expressing sin(2x) and cos(2x) in terms of sin(x)
and cos(x) are called double angle formulas.

If we rewrite the double-angle formula for cos(2x) to isolate the
sin? or the cos? term, we obtain the power-reduction formulas:

cos?(x) = %(1 +cos(2x)),  sin®(x) = %(1 — cos(2x)).
Self similaritySelf-similarit

Sin and cos are periodic functions with period 27t. Adding a multiple
of 277 to the function’s input does not change the function:

sin(x + 27r) = sin(x+1247) = sin(x), cos(x + 27) = cos(x).

This follows because adding a multiple of 27t brings us back to the

same point on the unit circle,
Furthermore, sin and cos are—self-similar—within—each—have

symmetries with respect to zero

within each 7t half-cycle

and within each full 277 cycle-,

sin(27r — x) = —sin(x), cos(2r — x) = — cos(x).

Take the time to revisit Fiecure 1.33 (page 88), Figure 1.36 (page 91),
and Figure 1.58 (page 114) to visually confirm that all the equations
shown above are true. Knowing the points where the functions

take on the same values (symmetries) or take on opposite values

anti-symmetries) is very useful in calculations.
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Sin is cos, cos is sin
It shouldn’t be surprising if I tell you that sin and cos are actually
7-shifted versions of each other:

2

. T, : 1 T
cos(x) = sin X5 =sing —xz |, sm,(x)=cosg—§:cos Sx—x7 .

Sum-fermulas
sin(a) + sin(b) = 251n<

N =

(a+b)> Cos(;(ab)>,
) cos(é(a + b)) ,

cos(a) + cos(b) = 2cos (;(a + b)> cosG(a - b)) ,

sin(a) — sin(b) = 251n<;(a —b)

cos(a) — cos(b) — —2 sin(;(a + b)) sinG(a - b)> .

Formulas for sums and products
Product formulas

Here are some formulas for transforming sums into products:

sin(a) + sin(b) = 2 sin(%(a + b)) cos(%(a - b)) ,

sin(a) —sin(b) = 2 sin(%(a - b)) cos(%(a + b)) ,
cos(a) + cos(b) = 2cos<%(a + b)) cos(%(a - b)) ,
cos(a) —cos(b) = =2 sin(%(a + b)) sin(%(a - b)) .

And here are some formulas for transforming products into sums:

sin(a) cos(b) = 5} (sin(sin (4 + b)a + sin (a — b)b) £ sin(a — b)),
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sin(a) sin(b) =

%(COS(COS (a —b)a—b)—cos(a+b)cos(a+ b)),

\N\»—\

cos(a) cos(b) = %%((@g,(cos (a —b)a—1b)+cos (a + b)‘i(li(&tl’))-

Discussion

The above formulas will come in handy when you need to find
some unknown in an equation, or when you are try1ng to sunphfy

Exercises
E1.29 Givena = mand b = 7, find
a) sin(a + b) b) cos(24) ¢) cos(a + b)

E1.30 Simplify the following expressions and compute their value
without using a calculator.
a) cos(x) + cos(T — x) b) 2sin?(x) + cos(2x)

9] sm(%f)sin(—%) d)2cos(5 ) cos(—7) cos()

1.17 CireleCircles and polar coordinates

The-In this section, we’ll review what we know about circles and

define the polar coordinate system, a specialized coordinate system for
describing circles and other circular shapes.

Formulas

A circle is a set of points located at a constant distance from a centre

point. %geemetrte&hape—appe&rs—mﬁlanys&&aﬁen#
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Formetas

A circle with radius r centred at the origin is described by the equa-
tion
2yt =12

All points (x, y) that satisfy this equation are part of the circle.

More generally, the cir-

Rather-than-staying-centred-at-the-origin
cle’s centre can be located at any point {p;4)-en-theplane(l, k) in the
plane, as illustrated in Figure 221.60.

Ay

! X
U "

Figure 1.60: A circle of radius r centred at the point {#,4)-(I, k) is described
by the fermula{x—pY2+(y—g1>=+2equation (x — h)? + (y —k)*> = 1.

ExplicitfunetionDescribing circles using functions

The equation-of a-eirelecircle equation x> + y> = r? is a relation er-an
implicit-function invelving-between the variables x and y. To-obtain
aﬂf%ﬁhﬁfffﬂ%ﬁeﬁ If we want to describe the circle using a function
= f(x)fe%theﬂfe}% we can solve for y to-obtain-in the equation

2

2 + 12 = 2 to obtain

y=filx) =vVrt—x2,  —r<x<r,
and
y=fo(x)=—Vr2—x2, —r<x<r.

The-explicit-expression—is—really—Describing a circle requires two

functions,

becatise-a—vertical-line—crosses—the—cirele-in—two—places:
memmmmmw

values of y that satisfy the equation x> + y* = r? for each value of x.
The function f; describes the top half of the circle, and-the-second

function—corresponds-to-while the function f;, describes the bottom
half.
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Ttis-possible to-speeify-the-You might be wondering why a simple

geometric shape like a_circle requires such complicated-looking
formulas like fi(x) and f,(x) to describe it. Surely there’s a better
way_to _describe circles that doesn’t involve quadratic expressions
and square roots? There is! If instead of using the Cartesian coor-
dinates (x,y) ef-any-point-on-thecirele-in-terms-of - we use the polar

coordinates r/Z60, then the equation of a circle becomes very simple.
We'll learn about that next.

The polar coordinate system NEW STUFF

Figure 1.61 shows the polar coordinate system, which consists_of
concentric circles at different distances from the origin (also called
the pole), and radial lines extending from the origin in all directions.
We can specify the location of any point in the plane using the polar
coordinates r/0, where r measures the distance-of-the-pointpoint’s
distance from the origin, and 6 is-describes the angle measured from
the-in the counterclockwise direction starting from the r-axis. For
example, the point O = 2/60° is located at the distance of r =2
units form the origin, in the direction 6 = 607,

To—convertfrom—thepolar—coordinates—+£6—to—Compare the
polar_coordinate system shown in Figure 1.61 with the Cartesian
coordinate system in Figure 1.18. In the Cartesian coordinate system,
we interpret the coordinate pair (x,y) as the instructions “Walk a
distance of x units in the direction of the x-axis, and a distance of y
units in the direction of the y-axis.” In a polar coordinate system,
we interpret the coordinates 726 as the instructions “Turn toward
the direction 0 and walk a distance of r units in that direction.” Both
types of coordinates give instructions for getting to a particular point
in the plane, with Cartesian coordinates giving the instructions in the
form of two distances, while polar coordinates give the instructions
in the form of a distance and a direction.

A Cartesian coordinate pair (x, y) is made of x and y coordinates,
while a polar coordinate pair rZ6 is made of r and 6 coordinates.
In this book, we use the angle symbol £ (read "at an angle of”) to
separate the polar coordinates r and 6, in order to emphasize the
difference between Cartesian and polar coordinates. However, some
other books use the notation (r, ) for polar coordinates, so you have
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90°
120° 60°
N
150°/ N TSN \3
" P =361/14631° \
s 0= 22600
2/
T /
| | [ / /"1\6\00 \ \ ‘
180°——————— e e
\ \ \ | r
210°" \ = ’ / ) 430°
N
240° 1 s 300°
270°

Figure 1.61: Pelarcoordinates+£6-We can be-used-use the polar coordinate
system to describe any—points in the two-dimensional plane. The polar
coordinates rZ describe the point {x7i)located at the distance r from the
origin in the direction ¢.

to watch out—the coordinate pair (20,30) could be either a (x,y)
coordinate pair or a (r,6) coordinate pair, depending on the context.
Note the polar coordinates that describe a given point are not
unique, meaning the same point can be described in multiple
ways.__The point Q =2260° is equally described by the polar

coordinates 2Z — 3007, since a clockwise turn of 3007 is the same
as a counterclockwise turn of 60°. We can also describe the same

point Q using the polar coordinates —2/240° and -2/ — 1207,
which tell us to turn in the direction opposite to 60° and measure
a negative distance r = —2. While all of these polar coordinates for
Q are equivalent, the preferred way to specify polar coordinates is
with positive r values and angles |6| < 180°.

Converting between Cartesian and polar coordinates

Figure 1.62 shows a point whose location is described both in terms
of Cartesian coordinates (x,y) and polar coordinates r£6. The
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triangle formed by the coordinates (0,0), usethe-(x,0), and (x,y) is

a right-angle triangle. This means we can apply our knowledge of

the trigonometric functions sin, cos, and tan to obtain formulas
for converting between Cartesian coordinates (x, and polar

coordinates r£0.

Figure 1.62: Polar coordinates rZ6 can describe any point (x, ).
To convert from polar coordinates rZ6 to (x,y) coordinates,

we use the definitions of the trigonometric functions cos-ane-sin:

cosf = mk = ¥ and sin6 = P2 — ! to obtain the formulas:

x =rcosf and  y =rsinf.

For example, the Cartesian coordinates of the point Q = 2/60° are
iven b = (x,y) = (2cos60°, 25in60°) = (1,4/3).

x,y) € R® | x = rcosB, y = rsin®, 0 €[0,360°)}.
Y ¥

In-words;this-expression-deseribes-the-set-of points-To convert from
(x,y) in—the-Cartesian—plane-with—coordinates to rZ60 coordinates,

we can use the circle equation x2 + y% = r? and the definition of the

tangent function tan 6 = 22 = ¥ then solve for r and 6 to obtain the

formulas:_

tan~1 () ifx>0,

180° + tan ! (%) ifx <0
— 2 2 _ ’
r=yxtyt and 0= go0 " ifx=0andy >0,

—90° ifx=0andy < 0.
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Finding the angle 6 is a little tricky. We must use a different formula
for computing 6 depending on where the point is located, and there
are four different cases to consider. The basic idea is to use the
inverse tangent function tan”!, which is also called arctan, or atan
on computer systems. By convention, the function tan”' returns
values between —90° (=7 rad) and 90° (5 rad), which correspond
to points with positive x-coordinatesthat-are—deseribed—by—+cos8
and-with--coordinates-that-are-deseribed-by+siné,~where-,_If the
x-coordinate of the point is negative, we must add 180° (7 rad) to the
output of the inverse-tangent calculation to obtain the correct angle.
When x = 0 we can’t compute the fraction } because we cannot
divide by zero, so we must handle the cases with x = 0 separately as
described in the above equation.

If you have access to a computer algebra system, the easiest way
to calculate the angle 6 variesfrom-0~to-360>—Tryto-visualize-the
eurve-traced-by-the-point{x(0); {0 —=(rcosb+sinbd)-asH-varies
from-0°-to-360>Thepoint-will- trace-out-a-—cirele-of radius+-—
inverse tangent function atan2(y,x). The function atan2 is the best
way to compute the angle since it handles all four cases of converting
Cartesian coordinates to polar coordinates automatically and always
using the computer algebra system at_https://live.sympy.org.

For example, consider the point P with Cartesian coordinates
(=3,2) shown in Figure 1.18 (page 59). To find the polar coordinates

of this point we first calculate the distance from the centre, r = —3)2 422 =4/

To find the angle 0 vary-overasmallerinterval,well-obtainsubsets

of-thecirele-Forexample the parametricequationfor-the top-half-of
he circles

x,y) € R? | x = rcos6,y = rsinf, 0 €[0,180°]}.
Y Y Y, 10U j-

2 =S

7 4 7

where-the-parameter-used-is-the-we note that the x-coordinate of P
is negative, so the angle 6 we're looking for is given by the formula
6 = 180° + tan—! (-%;) = 146.31°. The angle of the point P =

can also be obtained from atan2(2,-3). The polar coordinates of
the point P are 3.61./146.31° (see Figure 1.61).

Equations in polar coordinates

Equations in polar coordinates serve to describe relations between
the variables r and 0. For example, the equation of a circle with
radius 2 in polar coordinates is simply r = 2. If we substitute
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r = v/x2 + 2 and square both sides of the equation, we obtain the

equation x” + y> = 2” that we saw in the beginning of this section._

We can use the substitutions x = r.cosf and y = rsinf to convert
equations from Cartesian coordinates x and y to polar coordinates
rand 0. Consider the equation 2x — y = 3, which describes the line
polar coordinates as 2rcos 0 — rsinf = 3, which is a relation between
the polar coordinates 7 and 6.

As you can tell from these examples, polar coordinates are very
convenient when dealing with circles, and less so when working
with lines. Indeed, describing a circle in polar coordinates is as
simple as r =2, while in Cartesian coordinates we had to use
the complicated-looking functions f; and see page 120). The
coordinates is simple, 2x —y =3, while in polar coordinates_the
same line is described by a tangled mess involving sin and cos

functions.

AreaFunctions in polar coordinates

The-area—of a—eirele-of radits+is—A—mr2—A function in polar

coordinates is denoted r(0) and describes how the distance r varies
as a function of the angle 6.

Cireumfereneeand-arelength
The-ei : o circles

C = 27r.

Thicis 4 . ] bvfollowi ! 1
the-way-around-to-trace-the-outline-of the-entirecireleFor example,
a circle with radius 2 is described by the function r(6) = 2 in polar
coordinates, as illustrated in Figure 1.63 (a). The circle is described

by a constant function in polar coordinates, since the points in all
directions have the same distance from the centre.

ot i e oratin oF  the oS ] :

of-theeirele;ealled-an-are—and-that piececorresponds—to-the-angle
6—=-57>—What-is-the-arc’slength-#2—As another example, we can
transform the equation of the line 2x — y = 3 to polar coordinates to

obtain 2rcosf —rsinf = 3, then isolate r to obtain the function

3
2cosf —sinf’

r(0) =




DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE


126 MATH FUNDAMENTALS

which describes the distance from the origin for different angles 6.
For example, when 6 = 0, we find 7(0) = ~—>——— = 1.5, so we can

lot the polar coordinates 1.520° on the function’s graph.

L g et ] lopeth £ f . e circ]
corresponding—to—the—angle—The polar coordinates graph of the

function r(6) corresponds to all points with polar coordinates 7(6) £0,
for all possible values of is-

0
2 I
{ = 7'[1’360

Thearelength-f-depends onv; theangle f;. This is analogous to how
WW&B&@MW%
by plotting the points (x , for all possible values of the input
WJMMM@MWM&
discussed here._

If you ever need to graph a function 7(0) by hand, you can

compute the value of the function for several angles like § = —90°,

o

0 =0° 6 =90° then plot these points in the polar coordinate
system. For example, to eraph the function 7(0) = —>—— we

can compute r(—90°) = 3 = 3, which gives us the

oint 34—-90° on the graph. We can similarly compute r(0°) = 1.5
and ar%aefef—ﬁf»%r 30°) = 2.43, which gives us the points 1.5/0°
and 2.43/30°.

3z-90°

(@ rO) =2 (b) 7(6) = reoismo

Figure 1.63: The wwe@wmof functions _in
olar coordinates are obtained by computing the eirele’s—eireumference

27erdistance 7(0) in all directions 6 varying from 0° to 360°.




DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE


1.17 QRWW 127
e

Figure 1.64 shows the polar coordinates graphs of three other
interesting functions. Look at the points /6 indicated in each
raph and check that they satisfy the corresponding function r(6).

2/£120°

0.5290°

! 2/360°
—1£180°

_1/2 r

(@) 7(8) =2cosf (b) 7(0) = 2cos(36) (©) r(0) = 5250

) 152270°
—2/60° ik

Figure 1.64: The graphs of three functions in polar coordinates: (a) a circle,

b) a three-petalled rose, and (c) an Archimedean spiral.

Discussion

The polar coordinate system is an alternative way of describin

oints in space using polar coordinates r/6 instead of the usual
Cartesian coordinates (x See the concept map in Figure 1.65.
Your knowledge and experience with the trigonometric functions
sin, stnee—rad&aﬂs—&fe%eﬁafu%a% ﬂﬁr’f&fer—meas&fmg—aﬁgw}es—ffﬂhe

nt[rad] = 360°.

a—ﬁfele-Wi%h—P&d—tﬁ&?L——}COS and tan is what allows ou to convert

between Cartesian and polar coordinates.

The formulas for converting between Cartesian coordinates (x, )
and polar coordinates 728 covered in this section are important,
and you should consider them “required material.” I expect you to
become totally fluent with these formulas now, because we'll need
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[ points equations [ functions function graphs ]

X

[Cartesian coordinates] \

correspond to
the same points

trigonometry

points [equatiuns] [functions}—{function graphs]

can be used to describew
e used to des (vectors)
[parabola] [ellipse] [hyperbola]

Figure 1.65: Cartesian coordinates (x,y) and polar coordinates »£6 are two
equivalent systems for representing points, equations, and functions.

unit circle

radians

circle

polar coordinates

them later in the book when we learn about vectors (Section 3.2) and

complex numbers (Section 3.5).

In contrast, the three next sections are not “required material.”
We'll now switch gears to “entertainment mode” and learn about
three bonus geometry topics: ellipses, parabolas, and hyperbolas. I
want you to know about these shapes, but I don’t expect you to be
fluent with all the definitions and equations. You can take it easy for

the next three sections because none of the material will be “on the

exam.” You deserve a break after all the polar coordinates formulas!

Exercises

E1.31 On-arainy-dayLaurabrings-her-bike-indoors,—and-the-wet
bf? cletires le]a; eg a] . afk ff.] water ot ‘e; f.‘*’* " };a; * f*.f lff ‘gt]h ef]
Cartesian to polar coordinates:

a) (3,1). b) (=1,22) 9.(0,=6)
Convert the points from polar to Cartesian coordinates:

) 104307 €) 10423457 £ 10£120°.

the graph of the function r(0) = ==4 in polar coordinates for 0

varying from 0 to 180°. What is the equivalent description of this

function in Cartesian coordinates?
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Links

[ Visual introduction to polar coordinates
https://www.youtube.com/watch?v=stU63ST6un

[ Professor Dave explains equations in polar coordinates |
https://www.youtube.com/watch?v=jwLUapgnwkk

1.18 Ellipse

The ellipse is a fundamental shape that occurs in nature. The orbit of
planet Earth around the Sun is an ellipse.

Parameters

Figure 1.66 shows an ellipse with all its parameters annotated:

o a-thehalf-length-I;, F>: the two focal points of the ellipse along
! s also] ; At .

o b—therq: the distance from a point on the ellipse to F

7 the distance from a point on the ellipse to F

e g: the semi-major axis of the ellipse is the half-length of the
ellipse along the #x-axis. The distance between Vq and V, is 2a.

o e-—the—rceeentricity b:_the semi-minor axis of the ellipse ;

_ b2
= p

o [ Fr—thetwofoealpoints is the half-width of the ellipse along
the y-axis. The distance between V3 and V} is 2b.

o #rc: the distance from-apointon-theellipseto-of the focal points
from the centre of the ellipse. The distance between F;

o #y-the-distancefrom-apointon-theellipseto-and F, is 2¢.

o ¢ the eccentricity of the ellipse, ¢ =

Definition
An ellipse is the curve found by tracing along all the points for which
the sum of the distances to the two focal points is a constant:

r1 + rp = const.

There’s a neat way to draw a perfect ellipse using a piece of string
and two tackser-pins. Take a piece of string and tack it to a picnic
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V3
(x, )
1
]
1 Vs
F=(~c,0) F=(c,0)
b
V4 a 4

Figure 1.66: An ellipse with semi-major axis 4 and semi-minor axis b. The
locations of the focal points Fi and F, are indicated.

table at two points, leaving some loose slack in the middle of the
string. Now take a pencil, and without touching the table, use the
pencil to pull the middle of the string until it is taut. Make a mark at
that point. With the two parts of string completely straight, make a
mark at every point possible where the two “legs” of string remain
taut.

An ellipse is a set of points (x, y) that satisfy the equation

xZ yZ

St =1
b2

&= 17[1*2

= The parameters a
and b determine the shape of the elhpsebeeemes—&elfe}ewﬁh—fadfus

@.
The

F) = (—ag,0) and F, = (ag,0).

Thefoeal-points-focal points F; and F, correspond to the locations of
the two tacks where the string is held in place. Recalt-that-we defined
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7
’ .

the two focal points are

tThe coordinates of

k= (_Cl 0) and k= (C/ O)/
where ¢ = v/a? — b? is the focal distance.

The eccentricity of an ellipse is given by the equation

The parameter ¢ (the Greek letter epsilon) varies between 0 and 1 and
describes how much the shape of the ellipse differs from the shape of
a circle. When ¢ = 0 the ellipse is a circle with radius a, and both focal

oints are located at the centre. As the eccentricity ¢ increases, the
ellipse becomes more elongated and the focal points spread farther
apart.

Polar coordinates

7 i i Consider a

olar coordination system whose centre is located at the focus F,. We
can describe the ellipse by specifying the function 7, (6)as-iHustrated

which describes the distance from the focus F to the point E on the
ellipse as a function of the angle § —Recall-(see Figure 1.67). Recall

that for functions in polar coordinates, the angle 6 is the independent

variable that varies from 0 to 27t (360°), and the dependent variable

is the distance r,(6).

O

Figure 1.67: The shape-of-function r,(6) in polar coordinates specifies the
distance between the point E on the ellipse is-deseribed-by-and the funetion
#{6focal point F, for all angles.
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function that describes an ellipse in polar coordinates is

a(l—¢?)
r2(6) = 1+ecos(0)’

where the angle 6 is measured with respect to the positive-x-axissemi-major

axis. The distance is smallest when 6 = 0 with #2{0)=#{1—e)—=4
12(0) = a —c = a(1 —¢) and largest when 6 = 7r with # (7)) —=a—+ae—=-a{l-+e)r)

Calculating the orbit of the Earth

To-a-close-approximation,—the-The motion of the Earth around the
Sun is deseribed-by-an ellipse with the Sun positioned at the focus F,.

We can therefore use the polar coordinates formula ,(6) to describe
the distance of the Earth from the Sun.

The eccentricity of Earth’s orbit around the Sun is e = 0.01671123,
and the half-length of the major axis is a = 149598261 kmkm. We
substitute these values into the general formula for r»(6) and obtain
the following equation:

_ 14955648456 . 149556484 .
~ 1+0.01671123 cos(6) 1+ 0.01671123 cos(6)

r2(0)

The point where the Earth is closest to the Sun is called the perihelion.
It occurs when 6 = 0, which happens around the 3" of January. The
moment where the Earth is most distant from the Sun is called the
aphelion and corresponds to the angle § = 7. Earth’s aphelion happens
around the 3" of July.

We-can-Let’s use the formula for r5(6) to predict the perihelion and
aphelion distances of Earth’s orbit:

149556483
i = = — 147098290 [k
aperi = 12(0) 1+ 0.01671123 cos(0) 098290 [km] km,
149556483

= = = 152098232 [km] km.
"2aphe = 1200) = 15 01671123 cos() L] koo
Google “perihelion” and “aphelion” to verify that the above predic-
tions are accurate. It’s kind of cool that a mathematical formula can

describe the motion of our planet, don’t you think?
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21. March
o~ winter Periapsis
6 = O[rad]

“ 3. January
©

quir N
W\ .
/ )‘Wmler

spring 7

(’ Line of Solstice
21.June | 21. December
summer
/ autumn
W
Apoapsis \
0 = 1[rad]
3. July

23. September
summer

Figure 1.68: The orbit of the Earth around the Sun. Key points of the orbit
are labelled. The seasons in the Northern hemisphere are also indicated.

The angle 0 of the Earth relative to the Sun can be described as a
function of time 6(t). The exact formula of the function 6(t) that de-
scribes the angle as a function of time is fairly complicated, so we
won’t go into the details. Let’s simply look at seme-the values of 6(f)

with t measured in days shown in Table 22. We'll begin on Jan 3.

Newton’s insight

Contrary to common belief, Newton did not discover his theory of
gravitation because an apple fell on his head while sitting under a
tree. What actually happened is that he started from Kepler’s laws
of motion, which describe the exact elliptical orbit of the Earth as a
function of time. Newton asked, “What kind of force would cause
two bodies to spin around each other in an elliptical orbit?” He de-
termined that the gravitational force between the Sun of mass M and
the Earth of mass m must be of the form F, = G%m. We'll discuss
more about the law of gravitation in Chapter 4.

For now;, let’s give props to Newton for connecting the dots, and
props to Johannes Kepler for studying the orbital periods, and Tycho
Brahe for doing all the astronomical measurements. Above all, we
owe some props to the ellipse for being such an awesome shape!

Beed] i o di ] he Eartl | the S
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Exercises

2
E1.33 The focal points of the ellipse with equation +¥ =1 are

FiL=(=¢0) and I = (c,0), as illustrated in Figure 1.66. Use the
definition of the ellipse had-nothing-to-do-with-seasonst-Seasons-are
predominantly-caused-by-ther; 1 15 = const. to compute the value
of the parameter ¢ in terms of the parameters 2 and b.

Links

[ Interactive graph of an ellipse ]
https://www.desmos.com/calculator/kgmh671roj

[ Further reading about Earth-Sun geometr
http://www.physicalgeography.net/fundamentals/6h.html

1.19 Parabola NEW STUFF

The parabola is another important geometric shape. In this section,
we’ll see how we can describe parabolas using their geometric
roperties, as well as in terms of algebraic equations.

Parameters

Figure 1.69 shows a parabola with all its parameters annotated:

o [ the focal length of the parabola

o F = (0, f): the focal point of the parabola

o {(x,y) €R?|y = —f}: the directrix line to the parabola

e 1; the distance from point P on the parabola to the focal point F

e /; the closest distance from a point P on the parabola to the
arabola’s directrix line

Geometric definition

The shape of a parabola is determlned b a single arameter called

2158 of remie—On-tht-day,-the-Earths spin-axis-is-titted ! theS
the-Nerthern-hemisphererecetvesfocal length. For a parabola with focal
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https://www.desmos.com/calculator/kgmh67lroj
http://www.physicalgeography.net/fundamentals/6h.html
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Y
y= %xz 2 /
; P
rox
I | :- |
< < + °
dlrecttlx ‘ D

Figure 1.69: The parabola is defined geometrically as the set of points whose
distance form the focal point 7 is equal to their distance from the directrix /.
The figure shows the point P on the parabola that has distance r = 2 from F,

and distance ¢ = 2 from the point D on the directrix. This parabola can be
1.2
=X

described algebraically using the equation .

length f, the focal point is at F = (0, f) and the directrix line has the
equation y = —f. The parabola is defined as the set of points P for
which the distance from the focal point and the directrix are equal:

r=24,

where 1 = d(P, F) is the distance from the point P to the focal point F,
and £ = d(P, D) is the distance from P to the point D on the directrix
Figure 1.69 shows a parabola opening upward with focal length
[ =1 centred at the origin. The parabola is the set of points that
are equidistant from the focal point F = (0,1) and the directrix line
located aty = —1.

Algebraic description

The shape of a parabola with focal length opening upward

corresponds to the graph of the quadratic functions f(x) = 2 x2.

This is a special case of the general formula for quadratic functions
f() =a(x 1> +k,_which youre already familiar with from
Section 1.13 (see page 99). The parabola shown in Figure 1.69 is
centred at the origin, so the displacement parameters  and k are
both zero. The coefficient a in the general formula is related to the

focal length f through the relation a = X, so in the case of focal

length f = 1 the coefficient is 2 = +. See Figure 1.69.
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1.2

The formula y = 7 x~ is specific to the case of a parabola openin
upward, but similar algebraic expressions exist for parabolas
opening downward and sideways. The parabola with focal length

opening downward is described by the equation y = — L x2.

The parabola opening to the left and to the right are described b
relations x = — 112 and x = Ly2. With your knowledge of the

most-sunlight—displacement parameters /1 and k used for general

uadratic equations (see page 99), you can also obtain algebraic
expressions for parabolas that are not centred at the origin.

Polar coordinates

In the previous section we connected the geometric definition of
parabolas_with quadratic algebraic expressions. When learning
math, it's important to note connections of this sort because they
are the bridges between different mathematical domains. _If one
day you have to solve a geometry problem involving parabolas, you
could use algebraic equations to describe the parabolas and solve the
problem using algebra. If on another day you encounter an algebra
problem involving a quadratic equation, you could visualize the
quadratic equation as a parabolic shape and solve the problem using
geometric reasoning. Being able to travel between math domains
In the spirit of further bridge-building, I want to show you the
equation of a parabola in polar coordinates. We choose a coordinate
system centred at the focal point F. The polar-coordinates equation
for the parabola with focal length f opening to the left is

o) = —

. 1tcost’

Figure 1.70 shows a particular instance of this formula when the
parabola has focal length f = 1. Try substituting the values 6 = 0 and
6 = 90° (5 radians) in the polar equation to verify that it correctly
describes the points on the parabola.
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Figure 1.70: The parabola described by r(§) = -2 in polar coordinates.

algebraic formulas can be very useful for describing geometric
shapes. The parabola illustrated in Figure 1.70 can be described in

and directrix line x = 2; alegebraically as the relation x =1 — 112

in Cartesian coordinates; or as the function r() = —=2— in polar

coordinates.

Parabola applications

Parabolic shapes are of special importance in optics and communications.
Using parabolic lenses, mirrors, and antennas, it’s possible to focus
the energy emitted from a distant object into a single point. This is
due to the reflective property of parabolas, which states that all light
rays coming from far away are redirected toward the focal point of
the parabolic shape. The reflective property makes parabolas useful

Figure 1.71: The reflective property of parabolas tells us all radio waves
coming from infinity are reflected toward the focal point of the parabola.
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Figure 1.71 illustrates_the setup for a radio communication
scenario in which a ground station is trying to detect a signal coming
from a satellite in orbit, The satellite is very far away so the signal
received on Earth is very weak. A parabolic satellite dish antenna
collects the signal from a large surface area and focuses all of it on the
focal point of the parabola. A radio receiver placed at the focal point
of the parabola receives a much stronger signal, since the focal point
is where the power from the whole dish surface is concentrated.
This is thanks to the reflective property of the parabolic shape: all
radio waves coming from the far-away satellite get reflected toward
the focal point of the parabola.

Exercises

E1.34 Consider some arbitrary point P = (x,y) that lies on the
parabola with focal length f centred at the origin as illustrated in
Figure 1.69. Use the geometric definition of the parabola r = ¢ to
obtain a relation between the x- and y-coordinates of the point P._

Hint: The distance between points A = (A, A,) and B = (B, B,) is

iven by d(A,B) = 1 /(Ay — B¢)2 + (A, — B,)?.

Hint: Recall the definitions of r = d(P,F) and ¢ = d(P, D).

Links
[ Interactive graph of a parabola

https://www.desmos.com/calculator/4ddfrv7wvx

[ Further reading about Earth-Sun-geemetry-parabolas on Wikipedia
]

httphttps://wwwen.physicalgeographywikipedia.netorg/fundamentalswil

1.20 Hyperbola

The hyperbola is another fundamental shape of nature. A-horizontal
hyperbola-is-

Parameters

o Fy, Fy: the focal points of the hyperbola
e ry: the distance from a point of the hyperbola to F

e 75: the distance from a point of the hyperbola to F
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e a: the semi-major axis of the hyperbola is the distance from the
origin to the vertices V1 and V5

e [: the semi-minor axis of the hyperbola is the distance from a
focus to the nearest asymptote

e ¢ the distance of the focal points from the centre. The distance
between Fi and Fp is 2¢.

o & eccentricity of the hyperbola, e = 4/1+ % = ¢

Figure 1.72: The graph of the unit hyperbola x> — y*> = 1. The graph has two

branches opening to the sides, and its eccentricity is ¢ =

The graph of a hyperbola consists of two separate branches, as
illustrated in Figure 1.72. The dashed lines are called the asymptotes
of the hyperbola. The eraph of the hyperbola approaches these

lines but never touches them. The equations that describe these

asymptotesarey = g xand y = — g x.

Definition

A hyperbola is defined as the set of points such that the absolute

value of the difference of the distances to the two focal points is
constant:

|r{ — 12| = const.

Another way to define a hyperbola is as the set of points (x, y) which
that satisfy the equation

2 2

a2 b
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The numbers-acoordinates of the two focal points of this hyperbola
are

h=(ze0) and B = (00

where the focal distance is c = v/a? + b%. The coordinates of the vertices
Vi and i i

points-V, are (—a,0) and (a,0). -

The hyperbola’s eccentricity is defined by the equation

b2 ¢
& = 1+*2=*
N a2 al

The eccentricity is a number greater than 1 that determines the hy-

perbola’s shape. Recall the-that an ellipse is also defined by an eccen-
tricity parameter, though the formula is slightly different. This could
be a coincidence—or is there a connection? Let’s-seeRead on to find
out.

Hyperbolic trigonometry

The_study_of the geometry of the wunit—circlepoints on the
unit_circle is called circular_trigonometry. The geometry of the
unit circle is described by the trigonometric_functions sinf and
cosf. _The function cosf defines the x-coordinates of the points

on the unit circle, and sin @ defines their y-coordinates. The point
P = (cos@,sin 0) traces ott-the unit circle as the angle 6 goes from 0
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to 271. Thefunction-cos-is-defined-as-thex-coordinate-of the point-;

Similarly, the study of the geometry of the points-en-theuniteirele
is-called-unit hyperbola is called eirewdr-hyperbolic trigonometry.

Instead—of Jooking—at-a—Doesn’t that sound awesome? Next
time your friends ask what you have been up to, tell them you are
learning about hyperbolic trigonometry. Whereas we trace the path
of the point P on the unit circle x2 + y? = 1, let’strace-out-we'll
instead trace the path of a point Q on the unit hyperbola x* — y? = 1.
Wewill-1l now define hyperbolic variants of the sin and cos functions

to describe the coordlnates of the pomt Q. %ﬁeaﬂeéf%ypﬁbehe

The coordinates of a point Q on the right branch of the unit hy-
perbola are Q = (cosh y, sinh y), where p is the hyperbolic angle. The
x-coordinate of the point Q is x = coshy, and its y-coordinate is
y = sinh u. The name hyperbolic angle is a bit of a misnomer, since
#1090 actually measures an area. The area of the highlighted

region in Figure 1.73 corresponds to 3.

}/A g

Figure 1.73: The functions cosh i and sinh y are defined as the x- and y-
coordinates of a point moving on the unit hyperbola x> — y? = 1.

Recall the circular-trigonometric identity cos?f + sinf = 1,
which follows from the fact that all the points (x, y) on the unit circle
obey x?> + y?> = 1. There is an analogous hyperbolic trigonometric
identity:

cosh? y — sinh? u = 1.

This identity follows because we defined x = cosh i and y = sinh
to be the coordinates of a point Q which traces out the unit hyperbola

x> -y =1
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different shapes can be obtained, geometrically speaking, from a sin-
gle object: the cone. We can obtain the four curves by shcmg the
cone at different angles

as illustrated in Figure 1.75.

—NA\

circle ellipse parabola hyperbola

Figure 1.75: Taking slices through a cone at different angles produces differ-
ent geometric shapes: a circle, an ellipse, a parabola, or a hyperbola.

Conic sections in polar coordinates

Inpelar-coordinates;all-All four conic sections can be described by
the same equationfunction in polar coordinates:

gl +e)
r0) = 1+ ecos(6)’

where g is the curve’s closest distance to a focal point —and ¢ is

the curve’s eccentricity. For a c1rcleq—a—fer—a1+elltpseq—&ﬂ—e—}
4= R (the radius) and the eccentricity parameter is ¢ = 0. For an
ellipse, 4 = a(1 —¢) and the eccentricity parameter varies between
0 and fer-a-hyperbolaf—=-ate—1)—Intheecontextof 1 (0 <e < 1).
Note we include the case ¢ = 0 since a circle is a special case of an
ellipse. For a parabola, the-length-¢issemetimesreferred-to-asq = f
(the focal lengthand-denoted—f) and the eccentricity is ¢ = 1. For a
hyperbola, g = a(e — 1) and the eccentricity is ¢ > 1.
Depending on the parameter-value of ¢, the equation r(f) defines
either a circle, an ellipse, a parabola, or a hyperbola. Table 1.3 sum-
marizes all our observations regarding conic sections.

The motion of the planets is explained by Newton’s law of grav-
itation. The gravitational interaction between two bodies is-always
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Conic sectionr  Equation- Polar equationfunction Eccent
Circle ¥+t =2’ + 2 =R>  #H®—ar(0) =R e =
Ellipse Zyh=1 r(6) = % f?V[
Parabola y—4gey® = Afx #0)—= 1+C05(9) W@»
Hyperbola "1‘—; - g—i =1 r(0) = 1“+(Ecosl()9)

Table 1.3: The four conic sections and their eccentricity parameters.

always leads one of the two bodies to follow a trajectory described
by one of the fourconie sections-conic sections for which the other

body is the focal point. Figure 1.76 illustrates four different trajec-
tories for a satellite near planet F. The circle (¢ = 0) and the ellipse
(ee16,H0 < & < 1) describe closed orbits, in which the satellite is cap-
tured in the gravitational field of the planet F and remains in orbit
forever. The parabola (¢ = 1) and the hyperbola (¢ > 1) describe open
orbits, in which the satellite swings by the planet F and then contin-
ues.

Figure 1.76: Four different trajectories for a satellite moving near a planet.
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Links
[ Interactive graph of a hyperbola |

https://www.desmos.com/calculator/2mnsk508vn

[ Lots of information about ellipses—and-orbits—conic sections on
Wikipedia ]

https://en.wikipedia.org/wiki/Conic_section
http://en.wikipedia.org/wiki/Eccentricity_(mathematics)

[ An in-depth discussion on the conic sections |
http://astrowww.phys.uvic.ca/ tatum/celmechs/celm2.pdf

* % %

I'd love to continue this geometric digression and tell you more
about the properties and applications of conic sections, but there
are more pressing math topics to discuss! In the next section we’ll

learn how to solve systems of equations with multiple unknown
variables. After that, we'll learn how interest calculations work, and

finally we’ll conclude the chapter by introducing terminology and
notation for describing mathematical sets.

1.21 Solving systems of linear equations

Solving equations with one unknown—like 2x +4 = 7x, for
instance—requires manipulating both sides of the equation until
the unknown variable is isolated on one side. For this instance, we
can subtract 2x from both sides of the equation to obtain 4 = 5x,
which simplifies to x = %.

What about the case when you are given two-two equations and
must solve for two-two unknowns? For example,

x+2y =5,
3x +9y = 21.

Can you find values of x and y that satisfy both equations?

Concepts

o x,y: the two unknowns in the equations
e ¢ql,eq2: a system of two equations that must be solved simul-
taneously. These equations will look like

a1x + by =cq,
ax + byy = ¢y,

where as, bs, and cs are given constants.
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Principles

If you have n equations and n unknowns, you can solve the equa-

tions simultaneousty—simultaneously and find the values of the

unknowns. There are several different approaches for solving
equations simultaneously. We'll fearn—abott-show three of these
approaches in-thisseetionfor the case n = 2.

Solution techniques

When solving for two unknowns in two equations, the best approach
is to eliminate one of the variables from the equations. By combining
the two equations appropriately, we can simplify the problem to the
problem of finding one unknown in one equation.

Solving by substitution
We want to solve the following system of equations:

x+2y =5,
3x 49y = 21.

We can isolate x in the first equation to obtain

x=5-2y,
3x +9y = 21.

Now substitute the expression for x from the top equation into the
bottom equation:
3(5—-2y)+9y =21.

We just eliminated one of the unknowns by substitution. Continuing,
we expand the bracket to find

15 -6y + 9y = 21,

or
3y = 6.

We find y = 2, but what is x? Easy. To solve for x, plug the value
y = 2 into any of the equations we started from. Using the equation
x=5-2y,wefindx=5-2(2) =1.
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Solving by subtraction

Let’s return—to—our—set-of-equationsto—see—another—approach—for
sotvingnow look at another way to solve the same system of
x+2y =35,
3x +9y = 21.

Observe that any equation will remain true if we multiply the whole
equation by some constant. For example, we can multiply the first

equation by 3 to obtain an equivalent set of equations:

3x +6y =15,

3x +9y =21
Why did I pick 3 as the multiplier? By choosing this constant, the x
terms in both equations now have the same coefficient.

Subtracting two true equations yields another true equation.
Let’s subtract the top equation from the bottom one:

336+ —6y=21-15 = 3y=—6.

The 3x terms cancel. This subtraction eliminates the variable x be-
cause we multiplied the first equation by 3. We find y = 2. To find x,
substitute y = 2 into one of the original equations:

x+2(2) =5,

from which we deduce that x = 1.

Solving by equating
There is a third way to solve the system of equations
x+2y =25,
3x 4+ 9y = 21.

We can isolate x in both equations by moving all other variables and
constants to the right-hand sides of the equations:

x=5-2y,
X = %(21—9]/) =7-3y.

Though the variable x is unknown to us, we know two facts about
it: x is equal to 5 — 2y and x is equal to 7 — 3y. Therefore, we can
eliminate x by equating the right-hand sides of the equations:

5—-2y=7-3y.




DIFFCHANGE



DIFFCHANGE


148 MATH FUNDAMENTALS

We solve for y by adding 3y to both sides and subtracting 5 from both
sides. We find y = 2 then plug this value into the equation x = 5 —2y
to find x. The solutions are x = 1and y = 2.

Discussion

The three-eliminationtechniques-presented-here repeated use of the
three algebraic techniques presented in this section will allow you to
solve any system of n linear equations in n unknowns. Each time
you perform-eliminate one variable using a substitution, a subtrac-
tion, or an elimination by equating, you're simplifying the problem
to a problem of finding (# — 1) unknowns in a system of (n — 1) equa-
tions. There is actually-an-entire-an entire math course called linear
algebra, in which you’ll develop a more-acvanced,systematic ap-
proach for solving systems of linear equations.

Geometric solution

be understood geometrically as finding the point of intersection
between two lines in the Cartesian plane. In this section we'll explore
this correspondence between algebra and geometry to develop yet
The algebraic equation ax + by = ¢ containing the unknowns x
and y can be interpreted as a constraint equation on the set of possible
values for the variables x and y. We can visualize this constraint
geometrically by considering the coordinate pairs (x,y) that lie in
can be represented as a coordinate pair (x,y), where x and y are the
coordinates of the point.
The line £, corresponds to the set of points (x,y) that satisfy the
equation y = 2, and the line /¢ corresponds to the set of points that
satisfy x +2y = 2.
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2 2

J | 1 ~

@ x=1 b) y=2 (© x+2y=2

Figure 1.77: Graphical representations of three linear equations.

You can convince vyourself that the geometric lines shown in
Figure 1.77 are equivalent to the algebraic equations by considerin
individual points (x in the plane. For example, the points
1,0), (1,1), and (1,2) are all part of the line ¢, since they satisf
the equation x = 1. For the line /., you can verify that the line’s

x-intercept (2,0) and its y-intercept (0,1) both satisfy the equation
Xr2Y =2

The Cartesian plane as a whole corresponds to_the set R?,
which describes all possible pairs of coordinates. To understand
the equivalence between the algebraic equation ax + by = ¢ and the

0:{(x,y) e R? | ax + by = c}.

In words, this means that the line ¢ is defined as the subset of the

pairs_of real numbers (x,y) that satisfy the equation ax + by = c.
You don’t have to take my word for it, though! Think about it and

the x-intercept (£,0) and the y-intercept (0, £) satisfy the equation

axrby=c.




DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE


150 MATH FUNDAMENTALS

Ay

~

(Syla}
N
Q0
4

Figure 1.78: Graphical representation of the equation ax + by = c.

Solving the system of two equations
ax +by= ¢y,

azx + bay= ¢y,

corresponds to finding the intersection of the lines ¢; and ¢, that
represent each equation. The pair (x,y) that satisfies both algebraic
equations simultaneously is equivalent to the point (x,v) that is the

intersection of lines ¢; and />, as illustrated in Figure 1.79.

AN

(xy)

T~

Figure 1.79: The point (x, y) that lies at the intersection of lines /1 and /5.

Example Let’s see how we can use the geometric interpretation to
solve the system of equations

x +2y=35,

3x +9y=21.
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We've already seen three different algebraic techniques for finding
approach for finding the solution. I'm not kidding you, we're going
The first step is to draw the lines that correspond to each of
the equations using pen and paper or a graphing calculator. The
second step is to find the coordinates of the point where the two

both lines ¢; and ¢, corresponds to the x and v values that satisf
both equations simultaneously.

NN

(1,2)

! i 1 1 ;\7

Figure 1.80: The line /; with equations x + 2y = 5 intersects the line ¢, with

equation 3x + 9y = 21 at the point (1,2).

Visit the webpage at www.desmos.com/calculator/exikik615f to
lay with an interactive version of the graphs shown in Figure 1.80.
Try changing the equations and see how the graphs change.

Exercises

E1.35 Plot the lines ¢,, ¢;,, and ¢, shown in Figure 1.77 (page 149

using the Desmos graphing calculator. Use the graphical representation
of these lines to find: a) the intersection of lines £ and /4, b) the

Wand ¢) the intersection of lines #;, and /..

E1.36 Solve the system of equations simultaneously for x and y:

2x +4y =16,
5x —y=7.

E1.37 Solve the system of equations for the unknowns x, y, and z:

2x +y —4z = 28,
X +y+ z=38,

2x —y — 6z = 22.
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The annual growth ratio will be

6 n
(1 * 100n> /

where the interest rate per compounding period is %%, and there are
n periods per year.

Consider a scenario in which the compounding is performed
infinitely often. This corresponds to the case when the number n
in the above equation tends to infinity (denoted n — o). This is

not-a—practical-question, but-itis-an-interesting-avente-to-explore
nevertheless-beeattse-itscenario leads to the definition of the natural
exponential function f(x) = e*.

When we set n — o0 in the above expression, the annual growth
ratio willbe-is described by the exponential function base e as fol-

lows: ;
. 6 6
nlg‘go (1 + 100”) = exp(loo) = 1.0618365.

The expression “lim,, .« " is to be read as “In the limit when n tends
to infinity.” We will learn more about limits in Chapter 5.

A nominal APR of 6% with compounding that occurs infinitely
often has effective APR of 6.183%. After six years you will owe

6
L = exp<£0> x 1000 = $1433.33.

The nominal APR is 6% in each case, yet, the more frequent the com-
pounding schedule, the more money you’ll owe after six years.

Exercises

E1.39 Studious Jack borrowed $40000 to complete his university
studies and made no payments since graduation. Calculate how
much money he owes after 10 years in each of the scenarios.

a) Nominal annual interest rate of 3% compounded monthly

b) Effective annual interest rate of 4%
¢) Nominal annual interest rate of 5% with infinite compounding

E1.40 Entrepreneurial Kate borrowed $20 000 to start a business. Ini-
tially her loan had an effective annual percentage rate of 6%, but after
five years she negotiated with the bank to obtain a lower rate of 4%.
How much money does she owe after 10 years?
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1.23 Set notation

A set is the mathematically precise notion for describing a group of
objects. You don’t need to know about sets to perform simple math;
but more advanced topics require an understanding of what sets are
and how to denote set membership, set operations, and set contain-
ment relations. This section introduces all the relevant concepts.

Definitions

set: a collection of mathematical objects
S, T: the usual variable names for sets

s € S: this statement is read “s is an element of S” or “sisin S”

N, Z,Q, R: some important number sets: the naturals, the in-
tegers, the rationals, and the real numbers, respectively.

J: the empty set is a set that contains no elements

of-a—setare used to define sets, and the expression inside the
curly brackets describes what-the-setcontainsthe set contents.

Set operations:

e 5 U T: the union of two sets. The union of S and T corresponds
to the elements in either S or T.

o 5 n T: the intersection of the two sets. The intersection of S and
T corresponds to the elements that are in both S and T.

o S\T: set difference or set minus. The set difference S\T corre-
sponds to the elements of S that are notin T.

Set relations:

e C:is a strict subset of
e C:isa subset of or equal to

Here is a list of special mathematical shorthand symbols and their
corresponding meanings:

e c: element of

¢: not an element of
V: for all

3: there exists

3: there doesn’t exist
| : such that
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These symbols are used in math proofs because they allow us to ex-
press complex mathematical arguments succinctly and precisely.

An interval is a subset of the real line. We denote an interval by

specifying its endpoints and surrounding them with either square
brackets “[” or round brackets “(” to indicate whether or not the cor-
responding endpoint is included in the interval.
Sometimes we encounter intervals that consist of two disjointed
parts. We use the notation [a,b] U [c,d] to denote the union of the
two intervals, which is the set of numbers either between a and b
(inclusive) or between ¢ and d (inclusive).

Sets

Much of math’s power comes from abstraction: the ability to see the
bigger picture and think meta thoughts about the common relation-
ships between math objects.

It is often useful to restrict our attention to a specific subset of the
numbers as in the following examples.

Example 1: The nonnegative real numbers

Define Ry < R (read “IR; is a subset of R”) to be the set of non-
negative real numbers: or expressed more compactly, If we were to
translate the above expression into plain English, it would read “The
set R is defined as the set of all real numbers x such that x is greater
or equal to zero.”

Note we used the symbel-“="is defined as” symbol “L instead
of the basic “=" to give youan extra hint that we're defining a new

variable R that is equal to the set expression on the right. In this

book, we'll sometimes use the symbol “——Wheﬂeveﬁw&deh%edef”
mnew variables and math quantities. Some other books

use the notation “:=" or “=" for this purpose. The meaning of “ __def,y

is identical to “=" but it tells yotr-us the variable on the left of ‘the
equality is new.

Example 2: Even and odd integers

In both of the above examples, we use the mathematieal-set-builder
notation {... | ...} to define the sets. Inside the curly braces we
first describe the general kind of mathematical objects we are talking
about, followed by the symbol “|” (read “such that”), followed by
the conditions that must be satisfied by all elements of the set.
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Number sets

Recall the fundamental number sets we defined in Section 1.2 in the
beginning of the book. It is worthwhile to review them briefly.

The natural numbers form the set derived when you start from 0
and add 1 any number of times:

N= £(0,1,2,3,4,5,6,...}.

We use the notation IN* to denote the set of positive natural numbers.
The set IN* is the same as IN but excludes zero._

The integers are the numbers derived by adding or subtracting 1
some number of times:

Z=%{x|x = +n,n € IN}.

When-If we allow for divisions between integers, we gettherational
numbers-require the set of rational numbers to represent the results:

def

Q==

x m
z2z= gwherexandyarein;‘wz, andy # 0ne IN*

In words, this expression is telling us that every rational number can
be written as a fraction 7, where m is an integer (m € Z), and n is a
ositive natural number (n € IN*).

The broader class of real numbers also includes all rationals as
well as irrational numbers like v/2 and 7t:

R= % {71,e,—1.53929411..., 4.99401940129401..., ...}.
Finally, we have the set of complex numbers:

C=%1{1,i,1+i,2+3i,...},

where i =+/—i £ y/—1 is the unit imaginary number.

Note that the definitions of IR and C are not very precise. Rather
than give a precise definition of each set inside the curly braces as we
did for Z and Q, we instead stated some examples of the elements in
the set. Mathematicians sometimes do this and expect you to guess
the general pattern for all the elements in the set.

The following inclusion relationship holds for the fundamental
sets of numbers:

NcZcQcRcC.

This relationship means every natural number is also an integer. Ev-
ery integer is a rational number. Every rational number is a real. And
every real number is also a complex number. See Figure 1.2 (page 8)
for an illustration of the subset relationship between the number sets.
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CLARIFICATIONS about
Rational numbers and fractions fractions and rationals nums.

imported from French transl.
So far in this book, we've used the notions of “fraction” and “rational

number” somewhat interchangeably. Now that we’ve learned about
sets, we can clarify the differences and equivalencies between these
related concepts.

The _same rational number 3 can be written as a_fraction in
correspond to the same rational number. Keep in mind the existence
numbers are equal._For example, one person could obtain the

answer 5 to a given problem, while another person obtains the

answer ¢. Since the two fractions look different, we might think
these are different answers, when in fact both answers correspond
to the same rational number.

A reduced fraction is a fraction of the form I such that the numbers
m_and n are the smallest possible. We can obtain the reduced
fraction by getting rid of any common factors that appear both in
the numerator and denominator. For example,

4 2.2 2.7 2

Ll ST

6 32 3. 3’

where we cancelled the common factor 2 to obtain the equivalent
reduced fraction. Reduced fractions are a useful representation
for_the_set of rational numbers, because each rational number
corresponds to a unique reduced fraction. Two rational numbers are
equal if and only if they correspond to the same reduced fraction.

Subsets of the real line

Recall that the real numbers R have a graphical representation as
points on the number line. See Figure 1.13 on page 24 for a reminder.
The number line is also useful for representing various subsets of the
real numbers, which we call intervals. We can graphically represent
an interval by setting a section of the number line in bold. For exam-
ple, the set of numbers that are strictly greater than 2 and strictly
smaller than 4 is represented mathematically either as “(2,4),” or
more explicitly as
{xeR|2<x<4},

or graphically as in Figure 2?1.81.
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Figure 1.83: Venn diagram showing an example of the set relation B < A.
The set B is strictly contained in the set A.

; The picture helps us vi-
sualize the situationthis abstract mathematical notion.
Mathematicians use two different symbols to describe set con-
tainment, in order to specify either a strict containment relation or a
subset-or-equal relation. The two types of containment relations be-
tween sets are similar to the less-than (<) and less-than-or-equal (<)
relations between numbers. A strict containment relation is denoted
by the symbol c. We write B — A if and only if every element of B is
also an element of A, and there exists at least one element of A that
is not an element of B. Using set notation, the previous sentence is
expressed as

Bc A = Vbe B,be Aand Ja € A such thata ¢ B.

For example, the expression E — Z shows that the even numbers are
a strict subset of the integers. Every even number is an integer, but
there exist integers that are not even (the odd numbers). Some math-
ematicians prefer the more descriptive symbol < to describe strict
containment relations.

A subset-or-equal relation is denoted B = A. In writing B <
A, a mathematician claims, “Every element of B is also an element
of A,” but makes no claim about the existence of elements that are
contained in A but not in B. The statement B < A implies B < A;
however, B < A does not imply B — A. This is analogous to how
b < aimplies b < a, but b < a doesn’t imply b < a, since a and b
could be equal.

Set operations

Venn diagrams also help us visualize the subsets obtained from set
operations. Figure 1.84 illustrates the set union A u B, the set inter-
section A n B, and the set difference A\B, for two sets A and B.

The union A U B describes all elements that are in either set A or
set B, orboth. Ifee A UB,thenec Aoreec B.
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which is the set of elements that are in A or B but not in C.
Another example of a complicated set expression is

(AnB)uU (BnC) = {bcd),

which describes the set of elements in both A and B or in both B and
C. As you can see, set notation is a compact, precise language for
writing complicated set expressions.

Example 4: Word problem

A startup is lookmg to hire student 1nterns for the summer. I:et—S

Defme Cto be the subset of students who are good with comput-
ers, M the subset of students who know math, D the students with
design skills, and L the students with good language skills.

Using set notation, we can specify different subsets of the stu-
dents the startup might hire. Let’s say the startup is a math textbook
publisher; they want to hire students from the set M n L—the stu-
dents who are good at math and who also have good language skills.
A startup that builds websites needs both designers and coders, and
therefore would choose students from the set D u C.

New vocabulary

The specialized notation used by mathematicians can be difficult to
get used to. You must learn how to read symbols like 3, <, |, and
€ and translate their meaning in the sentence. Indeed, learning ad-
vanced mathematics notation is akin to learning a new language.

To help you practice the new vocabulary, we’ll look at seme

mathematical-arguments—that-make-a_simple mathematical proof

that makes use of the new symbols.

Simple proof example
Claim: Given J(n) =3n+2—mn,J(n) € Eforalln € Z.

The claim is that the function J(n) is-always-outputs an even num-
ber, whenever the input 7 is an integer. This-meansne-matter-which

integernumber—+#—we—<choose,—thefunetion{n)=3n+2—n—will
always-outputan-evennumberTo prove this claim, we have to show
that the expression 3n + 2 — n is even for all numbers n € Z.

Proof:
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Proof. We want to show J(n) € E for all n € Z. Let’s first review the

definition of the set of even numbers £-={# Z - — 211 ZES (me Z | 1

A number is even if it is equal to 2n for some integer n. Next let’s
simplify the expression for J(n) as follows:

Jn)=3n+2—-n=2n+2=2(n+1).

Observe that the number (1 + 1) is always an integer whenever 7 is
an integer. Since the output of J(1) = 2(n + 1) is equal to 2m for some
integer m, we’ve proven that J(n) € E, foralln € Z. =

the previous sentence is expressed as This proof is not
neither intuitive
tmeZneZ | m/n=v2. nor educational so

> /dev/null
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Sets as solutions to equations

Another context where sets come up is when describing solutions to
equations and inequalities. In Section 1.1 we learned how to solve for
the unknown x in equations. To solve the equation f(x) = cis to find
all the values of x that satisfy this equation. For simple equations like
x —3 = 6, the solution is a single number x = 9, but more complex
equations can have multiple solutions. For example, the solution to
the equation x? = 4 is the set {—2,2}, since both x = —2 and x = 2
satisfy the equation.

Please update your definition of the math verb “to solve” (an
equation) to include the new notion of a setution-setsolution set—the
set of values that satisfy the equation. A solution set is the mathe-
matically precise way to describe an equation’s solutions:

e The solution set to the equation x — 3 = 6 is the set {9}.
e The solution set for the equation x? = 4 is the set {—2,2}.
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e The solution set of sin(x) = 01is the set{stx=sn¥necZHx | x = n Vn

o The solution set for the equation sin(x) = 2 is ¢J (the empty
set), since there is no number x that satisfies the equation.

The SymPy function solve returns the solutions of equations as a list.
To solve the equation f(x) = c using SymPy, we first rewrite it as
expression that equals zero f(x) — c = 0, then call the function solve:

>>> solve(x-3 -6, x) # usage: solve(expr, var)

[9]

>>> solve(x**2 -4, x)
[-2, 2]

>>> solve(sin(x), x)
[0, pil # found only solutions in [0,2*pi)

>>> solve(sin(x) -2, x)
1 # empty list = empty set

Solution sets
In the next section we'll learn how the notion of a solution set is used
for describing the solutions to systems of equations.

Solution sets to systems of equations

Let’s revisit what we learned in Section 1.21 about the solutions

to systems of linear equations, and define their solution sets more
recisely. The solution set for the system of equations

amx + byy= ¢y,

axx + byy= ¢y,

corresponds to the intersection of two sets:

{(x,y) e R? | ax + by =c1} » {(x,y) e R? | axx + by = o}

0y %

Recall that the lines /1 and ¢, are the geometric interpretation of
these sets. Each line corresponds to a set of coordinate pairs (x,
that satisfy the equation of the line. The solution to the system

of equations is the set of points at the intersection of the two
lines {1 0 ¢5. Note the word intersection is used in two different

and also the geometric intersection of two lines.
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Let’s take advantage of this correspondence between set intersections
and_geometric_line intersections to understand the solutions_to
systems of equations in a little more detail. In the next three sections,
we'll look at three possible cases that can occur when trying to solve
only discussed Case A, which occurs when the two lines intersect at
a point, as in the example shown in Figure 1.85. To fully understand
the possible solutions to a system of equations, we need to think
about all other cases; like Case B when £; 0 (> = & as in Figure 1.86,
and Case C when (1 0.4 = {1 = £ as in Figure 1.87,

Case A: One solution. When the lines {1 and ¢, are non-parallel,
they will intersect at a point as shown in Figure 1.85. In this case, the

solution set to the system of equations contains a single point:

Ay

2

™~

Figure 1.85: Case A: The intersection of the lines with equations x + 2y = 2

and x = 1 is the point (1, 1) € R2.

Case B: No solution. If the lines {5 and ¢, are parallel then they will
never intersect. The intersection of these lines is the empty set:

() R |x+2y=2) 0 {xy) R x4y =4} =&

Think about it—there is no point (x,y) that lies on both ¢; and />.
Using algebra terminology, we say_this system of equations has
no solution, since there are no numbers x and y that satisfy both
equations.
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Ay

™~

Figure 1.86: Case B: The lines with equations x +2y = 2 and x 4 2y = 4 are
arallel and do not intersect. Using set notation, we can describe the solution

set as (J (the empty set).

Case C: Infinitely many solutions. If the lines ¢ and /¢, are parallel

and overlapping then they intersect everywhere. This case occurs
when one of the equations in a system of equations is a multiple
of the other equation, as in the case of equations x + 2y = 2 and
3x + 6y = 6. The lines ¢1 and /¢, that correspond to these equations
are shown in Figure 1.87. Any point (x,y) that satisfies x + 2y = 2
also satisfies 3x + 6y = 6. Since both equations describe the same

eometric line, the intersection of the two lines is equal to the lines:
{1 n ¥y = 01 = {5, In this case, the solution to the system of equations

is described by the set {(x,y) € R? | x + 2y = 2},

Ay

2

N

Figure 1.87: Case C: the line ¢; described by equation x +2y =2 and
the line ¢, described by equation 3x + 6y = 6 correspond to the same
line in the Cartesian plane. The intersection of these lines is the set

X, y) €ER2 [ x+2y =2} =01 = b,

We need to consider all three cases when thinking about the
solutions to systems of linear equations: the solution set can be a
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168 MATH FUNDAMENTALS

point (Case A), the empty set (Case B), or a line (Case ©). Observe
that the same mathematical notion (a set) is able to describe_the
solutions in all three cases even though the solutions correspond
to very different geometric objects. In Case A the solution is a set
that contains a single point {(x,y)}. In Case B the solution is the
empty set . And in Case C the solution set is described by the
infinite set {(x,y) € R? | ax + by = c}, which corresponds to a line ¢
is_useful for describing mathematical concepts precisely and_for

handling solutions to linear equations.
Sets are also useful for describing the solutions to inequalities,

which is what we’ll learn about next.

Inequalities

In this section, we'll learn how to solve inequalities. The solution set
to an inequality is an interval—a subset of the number line. Consider
the inequality x> < 4, which is equivalent to asking the question,
“For which values of x is x? less than or equal to 4?” The answer to
this question is the interval 22} ={x e R+—2<x<2}-22| = {x e R | —

Working with inequalities is essentially the same as working with
their endpoints. To solve the inequality x? < 4, we first solve x* = 4
to find the endpoints and then use trial and error to figure out which
part of the space to the left and right of the endpoints satisfies the
inequality.

It’s important to distinguish the different types of inequality con-
ditions. The four different types of inequalities are

o f(x) < g(x): a strict inequality. The function f(x) is always

strictly less than the function g(x).

o f(x) < g(x): the function f(x) is less than or equal to g(x).

o f(x) > g(x): f(x) is strictly greater than g(x).

o f(x) = g(x): f(x) is greater than or equal to g(x).

Depending on the type of inequality, the answer will be either a open
or closed interval.

To solve inequalities we use the techniques we learned for solv-
ing equations: we perform simplifying steps on both sides of the
inequality until we obtain the answer. The only new aspect when
dealing with inequalities is the following. When multiplying an in-
equality by a negative number on both sides, we must flip the direc-
tion of the inequality:

fr)<glx) = —flx) =gk
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Sets related to functions

A function that takes real variables as inputs and produces real num-
bers as outputs is denoted f : R — R. The domain of a function is the
set of all possible inputs to the function that produce an output: In-
puts for which the function is undefined are not part of the domain.
For instance the function f(x) = /x is not defined for negative in-
puts, so we have Dom(f) = R.

The image of a function is the set of all possible outputs of the

. . . _ 2 .
faon R FenemP i RS L by s s e

Discussion

Knowledge of the precise mathematical jargon introduced in this sec-
tion is not crucial to understanding basic mathematics. That said, I
wanted to expose you to some technical math notation here because
this is the language in which mathematicians think and communi-
cate. Most advanced math textbooks will assume you understand
technical math notation, so it’s good to be prepared.

Exercises

E1.41 Given the three sets A = {1,2,3,4,5,6,7}, B = {1,3,5}, and
C = {2,4, 6}, compute the following set expressions.

a) A\B b)BuC AANnB d)BnC
e) AUBUC f) A\(Bu() g) (A\B)uC

E1.42 Find the values of x that satisfy the following inequalities.
a)2x <3 b) —4x > 20 d2x—3| <5
d)3x+3<5x-5 e ix-2>1 f(x+1)2>9

Express your answer as an interval with appropriate endpoints.

1.24 Math problems

We’ve now reached the first section of problems in this book. The
purpose of these problems is to give you a way to comprehen-

sively practice your math fundamentals. In-thereal-world,youtt

a av

'
how to solve math problems is a very useful skill to develop. At

times, honing your math chops might seem like tough mental work,
but at the end of each problem, you'll gain a stronger foothold on all
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the subjeetstopics you've been learning about. You'll also experience
a small achievement buzz after each problem you vanquish.

a crack at these pfeb}em&wﬁae—lmssmg—a—ﬁgmﬁem
Sit-dewn-to-do-them-later practice problems today, or another

time when you're properly caffeinated. If you take-the-initiative

to-make time for mathsome math practice, you'll find—yoursel

developingtasting-develop long-lasting comprehension and true

math fluency. Without-the practice-of solving problems,however-
mmyou re extremely-likely to forget

most of what you've learned in the next month-or-two,simple-as
that—YeuH-few months. You might still remember the big ideas, but

the details will be fuzzy and faded. By solving some of the practice

roblems, you'll remember a lot more stuff. Don’t break the pace
now: with math it’s very much use lt or lose it!

a«let—mefee%ttff.—Make sure you step-away-from-the-pixels-put your
phone away while you're solving-working on the problems. You

don’t need fancy technology to do math; grab a pen and some pa-

per from the prmter and you’ll be f1r1e Po-yourself-afavour—put

IbAeA:AMgreat
mathematicians like Descartes, Hllbert Leibniz, and Noether did

most of their work with pen and paper and they did well. Spend
some time with math the way they did.

P1.1 Solve for x in the equation x2—-9=7.

P1.2 Solve for x in the equation cos ! (%) — ¢ = wt.

P1.3 Solve for x in the equation % = % + %.

P1.4 Use a calculator to find the values of the following expressions:

P1.5 Compute the following expressions involving fractions:

1 1 23
SRR b2 1% +1%
4 5
P1.6 Use the basic rules of algebra to simplify the following expressions:
1
a) ab — b2cb=3 b) ¢
a bea
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Chapter 2

Introduction to physics

2.1 Introduction

One of the coolest things about understanding math is that you will
automatically start to understand the laws of physics too. Indeed,
most physics laws are expressed as mathematical equations. If you
know how to manipulate equations and you know how to solve for
the unknowns in them, then you know half of physics already.

Ever since Newton figured out the whole F = ma thing, people
have used mechanics to achieve great technological feats, like land-
ing spaceships on the Moonand-Mars. You can be part of this science
thing too. Learning physics will give you the following superpow-
ers:

1. The power to predict the future motion of objects using equa-
tions. For most types of motion, it is possible to find an equa-
tion that describes the position of an object as a function of time
x(t). You can use this equation to predict the position of the
object at all times ¢, including the future. “Yo G! Where’s the
particle going to be at t = 1.3 seconds?” you are asked. “It is
going to be at x(1.3) metres;bro.” Simple as that. The equation
x(t) describes the object’s position for all times ¢ during the mo-
tion. Knowing this, you can plug t = 1.3 seconds into x(t) to
find the object’s location at that time.

2. Special physics vision for seeing the world. After learning
physics, you will start to think in terms of concepts like force,
acceleration, and velocity. You can use these concepts to pre-
cisely describe all aspects of the motion of objects. Without
physics vision, when you throw a ball into the air you will

181
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196 INTRODUCTION TO PHYSICS

function tr(t). Using mathematical symbols, we can represent this
relationship as

tr(t) = %{ba(t)}.

If the derivative is positive, your account balance is growing. If the
derivative is negative, your account balance is depleting.

Suppose you have a record of all the transactions on your account
tr(t), and you want to compute the final account balance at the end of
the month. Since tr(t) is the derivative of ba(t), you can use an inte-
gral (the inverse operation of the derivative) to obtain ba(t). Know-
ing the balance of your account at the beginning of the month, you
can predict the balance at the end of the month by using the follow-
ing integral calculation:

30
ba(30) = ba(0) + J tr(t) dt.
0
This calculation makes sense since tr(t) represents the instantaneous
changes in ba(t). If you want to find the overall change in the account
balance from day 0 until day 30, you can compute the total of all the
transactions on the account.

We use integrals every time we need to calculate the total of some
quantity over a time period. In the next section, we’ll see how these
integration techniques can be applied to the subject of kinematics,
and how the equations of motion for UAM are derived from first
principles.

2.4 Kinematics with calculus

To carry out kinematics calculations, all we need to do is plug the
initial conditions (x; and v;) into the correct equation of motion. But
how did Newton come up with the equations of motion in the first
place? Now that you know Newton’s mathematical techniques (cal-
culus), you can learn to derive the equations of motion by yourself.

Concepts
Recall the kinematics concepts related to the motion of objects:

e f: time

x(t): position as a function of time
v(t): velocity as a function of time
a(t): acceleration as a function of time

H{-@)ﬁﬁ(@}{i\%m% the initial conditions

first use of the new notation \eqdef
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2.5 KINEMATICS PROBLEMS 203

Hint: Differentiate the function with respect to t.

P2.7 You're on a mission to Jupiter where you design an experiment to
measure the planet’s gravitational acceleration. In the experiment, you let
go of a ball from a height of 4[m] and watch it fall to the ground. When the
ball hits the ground, its speed is 14[m/s].

1. What is the gravitational acceleration on Jupiter?
2. Find the position of the ball as a function of time.

Hint: Use the fourth equation of motion.

P2.8 You're pulling a 5[kg] cart in a straight path. The position of the cart
as a function of time is x(t) = 6t2 + 2t + 1[m].

1. Find the velocity and acceleration of the cart as functions of time.
2. Calculate the force you're using to pull the cart.

Hint: Take the derivative of the position with respect to time. Use Newton’s
27 Jaw F = ma.

P2.9 A remote controlled car has a mass of 0.5[kg]. The electric engine
pushes the car with a force of 1.0[N] starting from rest at point A.

1. Find the acceleration, velocity, and position of the car as functions of
time, assuming x = 0 at point A.

2. Calculate the velocity of the car at t = 4[s].
3. What is the car’s velocity when it is 9[m] away from point A?

Hint: Use Newton’s 2" law and integration.

P2.10 Below is an acceleration-vs-time graph of a particle. At t = 0[s], the
particle starts moving from rest at x = O[m]. The particle’s acceleration from
t = 0[s] to +=-3t = 2[s] is given by a(t) = 3t[m/s?]. After t = 2[s], the
is constant a = 6[m/s2].

ind the velocity v(2) and position x(2) of the particle at ¢ = 2[s].

. Construct the functions of time that describe the acceleration, the ve-
locity, and the position of the particle after t = 2[s].

3. How much time is needed for the particle to reach x = 49[m]?

4. At what distance from the origin will the particle’s velocity reach
12[m/s]?

FIX
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Chapter 3

Vectors

In this chapter we'll learn how to manipulate multi-dimensional ob-
jects called vectors. Vectors are the precise way to describe directions
in space. We need vectors in order to describe physical quantities like

’ /
the-objeetforces, velocities, and accelerations.
Vectors are built from ordinary numbers, which form the com-

ponents of the vector. You can think of a vector as a list of numbers,
and vector algebra as operations performed on the numbers in the list.
Vectors can also be manipulated as geometric objects, represented by
arrows in space. For instance, the arrow that corresponds to the vec-
tor ¥ = (v, vy) starts at the origin (0,0) and ends at the point (v, vy).
The word vector comes from the Latin vehere, which means to carry.
Indeed, the vector 7 takes the point (0,0) and carries it to the point

(vx, vy).

Ux X

Figure 3.1: The vector 7 = (3,2) can-berepresented-as-is an arrow in the

Cartesian plane. The horizontal component of 7 is vy = 3 —The-and the
vertical component of &is vy = 2.

This chapter will introduce you to vectors, vector algebra, and vec-
tor operations, which are very useful for solving physics problems.

207
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208 VECTORS

What you’ll learn here applies more broadly to current problems in
computer graphics, probability theory, machine learning, and other
fields of science and mathematics. It’s all about vectors these days,
so you'd best get to know them.

directions for getting
from one point to another
re

a
vectors ha
~
have

are acted
cross product

components

expressed with respect to a

is a fancy word
for describing a

coordinate system

vector operations
subtraction

scaling

vectors [———are similar to

Figure 3.2: This figure illustrates the new concepts related to vectors. As
you can see, there is quite a bit of new vocabulary to learn, but don’t be
fazed—all these terms are just fancy ways of talking about arrows.

3.1 Great outdoors

Vectors are directions for getting from point A to point B. Directions
can be given in terms of street names and visual landmarks, or with
respect to a coordinate system.

While on vacation in British Columbia, you want to visit a certain
outdoor location your friend told you about. Your friend isn’t avail-
able to take you there himself, but he has sent you directions for how
to get to the place from the bus stop:

Sup G. Go to bus stop number 345. Bring a compass.
Walk 2 km north then 3 km east. You will find X there.

This text message contains all the information you need to find X.

Act 1: Following directions

You arrive at the bus station;—stop, which is located at the top of a
hill. From this height you can see the whole valley, and along the
hillside below spreads a beautiful field of tall crops. The crops are
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so tall they prevent anyone standing in them from seeing too far;
good thing you have a compass. You align the compass needle so
the red arrow points north. You walk 2 km north, then turn right
teast)90C to the right so you're facing east, and walk another 3 km in
that direction. You arrive at X as promised by your friend.

Okay, back to vectors. In this case, the directions can be also writ-

ten as a vector aT, expressed as:
d=2km N +3km E.

This is the mathematical expression that corresponds to the direc-
tions “Walk 2 km north then 3 km east.” Here, N is a direction and
the number in front of the direction tells you the distance to walk in
that direction.

Act 2: Equivalent directions

Later during your vacation, you decide to return to the location
X because you like the vegetation that grows there. You arrive at
the bus stop to find there is a slight problem. From your position,
you can see a kilometre to the north, where a group of armed and
threatening-looking men stand, waiting to ambush anyone who tries
to cross what has now become a trail through the crops. Clearly the
word has spread about X and constant visitors have drawn too much
attention to the location.

Well, technically speaking, there is no problem at X. The problem
lies on the route that starts north and travels through the ambush
squad. Can you find an alternate route that leads to X?

"Use math, Luke! Use math!"

Recall the commutative property of number addition: a +b = b + a.
Maybe an analogous property holds for vectors? Indeed, it does:

d=2km N +3km £ = 3km E + 2km N.

The displacements in the N directions-and-the-and E directions obey
the commutative property. Since the directions can be followed in
any order, you can first walk the 3 km east, then walk 2 km north
and arrive at X again.

Act 3: Efficiency

It takes 5 km of walking to travel from the bus stop to X, and another
5 km to travel back to the bus stop. Thus, it takes a total of 10 km
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walking every time you want to go to X. Can you find a quicker
route? What is the fastest way from the bus stop to the destination?

Instead of walking in the east and north directions, it would be
quicker if you take the diagonal to the destination. Using Pythago-
ras’ theorem you can calculate the length of the diagonal. When
the side lengths are 3 and 2, the diagonal has length /32 +22 =
V9+4 = /13 = 3.60555.... The length of the diagonal route is
just 3.6 km, which means the diagonal route saves you a whole 1.4
km of walking in each direction.

But perhaps seeking efficiency is not always necessary! You could
take a longer path on the way back and give yourself time to enjoy
the great outdoors.

Discussion

Vectors are directions for getting from one point to another point. To
indicate directions on maps, we use the four cardinal directions: N,
S, E, W. In math, however, we will use only two of the cardinals—
F=#and N=+%EL = £ and N = j—since they fit nicely with the
usual way of drawing the Cartesian plane. We don’t need an S
direction because we can represent downward distances as negative
distances in the N direction. Similarly, W is the same as negative E.

From now on, when we talk about vectors we will always rep-
resent them with respect to the standard coordinate system £ and 7,
and use bracket notation,

(0x, vy)==0x X+ vy 7.

Bracket notation is nice because it’s compact, which is good since we
will be doing a lot of calculations with vectors. Instead of explicitly
writing out all the directions, we will automatically assume that the
first number in the bracket is the £ distance and the second number
is the ¥ distance.

3.2 Vectors

Vectors are extremely useful in all areas of life. In physics, for ex-
ample, we use a vector to describe the velocity of an object. It is not
sufficient to say that the speed of a tennis ball is 26m/5200 kilometres
per hour: we must also specify the direction in which the ball is mov-
ing. Both of the two velocities

91 =(20200,00 and 3 = (0,20200)

bes km/h more intuitive than m/s
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3.2 VECTORS 211

describe motion at the speed of 20m/s200 kilometres per hour; but
since one velocity points along the x-axis, and the other points along
the y-axis, they are completely different velocities. The velocity vec-
tor contains information about the object’s speed and its direction.
The direction makes a big difference. If it turns out the tennis ball is
hurtling toward you, you’d better get out of the way!
This—section’s—-main—idea—The main idea in this chapter is that

vectors are not the same as numbers. A-vector-is-a-special-kind-of

mathematical-operations—that-We'll start by defining what vectors

are. Then we’ll describe all the mathematical operations we can
perform eﬁe&efs—Wewﬂ%deﬁﬂ&mmAwgg

vector addition i + 7, vector subtraction i — ¥, vector scaling @, and
other operatlons Wemﬂ—a}s&ehseussrhﬁ&dfffefeﬁt—ﬂeﬁeﬂsefﬂe&e#
i In Section 3.4 we'll

also talk about two different kinds of vector products.

Definitions
The-A two-dimensional vector 3 R2is-equivalent-g corresponds to
a pair of numberst-={vy, vy We-ealt:

5 = (’Ux, Uy),
where v, thex-component-of-t-is the x-component of the vector and
vy is the-y-eompenent-of &
Veetor representations
its y-component. We denote the set of two-dimensional vectors as IR?,

since the components of a two-dimensional vector are specified b
two real numbers. We'll use threeequivalentways-to-denote-veectors:
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212 VECTORS

mathematical shorthand 7 € R? to define a two-dimensional vector

7. Vectors in R? can be represented as arrows in the Cartesian plane.
See the vector ¥ = (3,2) illustrated in Figure 3.1.
T i ; ’ o diff E , |

define three-dimensional vectors like the vector & = (vx,vy,v2) € R,
which has three components. Three-dimensional vectors can be
represented as arrows in a coordinate system that has three axes,
like the one shown in Figure 3.10 on page 223. A three-dimensional
coordinate_system_is similar to_the Cartesian coordinate system
you're familiar with, and includes the additional z-axis that measures

the height above the plane. In fact, there’s no limit to the number of
dimensions for vectors. We can define vectors in an n-dimensional

space; U = (v1,02,...,0y) € R”, For the sake of simplicity, we’ll

define all the vector operation formulas using two-dimensional
vectors, Unless otherwise indicated in the text, all the formulas we

ive for two-dimensional vectors 7 € R? also apply to n-dimensional

vectors 7 ¢ IR”.

Vector operations

Consider two vectors, il = (uy, uy) and ¥ = (vy, vy), and assume that
« € R is an arbitrary constant. The following operations are defined
for these vectors:

o Addition: i+ ={ttx+or iy +oy)Addition: ¥ + T = (uy + 0y, Uy 30
o Subtraction:#—& —(ix— oy #y—oy) Subtraction: # — 7 = (1 = vy, Uy -

o Detproduet-Dot product: il - T = uyvy + 10y
o Length:—Length: [il] = Vil il = ,/uf+uj. Wewillalse

sometimes-simply-The vector’s length is also called the norm of
the vector. We sometimes use the letter u to denote the length of

the vector ii. X T =ity —tzUy, Oy —Hx Uz vy — ity

Note there is no vector division operation.
For vectors in a three-dimensional space # = (1, uy, 4,) € R> and

7 = (vy,0y,02) € R3, we can also define the cross product operation
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3.2 VECTORS 213

The dot product and the cross product are new operations that you
robably haven’t seen before. We’ll talk more about dot products

and the cross products in Section 3.4. For now let’s start with the
basics.

Vector representations
We'll use three equivalent ways to denote vectors in two dimensions:

e U = (vy,vy): component notation. The vector is written as
a pair of numbers called the components or coordinates of the

vector.
* U = 01 £ vyj: unit vector notation. The vector is expressed as a
combination of the unit vectors 7 = (1,0) and 7 = (0,1).
e U = |7]4£0: length-and-direction notation (polar coordinates).
The vector is expressed in terms of its length 7] and the angle
new fig;
showcasing A
three of the y
colours in the
noBS figs styles!

Figure 3.3: The vector 7 = (vy,vy) = vyl + v, = |7]|£6.

doing vector algebra calculations since it is most compact. The unit
vector notation shows explicitly that the vector 7 corresponds to
the sum of v,i (a displacement of vy steps in the direction of the
x-axis) and v,J (a displacement of vy steps in the direction of the
y-axis). The length-and-direction notation describes the vector 7 as a

displacement of |7 steps in the direction of the angle 6. We’ll use all

three ways of denoting vectors throughout the rest of the book, and
we'll learn how to convert between them.
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216 VECTORS

Conversely, we can think of the vector 7 as being twice as long as
the vector @.

7= (3,2)

@ = (15,1)

Figure 3.6: Vectors ¢ and @ are related by the equation 7 = 2.

Multiplying a vector by a negative number reverses its direction.

Length-and-direction representation

So far, we’ve seen how to represent a vector in terms of its compo-
nents. There is also-another way of representing two-dimensional

vectors: we can speeify-a-veetor-describe the vector 7 € R? in terms
of its length {{#|{-and-its-direction—the-||7| and its direction 6—the

angle it makes with the x-axis. For example, the vector (1,1) can

also be written as 1/2/45° —This-magnitade-and-direetion-in polar

coordinates. This length-and-direction notation is useful because it
makes it easy to see the “size” of vectors. On the other hand, vec-

tor arithmetic operations are much easier to carry out in the com-

ponent notation. We—will-use-thefollowing-It’s therefore good to
know the formulas for converting between the two netatiensvector

representations.
To convert the length-and-direction vector {{#{#46-7 = ||7]|£0 into
an x-component and a y-component {#x; #7)(0y, vy ), use the formulas

1oy = ||U| cos® and ro, = |7 siné.

To convert from component notation {#;#7)-7 = (vy,vy) to length-
and-direction {{#£6;use|7]|£0, use_

tan—1 (%)

o —1( %
r=|F] = /1% + rjandy /ot + 05, 0 =tan_ rl 180° + tan™(57)
ISV X

90°
—90°

ifo, >0,
ifvy <O,




DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE


3.2 VECTORS 217

<

|7 sin®

A\ 4

|| cos 0

Figure 3.7: The x- and y-coordinates—components of a vector with length
#ane-|7|_in the direction 6 are given by rr—+cos8-vy = || cosf and

ty=rsindyy < |7]sing.

R LA
obtain-the correct We've already seen these formulas in Section 1.17
(page 122), when we learned about the transformations between
Cartesian and polar coordinates for points. The conversion procedure
for_vectors is_exactly the same, including the trickiness around
exercise E1.31 on page 128 to review the conversion operations
between Cartesian coordinates and polar coordinates.

Unit vector notation

In three-two dimensions, we can think of a vector ﬁ—é@;—,av—,ez—}
U = (vy,vy) as a command to “Go a distance vy in the x-direction ;
and a distance vy in the y-direction;and-o-in-the z-direetion-

.” To write this set of commands more explicitly, we can use mul-

t1p1es of the vectors #,7,and-%i and j. These are the unit vectors point-
ing in the x ;4-and-=-directions; respeetively:-and y directions:

P=(1,0,0, and f=(0,1,0)and = (0,0,1).

Any number multiplied by 7 corresponds to a vector with that num-

ber in the first coordinate. For example, 3#=+(3;0,0)——Similarly,
43-={0,4,0)and 5k ={0,0,5)31 = (3,0) and 4] = (0,4).

In physics, we tend to perform a lot of numerical calculations
with vectors; to make things easier, we often use unit vector notation:

Oyl 4 0y f+0. = = (0x, 0y, V2).




DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE


3.2 VECTORS 219
Now find the y-component of the net force using the sin of the angles:

Fnet,y = Wy + Ny + Ff,y
= 300sin(—90°) + 260sin(120°) + 50 sin(30°)
= —49.38.
Combining the two components of the vector, we-you get the final
answer:
FnetEf (Fnet,x/ Fnet,y)
= (—86.7,—49.8) = —86.71 —49.8]
=100£209.9°.,

where you found the angle 209.9° by computing tan—!(49.8/86.7

and adding 180° since the x-component is negative. Bam! Just like
that you're done, because you overstand them vectors!

Relative motion example

A boat can reach a top speed of 12 knots in calm seas. Instead of
cruising through a calm sea, however, the boat’s crew is trying to sail
up the St-Laurence river. The speed of the current is 5 knots.

If the boat travels directly upstream at full throttle 127, then the
speed of the boat relative to the shore will be

127 - 51 =71,

since we must “deduct” the speed of the current from the speed of
the boat relative to the water. See the vector diagram in Figure 3.8.

12

v

Figure 3.8: A boat travels with speed 12 knots against a current of 5 knots.

If the crew wants to cross the river perpendicular to the current
flow, they can use some of the boat’s thrust to counterbalance the
current, and the remaining thrust to push across. The situation is
illustrated in Figure 3.9. In what direction should the boat sail to
cross the river? We are looking for the direction of 7 the boat should
take such that, after adding in the velocity of the current, the boat
moves in a straight line between the two banks (in the j direction).
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Figure 3.9: Part of the boat’s thrust cancels the current.

Let’s analyze the vector diagram. The opposite side of the tri-
angle is parallel to the current flow and has length 5. We take the
up-the-river component of the speed-velocity 7 to be equal to 5i, so
that it cancels exactly the —57 flow of the river. The hypotenuse has
length 12 since this is the speed of the boat relative to the surface of
the water.

From all of this we can answer the question like professionals.
You want the angle? Well, we have that % = 15—2 = sin(f), where 6
is the angle of the boat’s course relative to the straight line between
the two banks. We can use the inverse-sin function to solve for the
angle:

0 =sin~ () = 24.62°.

The across-the-river component of the velocity can be calculated us-
ing vy = 12cos(0) = 10.91, or from Pythagoras’ theorem if you prefer

vy = /|72 — 02 = V122 — 52 = 10.91.

Vector-dimensionsDiscussion

The-mest-common—types—of-vectors—are-two-dimensional—veetors
(like the-ones We did a lot of hands-on activities with vectors in this

section and skipped over some of the theoretical details. Now that
ou’ve been exposed to the practical side of vector calculations, it’s
worth clarifying certain points that we glossed over.

Vectors vs. points

We used the notation R? to describe two kinds of math objects: the
set of points in the Cartesian plane );-and-three-cimensional-veectors

{directions—in-3D-space)—2D-and-3D—vectors—are—easier—to—work
with-because-we-can-visualize-themand draw-them-in-diagrams—In
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. . berof dimensions. ]
of-the set of vectors in a #-dimensional-veetoris-two-dimensional
space._The point P = (Py Py) and the vector 7 = (vy, vy) are both
represented by pairs of real numbers, so_we_ use_the notation
PeR? and Ge R’ to describe them. This means that a pair of
numbers (3, 2) € IR could represent the coordinates of a point, or the
components of a vector, depending on the context.

Let’s take a moment to review the definitions of points and
vectors and clarify the types of operations we can perform on them:

e Space of points R?: the set of points P = (P, P,) corresponds

to locations in the Cartesian plane. The point P = (P,, P,

corresponds to_the geometric instructions: “Starting at_the
origin (0,0), move P units along the x-axis and Py units along
the y-axis.” The distance between points P and Q is denoted
d(P.Q).

o Vector space R the set of vectors 7= (vy,0y) describes
displacements in the Cartesian plane. The vector 7 = (vy,vy)
corresponds to the instructions: “Starting anywhere, move vy
units along the x-axis and v, units along the y-axis.” Vectors
can be combined and manipulated using the vector algebra
operations i + U, # — T, &l 1 -7, and 7).

Note the geometric instructions for points and vectors are very
similar; the only difference is the starting point. The coordinates of a
point (Py, Py) specify a fixed position relative to the origin (0,0), while
the components of a vector (vy,9y) describe a relative displacement
Let’s look at some examples of calculations that combine points
and vectors. Consider the points P and Q in the Cartesian plane, and
the displacement vector Upg between them. The displacement vector
Q and is defined by the equation:_

vpg = Q- P.

This equation says that subtracting two points produces a vector,
which make sense if you think about it—the “difference” between
two points is a displacement vector.

We can use the displacement vector dpg in calculations like this:

P+pg = Pt(v,02,...,0uQ = P)ER" = Q.
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shows that “Starting at the point P and moving by 7pg brings us to
The above equations use addition and subtraction operations
between a_mix of points and vectors. This is rather unusual:
normally we only use operations like “+” and "-” between math
objects of the same kind. In this case, we're allowed to mix points
and vectors because they both describe “move instructions” of the
same kind.

Let’s keep going. What other useful calculations can we do by
combining points and vectors? Suppose we wanted to find the
midpoint M that lies exactly in the middle between points P and
Q. We can find the midpoint M using the displacement vector Tpg
and some basic vector algebra. If starting from P and moving by
TUpg brings us all the way to the point Q, then starting from P and

moving by 13ps will bring us to the midpoint: M = P + 1&pa.

Coordinate system

The mathematical bridge between points and vectors allows us to
use vector_ techniques to solve geometry problems. By learning
to describe geometric objects like points, lines, and circles using
vectors, we can do complicated geometry calculations using simple
algebraic manipulations like vector operations. This exemplifies a
general pattern in mathematics: applying techniques developed in
one domain to solve problems in another domain,

Example You come to class one day and there’s a surprise quiz
that asks you to write the formula for the distance d(P, Q) between
two 01r1ts P = (P, P,) and zﬂ*es—a&%heﬁeefdﬁta%esyskefﬁ—aﬁé

ﬁ—aﬁwffeeﬁvaﬂeﬁ%eeefdtna%&sys{em,—weﬁa*feﬁet—ef—%hfee
perpendicttar axes;-Q = . You don’t remember ever learnin

about such a formula and feel caught off guard. How can the teacher
ask for a formula they haven't covered in class yet? This seems
totally unfair!

After a minute of stressing out, you take a deep breath, come back
to your senses, and resolve to give this problem a shot. You start by
sketching a coordinate system, placing points P and aset-of-Q in
it, and drawing the line that connects the two points. What is the
formula that describes the length of this line?
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which makes you think that trigonometry could somehow be used to
find the answer. Unfortunately, trying to remember the trigonometry
take this as a sign that you should look for other options. In math,
By a fortunate coincidence, you were recently reading about the
connection between points and vectors, and specifically about the
displacement vector pg = Q — P. The line in your sketch represents
the vector Tpg. You realize that the distance between the points P
and Q is the same as the length of the vector Tpg. You remember the

formula for the length of a vector 7 is | 7] = 1 /92 + v2 and you know

the formula for the displacement vector is Upg = — P — P,

—

so you combine these formulas to obtain the answer: d(P. = || =

One more win for the “don’t worry and try it” strategy for solvin
math problems!

Vectors in three dimensions

A_three-dimensional coordinate system consists_of three axes:
the x-axis, the y-axis, and the z-axis. The three axes point in
perpendicular directions to each other, as illustrated in Figure 3.10.
Look around you and find a corner of the room you’re in where two
walls and the floor meet. The x-axis and the y-axis are the edges
where the floor meets the walls. The vertical edge where the two

Figure 3.10: A three-dimensional coordinate system with x, y, and z axes.

The vector 7 = (vy, v,,7-) € R3 describes the following displacement

instructions: "Move vy units in the direction of the x-axis, then move

vy along the y-axis, and finally move v, in the direction of the z-axis.”

In three dimensions, there are three unit vectors {i7j-#j-that-point
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aleng-that describe unit steps in the direction of each of the three
axis-directions—Every-vectorisimplicitly-defined-axes:

t=(1,0,0, 7=(0,1,00 and k=(0,0,1).

We can therefore describe the vector 7 = (vy, vy, v;) in terms of this

— N ~

7
"

7 ig AN 1;1,11,1\?

vectors as U = vy i + v,] + vsk.

High-dimensional vectors

The most common types of vectors you'll encounter in math and
physics are two-dimensional and three-dimensional vectors. In other
fields of science like genetics and machine learning, it’s common to
see vectors with many more dimensions. For example, in machine
learning we often represent “rich data” like images, videos, and text
as vectors with thousands of dimensions.

An example of an n-dimensional vector is

The vector algebra operations you learned in this section also appl
to these high-dimensional vectors.

Vectors and vector coordinates

One final point we need to clarify is the difference between real-world
vector quantities like the velocity of a tennis ball 7 and its mathematical
representation as a coordinate vector (vy, vy, vz). If you know the
coordinate vector (vx, vy 0z) then you know what the real-world

Let’s say you're doing a physics research project on tennis serves.
You_define an xyz-coordinate system for the tennis court, which
allows you to represent the ball’s velocity 7 as a triple of components
(0x, 0y, 0z) interpreted as: “The ball is moving with velocity vy units
in the x-direction, %heﬁ—meveélrg%umts in the y-direction, and finally
moeve2-y; units in the z-direction.” H-is-simplerto-express-these
direetions-as—o=+3;4,2),-while remembering that the numbers—in
the-bracket-measure-distancesrelative to-

Suppose you want to describe the velocity vector 7 to a fellow
you find the values 7 = (60,3, —2), which you know were measured
in metres per second. You send this message:
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3.2 VECTORS 225
\DIFadd{The velocity is (60,3,-2) measured in metres per second. }

A few minutes later the following reply comes back:

\DIFadd{Wait whaaat? What coordinate system are you using? }

Indeed the information you sent is incomplete. Vector components
depend on the coordinate system in which the vectors are represented.

The triple of numbers (60,3, —2) only makes sense once you know
the directions of the axes in the xyz-coordinate system. Realizing

our mistake, yvou send a text with all the required information:

\DIFadd{Using the coordinate system centred at the south post of
the net, with the x-axis pointing east along the court,

the y-axis pointing north along the net, and the z-axis
pointing up, the velocity is (60,3,-2) in metres per second. }

A few seconds later, you get the reply:
\DIFadd{0OK got it now. Thx! }

This hypothetical situation illustrates the importance of the coordinate
systems for describing vectors. If you don’t know what the coordinate
system is, knowing the coordinates (vy, vy, v;) doesn’t tell you much.
Only when you know the directions of the unit vectors % ], and k can
It turns out, using the xyz-coordinate system ane-the-with the
three vectors {1, f, k} is just one of many p0551ble ways we can repre-
sent vectors. We can represent a vector 7 as coefficients-coordinates
(v1,v2,v3) with respect to any basis {é1, é;, 63} asfollows—using the
expression U = 016y + 028, + v3¢3—Whatis, which corresponds to the
instructions: “Move v; units in the direction of ¢, move v, units in

the direction of é;, and move v3 units in the direction of é3.”
What's a basis, you ask? I'm glad you asked, because this is the

subject of the next section.
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3.3 Basis

One of the most important concepts in the study of vectors is the
concept of a basis. Consider the three-dimensional vector space R.
A basis for R3 is a set of vectors {¢1, &>, 3} that can be used as a coordi-
nate system for IR3. If the set of vectors {&1,é,,¢3} is a basis, then you
can represent any vector 7 € R® as eeefficientscoordinates (v1, 02, v3)
with respect to that basis:

U = 0181 + 028y + V3é3.

The vector 7 is obtained by measuring out a distance v; in the &;
direction, a distance v in the é, direction, and a distance v3 in the é;
direction.

You are already familiar with the standard basis {i, ], IAc}, which is
associated with the xyz-coordinate system. You know that any vector
7 e R3 canbe expressed as a triple (vy, vy, v;) with respect to the basis
{1, 7,k} through the formula & = vyf + vyf + v;k. The whole point of
this section is to let you know that other bases (coordinate systems)
exist, and to get you into the habit of asking, “With respect to which
coordinate system?” every time you see a coordinate vector (a,b,¢)..

An analogy

Let’s start with a simple example of a basis. If you look at the HTML
source code behind any web page, you're sure to find at least one
mention of the colour stylesheet directive such as color:#336699;.
The numbers should be interpreted as a triple of values (33, 66,99),
each value describing the amount of red, green, and blue needed to
create a given colour. Let us call the colour described by the triple
(33,66,99) CoolBlue. This convention for colour representation is
called the RGB colour model and we can think of it as the RGB basis.
A basis is a set of elements that can be combined together to express
something more complicated. In our case, the R, G, and B elements
are pure colours that can create any colour when mixed appropri-
ately. Schematically, we can write this mixing idea as

CoolBlue = (33,66,99)rcs = 33R + 66G + 99B,
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where the coefficientscomponents determine the strength of each
colourcomponent—. To create the colour, we combine its components
as symbolized by the + operation.

The cyan, magenta, and yellow (CMY) colour model is another
basis for representing colours. To express the “cool blue” colour in
the CMY basis, you will need the following eoefficientscomponents:

(33,66,99)rgp = CoolBlue = (222,189, 156)cpry = 222C + 189M + 156Y.

The same colour CoolBlue is represented by a different set of
coetfieientscomponents when the CMY colour basis is used.

Note that a triple of coefficients-by-itself-doesnet-components
by itself doesn’t mean anything unless we know the basis being
used. For example, if we were to interpret the triple of coordinates
components (33,66,99) with respect to the CMY basis, will-we
would obtain a completely different colour, which would not be cool
at all.

A basis is required to convert mathematical objects like the triple
(a,b,c) into real-world ideas like colours. As exemplified above, to
avoid any ambiguity we can use a subscript after the bracket to indi-
cate the basis associated with each triple of eoefficientscomponents.

Writing (222,189,156 and (33,66,99 clarifies which basis to
use for each triple of components.

Discussion

It “‘sswould be hard to over-emphasize the importance of the basis—
the coordinate system you will-use to describe vectors. The choice
of coordinate system is the bridge between real-world vector quan-
tities and their mathematical representation in terms of components.

Every time you solve-a—problem—with—veetorsstart a new problem

that involves vector calculations, the first thing you should do is

draw-a-coordinate-system—Alwayskeep-in-mind-the-coordinate
system-you're-using when-computing choose the coordinate system
you want to use, and indicate it clearly in the diagram.

Using a non-standard coordinate system can sometimes simplify
study the motion of a block sliding down an incline with velocity 7,
as illustrated in Figure 3.11. Using the standard xy-basis, the velocity
vector is represented as (v .cos 8, —vsin#)yy, which has components
in both the x- and y-directions and requires using trigonometric
functions. If instead you use the non-standard x'y’-basis, the com-
ponents of veetorsthe velocity will be (v,0),,. Note the velocity
only has a component along the x’-direction, which will simplify all
subsequent calculations.
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y I ¥’
X 7&
_1,/
g 7
0 6

Figure 3.11: The vector 7 is described by the coordinates (v cosf, —vsin ¢
with respect to the standard basis xy. The same vector 7 is described by the
coordinates (v,0),,,, with respect to the “tilted” basis x’1/’.

Recall the polar coordinates representation we used to describe

oints rZ60 and vectors |7]Z£60 in two dimensions (see page 216).
This is another example of an alternative coordinate system that’s
useful for describing rotations and circular motion. Note certain
textbooks will write the polar coordinates of the vector ¥ = ||v]|£6
using the bracket notation (||7],8), which can easily be confused

with the Cartesian coordinates of the vector (v, v,). Indicating the

coordinate system as a subscript after the bracket can avoid an
confusion: 7 = (|7],0).0 = (Vy,Vy) vy

Links

[ Vectors and vector operations explained by 3BluelBrown |
https://www.youtube.com/watch?v=fNk_zzaMoSs

[ More vector illustrations and definitions from Wikipedia

https://en.wikipedia.org/wiki/Euclidean_vector

Exercises

E3.1 Given the vectors 77 = (2,1), o = (2,—1), and U3 =
calculate the following expressions:

E3.2 Express the following vectors as components:
a) 77 = 10£30° b) 7> = 12/£-90° c) 73 = 3/170°

E3.3 Express the following vectors in length-and-direction notation:

a) iy = (4,0 b) i, = (1,1 iz =(-13
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3.4 Vector products

of -their-eomponents—(oyvy, oytvy, vzwz), but-thistype-of produet
is—noet-used—Instead,—well-We'll now define the dot product and
the cross product—wh}eh—&ﬁew—ﬂs—%eapeffefm—ﬂse&ﬂ»geeme%ﬂe
operations—with—_ two_geometric operations_useful for working

with three-dimensional vectors.

Dot product

The dot product takes two vectors as inputs and produces a single,
real number as an output:

SRExRP > R

The dot product between two-veectors-the vector ¥ = (v, vy,v;) and
the vector @ = (wy, wy, w;) can be computed using either the alge-

braic formula,
T = = 0yxWy + VyWy + VW,

or the geometric formula,

=

v- 0= = [0]|@]cos(g), .
where ¢ is the angle between the two vectors. Note the value of the
dot product depends on the vectors’ lengths and the cosine of the
angle between them.

The name dot product comes from the symbol used to denote it. It
is also known as the scalar product, since the result of the dot product
is a scalar number—a number that does not change when the basis
changes. The dot product is also sometimes called the inner product.

We can combine the algebraic and the geometric formulas for the
dot product to obtain the formula,

—

7.0 UxWy + UyWy + VW,

-1
cos(@) = iz = = and ¢ = cos™ (cos(¢)).
|9 l] Gl
This formula makes it possible to find the angle between two vectors
if we know their components.
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The geometric factor cos(¢) depends on the relative orientation
of the two vectors as follows:

o If the vectors point in the same direction, then
cos(¢) = cos(0°) =1,s07-w = |7]|||@0].

o If the vectors are perpendicular to each other, then
cos(@) = cos(90°) = 0,s07- @ = 0.

o If the vectors point in exactly opposite directions, then
cos(¢@) = cos(180°) = —1,s0 ¥ - w = —|7|||w0]|.

The dot product is defined for vectors of any dimension; as long as
two vectors have-the same number-of compenentsare defined with
respect to the same basis, we can compute their-dot-produet-the dot
product between them.

Cross product

The cross product takes two vectors as inputs and produces another
vector as the output:

«:RPxR* — R
The cross product of two vectors is perpendicular to both vectors:

¥ x @ = { a vector perpendicular to bothGand @ } € RR>.

If you take the cross product of one vector pointing in the x-direction
with another vector pointing in the y-direction, the result will be a
vector in the z-direction: 7 x j = k. The name cross product comes
from the symbol used to denote it. It is also sometimes called the
vector product, since the output of this operation is a vector.

The cross products of individual basis elements are defined as

ixj=k  jxk=1  kxi=}
Look at Figure 3.10 on page 223 and imagine the vectors i, 7, and k
ointing along each axis. Try to visualize the three equations above.

The cross product is anticommutative, which means swapping the
order of the inputs introduces a negative sign in the output:
ixt=—k  kxj=-i, ixk=-}
It’s likely that, until now, the products you've seen in math have

been commutative, which means the order of the inputs doesn’t mat-
ter. The product of two numbers is commutative ab = ba, and the
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dot product of two vectors is commutative ii - 7 = T - if, but the cross
product of two vectors is anticommutative 7 x @ = X .

Given two vectors 7 = a.i +ayj+ ak and b = byi+b,j+b k, their

cross product is calculated as

SIS

ax EN = N(aybz - azbyL)it\(asz - axsz)]At\(axby — aybx)fc.

T Lot hasaleneth that onaltotl

|@ > B] = |@||b] sin(g)-

The-direetion—ofthe-veetor(#»b)-Computing the cross product
requires a specific combination of multiplications and subtractions
of the input vectors’ components. The result of this combination is
the vector @ x b which is perpendicular to both @ and b.

The length of the cross product of two vectors is proportional to
the sine of the angle between the two vectors:

12 x Bl = 2Bl sin(9).

The right-hand rule

Consider the plane formed by the vectors 4 and b. There are actually
two vectors perpendicular to this plane: one above the plane and one
below the plane. We use the right-hand rule to figure out which of
these vectors corresponds to the cross product @ x b.

Make a fist with your right hand and then extend your thumb,
first finger, and middle finger. When your index finger points in the
same direction as the vector 7 and your middle finger points in the
direction of E, your thumb will point in the direction of @ x b. The
relationship encoded in the right-hand rule matches the relationship
between the standard basis vectors: 7 x ] = k.

Links

[ A-nice-illustration-Nice illustrations of the cross product ]
http://1lucasvb.tumblr.com/post/76812811092/
https://www.youtube.com/watch?v=eubi7WJeinw
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The phase, also known as the argument of the complex number
z = a + bi is given by the formula

tan_l(%) ifa>0,
b .
__ — atan2(b,a) = tan !(b/a). 4 7T AD (2) ifa<o,
p,==argz = atan2(b,a)_ an " (b/a) x Y a = Oandb > C
-z ifa=0and b <0
The phase corresponds to the angle that z forms with the real
axis. i i ;
. 1 ; s
the-funetion—tan— —always-returns numbers—in-the-range {5, F

complexnumbers-with-a—~<-0

We previously saw this complicated-looking formula with four
cases when we talked about converting from Cartesian coordinates
to polar coordinates for points (Section 1.17) and vectors (Section 3.2).
When a certain formula comes up three times in a math book, this
should tell you the author really wants you to know it. _Seriously,
do me a favour and revisit the exercise E1.31 (page 128) and the
exercise E3.3 (page 228).

Seme-programming-languages-Computer algebra systems pro-
vide the two-input math-funetionrinverse tangent function atan2y5x)that
correctly-computes-the-angle-that-the-veetor{(34/ - makes-with-the
like-two-dimensional-veetors,—you—ean—use—, which is the easiest
way to calculate the phase ¢, for the complex number z = 4  bi.
The function atan2 to-compute-theirphase-handles all four cases
automatically and always computes the correct phase ¢

* %%

In addition to the vector-like preperties—of—operations we can
perform on complex numbers, like computing their magnitude and

phase, we can also perform other operations with-on complex num-
bers that are not defined for vectors. The set of complex numbers
C is a field. This means, in addition to the addition and subtraction
operations, we can also perform multiplication and division with
complex numbers.

Multiplication

The product of two complex numbers is computed using the usual
rules of algebra:

(a+bi)(c+di) = (ac — bd) + (ad + bc)i.
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3.5 COMPLEX NUMBERS 235

2 \ac 2 bd) 1 (ad + bo)is

In the polar representation, the product formula is

(P£P)(qLyp) = pal(p + ).

To multiply two complex numbers, multiply their magnitudes and
add their phases.

Example Verify that zZ = a® + b? = |z]%.
Division
Let’s look at the procedure for dividing complex numbers:

(a+bi) (a+bi)(c—di) L (c—di) . Cc+di
crd) ~ (cxd)c—ay ey T @rbign
In other words, to divide the number z by the complex number s,
compute Fand-s{2-—=s55 and |s|> = s5 and then use

55
P s

z/s =1z

. 5 s . .
You can think of ———= as being equivalent to s 1.

[s|> tst>

Cardano’s example One of the earliest examples of reasoning in-
volving complex numbers was given by Gerolamo Cardano in his
1545 book Ars Magna. Cardano wrote, “If someone says to you, di-
vide 10 into two parts, one of which multiplied into the other shall
produce 40, it is evident that this case or question is impossible.” We
want to find numbers x; and x; such that x; + x, = 10 and x1x, = 40.
This sounds kind of impossible. Or is it?
“Nevertheless,” Cardano said, “we shall solve it in this fashion:

X1 =5+ \/ﬁiimandiwxz =5-— \/ﬁi.”

When you add x; + x; you obtain 10. When you multiply the two
numbers the answer is

X1xy = (5 + Vﬁi) (5 - \/ﬁi)

— 25— 5v/15i + 5v/15i — V15°i2 = 25 + 15 — 40.
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236 VECTORS

Hence 5 + v/15i and 5 — v/15i are two numbers whose sum is 10 and
whose product is 40.

Example 2 Compute-Let’s compute the product of i-and-—1 —Beth

and—TI-have-a-magnitude-of I-but-different-phases—The phase
of-and i. The answer is obviously —i, but let’s look at this simple
calculation geometrically. The polar representation of the number
iis WMMWM%WW%W
corresponds to adding 5 +90%)-while—i-has-phase7#-(180%)—The

(i) (-1) = (1£F)14r) = 1L (F+m) = 1L = —i.

Multiplieation-to the phase of the number:

In other words, multi lication by i is effectively—a—rotation—by
equivalent to applying a 7 (90°) to-theleftcounterclockwise rotation

in the complex plane. We can therefore interpret the answer

= —i as the com lex number —1 = 1/ experiencing a =

rotation to arrive at 1/ (mm + Z) = 1/3% = —

Example 3 Find the polar representation of z = —3 —i and compute
z°. Let’s denote the polar representation of z by z = rZ¢ as shown
in Figure 3.14. We find r = V32 + 12 = v/10 and ¢ = tan_l(%) + 7=

0.322 + 7t. Using the polar representation, we can easily compute z°:

26 = 1%/ (69) = (V10)°£6(0.322 + 1) = 10°£1.932 + 671 = 10°£1.932.

Note we can ignore multiples of 277 in the phase. In—component
form,~We thus find the value of z° is equal+e-1000cos(1.932) +
1000sin(1.932)i = —353.4 + 935.5i.

Figure 3.14: The complex number z = 3 — i has magnitude r = /10 and
phase ¢ = 0.322 + 7 = 3.463.
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3.5 COMPLEX NUMBERS 237

Fundamental theorem of algebra

The selutions-—to-any pelynemial-equation-ag+arx—+—ta7x—"0
are—of theform—fundamental theorem of algebra states that an
olynomial of degree n,

z = a+ bi.

Inparticular-anypelynomiat P(x)of n'l degree P(x) = a,x" + - + a3x> + 41X -
can be written as

P(x) = an(x — z1)(x = 22) -+ (x — za),

~

where z; € C are the polynomial’s es#iplex roots—roots. In other
words, the equation P(x) = 0 has 1 solutions: the complex numbers
WBefcre today, you might have said the equation
x#2+1=6-x% + 1 = 0 has no solutions. Now you know its solutions
are the complex numbers z; =i and z; = —i.

The theorem is “fundamental” because it tells us wewon’tever’ll
never need to invent any-numbers “fancier” set-of-than the complex
numbers to solve polynomial equations. Reeall-To understand why
this is important, recall that each set of numbers is associated with a

different class of equations. Figure 1.2 on page 8 shows the nested
containment structure of the number sets N, Z, Q, R, and C. The

natural numbers IN appear as solutions of the equation m +n = x,
where m and n are natural numbers (denoted m, n € IN). The integers
Z are the solutions to equations of the form x + m = n, where m,n €
IN. The rational numbers Q are necessary to solve for x in mx = n,
with m,n € Z. To find the solutions of x?> = 2, we need the real num-

bers R. The-process-of requiring-new-types-of numbersfor-selving
more-complicated—types-of-equationsstops—at-And in this section,
we learned that the solutions to the equation x> = —1 are complex
numbers C;-any-polynomial-equation—ne-, At this point you might
be wondering if you're attending some sort of math party, where
mathematicians write down complicated equations and—just for the
fun of it—invent new sets of numbers to describe the solutions to
these equations. Can this process continue indefinitely?

Nope. The party ends with C. The fundamental theorem of

algebra guarantees that any polynomial equation you could come
up with—no matter how complicated it is—has solutions that are

complex numbers C.

Euler’s formula

Youalready-know-cosf-is-ashifted-version-of sinf-so-it'sclearthese
twofunctions-arerelated-It turns out the exponential function is alse
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related-to-sin-and-cosrelated to the functions sine and cosine. Lo and
behold, we have Euler’sformulaEuler’s formula:
e = cosf +isinf.

Inputting an imaginary number to the exponential function outputs
a complex number that contains both cos and sin. Euler’s formula
gives us an alternate notation for the polar representation of complex
numbers: z = |z| L@, = |z|e'?=.

If you want to impress your friends with your math knowledge,
plug 6 = 7t into the above equation to find

e = cos(rt) + isin(m) = —1,

which can be rearranged inte-theform,—e™+1—0—This-equation
to obtain_the equation ¢” +1=0. _The equation ¢ +1=0 is
called Euler’s identity, and it shows a relationship between the five
most important numbers in all of mathematics: Euler’s number
e=271828..., m = 3.14159.. ., the imaginary number i, 1, and zero.
It’s kind of cool to see all these important numbers reunited in one
equation, don’t you agree?

One way to understand the equation ¢'” +1 = 0, is to think of '
as the polar representation of the complex number z = 1¢' = 1£7,
which is the same as 1 rotated counterclockwise by 7z radians (180°)

in the complex plane. We know ¢/ =1/71 = —1and soe™ +1 = 0.

De Moivre’s formula

By replacing 6 in Euler’s formula with n6, we obtain de Moivre’s
formula:
(cosB +isin6)" = cosnb + isinnb.

De Moivre’s formula makes sense if you think of the complex num-
ber z = ¢ = cos + isin, raised to the n™ power:
(cosB +isinB)" = 2" = ()" = " = cosn + i sinnd.

Setting nn = 2 in de Moivre’s formula, we can derive the double angle
formulas (page 117) as the real and imaginary parts of the following
equation:

(cos? 0 —sin? 0) + (2sin @ cos B)i = cos(26) + sin(26)i.
Links

[ Mini—tutorial-on—the—complex—numbers—Intuitive proof of the
fundamental theorem of algebra ]
https://www.youtube.com/watch?v=shEk8sz100w
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P3.8 Find a unit vector that is perpendicular to both if = (1,0,1) and 7 =
(1,2,0).
Hint: Use the cross product.

P3.9 Find a vector that is orthogonal to both ii; = (1,0,1) and il = (1,3,0),
and whose dot product with the vector 7 = (1,1, 0) is equal to 8.

P3.10 Compute the following expressions:

a) v/—4 b) 2+3i Q) 3 (2 +i)e 3
2+2i
P3.11 Solve for x € C in the following equations:
a)x? = —4 b) vx = 4i
Ax2+2x+2=0 d)x*+4x2+3=0
Hint: To solve d), use the substitution u = x2.
P3.12 Given the numbers z; =2 +1,2zp =2 —1i,and z3 = —1 — i, compute
a) |Zl‘ b) A C) 212723
Z3

P3.13 A real business is a business that is profitable. An imaginary business
is an idea that is just turning around in your head. We can model the real-
imaginary nature of a business project by representing the project state as a
complex number p € C. For example, a business idea is described by the
state p, = 100i. In other words, it is 100% imaginary.

To bring an idea from the imaginary into the real, you must work on it.
We’ll model the work done on the project as a multiplication by the complex
number e~ " where I is the number of hours of work and « is a constant
that depends on the project. After i hours of work, the initial state of the
project is—transformed-asfoHows—p, has become ps = e~ ™tp,. Working
on the project for one hour “rotates” its state by —a radrad, making it fess
imaginary and-morereakmore real and less imaginary.

If you start from an idea p, = 100i and the cumulative number of hours
invested after t weeks of working on the project is h(t) = 0.2t?, how long
will it take for the project to become 100% real? Assume a = 2.904 x 1073.
Hint: A project is 100% real if Re{p} = p.

P3.14 A farmer with a passion for robotics has built a prototype of a robotic
tractor. The tractor is programmed to move with a speed of 0.524 km/h and
follow the direction of the hour-hand on a conventional watch. Assume the
tractor starts at 12:00 p.m. (noon) and is left to roam about in a field until 6:00
p-m. What is the shape of the trajectory that the tractor will follow? What is
the total distance travelled by the tractor after six hours?
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The radius of the trajectory traced by someone located at a latitude
of 45° is given by r = Rcos(45°) = 4.5025 x 10°[m], where R =
6.3675 x 10°[m] is the radius of the Earth. Though it may not feel like
you're moving, you are actually hurtling through space at a speed of

v = rw = 4.5025 x 10° x 7.2921 x 107> = 328.32[m/s],

which is equal to 1181.95[km/h]. Imagine that! You can attempt to
present this fact if you are ever stopped by the cops for a speeding
infraction: “Yes officer, I was doing 130[km/h], but this is really a
negligible speed relative to the 1200[km /h] the Earth is doing around
its axis of rotation.”

Three dimensions

For some problems involving circular motion, we’ll need to consider
the z-direction in the force diagram. In these cases, the best approach
is to draw the force diagram as a cross section thatis-perpendicular
to the tangential direction. Your diagram should show the 7 and 2
axes.

Using the force diagram, you can find all forces in the radial and
vertical directions, as-well-as-and solve for accelerations 4, ;-and a,.

2
Remember, you can always use the relation a, = %, which connects
the value of a, with the tangential velocity vy and the radius of rota-
tion R.

Example Japanese people of the future design a giant racetrack for
retired superconducting speed trains. The shape of the race track is
a big circle with radius R = 3[km]. Because the trains are magnet-
ically levitated, there is no friction between the track and the train
#s = 0, ur = 0. What is the bank angle required for the racetrack so
trains moving at a speed of exactly 400[km/h] will stay on the track
without moving laterally?

We begin by drawing a force diagram that shows a cross section
of the train in the 7 and Z directions (see Figure 4.16). The bank angle
of the racetrack is 6. This is the unknown we’re looking for. Be-
cause of the frictionless-ness of levitated superconducting suspen-
sion, there cannot be any force of friction Pf. Therefore, the only

forces acting on the train are its weight W and the normal force N.
The next step is to write two force equations that represent the 7
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N

mg

R

Figure 4.16: Foree diagram-Diagram showing the forces acting on a magnet-
ically levitating train that is travelling on a circular racetrack of radius R and
bank angle 6.

and 2 directions:
2
7t

v 2
ZFr:NsinQ:mar:mR —t

v
Nsinf =
= sin mR,

ZFZ=NCOSQ—mg=07N = Ncosf = mg.

Note how the normal force N is split into two parts. The verti-
cal component counterbalances the train’s weight so it doesn’t slide
down the track. The component of N in the #-direction is the force
that causes the train’s rotational motion.

We want to solve for 0 in the above equations. It's a common
trick to solve equations containing multiple trigonometric functions
by dividing one equation by the other. Doing this, we obtain

02

; v 2
Nsinf _ mg = tanf = L.
Ncos  mg Rg
2 10002
The final answer is § = tan_l(;—lo = tan_l(m =22.76°. If

the angle were any steeper, the trains would fall toward the track’s
centre. If the bank angle were any shallower, the trains would fly off
to the side. The angle 22.76° is just right.

Discussion
Radial acceleration

In the kinematics section we studied problems involving linear accel-
eration, in which an acceleration 4 acted in the direction of the veloc-
ity, causing a change in the magnitude of the velocity 7.

Circular motion deals with a different situation in which the ob-
ject’s speed |7| remains constant while its velocity 7 changes direc-
tion. At each point along the circle, the object’s velocity points along
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Chapter 5

Calculus

Calculus is useful math. We use calculus to solve problems in physics,
chemistry, computing, biology, and many other areas of science. You
need calculus to perform the quantitative analysis of how functions
change over time (derivatives), and to calculate the total amount of
a quantity that accumulates over a time period (integrals).

The language of calculus will allow you to speak precisely about
the properties of functions and better understand their behaviour.
You will learn how to calculate the slopes of functions, how to find
their maximum and minimum values, how to compute their inte-
grals, and other tasks of practical importance.

5.1 Introduction

In Chapter 2, we developed an intuitive understanding of integrals.
Starting with the knowledge of an object’s acceleration function over
time, we used the integration operation to calculate the object’s ve-
locity function and its position function. We’ll now take a closer look
at the techniques of calculus using precise mathematical statements,
and study how these techniques apply to other problems in science.

A strong knowledge of functions is essential for your understand-
ing of the new calculus concepts. I recommend revisiting Section 1.12
(page 75) to remind yourself of the functions introduced therein. I
insist on this. Go! Seriously, there is no point in learning that the
derivative of the function sin(x) is the function cos(x) if you don't
have a clue what sin(x) and cos(x) are.

Before we introduce any formal definitions ;fermulasor-derivationsand
formulas, let’s demonstrate how calculus is used in a real-world ex-
ample.

331
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use the variables u, t, and 7 to denote the inputs. The function’s out-
putis denoted f(x) and is usually identified with the y-coordinate in
graphs.

The derivative function, denoted f’(x), % f(x), %, or Z—Z, describes
the rate of change of the function f(x). For example, the constant func-
tion f(x) = c has derivative f'(x) = 0 since the function f(x) does
not change at all.

The derivative function describes the slope of the graph of the
function f(x). The derivative of a line f(x) = mx +bis f'(x) = m
since the slope of this line is equal to m. In general, the slope of a
function is different at different values of x. For a given choice of
input x = xo, the value of the derivative function f’(x¢) is equal to
the slope of f(x) as it passes through the point (xo, f(xg)).

f) fl) = 3

f@)=2

fay=1 /

f(~05) = —0.5

Figure 5.2: The diagram illustrates how to compute the derivative of the
function f(x) = %xz at three different points on the graph of the function.
To calculate the derivative of f(x) at x = 1, we can “zoom in” near the
point (1, %) and draw a line that has the same slope as the function. We can
then calculate the slope of the line using a rise-over-run calculation, aided
by the mini coordinate system that is provided. The derivative calculations
for x = —% and x = 2 are also shown. Note that the slope of the function
is different for each value of x. What is the value of the derivative at x = 0?

Can-you-find-the-Is there a general pattern that describes the slope of the
raph for all x?

The derivative function f’(x) describes the slope of the graph of the
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function f(x) for all inputs x € R. The derivative function is a func-
tion of the form f' : R — R. In our study of mechanics, we learned
about the position function x(t) and the velocity function v(¢), which
describe the motion of an object over time. The velocity is the deriva-
tive of the object’s position with respect to time v(t) = ‘Zl’t‘ = x'(t).

The derivative function f/(x) is a property of the original function
f(x). Indeed, this is where the name derivative comes from: f’(x) is
not an independent function—it is derived from the original function
f(x). In mechanics, the function x(t) describes an object’s position as
a function of time, and the velocity function v(t) describes one prop-
erty of the position function, namely, how fast the object’s position is
changing. Similarly, the acceleration function a(t) describes the rate
of change of the function v(f).

The derivative operator, denoted % or simply D, takes as input
a function f(x) and produces as output the derivative function
f'(x). The derivative operator notation is useful because it show-the

derivative-is-an-operation-youdo-to-afunetion—-makes it clear that
differentiation is an operation you can apply to any function to obtain

its derivative:

F== 2 f(x).

The derivative operator ﬁ%&acts on the original function f(x) to pro-
duce the derivative function f’(x), which describes the rate of change
of f for all x. Applying the derivative operator to a function is also
called “taking the derivative” of a function.

For example, the derivative of the function f(x)

tion f’(x) = x. We can describe this relationship as (1 x%) = xoras
%(%X‘Z) = x. You should flip back to Figure 5.2 and use the graph
to prove to yourself that the slope of f(x) = %xz is described by

f'(x) = x everywhere on the graph.

% 2 is the func-

Differentiation techniques

Seetion—5-6—will-We'll formally define the derivative operation in
Section 5.6. Afterward, we’ll develop various techniques for com-
puting derivatives;-or-taking derivatives. Computing derivatives is
not a complicated task once you learn how to use the derivative for-
mulas. If you flip ahead to Section 5.7 (page 364), you'll find a table
of formulas for taking the derivatives of common functions. In Sec-
tion 5.8, we'll learn the basie-general rules for computing derivatives
of sums, products, and compositions of the-basiefunctions.
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Sequences

So far, we've studied functions defined for real-valued inputs x € R.
We can also study functions defined for natural number inputs n €
IN. These functions are called sequences.

A sequence is a function of the form a : IN — R. The sequence’s
input variable is usually denoted 7 or k, and it corresponds to the
index or number in the sequence. We describe sequences either by
specifying the formula for the nt" term in the sequence or by listing
all the values of the sequence:

ap,neN__ < (ag,aq,a2,a3,04,...).

Note the new notation for the input variable as a subscript. This is
the standard notation for describing sequences. Also note the se-
quence continues indefinitely.

An example of a sequence is

1 " 1 1 1 1 1
an—#/n€N+m©N<1,4,9,16,25,...>.

This sequence is only defined for strictly positive natural numbers
Ne—={1234——-IN* = {1,2,3,4,...} as the input n = 0 yields a
divide-by-zero error.

The fundamental question we can ask about sequences is
whether they converge in the limit when n goes to infinity. For
instance, the sequence a, = }11—2 converges to 0 as n goes to infinity.
We can express this fact with the limit expression lin(;lO % =0.

n—

We'll discuss sequences in more detail in Section 5.18.

Series

Suppose we're given a sequence a, and we want to compute the sum
of all the values in this sequence.

To describe the sum of the 3", the 4, and the 5™ elements ofin
the sequence a,, we turn to summation notation:

5
a3z + a4 +as== Z ap== Z ay .
3<n<5 n=3
The capital Greek letter sigma stands in for the word sum, and the
range of index values included in this sum is denoted below and
above the summation sign.
The partial sum of the sequence values a, ranging from n = 0
until n = N is denoted as
N
Sy = Z ap=4adp+a;+ax+---+aN—1 +an.
n=0
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The series Y a, is the sum of all the values in the sequence a,:

0¢]
Zangfso@:b}imooSN: Zan:ao+u1+a2+a3+a4+-~-.
- n=0

Note this is an infinite sum.

Series techniques

The main mathematical question we’ll study with series is the ques-
tion of their convergence. We say a series )| a, converges if the infinite

SUM Soo=",eN i Sc0 = D ey 4n_€quals some finite number L € R+

~

[ee}
S = Z a, =L = the series Zan converges.

n=0
We call L the limit of the series > a,.
If the infinite sum Sor="> xr A growsto-infinitySyy = > iy

does not converge, we say the series Y a, diverges.

o0
S = Z a, = +oo = the series Za” diverges.
n=0

Examples of divergent series include series that “blow up” to infinit
or negative infinity, or series that oscillate between different values

and fail to “settle down” close to a single value L.
The main series technique you need to learn is how to spot the

differences between series that converge and series that diverge.
You'll learn how to perform different convergence tests on the terms
in the series, which will indicate whether the infinite sum converges
or diverges.

Applications

Series are a powerful computational tool. We can use series to com-
pute approximations to numbers and functions.

For example, the number e can be computed as the following se-
ries:

RSN S IS A N S —
n! 2.1 3.2 4.3-2 5-4.3.2

I
18

n=0

The factorial operation n! is the product of n times all integers
smaller than n: n! = n(n —1)(n —2)---3-2-1. As we compute more
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at e either. The number ¢ is a limit. We can only compute numbers
that approach e.

The computer scientist can obtain approximations to e by com-
puting the partial sum of the first \-N 4- 1 terms in the series:

N
1 1 1 1
eNzZE_1+1+E+§+—+ RANE

Let us denote as € the required precision of the approximation. The
more terms she adds, the more accurate the approximation ey will
become. She can always choose a value for N such that the approxi-
mation ey satisfies |ex —e| < €.
The computer scientist’s first answer has a precision of € = 10~

To obtain an approximation to e Wl—t—h—fhiﬁ—pfeﬁst@ﬂ—ﬁ—ls—&bl—fﬁeteﬁt
to-compute-accurate to 15 decimals, the computer scientist uses the
parameter N' = 19 terms-in-the series=—in the general formula, and

computes the summation

19 1

1 1
elgzZ—_1+l+—+—+ o
il 3! 191

The resulting approximation ej9 is a number somewhere in the in-
terval (e — 107 '%,e + 1071%). We can also say the absolute value of
the difference between e9 and the true value of e is smaller than e:
‘619 — €| < 1015,

When the mathematician asks for a precision of e =102, the
computer seientists-takesscientist sets the parameter to N = 26 terms

in the series to-produceformula:

26
1 1 1 1 1
626220;—14—14'54‘54' +ﬁ+ +@,
n=

which satisfies |e; — ¢| < €. In the third step, the mathematician

demands a precision €’ = 107, and the €S-studentcomputes
computer scientist uses N = 42 terms-in-the seriesin her formula, to

produce an approximation satisfying-es that satisfies |esy —e| < €”.

In principle, the game can continue indefinitely because the com-
puter scientist has figured out a process for computing increasingly
accurate approximations.

This scenario embodies precisely how mathematicians think about
limits. It’s a bit like a game: the €,N-game. The object of the game
is for the CS student to convince the mathematician she knows the
number e. The mathematician chooses the precision €. To prove
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354 CALCULUS

Remember, the two-sided limit lim,_,, requires both the left and the
right limit to exist and to be equal. Thus, the definition of continuity
implies the following equality:

lim f(x) = f(a) = lim_f(x).

X—a X—a
Consider-In words, this means that a function f(x) is continuous
at x = a if the limit from the left lim, .. f(x) and the limit from
the right lim,__ .. f(x) are both equal to the value of the function at

x=a.

Take a moment to think about the mathematical definition of
continuity given—in—the-equation—aboveat a point. Can you see
how-it-conneets-connect the math definition to the intuitive idea of
contintous-functions-as-functions-that-that functions are continuous
if they can be drawn without lifting the pen?

Most functions we’ll study in calculus are continuous, but not all
functions are. Functions that are not defined for some value, as well
as functions that make sudden jumps, are not continuous.

For example, consider the function f : IR\{0} — R defined b

o |x=3] 1 ifx>3,
fO="=3=1 1 ifxr=3

Fhisfunetion-The function f is continuous everywhere on the real

line except at x = 3. Since this function f is “missing” only at a

single point, we can try to “patch it” by filling in the missing value.
Consider the function ¢ : R — R defined as

1 ifx>3,
g(x) = 1 ifx=3,
-1 ifx <3.

The function g is continuous from the right at the point x = 3, since
by =1=F3)lim,_,5+ ¢(x) = 1 = ¢(3). However, taking

the limit from the left, we flnd

h—m—ﬁ%—ﬁ—l—#ﬁ)—%&%
thefunetionlim =1 ;ﬁ 3), which tells us ¢ is not Contln—

uous -

exeeptfrom the left. We say the function ¢ has a jump discontinuity at
x = 3.

2x+1
Example 3 We can calculate the limit lim *F 1 as follows:

x—5

. 2x+1 25)+1 11
lim = = —.
x—5 X 5 5
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Both the numerator and the denominator help drive the ratio to zero.
Alternately, if you ever obtain a fraction of the form % as a limit,
where both the large numerator and the small denominator make
the fraction grow to infinity, you can write § = .

f(x)

Sometimes, when evaluating limits of fractions , you might

oq

—~
=

Z

end up with a fraction like

)
0 or o
These are called undecidable conditions. They are undecidable be-
cause we cannot tell whether the function in the numerator or the
denominator is bigger. One way to compute limits with undecidable
conditions is to compare the ratio of the derivatives of the numerator
and the denominator. This is called L'Hopital’s rule:

i f(x)  HR f'(x)

M em— - —~ 2k

You can find the derivative formulas you'll need for using L’'Hopital’s
rule in the table of derivative formulas on page 364.

Example Consider the calculation of the limit of the ratio g—f as x
goes to infinity. Both functions grow to infinity. We can calculate the
limit of their ratio by using L’'Hopital’s rule three times:
3 2
X* HR. ;. 3X° HR. 6X HR. . 6
— = — lim

. . 6
lim =" lim — =" lim = —=—=0.
x—00 X x—o0 eX x—00 e¥ x—00 e¥ o0

L1
Example 2 Calculate the limit lim,_, w Both the numerator

and the denominator go to zero as x goes to zero. We can find the
derivative formula for sin~!(x) in the table on page 364, then apply
L’Hopital’s rule:

1 N
lim M AR i 1-22 _ lim L = ! =1.
x—0 X x—0 1 x—0 \/1—x2 \/1—0

Links
[ Visual explanation of the €,0-game for limits and ['Hopital’s rule
https://www.youtube.com/watch?v=kfF40MiS7zA&t=523

[ See the Wikipedia page for more examples of limits ]
https://en.wikipedia.org/wiki/Limit_of_a_function
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364 CALCULUS

The tangent line T;(x) is the best linear approximation to the
function f(x) near the coordinate x = xy. Written informally, this
statement says,

f(x) ~ T1(x) for x near xj.

We previously used this type of linear approximation to derive the
simple harmonic motion equation for a pendulum on page 315. The
small angle approximation states that

f(0) =sinf ~ 0 = Ty(0), forH near0.

Di .
Now that you know what derivatives are and what they are used for,
it’s time to learn how to compute them.

5.7 Derivative formulas

The table below shows the derivative formulas for a number of
commonly-tused-common functions. You'll be using these derivative

formulas a lot in the remainder of this chapterse-it’s-a-good-ideato
memorize-them-, so you'll get to know them very well.

f(x)_ — derivative — _f'(x)

d
a ix 0
af(x) +pglx)  — & - af(0)+pg )
d
X ax i 1
x" — % — nx"1
L d -1 -2
PES —@x 2=~ X
1 1 1 _1
Vi==xz *% - 2\/§Ef§x 2
&~ 7% N er
at = % — a*In(a)
1
In(x) — % — »
log,(x) —&—  (xIn(@)”!
sin(x) — % — cos(x)
cos(x) — % - — sin(x)
tan(x) — % — sec?(x)==cos 2(x)
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368 CALCULUS

Explanations
Derivation of the product rule

By definition, the derivative of f(x)g(x) is

[Fg(n) = tim L O8E+0) = g

Consider the numerator of the fraction. If we add and subtract
f(x)g(x + J), we can factor the expression into two terms, like this:

=0

f(x+0)g(x +0). —f(x)g(x+0) + f(x)g(x+0)_ — f(x)g(x)
=0 = f)lg(x +0) + f(x)[g(x +6) — g(x)].

The expression for the derivative of the product becomes

gy =i LD SOy gy 1 g B2 D=8,

This looks almost exactly like the product rule formula, except here
we have g(x + ¢) instead of g(x). This difference is okay since we
assume g(x) is a continuous function. Recall that a continuous func-
tion g(x) obeys lim;s_,o g(x 4+ &) = g(x) for all x. Using the continuity
property of g(x), we obtain the final form of the product rule:

[f(0)g(x)] = f/(x)g(x) + f(x)g (x).

 Proving the.ssm'smess of E,h.e chain-rilefor Ele{i.ah‘e.s o
bit more Semﬁheateﬁ “fmaﬂ? s alof ﬁ]ﬂe ssmfhlsak.%{] the

Shortened the proof to

Derivation of the chain rule skip the boring details...

Assume f(x) and g(x) are differentiable functions. We want to show
that the derivative of f(g(x)) equals f'(g(x))g’(x), which is the chain
rule for derivatives:.
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Ivan Savov
Shortened the proof to
skip the boring details...


5.8 DERIVATIVE RULES 369

In-faetUsing the definition of the derivative, we can use- @y variable
e o AT ot Livide betl
non-zero-quantity-as-write the derivative of the function X)) as

follows:
g = lim /BEF /5]

The next step in the proof is to split the expression Hglx+9)) = f(2(x))
into two factors F; and F,, that will later turn into the quantity

N o : ; .

, b it hoi limni .1” 78 d .

) | ,f, hich is ] Lin the timi 0 T]

Lition A - 0 11 ] : f(x+AA)—f(x) .
not-wel-defined-whenA—=#0,sinee-itleadsto-afactors f/(¢(x)) and

/(x) in the chain rule formula, after we take the limit:

xX+0))— X x+0)—¢(x

f(8( ); f(g(x)) — F(g(x), g(x +9)) 8( ; 8x)
—_—
_/_J
b 5

The second term F, corresponds to the rise-over-run calculation for

the function ¢ at the input x. The first term F; corresponds to the
rise-over-run calculation for the function f at the input ¢(x), but we’ll

introduce a new quantity F(a,b) in order to handle the case of the
zero-run calculation correctly. We define F(a, b) as follows:

b)—f(a .
Fab) % fO1@ g 2,
f'(a) ifa =b.

In words, the quantity F(a, b) tells us the rise-over-run calculation for

the function f computed between the points (a, f(a)) and (b, f(b)).
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370 CALCULUS

We've just “patched” the formula so it doesn’t result in a divide-by-

Zero errotr—

oo piecenrise fumerion

asr=hmasgR{x+Ax)Nete thisformulais-valid-even-error
in the case A—0a = b.

Tejafeve»«the»&\aiﬁfulel:or the sake of brevity, we'll need-the

(g(+0)—fR(x)
R(g(x +6),8(x)) E{ % if g(x +0) # g(x),
f(8(x)) if g(x + 6) = g(x).
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5.8 DERIVATIVE RULES 371

flg(x+9)) — f(g(x)) _ 0
5 5

skip the detailed analysis of the function F(a,b), and the calculations
of the limits of the two factors lims_,0 F; = f'(g(x)) and

+0) — 0
R(g(x +8),g0)) SO =8 _ g3 o
Thus, the equation f(g(X-s-d)()s—f(g(X)) —R{glx ;),ﬁ%))g(ﬁﬁ‘%—g(ﬁ()

holds-in-both-eases—
‘!Zq . ] ]. . . E [EE E 3;]/ . ]

i F8G+0) — £(8(2)
[f((x))]' = lim ;

6—0

_ ,%mé R(g(x + ), g(x)) g(x+9) —g(x)

T ox8Y) 5
R 4

Let’s jump directly to the final steps in the proof, when we evaluate
lims_,g F1 F>. In Section 5.5 (see page 359) we learned that the hrmt of

the product of two factors ;lims_,o F; F>
s equal to the product of the limits of beth-factors—the individual

factors lims_,¢ F; and lim;_, Fz—eﬂs{—Befefewepfeeeed—wemﬂs%
evaluate-the limit 0—0-forboth-factors-to-enstire-the limits-exist.

Using this property of limits we find:
. _ . . _ g /

which completes the proof of the chain rule O = F(g(x) ¢ (x).
To obtaintho limitof tho firatf el rel ] Ao

}in})g(x +6) = g(x) and iimOR(b +A,b) = R(b,b) = f'(b).





DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE


372 CALCULUS

=¢'(x),

g(x +9) —g(x)
5

lim F, = lim
0—0 y

0—0

s ofor)isdliff iable—its—derivati
existReaders interested in learning the technical details of the parts
of the proof we skipped can watch the video tutorial below.

S e timmi Chothf L F iy F .

This-establishes-the-validity| Technical details of the proof of the
chain rule [f{g{ ) — ftg(e))g )]
https://www.youtube.com/watch?v=ydjjOcrm34w
Alternate-Alternative notation

The presence of so-many primes and brackets can make derivative
formulas difficult to read. As an alternative, we sometimes use the
Leibniz notation for derivatives. The three rules of derivatives in Leib-
niz notation are written as follows:

; oo d _ . af dag d _ af
e Linearity: —gaf ey +pgle)y=ed+p8 £ (af(x) + pg(x)) = a
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e Product rule: d%(f(x)g(x)) = %g(x) +f(x)%

. 4 dfdg 4 _ dfdg
[ ] Chaln rule. ax = Tgﬁ WL%W

Some authors prefer the notation % for the derivative of f(x) be-
cause it is more evocative of a rise-over-run calculation.

Links

[ Geometric explanations of derivative formulas by 3BluelBrown
https://www.youtube.com/watch?v=S0_qgX4VJhMQ

[ Visual explanations of the chain and product rules for derivatives |
https://www.youtube.com/watch?v=YG15m2VwSjA

5.9 Higher derivatives

In the previous section we learned how to calculate the derivative
f'(x) of any function f(x). The second derivative of f(x) is the
derivative of the derivative of f(x), and is denoted

2
F10=2 [F )] == & ==& 5.

This process can be continued to calculate higher derivatives of f(x).

In practice, the first and second derivatives are most important
because they have a geometric interpretation. The first derivative of
f(x) describes the slope of f(x) while the second derivative describes
the curvature of f(x).

Definitions
e f(x): the original function

e f/(x): the first derivative of the function f(x). The first deriva-
tive contains information about the slope of the function f(x).

e f”(x): the second derivative of the function f(x). The second
derivative contains information about the curvature of the func-
tion f(x).

= If f”(x) > 0 for all x, the function f(x) is convex.

Convex functions open upward, like f(x) = x2.

= If f”(x) < 0 for all x, the function f(x) is concave.
Concave functions open downward, like f(x) = —x2.
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Later in this chapter, we will learn how to compute the Taylor
series of a function, which is a procedure used to find polynomial
approximations to any function f(x):

f(x) ~ co+ecx+ szz + C3x3 + c4x4 4y

The values of the coefficients ¢y, c1, ..., ¢; in the approximation re-
quire us to compute higher derivatives of f(x). The coefficient c;, tells
us whether f(x) is more similar to +x" (¢, > 0), or to —x" (¢, < 0),
or to neither of the two (¢, = 0).

Example Compute the third derivative of f(x) = sin(x).

The first derivative is f’(x) = cos(x). The second derivative will
be f”(x) = — sin(x) so the third derivative must be f”(x) = — cos(x).
Note that f®*) (x) = f(x).

Links

[ Visual explanation of the second derivative by 3BluelBrown
https://www.youtube.com/watch?v=BLkz5LGWihw

Optimization: the killer app of calculus

Knowing your derivatives will allow you to optimize any function—
a crucial calculus skill. Suppose you can choose the input of f(x)
and you want to pick the best value of x. The best value usually
means the maximum value (if the function measures something de-
sirable like profits) or the minimum value (if the function describes
something undesirable like costs). We'll discuss the optimization al-
gorithm in more detail in the next section, but first let us look at an
example.

Example

The boss of a large drug organization has recently run into problems
with the authorities. The more drugs he sells, the more money he
makes; but if he sells too much, the authorities will start to regulate
his operations and he loses money. When you're in the drug busi-
ness, the last thing you want is to attract undue attention!

Fed up with this situation, he decides to find the optimal amount
of drugs to push: as much as possible, but not enough to run into
trouble with the law. One day he tells all his advisors and under-
bosses to leave the room, he picks up a pencil and a piece of paper,
takes a deep breath, and sits down to do some calculus.
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o minimum: a place where the function reaches a low point at the
bottom of a valley. The global minimum is the lowest point over-
all, whereas a local minimum is the minimum in some neigh-
bourhood.

o extremum: a general term to describe both maximum and min-
imum points.

e saddle point: a place where f’(x) = 0 at a point that is neither
a max nor a min. For example, the function f(x) = x3 has a
saddle point at x = 0.

Suppose some function f(x) has a global maximum at x*, and the
value of that maximum is f(x*) = M.

Algorithm for finding extrema

Input: a function f(x) and a constraint region C = [x;, x¢]
Output: the locations and values of all maxima and minima of f(x)

Follow this algorithm step-by-step to find the extrema of a function:

1. First, look at f(x). If you can plot it, plot it. If not, try to imagine
what the function looks like.

2. Find the derivative f/(x).

3. Solve the equation f/(x) = 0. Ysually-there-will-There can be
multiple solutions. Make a list of them. We'll call this the list
of candidates.

4. For each candidate x* in the list, check to see whether it is a
maximum, a minimum, or a saddle point:

o If f/(x* —0.1) is positive and f/(x* + 0.1) is negative, then
the point x* is a maximum. The function goes up, flattens
at x*, then goes down after x*. Therefore, x* must be a
peak.

o If f/(x* —0.1) is negative and f'(x* + 0.1) is positive, the
point x* is a minimum. The function goes down, flattens,
then goes up, so the point must be a minimum.

o If f/(x* —0.1) and f’(x* + 0.1) have the same sign, the
point x* is a saddle point. Remove it from the list of can-
didates.

5. Now go through the list one more time and reject all candi-
dates x* that do not satisfy the constraints C. In other words, if
x € [x;, xf], the candidate stays; but if x ¢ [x;, xf], we remove it
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What is implicit in this derivative calculation is the assumption that
y is a function of x. The expression % refers to the derivative of this

implicit function y(x). After isolating Z—Z, we obtain an expression
that describes the slope of the circle at any point P = (xp,yp). You
can check that the slope predicted for the point at top of the circle
(0, R) is zero. Also note the slope is infinite at (R, 0) since the tangent
to the circle is vertical at that point.

Let’s now look at an example involving implicit differentiation.

Example In the corporate world, an executive officer’s ego E is re-
lated to the executive’s salary S by the following equation:

E%2 =83

Suppose both E and S are functions of time. What is the rate of
change of the executive’s ego when the executive’s salary is 60k and
the salary increases at a rate of 5k per year?

This is called a related rates problem. We know the relation E2 =
S3 and the rate % = 5000 and we're asked to find the rate of change

% when S = 60000. First, take the implicit derivative of the salary-

to-ego relation:
di A1 o
al = =gl ]
dE ds
2E— =3582—.
dt 35 dt
We’'re interested in the point where S = 60000. To find the ego points,
solve for E in the relation E? = S3; E = v/60000° = 14696938.46
ego points when S = 60000. Substituting all known values into the
derivative of the relation, we find

2(14696938.46)%5 = 3(60000)2(5000).

2
The executive’s ego is growing at % = % = 1837117.31

ego points per year. Yay, ego points! Iwender-what-youcanredeem
these-for—What are they good for again?

Total derivative

Consider again a relation g(x,y) = 0, but this time assume that both
x and y are implicit functions of a third variable ¢t. To compute the
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dx
dt

dy

y———

Figure 5.14: Computing the total derivative of r(x(¢), y(t)) with respect to t.

FIX
When t = 6, x=13-x = 121 and y = 207, and the answer is % =
65.346.

Differentials

The differential of a quantity Q is the same as the derivative but with-
out specifying the “with respect to” variable. The differential dQ
represents the change in Q that will result for a given change in the
variable (or variables) that Q depends on. The rules for computing
differentials are analogous to the rules for computing derivatives:

Q=ax" = dQ = nx"ldx.

You can think of differentials as incomplete derivatives: if we later
discover that x depends on t, we can divide both sides of the above

equation by dt to obtain the derivative expression dd—? = nx""1 ‘Zl—’t‘.

Application of differentials to computing error bars

In science, when we report the results of an experimental measure-
ment of some quantity Q, we write Q + dQ, where dQ) is an estimate
of the error of the measurement. The measurement error dQ is rep-
resented graphically as an “error bar” as shown in Figure 5.15. The
precision of a measurement is defined as the ratio of the error of the

measurement divided by the size of the quantity being measured Q.

or as a percentage.
Q+dQ
|
Q—dQ

Figure 5.15: The error bars dQ are a visual representation of the uncertainty
of the quantity Q.

Suppose the quantity Q depends on the variables x and y. We can
express the dependence between the error in the measurement of Q
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and the error in the measurement of x and y as the formula:

This is the total differential of Q. Note the similarity of the total differ-
ential formula to the total derivative formula.

dx+

Example You want to calculate the kinetic energy of a particle us-
ing the formula K = 1mv?. You measure the particle’s mass m with
precision 3%, and the particle’s velocity with precision 2%. What is
the precision of your kinetic energy calculation?

We want to find ‘%K and we're told ‘%”‘ = 0.03 and ‘%” = 0.02. The
first step is to calculate the total differential of the kinetic energy:

dv 2

in which we used the product rule and the chain rule for derivatives.
To obtain the relative error, divide both sides by K to obtain

—a(Le?) = gy Ky _ L2
dK =d <2mv ) = dmdm dv = ~v*(dm) + mo(dv),

dK %vz dm + modo %Uzdm + modv  dm +2dv
K %mvz %mvz om v’

The precision of the kinetic energy calculation in your experiment
is K = 0.03 +2(0.02) = 0.07 or 7%. Note the error in the velocity
measurement dv contributes twice as much as the error in the mass
measurement dm, since it appears with exponent two in the formula.

Links

[ Visual explanation of implicit differentiation by 3BluelBrown |
https://www.youtube.com/watch?v=9qb40J4N1fa4d

Discussion

We have reached the half-point of the calculus chapter. We learned
about derivatives and described applications of derivatives to opti-
mization problems, finding tangent lines, related rates, etc.

Before you continue reading about integrals in the second half of
the chapter, I highly recommend you attempt to solve some of the
derivative problems starting on page 462.

Another thing I would recommend is to watch some of the

lectures of the Highlights of Calculus course by Prof. Gilbert Stran
(see https://youtube.com/playlist?1ist=PLBE9407EA64E2C318).




DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE

https://www.youtube.com/watch?v=qb40J4N1fa4
https://youtube.com/playlist?list=PLBE9407EA64E2C318

394 CALCULUS
Solving 3c = 1, we find ¢ = % and so the answer to this indefinite
integral problem is

fxzdx = %x3+C.

You can verify that % [%x3 + C] = x2,

Did you see what just happened? We were able to take an integral
using only derivative formulas and “reverse engineering.”

Example 2 Since we know

l&\n

F(x) = x* F'(x) = 4x°==f(x),

—~

then it must be that
d
f(x) =423 dax F(x):f4x3dx:x4+c.
Example 3 Let’s look at some more integrals:
e The indefinite integral of f(x) = cosf is
F(x) = Jcos()i df =sinb + C,

since % sinf = cos 6.
e Similarly, the integral of f(x) = sin6 is

F(x) = fsin@f d0 = —cosf+C,

since %[— cos ] = sin6.
e The integral of f(x) = x" for any number n # —1is

1
— | ¥ dx =
F(x) fox o

xn+1 +C,

d

: d.n _ n—1
simece dgx =nx .

e The integral of f(x) = x1 = lis
F(x) :J%,dx:ln|x|+C, for x # 0.

When x > 0, we know {1 dx = Inx + C, since %lnxz 1. For
x <0, we can use the symmetry in the graph of f(x) =1 to

obtain the formula {1 dx = In(—x) + C. The absolute value
lets us combine these two special cases into a single formula.
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@ n=25

Figure 5.19: An approximation to the area under the graph of the function
f(x) = x® — 5x2 + x + 10 using n = 25 and 1 = 50 rectangles.

For n = 100, the sum of the rectangles’ areas starts to look pretttty
much like the function. The calculation givesusshown in Figure 5.20

corresponds to the approximation Sipo(4,b) = 12.7906.

10

Figure 5.20: An approximation of the area under the function f(x) = x% —

5x% + x + 10 between x = —1 and x = 4 using n = 100 rectangles.

Using n = 1000 rectangles, we obtain an approximation to the
area Sygoo(—1,4) = 12.9041562, which is accurate to the first decimal.

In the long run, when n grows really large, the Riemann sum ap-
proximations will get better and better and approach the true value
of the area under the curve. Imagine cutting the region into n =
10000 rectangles; isn’t S1op00(—1,4) a pretty accurate approximation
of the actual area A(—1,4)?

The integral as a limit

In the limit as the number of rectangles n approaches oo, the Riemann
sum approximation to the area under the curve becomes arbitrarily
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close to the true area:

n—0o0

lim i fla+kAx)Ax = A(a, D).
k=1

The definite integral between x = a and x = b is defined as the limit
of a Riemann sum as 7 goes to infinity:

n—00

fbf(x) dx = lim Zn] f(a+kAx)Ax = A(a, b).
“ k=1

f " ) dx Tim. i fla+kAx)Ax = A(a,b).
k=1

a

Perhaps now the weird notation we use for integrals will start to
make more sense to you. An integral is, literally, the sum of the
function at the different sample points! In the limit as n — oo, the
summation sign Y, becomes an integral sign §, and the step size Ax
becomes an infinitely small step dx.

It is not computationally practical to make n — co; we can simply
stop at some finite n which produces the desired accuracy of approx-
imation. The approximation using 1 million rectangles is accurate
to the fourth decimal place, which you can verify by entering the
following commands on live.sympy.org:

>>> n = 1000000

>>> xk = -1 + k*5/n

>>> sk = (xk**3-5xxk**x2+xk+10)*(5/n)

>>> summation( sk, (k,1,n) ).evalf()

12.9166 541666563

>>> integrate( x**3-b*x**2+x+10, (x,-1,4) ).evalf()
12.9166 666666667

Formal definition of the integral

We-rarely—compute-integrals—using Riemann—sums—The Riemann

sum is important as a theoretical construct like the rise-over-run cal-
culation that we use to define the derivative operation:

P g SO S
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5.14 THE FUNDAMENTAL THEOREM OF CALCULUS 405

The integral is defined as the approximation of the area under the
curve with infinitely many rectangles:

b n
=y —
L f(x)dx= "15130,; fla+kax)Ax, Ax=—

It is usually much easier to refer to a table of derivative formulas (see
page 364) rather than compute a derivative starting from the formal
definition and taking the limit 6 — 0. Similarly, it is easier to refer to a
table of integral formulas (also see page 364), rather than computing
the integral by taking the limit as 7 — o0 of a Riemann sum.

* % %

Now that we have established a formal definition of the integral,
we’ll be able to understand why integral formulas are equivalent to
derivative formulas applied in the opposite direction. In the next
section we’ll give a formal proof of the inverse relationship between
the derivative operation and the integral operation.

Links

[ A Riemann sum demonstration ]
https://www.geogebra.org/m/jF23GzmS

[ Riemann sum wizard ]
http://mathworld.wolfram.com/RiemannSum.html

5.14 The fundamental theorem of calculus

In Section 5.12 we defined the integral function Ag(x) that corre-
sponds to the calculation of the area under f(x) starting from x = 0:

A= [ sy

We also discussed the notion of an antiderivative function: the func-
tion F(x) is an antiderivative of f(x) if F/(x) = f(x).

A priori, there is no reason to suspect the integral function would
be related to the derivative operation. The integral corresponds to
the computation of an area, whereas the derivative operation com-
putes the slope of a function. The fundamental theorem of calculus
describes the relationship between derivatives and integrals.
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Discussion
Integration and differentiation are inverse operations

You previously studied the inverse relationship for functions. Recall
that for any bijective function f (a one-to-one relationship) there exists
an inverse function f~1 that undoes the effects of f:

(froHo)==f"(f(x)) = 1x

and also

(Fof NW==ff"W) = 1y.

The integral is the “inverse operation” of the derivative. If you per-
form the integral operation followed by the derivative operation on
some function, you’'ll obtain the same function:

(5o [ x) roo== gz [ st = s

Note we need a new variable u inside the integral since x is already
used to denote the upper limit of integration.

Alternately, if you compute the derivative followed by the inte-
gral, you will obtain the original function f(x) (up to a constant):

(J dx o ;i) Flx)== L Fl(u) du = f(x)+C.

a2
Links

[ Nice visual explanations about integrals by 3BluelBrown ]
https://www.youtube.com/watch?v=rfG8ce4nNhO
https://www.youtube.com/watch?v=FnJqalESC2s

What next?

If integration is nothing more than backward differentiation, and if
you already know differentiation inside out from differential calcu-
lus, you might be wondering what you are going to do during an
entire semester of integral calculus. For all intents and purposes, if
you understand the conceptual material in this section, you under-
stand integral calculus. Give yourself a pat on the back—you are
done.

The Establishment, however, not only wants you to know the
concepts of integral calculus; you must also become proficient in
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in her room, crunching calculus while hundreds of dangling inte-
grals scream for attention, keeping her from hanging with friends.
Actually, it is not that bad. There are, like, four tricks to learn. If
you practice, you can learn all of them in a week or so. Mastering
these four tricks is essentially the purpose of the entire integral cal-
culus course. If you understand the material in this section, you'll be
done with integral calculus and you’ll have two months to chill.

Substitution

Say you're integrating some complicated function that contains a
square root 4/x. You wonder how to compute this integral:

1
= ?
Jimma =

Sometimes you can simplify an integral by substituting a new vari-
able into the expression. Let u = /x. Substitution is like search-and-
replace in a word processor. Every time you see the expression /x,

replace it with u:
1 1
——dx= | —5—d
_[x—\/i X fuz—u X

Note we also replaced x = (/x)? with u2.

We’re not done yet. To change from the x variable to the u vari-
able, we must also change dx to du. Can we simply replace dx with
du? Unfortunately no, otherwise it would be like saying the “short
step” du is equal in length to the “short step” dx, which is only true
for thetrivial-substitution—+—-xa trivial substitution like u = x + g,
where a is a constant.

To find the relation between the small step du and the small step
dx, we take the derivative:

du 1
/

ux) = X = ulx)=—= ——.
(x) = vx e NE
For the next step, I need you to stop thinking about the expression ‘;“
as a whole, and instead think about it as a rise-over-run fraction that
can be split. Let’s move the run dx to the other side of the equation:

du = ﬁ dx.

Next, to isolate dx, multiply both sides by 24/x:
dx = 2v/x du = 2u du,
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where we use the fact that 1 = /x in the last step.
We now have an expression for dx expressed entirely in terms of
the variable u. After the substitution, the integral looks like

1 1 2
fmdx:Jm%ldu:deu

We can recognize the general form of the function inside the integral,
flu) = ;= 1, to be similar to the function f(u) = . Recall that the

integral of 1 ; is nfiIn Ju| + C. Accounting for the —1 horizontal shift
and the factor of 2 in the numerator, we obtain the answer:

jx;ugdxzfgéjdu—ﬂnﬂ —1)| = 2In(

Note in the last step, we changed back to the xvariableto-give-the

final-answervariable x. The variable u exists only in our calculation.
We inventeditinvented u out of thin air when we said, “Let u = 1/x”

in the beginning, so we must convert back to the original variable x

when reporting the final answer.
Thanks to the substitution, the integral became simpler: we were

able to eliminate the square roots. The extra u that came from the
expression dx = 2u du canceled-cancelled with one of the us in the
denominator, thus making the expression even simpler. In practice,
substituting x with u inside f is the easy part. The hard part is mak-
ing sure our choice of substitution leads to a replacement for dx that
helps to simplify the integral.

For definite integrals—that is, integrals with limits of integration—
there is an extra step we need to take when changing variables: we
must change the x-limits of integration to u-limits. In our expression,
when changing to the u variable, we write

1 u) 2
——dx = —
X —/x ua) 4 — 1
Say we are asked to compute the definite integral between x = 4

and x = 9 for the same expression. In this case, the new limits are
1 =+4=2and u = /9 = 3, and we have

| 52 |
= =2 -1
Lx—ﬁdx Lu—ldu n (ju—1)]

Let’s recap. Substitution involves three steps:

du.

3

= 2(In(2) —In(1)) = 2In(2).

2

1. Replace all occurrences of u(x) with u.
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20

a

Figure 5.24: Triangle associated with the substitution x = atan#.

Example Calculate § x21+1 dx.

2
The denominator of this function is equal to (\/1 + xz) . The

form 1 + x? suggests we can probably substitute x = tan @, then use
the identity 1 + tan? @ = sec? . Testing this substitution, we obtain
dx = sec? 6 d6. Thus,

1 1
dx= | sec?0de
Jx2+1 X Jtanzﬂ—klseC
1 2
= 0do
JsecZGSec

~ [1ae

=0
= tan"1(x) + C.

Obfuscated example What if the denominator doesn’t look like
x? +1? What if, instead, we have a general second-degree polyno-

mial, such as
1

6y 10 TEXT FIX

How do we integrate a this function? If there were no —2y—6y term,
we’d be able to use the tan substitution. Or perhaps you could look
up the formula x21+1dx = tan~!(x) in the table of integrals. Alas,
there is no formula to be found in the table for

s
y?—6y+10 4

We'll need another route, and we’ll start by following the good old
substitution technique u = ..., along with a high school algebra trick
called “completing the square.” This route will help us rewrite the
fraction inside the integral so the integral looks like (y — )% + k with
no linear term.
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Which substitution to use

There are three possible triangles you might need when applying
the trigonometric substitution technique to compute an integral. See
Figure 5.22, Figure 5.24, and Figure 525. In all cases, one side of
the triangle corresponds to the constant 4, another side corresponds
to the variable x, and the length of the third side is a square-root
expression involving 4” and x>, I wouldn't recommend trying to
memorize the sides of these triangles. Instead, you can rely on your
knowledge of trigonometry to choose the appropriate labels using
trial and error. Draw a little triangle and label its sides so that the
square-Toot expression corresponds to the integral you're trying to
compute.

Interlude

By now, things-are-it’s starting to get pretty tight-difficult for your
calculus teacher —Yotrare beginning to-tnderstand-how-to-“handle”
any kind-of integrathe to surprise you with an integral problem. You
know how to handle most kinds of integrals your teacher can throw
at you: polynomials, fractions with x? ;-plus or minus a2, and square
roots. He-Your teacher can’t even fool you with dirty trigonometric
tricks involving sin, cos, and tan substitutions, since you know about

these, too. Are there any integrals left that he-can-drop-ontheexam
to-triek-youup-your teacher can use to trip you up on the exam?

Substitution is the most important integration technique. Recall
the steps involved: (1) the choice of substitution u = ..., (2) the asso-
ciated dx to du change, and (3) the change in the limits of integration
required for definite integrals. With medium to advanced substitu-
tion skills, you'll score at least an 80% on your integral calculus final.

What will the remaining 20% of the exam depend on? How many
more techniques could there possibly be? I know all these integration
techniques that I've been throwing at you during the last 10 pages
may seem arduous and difficult to understand, but this is what you
got yourself into when you signed up for the course “integral calcu-
lus.” In this course, there are lots of integrals and you calculate them.

The good news is that we are almost done. Only one more “trick”
remains, and afterward, I'll finally tell you about the integration by
parts procedure, which is very useful.

Don’t bother memorizing the steps in each of the examples dis-
cussed: the correct substitution of u = ... will be different in each
problem. Think of integration techniques as general recipe guide-
lines you must adapt based on the ingredients available to you at the
moment of cooking. When faced with a complicated integral prob-
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Then apply a trig substitution y = vk tan 6 to obtain

1 1 1 Yy 1 _1/x—h
d=tan1<>= tnl< >
a f Y Tk k) ek vk

Example Find § mdx.

Here, P(x) = 1 and Q(x) = (x + 1)(x +2)%. If I wanted to be
sneaky, I could have asked for mdx instead—which is the
same question, but you'd need to do the factoring yourself.

According to the recipe outlined above, we must look for a split
fraction of the form

1 A B C

GrDE+22 x+41 x+2 G2

To make the equation more explicit, let’s add the fractions on the
right. Set all of them to the least common denominator and add:

1 A B C
GIDx 122 x4l x+2 (x+27
A(x +2)? B(x +1)(x +2) C(x+1)

S+ D(x 422 (x+D(x+2)2 " (x+1)(x+2)2
CA(x+2?+B(x+1)(x+2)+C(x+1)
(x +1)(x +2)2
The denominators are the same on both sides of the above equation,
so we can focus our attention on the numerator:

Alx +2)2+B(x +1)(x +2) + C(x +1) = 1.

We can evaluate this equation for three different values of x to find
the values of A, B, and C:

x=0 1=22A+2B+C

x=-1 1=A

x=-2 1=-C
soA=1,B=-1,and C = —1. Thus,

1 1 1 1

(x+1)(x+2?2 x+1 x+2 (x+2)2

We can now calculate the integral by integrating each of the terms:

1 1
—————dx =1 1)| -1 2 C.
J(x+1)(x+2)2 x=ln(x 1) ~In(x+2)] + — o+
The partial fractions technique for integrating rational functions is
best understood using using a hands-on approach. Try solving the
following exercises to see if you can apply the techniques.
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will contain the factors required for the integral on the right-hand
side of the integration by parts formula.

the integral to label u and which parts to label do. You just have
to solve lots of practice problems to get the hang of it. My general
advice would be to focus on the dv part. Look for parts of the
integral that you know how to integrate and label them dv, then label
whatever remains as u. It's very common to get the choice of u and
dv wrong on the first attempt. If you apply the integration-by-parts
substitutions and end up with an integral calculation that’s more
complicated than the original integral you started with, it’s a sign
you need to start over with a different choice of u and do._

Example 1 Find {xe*dx. We identify the good candidates for u
and dv in the original expression, and follow the steps to apply the
substitution:

u=x dv = e dx,
du = dx v =e¢".

Next, apply the integration by parts formula,

Judv=uv—fvdu,
Jxexdx:xe"—Jex dx

=xe* —e* +C.

to obtain

Example 2 Find { xsinx dx. We choose the substitutions u = x and
dv = sin xdx. With these choices, we have du = dx and v = — cos x.
Integrating by parts gives us

fxsinxdx = —xcosx—f(—cosx) dx

—xcosx+fcosx dx

= —xcosx +sinx + C.

Example 3 Often, you'll need to integrate by parts multiple times.
To calculate §x?e* dx, we start by choosing the following substitu-
tions:

U=x dv = e dx

du = 2x dx v =e".
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We can compute this integral as the following limit:

0 b _q17b
J izdx—— lim lz dx = lim [1] = lim [*1 + 1] =1.
1 X b—w J1 X b—o0 X 1 b—o0 b 1

This calculation describes an integration over a reglon with infinite

w1dth4%eeattse+he4ﬁetgh%e%thefegtefr@%ﬁ—rz)%eeeme&smaﬂef
and-smaller—theregion-still-has-finite-, but we still end up with a

finite total area.

Definition

An improper integral is an integral in which one of the limits of in-
tegration goes to infinity. Improper integrals are evaluated as regu-
lar integrals, where infinity is replaced by a dummy variable, after
which alimit-caletlation-is-applied-to-take-the-dummy-variable-we
take the limit as the dummy variable goes to infinity:

f f(x) dx== hm J f(x) dx = hm[ (b) — F(a)],
where F(x) is the antiderivative function of f(x).

Applications Later in this chapter, we’ll learn about the “integral
test” for the convergence of series, which requires the evaluation of
an improper integral.

5.18 Sequences

A sequence is an ordered list of numbers that follows some pattern,
much like “find the pattern” questions on IQ tests. We can study the
properties of sequences as mathematical objects. For example, by
checking whether the sequence converges to some limit.
Understanding sequences is a prerequisite for understanding se-
ries, which is an important topic we will discuss in the next section.

Definitions
o IN: the set of natural numbers N—=+{642,3——IN = {0,1,2,3,...

o N——MN{O}IN* = IN\{0}: the set of strictly positive natural
numbers {1,2,3,...}. The set INi—IN* is the same as IN, except

N+—IN* starts from 1 instead of 0.
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e a,: a sequence of numbers (ag, a1,a,4a3,44,...). You can also
think of each sequence as a function

a:N — R,
where the input n is an integer (the index into the sequence)

and the output is some number a, € R.

Examples of sequences

Consider the following common sequences.

Arithmetic progression

A sequence is an arithmetic progression if the terms of the sequence
differ by a constant amount. The terms in the simplest arithmetic
progression differ by one:

(0,1, 2, 3,4, 56, ...).

This sequence is described by the formula
a, =n, n e N.

More generally, an arithmetic sequence can start at any value a9 and
make jumps of size d at each step:

a, = ag + nd, n € IN.

Harmonic sequence

In a harmonic sequence, each element of the sequence is inversely
proportional to its index n:

p L1111
’_ 2/, 3/, 4/, 5/, 6/,

ay = —, nelNL*

More generally, we can—define-refer to the sequences with terms
like 4y = 3, 8y = 5, and ay = 5 as p-sequences. In a p-sequencein
which-, the index n appears in the denominator raised to the power
p+ The terms in a p-sequence are described by

1
ap = — nelN_*
n np/ i,y
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Ratio convergence

The numbers in the Fibonacci sequence grow indefinitely large
( lingO a, = o0), while the ratio of ”’;—“ converges to a constant:
n— n

lim Ap+1 :¢:1+\/g

n—w dy

~ 1.618033...

This constant is known as the golden ratio.

Calculus on sequences

If a sequence a, is like a function f(x), we should be able to per-
form calculus on it. We already saw how we can take limits of se-
quences, but can we also compute derivatives and integrals of se-
quences? Derivatives-are-

The usual derivative notion is a no-go ;-because they-depend
since it depends on the function f(x) being continuous, and se-
quences are only defined for integer values. We-ea take-Instead of
derivatives, we can compute finite differences, which are sequences
obtained by subtracting adjacent terms in the sequence. Given the
sequence (dg, 1,42, 43,84, ), the first differences sequence is the

sequence (a1 — ag,a» — a1,a3 — a»,...). Finite differences play a bi

role in the study of differential equations.
We can also compute integrals of sequences, hewever-and this is

the subject of the next section.

5.19 Series

Can you compute In(2) using only a basic calculator with four oper-

ations, W&ﬂd{jNL M‘? I can tell you one way to do
this; compute the following infinite sum:

11 1 1 1 1 1
11’1(2):1—54—5—14-5—84'?—54‘
Since the sum is infinite, it will take a while to obtain the value
of In(2), but if you keep adding more terms in the sum, you will

eventually-obtain—the-answerIn{2}=0:693147-—can compute the
answer In(2) = 0.69314718.. . . to any precision.

Let’s make the computer carry out the summation for us. First we

define the formula for the n term in the series a, = %, then
we compute the sum of the first 100, 1000, and 1000000 terms:
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>>> def an_1n2(n): return (-1.0)**x(n+1)/n
>>> sum([ an_1n2(n) for n in range(1,100) 1)
0.698172179310195

>>> sum([ an_1n2(n) for n in range(1,1000) 1)
0.6936474305598223

>>> sum([ an_1n2(n) for n in range(1,1000000) 1)
0.6931476805602526

Observe how the approximation-becomes-approximations become
more accurate as more terms are added-in—the-sum-—used in the
decimals 0.69. .., the approximation computed by summing 1000
terms is accurate to three decimals 0.693. .., and the approximation

with 1000000 terms is accurate to six digits 0.693147 . . ..
A lot of practical mathematical computations are performed in

this iterative fashion. In this section we’ll learn about a powerful
technique for calculating quantities to arbitrary precision by sum-
ming together more and more terms of a series.

Definitions

o N=H{6,4234"56—~—N =1{0,1,2,3,4,5,6,...}: the set of

natural numbers

o No=MN{0=1{123;456—~IN* = IN\{0} = {1,2,3,4,5,6,...}:
the set of positive natural numbers

e a,: a sequence of numbers (ag, ay,ay,4a3,44, .. .)

e > sum. This symbol indicates taking the sum of several ob-
jects grouped together. The summation sign is the short way to
express certain long expressions:

7
az +asg +as +ag +ay = Z {Zn:Eun.
3<n<7 n=3

® > ay: the series a, is the sum of all terms in the sequence a,:

00
Seo = Zan:a1+a2+a3+u4+a5+a6+--~.

n=1

e n!: the factorial functionn! = n(n—1)(n—2)---3-2-1,ifn > 1.
We define 0! = 1.

e f(x) = Yo cnx™ the Taylor series approximation of the func-
tion f(x). It has the form of an infinitely long polynomial ¢y +
c1x! + cpx? + c3x3 + ... where the coefficients c,, are chosen so
as to encode the properties of the function f(x).
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See problem P5.119 for the derivations of these formulas. The sum
of the first N terms in an arithmetic sequence is

N
1
Z(ao+nd)=aoN+%

n=1

d.

Itwill-be—'s_important to remember these formulas because they
can occur in calculus problems. For example, eomputing-these
summation formulas are used to find the integral of the function

Flx) = ax? + bx + ¢ using an-infinite Riemann sumrequires these
formulasby computing the limit of a Riemann sum.

There are many other series whose infinite sum is described by an
exact formula. Qver the years, mathematicians have come up with

various techniques for computing the values of infinite series. Be-
low, you'll find some knewn-formulasfor-the sums-of certain-infinite

seriesof these formulas.
The p-series is the sum of all the terms in a p-sequence, which

are described by the formula a, = -5, where p is the power (the
exponent) in the denominator (see page 445). The p-series involv-

ing even values of p can be computed exactly:

1t 1 o 1 °
276 AwTw Mmoo

Note you're not required to memorize these formulas. They are
given here as examples of what is possible.
Other closed-form expressions for infinite series include:

18

n=1

n? 127 no 7 A2 -1 27

o0
2,
n=1 n=1
o0
2

2

> -
On+12 8’ Dn+13 32
0 (2n+1) 8 = (2n+1) 32

Again, don’t worry about memorizing all these formulas; just think
of them as prizes in a trophy case—a representation of some math-
ematical success stories. Mathematicians experience great pride
whenever they manage to make sense of some complicated, infinite
sum expression by finding a simple formula to describe its value.
In general most infinite series do not have such closed-form expres-
sions, so you can understand mathematicians’ excitement and why
they’d want to build a trophy case of known formulas. The series
formulas shown above are analogous to the “trophy case” of integral
formulas on page 547.
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Exercises

E5.7 Compute the values of the following summations using the for-
mulas given above.

N N 0 6
@ Y c(a+bn) ®) Y c(a+bn)? © >
n=1

n=1 n=1

Convergence and divergence of series

Even when we can’t compute an exact expression for the infinite sum
of a series, it’s important to distinguish series that converge from
series that do not converge.

We say a series Y, a, converges if the infinite sum So—=">- =
S = a, equals some finite number L € R.

[ee}
S = Z a, =L = the series Zan converges.
n=0

applying the infinite-sum-of-its-terms-is-a-finite-number_property
as an adjective. The opposite of a convergent series is a divergent
series, which describes all series that are not convergent. A series

can be divergent if it grows to infinity ;—we-say—the-series—> 4y
tHoerges—

o0
S = Z a, = +oo = the series Za” diverges.
n=0

or if it jumps around between numbers. An example of a divergent

series is divergent, because its infinite sum doesn’t converge to a
finite number but keeps growing indefinitely. Another example of
a divergent series is —1)"=1—-1+1-—1+... whose value
alternates between 1 and 0 and never “settles down” around a single
limit L, as is required for a convergent series.

Convergence of a series is not the same as convergence of the un-
derlying sequence a,, which we talked about in the previous section.

The calculations with series are completely different. Consider the
N
sequence of partial sums Sy = >} a,+
n=0

SO/ Sl/ SZ/ 53/ ceey
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where-each-of-the-terms-in-the-sequencecorresponds—to-._The terms

in this sequence,
50, 51,52, 53, -

correspond to the following calculations:

apg, . ap+ay, _ap+ay+ay, _apg+ay+ax+as, ... .

We say the series >, a, converges if the sequence of partial sums Sy
converges to a limit L:
lim S N = L.
N—o

This limit statement indicates that the partial sums Sy approach the
number L as we include more terms in the series.

The precise meaning of the limit statement is as follows. For any
precision € > 0, there exists a starting point Ne such that, for all
N > N, it will be true that

|SN—L| < E.

The number N, corresponds to how many terms of the series you
need for the partial sum Sy to become e-close to the limit L.

Convergence tests

The main thing you need to know about series are the different tests
you can perform to check whether a series converges or diverges.

Divergence test

The only way the infinite sum ;7 ;a, will converge is if the ele-
ments of the sequence a;, tend to zero for large n. This observation
gives us a simple series divergence test. If limy . a, # 0 then 230:0 ay
diverges. Howcotld-

For example, consider the sequence g, whose limit is some

number ¢ # 0. To find the limit of the series lim N a4 , we'll

need to compute an infinite sum of nen-zero—quantities—add—to—a

Abselute-convergence

numbers that are approximately equal to ¢. If > az|l-converges;

positiveterms{_is nonzero then the quantity N/ “blows up” as N
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A-—sequence—r—for-which—>-far-converges—is—ealled-Note the

condition lim,_, fy = = 0 for the terms is ﬁ‘bﬁ@lﬁ'ﬁé‘}y—ﬁﬂﬁ@ﬁ‘g&ﬁf——ﬂ

required for the series a, to converge but 1t isn't conditionathy
eonwergentsufficient. There are all kinds of sequences that satisf

limy,_, o 4, = 0 that have divergent series S ,4,. In this section,
well learn about some other tests that can tell us which series are

convergent, and which series are divergent.
Decreasing alternating sequences

An alternating series a;, in which the absolute values of the terms is
decreasing (|a,| > |a,+1]), and tend to zero (et —0lim;, o a, = 0)

1 n+1
converges. For example we know the series Y7L (= ) =
1-3+3-1+1-1 - converges because it is a decreasing

alternating series and llmnaoo % =0.

Integral test

{P%heﬁegfa}%eﬁ}d%ﬁﬁm&&Consider some function f : R —» R

that is nonnegative > 0) and decreasin x) > f(x+6),¥é > 0)

for all values of x, x > If we evaluate this function only for inputs
that are positive integers, then we can think of it as a sequence
: IN* — R. The terms of the sequence will be (1), (2 3 4),

and so on.
Recall the definition of improper integrals we saw in Section 5.17.
The improper integral (-°f(x) dx corresponds to an integral thenthe

series 3y f {1 )-eonverges:— I the-integral-{ f(x)dx-where one of the
endpoints goes to infinity:

This corresponds to the calculation of the area under f(x) over the
whole x-axis, all the way to infinity.
The inteqral test describes a connection between the convergence

roperties of the improper integral x) dx, and the convergence of

the series >, f(n). Specifically, if the integral {;°f(x) dx diverges,
then the series > f{#)>, f(1n) also diverges.
Thei . e dofined Vi on:

[ = i f()
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If the integral (;°f(x) dx is finite, then the series n) converges.

The p-series converges if p > 1

- . 1 .
The-econvergence-conditions{forp-series; =, can-be-obtained
o the Ltest
The series > 4 nl—,, converges if p > 1, and diverges if p < 1.
Note that p = 1 corresponds to the harmonic series 3, ; 1 which
diverges.

The convergence conditions for p-series, a, = -, can be obtained
using the integral test.

Direct comparison test

Often times we can understand the convergence properties of a se-
ries ), a, by comparing it to another series ), b, whose convergence
properties are known. One approach is to directly compare the val-
ues of each term. In particular, we can draw the following conclu-

sions for any two nonnegative sequences 4, and b,;:

e Ifa, < by foralln,and ), b, converges, then }, a, converges.

o If 1, > by, for all n, and > brdiverges) b, = o, then ), a,

diverges.

<
=

The first eonclusion-point follows from the squeezing principle: since
b, is always above a,,, and ), b, converges, then so must }.,a,. The
second eonclusion-point uses this reasoning in reverse: since >, b, =
oo and a, > by, then we must also have a4, = 0.

Limit comparison test

We can also compare series by comparing the relative size of their

n™ terms. Suppose linc}o b—” = L. We can draw the following conclu-
n— N

sions:

e If0 < L < oo, then ), a4, and >, b, either both converge or
both diverge.

e If L = 0and )}, b, converges, then }, a, also converges.
o If L = coand )}, b, diverges, then )}, a, also diverges.

The n'! root test

If r is defined by r = nlirrolo {/|ay|, then > a, diverges if r > 1 and

converges if r < 1. If r = 1, the test is inconclusive.




DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE



DIFFCHANGE


5.19 SERIES 455

The ratio test

The most useful convergence test is the ratio test. To use the ratio test,
compute the limit of the ratio of successive terms in the sequence:

An41
an

R = lim

n—0o0

The series > ° a, converges if R < 1,and Y a, diverges if R > 1. If
R =1, the test is inconclusive.

Absolute convergence

If a,| converges a, also converges. The opposite is not

necessarily true, since the convergence of g, might be due to negative

terms cancelling positive terms.
A sequence a, for which a,| converges is called absolutel

convergent. A sequence b, for which b, converges but b

diverges is called conditionally convergent.

Taylor series

The Taylor series of a function f(x) approximates the function by an
infinitely long polynomial:

0
f(x) = Z Cnxn :Co+C1x+czx2+c3x3+c4x4+... .
n=0

Each term in the series is of the form a,, = ¢, x", where the coefficient
¢, depends on the properties of the function f(x). For example, the
Taylor series of the function sin(x) is

9 11

X
n+1)! [ ro7t Tor
2n+ 1) ST TR TTA

o0
Z (*1)71 2n+1 _ x3 x5 x7 X

U TN /I TUN S TR

How do the coefficients ¢, depend on the function f(x)? How can
we compute the Taylor series for other functions?
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The general procedure for computing the coefficients ¢, in the
Taylor series of a function f(x) is to choose ¢, equal to the n" deriva-
tive of f(x) divided by n!:

0) +f (0)x + f”2(!0) x? + f”;(!O) O+ f(Z!(O) g

JARI0

n!

f)=f

/—\
~

x",

I
18

0

3
Il

Using this formula and your knowledge of derivatives, you can com-
pute the Taylor series of any function f(x).

Example Find the Taylor series of f(x) = e*. The formula for the

th coefficient in the Taylor series of the function f(x) is ¢, = %.
The first derivative of f(x) = e* is f/(x) = ¢*. The second derivative
of f(x) = e*is f’(x) = €*. In fact, all the derivatives of f(x) will be
e* because the-e* is a special function that is equal to its derivative!
The n'h coefficient in the pewer Taylor series of f(x) = e* atthe point
x#=-0-is equal to the value of the nh derivative of f(x) evaluated at
x = 0. In the case of f(x) = ¢* we have f(W(0) = ¢? = 1, so the

. . . ()
coefficient of the n'h term is e= £ n!(o) = nl!.
(m) (0
Cn = L n!( : = %
The Taylor series of f(x) = e* is
1 2 3 xt b
Z X —1+x+—+§+—+ 5 b
S 1
xX_ L oon
€= Z n'x
n=0
x2 3 x4 5
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Discussion

You can think of the Taylor series as containing the “similarity coef-
ficients” between f(x) and the different powers of x. We choose the
terms in the Taylor series of f(x) to ensure the series approximation
has the same n'" derivative as the function f(x). For a Maclaurin se-
ries, the similarity between f(x) and its power series representation

. .. (n)
is measured at x = 0, so the coefficients are chosen as ¢, = £ n!(o)_

The more general Taylor series allows us to build an approximation
to f(x) at any point x = a4, and its similarity coefficients are calcu-

_ @

lated to match the derivatives at that point: ¢, = ~—

Another way of looking at the Maclaurin series is to imagine it is a
kind of X-ray picture for each function f(x). The zero coefficient cg
in the Maclaurin series tells you how much of the constant function
isin f(x). The first coefficient, ¢y, tells you how much of the linear
function x is in f; the coefficient c; tells you about the xZ contents
of f, and so on.

Now get ready for some crazy shit. I want you to go back to
page 456 and take a careful look at the Maclaurin series of e*, sin(x),
and cos(x). As you will observe, it’s as if ¢* contains both sin(x) and
cos(x), the only difference being the presence of the alternating neg-
ative signs. How about that? Do you remember Euler’s formula
e’ = cosx + isinx? Verify Euler’s formula (page 237) by substitut-
ing ix into the power series for e*.

Another interesting equation to think about in terms of series is
e¥ = coshx + sinh x.

Links
[ Animation showing Taylor series approximations to sin(x) ]
httphttps://mathforum—org/mathimages.swarthmore.edu/index.php/Taylc

[ Visual explanation of Taylor series by 3BluelBrown ]
https://www.youtube.com/watch?v=3d6Ds jIBzJ4

[ Good summary with many interesting examples ]
http://en.wikipedia.org/wiki/Series_(mathematics)

[ A comprehensive list of important math series ]
http://en.wikipedia.org/wiki/List_of_mathematical_series

5.20 Conclusion

Now you know how to take derivatives, calculate integrals, and find
sums of infinite series. These practical skills will come in handy in
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learned by trying to solve some calculus problems.

Calculus hasn’t changed much in the last hundred years. It is tes-
tament to this fact that many of the problems presented here were
adapted from the book “Calculus Made Easy” by Silvanus Thomp-
son, originally published! in 1910. These problems remain as perti-
nent and interesting today as they were 100 years ago.

As much as calculus is about understanding things conceptually
and seeing the big picture (abstraction), calculus is also about prac-
tice. There are more than 120 problems to solve in this section. The
goal is to turn differentiation and integration into routine operations
that you can carry out without stressing out. You should vanquish as
many problems as you need to feel comfortable with the procedures
of calculus.

Okay, enough prep talk. Let’s get to the problems!

Limits problems

P5.1 Use the graph of the function f(x) shown in Figure 5.33 to calculate
the following limit expressions:

1) tim f(x) @ lim f(x) @) lim_f(x
@ lim f(x) ) lim f(x) (6) lim £ ()
) tim f(x) ®) lim f(x) ©) lim £(x)

(10) Is the function f(x) continuous at x = 5?

(11) What are the intervals where the function f(x) is continuous?

f(=)
i~
o
Pl
// Tt
/ 61
5
/ 14
/ 31 ®
¢ 24
W
( """""""" ‘ ——> T
~9-8-7-6-5-4-3-2 4123456789
24 ol
o
51 &
6
ot
ML
o}
2
Figure 5.33: The-graph-of-apiecewise-continuousfunetion+{x)—The func-
tion f(x) has two jump discontinuities at x = —5 and x = 2 and one remov-

able discontinuity at x = 5.

IFull text is available at http: /gutenberg. org/ebooks/33283 (public domain).
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End matter

Conclusion

We managed to cover a lot of ground, explaining many topics and
concepts in a relatively small textbook. We reviewed high school
math and learned about mechanics and calculus. Above all, we ex-
amined math and physics material in an integrated manner.

If you liked or hated this book, be sure to send me feedback.
Feedback is crucial so I know how to adjust the writing, the con-
tent, and the attitude of the book for future learners of math.
Please take the time to drop me a line if you find a mistake or to
let me know what you thought. You can reach me by email at
ivan@minireference.com.

If you want to learn about other books in the Neo-—bullshit
gmdeseﬂeﬁﬂekwl\wgb\wtcmde series or hear about the technol-
ogy we're using at MinireferencePublishing Minireference Co.
to take over the textbook industry, check out the company blog at
minireference.com/blog/. You can also find us on the twitter
@minireference and on the facebook fb.me/noBSguide.
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«T(71) + BT (7). Using the standard notation for functions, we write
T(X) = ¥ to show the linear transformation T acting on an input
vector ¥ € R” to produce the output vector i € R™. Every linear
transformation T can be represented as a matrix Ar € R™*", which is
an array of numbers with m rows and #n columns. Computing T(¥)
is equivalent to computing the matrix-vector product ArX. Because
of the equivalence between linear transformations and matrices, we
can also say that linear algebra is the study of vectors and matrices.

Vectors and matrices are used all over the place! If your knowl-
edge of high-school math gave you modelling superpowers, then
linear algebra is the vector-upgrade that teaches you how to build
models in multiple dimensions.

[VIDEO LECTURES] Gilbert Strang. Linear Algebra, MIT Open-
CourseWare, 2010, online: http://bit.ly/StranglLAlectures.

[BOOK] Ivan Savov. No bullshit guide to linear algebra, Minireference
Publishing, Second edition, 2017, ISBN 978-0-9920010-2-5.

General mathematics

Mathematics is a hugely broad field. There are all kinds of topics
to learn about; some of them are fun, some of them are useful, and
some of them are totally mind expanding.

The following beeks-resources cover math topics of general in-
terest and serve as a great overview of all areas of mathematics. I

highly recommend you take a look at beth-booksforsome-easy-and
enlighteningreadingthese for further math enlightening.

[VIDEO] A map of mathematics that shows all the subfields of
mathematics and their objects of study: https://youtu.be/0mJ-4B-mS-Y.

[VIDEOS] Video interviews and lessons by some of the best math
educators in the world: https://youtube.com/user/numberphile,_

[BOOK] Richard Elwes. Mathematics 1001: Absolutely Everything,
Firefly Books, 2010, ISBN 1554077192.

[BOOK] Alfred North Whitehead. An Introduction to Mathematics,
Williams & Norgate, 1911, www . gutenberg. org/ebooks/41568.

Probability

Probability distributions are a fundamental tool for modelling non-
deterministic behaviour. A discrete random variable X is associated

with a probability mass function px{x)=Pr{{X —xHpx(x) £ Pr({X = x}),

which assigns a “probability mass” to each of the possible outcomes
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of the random variable X. For example, if X represents the out-
come of the throw of a fair die, then the possible outcomes are

={1, 2 3,4,5,6} and the probability mass function has the values
px(x) = 6, Vx e X.

Probability distributions and random variables allow us to model
random processes like the roll of a die. We can’t predict the exact
outcome when two dice X; and X, are rolled, but we can predict the
probability of different outcomes. For example, the “pair of sixes”
outcome is described by the event {X; + X, = 12}. Assuming the
dice are fair, this outcome has probability Pr({X; + X, = 12}) = %.

Probability theory is used all-ever—the—placein many places,
including in gambling, risk analysis, statistics, machine learning,

quaﬁbum—meehames—gamhhng—aﬁd—ﬂsl&aﬂa%yﬁsgggm

mechanics.

[WEBSITE] A visual introduction to the basic ideas of probabilit
theory: https://seeing-theory.brown.edu/basic-probability/.

[BOOK] Charles M. Grinstead and J. Laurie Snell. _Introduction

to Probability, Second Edition, AMS, 1997, ISBN 9780821894149.
https://open.umn.edu/opentextbooks/textbooks/21.

General physics

If you want to learn more about physics, I highly recommend the
Feynman lectures on physics. This three-tome collection covers all
of undergraduate physics and explains many more advanced topics.

[BOOK] Richard P. Feynman. The Feynman Lectures on Physics,
The Definitive and Extended Edition, Addison Wesley, 2005, ISBN
0805390456. Read online at: http://feynmanlectures.caltech.edu

Lagrangian mechanics

In this book we learned about Newtonian mechanics, that is, mechanics
starting from Newton’s laws. There is a much more general frame-
work known as Lagrangian mechanics that can be used to analyze
more complex mechanical systems. The following is an excellent
book on the subject.

[BOOK] Herbert Goldstein, Charles P. Poole Jr., John L. Safko.
Classical Mechanics, Addison-Wesley, Third edition, 2001, ISBN
0201657023.
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Appendix A

Answers and solutions

Chapter 1 solutions

Answers to exercises

Ella)x = 3, b)x = 30,0 x = 2;,d x = -3. El.2 a) Z,Q,R,C; b) C;
ON,Z,QR,CdQRCeRC EL3a2L;b)0;0 2. Elda)2;b) 13 =15L;
3l =5l Elsax=2bx=25cx=100. EL7a)(x—1)(x—7);b) (x+2)%

o) (x+3)(x—3). EL8a)#*+2ab—++b2x> +2x — 15 = (x + 1)2 — 16 = 0, which has
solutions x = 3 and x = —5; b) #>+-3a2b—+3ab>+b>-e}at+4a b—+6atb2+4abd+b;

B -5atb+0a7b2 40023+ Babt b pAx 1 = (x+2)2 23 =0, with

solutions y= —2+v3and x=-2-3 El9x = jandx = —1.  EL10
x = +2. E111 a) 8 b) a—1b=2c73 = ﬁ,’ o 8a2; d) a®b2. E1.12
a3 b) 120 V3 d e ElL13a)2m b)4+ 1 =425 01 d 2 ELI4
a)x = aandx = —/@; b)x = Vbh; ) x = Ycand x = —¥c; d) x = V4.
Bonus points if you can also solve x> = —1. We'll get to that in Section 3.5.
E115 k., = 8.988 x 10°. E1.16 a) log(2xy). b) —log(z). o log(y). d) 3.
e) —3. )4 E1.17 Domain: #€RR. Image: f{xjef—22{—-2,2]. Roots:
F— 721,721,32”,52”,‘..1“.. —zx o 8w St 3, E1.18 a) p(x) is even and has degree

4. b) g(x) is odd and has degree 7. E1.19a) x = 5and x = —3;b) x = 1 + +/3 and

x =1-1+/3. EL20 a) {geFHer=afh—(+52(qo f)(x) = 9(f(x)) = (x +5)%
g(x) shifted five units to the left. b) (f 0 q)(x) = x> + 5; g(x) shifted upward by five
units. ¢) (g0 g)(x) = (x — 6)%; q(x) shifted six units to the right. d) (g o h)(x) = 49x2;
q(x) horizontally compressed by a factor of seven. E121 A = 5, A = 0.1, and
¢ =% EL22f(x) =x>—2x+5 EL23g(x) =2/x—3-2 El24x = 2L

E1.25 V = 3351 and A = 50.26. E1.26 Length of track = 5C = 57td = 11.47
m. E127 x = 5co0s(45°) = 3.54, y = 5sin(45°) = 3.54; C = 10m. El.28a) ¥

radrad; b) T 7 radrad; oz 7 radrad; d) & f&él‘ad E1.29 a) —1; b) 1; ¢) 0. E1.30

A0b Lol dl  EL31 Eeﬁg&rﬁf—bﬁade—%@—%ﬁ%—%#mm
b) 2.24/243. 43O =224/-116.57° ¢) 6£270° = 6£—-90°; d) (8.66,5); e) (9.66,2.59);

f) (=5,8.66). F132 = e
ﬁ%&&e{@%}m E133c=v0a? 2. El34y= gzx°. EL35
a) .b)(1,2). 0 (=2,2). E136x=2,y=3. EL37x=5y=6andz = —3.
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488 ANSWERS AND SOLUTIONS

E138 p = 7and q = 3. E1.39 a) $53974.14; b) $59209.77; ¢) $65948.79. E1.40
$32563.11. El.41a){2,4,6,7};b) {1,2,3,4,5,6}; 0 {1,3,5}; d) &; e) {1,2,3,4,5,6,7};

0 {7} 8 {2,4,6,7};h) @. El42a) xe{—s5)(=0,3); b) wef{—oe—5}( -0, -5];

O 4)(L4) d) xetd0)(4, 2); @ xe i) 1 ) O (oo orf2oe) (o0, 24]
wJ2.20).

Solutions to selected exercises
El.4 a) To compute 1 + 1 we rewrite both fractions using the common denominator

6, then compute the sum: 2 + 1 = 3 4+ 2 = 5 b) You can use the answer from part

a), or compute the triple sum directly by setting all three fractions to a common

denominator: 1 + 141 =64 4 4 3 _ 13 ) Here we first rewrite 31 as Z, then

2 31

use the common denominator 6 for the computation; 2 +2 — 1 = 2L 4

E1.15 If you're using a very basic calculator, you should first compute the expres-
sion in the denominator, and then invert the fraction. Calculators that support
scientific notation have an “exp” or “E” button, which allows you to enter gy as
8.854e-12. If your calculator supports expressions, you can type in the whole expres-
sion 1/ (4*pi*8.854e-12). We report an answer with four significant digits because
we started from a value of gy with four significant digits of precision.

E1.19 a) Rewrite the equation putting all terms on the right-hand side: 0 = x* —
2x — 15. We can factor this quadratic by inspection. Are there numbers a and b such
thata+b = —2and ab = —15? Yes,a = —5and b = 3,500 = (x —5)(x + 3).
b) Rewrite the equation so all terms are on the left-hand side: 3x* —6x —6 = 0.
Nice, the cubic terms cancel! We’ll use the quadratic formula to solve this equation
—6)2—4(3)(—
_ 6E/( 6)6 4G3)(=6) _ 612\/5 =1+4/3.

E1.24 The cosine rule tells us
Therefore x = v/21.

E1.25 The volume of the sphere with radius r = 2is V = 3723 = 33.51. Its surface
areais A = 4722 = 50.26.

E1.28 To convert an angle measure from degrees to radians we must multiply it by
the conversion ratio {ggrae/>.

E1.32 Substitute the formula sin® = £ into the equation to obtain r = 2, which

simplifies to y = 2. The function r(f) = =2, in polar coordinates corresponds to

the line with equation y = 2. See www.desmos.com/calculator/5n5zzoal2t for the
graph.

E1.33 First define the vertex Vo = (4,0) which corresponds to the right extremit
of the ellipse. Considering the definition of the ellipse at the vertex V,, we find

r1+1 = (c+a)+(a—c)=2a_Next, consider the vertex V3 = (0,b) at the top of
the ellipse. The distances r; and r, from Vj to the focal points F; and F, correspond

to the hypotenuse of a triangle with base ¢ and height b: 71 = o = v/c2 + b2. Since
71 + 1> = const. for all points on the ellipse, we can equate the results obtained from

the length calculations for point V» and point V3. We find 2a = 2+/c? + b2, which we
can solve for ¢ to obtain ¢ = Va2 = b%.

E1.34 For a parabola with focal length the focal point is at F = (0, f) and the
directrix is the line with equation ¥ = —f. The distance from the focal point to an
arbitrary point on the parabola is given b

r=d(P,F) = d((x ), (0,9) = /% + (y )2
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P1.48 The base of this triangle has length 2r and each side has length R + r. If you split
this triangle through the middle, each half is a right triangle with an angle at the centre

% = 15°, hypotenuse R + r, and opposite side r. We therefore have sin15° = ¢/

After rearranging this equation, we find § = 1;3‘5‘5105 ° — 2.8637.

P1.51 The tank’s total capacity is 15 x 6 x 5 = 450 m>. If 30% of its capacity is spent,
then 70% of the capacity remains: 315m3. Knowing that 1 m?® = 1000 L, we find there
are 315000 L in the tank.

P1.52 The first tank contains % x 4000 = 1000 L. The second tank contains three times
more water, so 3000 L. The total is 4000 L.

P1.53 Let’s define w and & to be the width and the height of the hole. Define d to
be the distance from the hole to the sides of the lid. The statement of the problem
dictates the following three equations must be satisfied: w +2d = 40, h + 2d = 30,
and wh = 500. After some manipulations, we find w = 5(1 4+ +/21), h = 5(v/21 — 1)
andd = 1(35 - 5v21).

P1.54 The amount of wood in a pack of wood is proportional to the area of a circle
A = mr®. The circumference of this circle is equal to the length of the rope C = ¢.
Note the circumference is proportional to the radius C = 27tr. If we want double the
area, we need the circle to have radius v/2r, which means the circumference needs to
be +/2 times larger. If we want a pack with double the wood, we need to use a rope of

length V20.

P1.55 In 10L of a 60% acid solution there are 6 L of acid and 4 L of water. A 20% acid
solution will contain four times as much water as it contains acid, so 6 L acid and 24 L
water. Since the 10 L we start from already contains 4 L of water, we must add 20 L.
P1.56 The document must have a 768/1004 aspect ratio, so its height must be 6 x
4008 = 7.84375 inches.

P1.57 If werewritel+2+3+ .-+ 98 + 99 + 100 by pairing numbers, we obtain the
sum (1 +100) + (2 +99) + (3+98) + - - -. This list has 50 terms and each term has the
value 101. Therefore 1 +2 +3 + --- + 100 = 50 x 101 = 5050.

P1.62 An nAPR of 12% means the monthly interest rate is % = 1%. After 10 years
you'll owe $5000(1.01)'2° = $16501.93. Yikes!

P1.63 The graphs of the functions are shown in Figure 22A.1. Observe that f(x) de-
creases to 37% of its initial value when x = 2. The increasing exponential g(x) reaches
63% of its maximum value at x = 2.

P1.64 We're looking for the time t sueh-that-when Q(t)/Qo = %, which is the same
as e = 0.5. Faking-Take logarithms of both sides we-to find —5¢ = In(0.5) -and
solving-and solve for t wefine-to get t = 0.14s.

P1.65 We're told T(24)/T, = % = e~ 247, which we can rewrite as ln(%) = —24/7.
Solving for 7, we find T = % = 34.625min. To find the time the body takes to reach
1% of its initial temperature, we must solve for ¢ in T(t)/To = 0.01 = e~!/34625 We
find t = 159.45 min.

P1.67 There exists at least one banker who is not a crook. Another way of saying the
same thing is “not all bankers are crooks”—just most of them.

P1.68 Everyone steering the ship at Monsanto ought to burn in hell, forever.

P1.69 a) Investors with money but without connections. b) Investors with connec-
tions but no money. ¢) Investors with both money and connections.
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P4.15 The period will decrease. ~ P4.16 Fyusn = 4.71[N]. P4.17 The pulley with the
larger radius R will spin faster and have more K. P4.18 (1) v; = —5.4[m/s]. (2) Not
elastic. P4.19 (1) See solution. (2) a; = 1[m/s?], a, = 0[m/s?], and a3 = —1[m/s2].
(3) F = 40[N]. P4.20 vy = V2v[m/s]. P421(1) T = 49[Nm]. - (2) W = 9.6[]].
P4.22 m = 146[kg]. P4.23 |F| = 3[N] P424 (1) h = d. - (2) v; = 19.8[m/s]
and ty = 143[s].  P4.25 (1) ps > ;M. - () s > 0.421. - (3) a = mﬁﬁﬁ
P4.26 (1) d = 441[m]. (2) Ty = 5290°[m/s]. P4.27 (1) Fy = 158 x 10°[N]. (2) The
vertical acceleration is zero so the plane will maintain a horizontal trajectory. P4.28
v =102[m/s]. P4.29 (1) v; = (S0 4 c0s30)+/2dgpx. (2) v; = 2.24[m/s], v1 =
1.12[m/s] and v, = 1.94[m/s]. (3) 0.233[m]. (4) The collision is elastic. P4.30
(1) T = 3.6]Nm]. (2) 18.9 revolutions. P4.31 The solid cylinder will reach the bottom
first. P4.32 taight = 2top = 4.1[s]. P4.33 py = Mz s P4.34 Range is 0.65[m] greater
on the summit than on the North Pole. P4.35 x(t) = 2t> + 10t 4 20 in metres. P4.36

The slug loses contact at R = %. P4.37 upward Fg; > stationary Fg; > downward

Frs. P4.38 The coin farthest from the centre will fly off first. P4.39 (1) Fy = 3000[N]
per wheel. (2) 7 = 180[N'm]. (3) 2.21 turns. (4) 2.7[m]. P4.40 H%M[m]

P441 y%%@%@%@ﬁwwa;%mwwﬁ

Solutions to problems FIX2 FIX1

P4.1 When the y-axis points up, 4y = —g and v;, is positive. The opposite applies
when the y-axis is directed downward. The balloon moves at the same horizontal
speed as the cat; the balloon is always directly above the cat, and splashes the cat
when it comes back down. The cat is not happy about that.

P4.2 (1) 15:; points right and is perpendicular to the left face of the block, (2) E points
up and is perpendicular to the bottom face of the block, and (3) Fy points left and
is perpendicular to the right face of the block. In each case, the sum of the forces
produces an dpoc in the desired direction.

P4.3 Calculate the momentum and energy using the formulas ||p|| = m|d|| and K =
%mvz. Observe that two objects moving with equal momentum can carry different
amounts of kinetic energy; this problem shows momentum and energy are different
quantities.

P4.4 In each case, the sum pa + pp after the separation equals the momentum of the
station before the compartments split apart: 2mv = mis + mop.

P4.5 When there is a velocity, there is kinetic energy K. When the spring is stretched,
there is spring potential energy Us. When the position of the mass is above or below
y = 0, there is gravitational potential energy Us.

P4.6 The ball’s initial kinetic energy is the same on Earth and on the Moon. Because
of conservation of energy, when the ball returns to ground level, it will have the same
kinetic energy it had initially, regardless of the value of g.

P4.7 Define the zero potential-energy level to be at ground level. The bottom of the
10[m] pit has a lower potential energy on Earth because ggarth > gMoon. The ball will
therefore gain more kinetic energy on Earth when it reaches the bottom of the pit and
thus have a higher speed.

P4.8 The rotation of the mass M is at a constant angular velocity so the net torque
on the mass is zero. Let us denote by L;od, Lmass, and Lsys the angular momenta of
the rod, the mass M, and the total angular momentum of the mass-on-a-rod system.
Initially, Lsys = Lyod + Lmass- When the mass M detaches, its velocity 7 will remain
the same as before the moment it detached. This means its angular momentum Lmass
will remain the same after it detaches. This in turn implies the rod will also maintain
its angular momentum, so its angular velocity will remain w.
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P4.30 Use a = ra to find «, then use 7 = Ia to find the torque. Use the angular

equations of motion to find 6(4). The number of revolutions is %.

P4.32 This is a kinematics question. Start from the equation v(t) = at +v; and a =
—9.81. We know o(top) = 0, so we can solve to find tiop.

P4.33 First we use U; = Ky for the pendulum, obtaining MgL = %Mvizn and thus

Vin = 4/2g¢L. Next we use a momentum reasoning pin = Pout Where the incoming
momentum is that of the mass M and the outgoing momentum is that of the mass
m. The conservation of momentum equation becomes Mvi, + 0 = 0 + mvoyt, Where
Vout is the velocity of the mass m after the collision, and the momentum of the pen-
dulum is zero after the collision since it doesn’t bounce back. Solving for vo.t we find
Uout = %4 /2gL. Finally, we use an energy calculation K; = Wjugs, which becomes
Lm (M /ZgL)2 = mgyd. After some simplifications, we find p, = %22 %.

P4.34 We want to find the range—how far the ball will reach after being kicked—in
both situations. The first thing to calculate is the total time of flight by solving for ¢ in
0=0+uvyt+ %(—g)tz. The time of flight will be 4.347[s] on the Nevado Huascaran
summit, and 4.316[s] on the North Pole. The range in each case corresponds to d =
v;x4.347 = 92.21[m] and d = v;,4.316 = 91.56[m]. The difference in range is 92.21 —
91.56 = 0.65[m].

P4.36 The normal force between the slug and the turntable is N = mg. With the slug
located at radius R, the centripetal acceleration required to keep the slug on the disk

is F, = ma, = m% The friction force available is Ff = 0.4mg. The slug will fly off
when the friction force becomes insufficient, which happens at a distance of R = %

from the centre.

P4.37 The equation for Fss is Fy; = psN, where N is the normal force (the contact
force between the fridge and the elevator floor). The force diagram on the elevator
reads )F, = N —mg = ma,. When the elevator is static, 2, = 0so N = mg. If
ay > 0 (upward acceleration), then we must have N > mg; hence the friction force
will be larger than when the elevator is static. When a, < 0 (downward acceleration),
N must be smaller than mg, and consequently there will be less Fy;.

P4.38 The coin farthest from the centre will be the first to fly off the spinning turntable
because the centripetal force required to keep this coin turning is the largest. Recall
that F, = may,, a, = 02 /R, and v = wR. If the turntable turns with angular velocity w,
the centripetal acceleration required to keep a coin turning in a radius R is F, = mw?R.
This centripetal force must be supplied by the static force of friction Fs; between the
coin and the turntable. Larger Rs require more Fy;.

P4.39 (1) The friction force is proportional to the normal force. The friction on each
side of each disk is F r = 0.3 x 5000 = 1500[NT] for a total friction force of F = 3000[N]
per wheel. (2) The friction force of the brakes acts with a leverage of 0.06[m], so the
torque produced by each brake is 7 = 0.06 x 3000 = 180[N m]. (3) The kinetic energy
of a 100[kg] object moving at 10[m/s] is equal to K; = %100(10)2 = 5000[]J]. We'll use
K; —W = 0, where W is the work done by the brakes. Let 0siop be the angle of rotation
of the wheels when the bike stops. The work done by each brake is 1800stop. It will

take a total of Ogtop = % = 13.8[rad] to stop the bike. This angle corresponds to 2.21
turns of the wheels. (4) Your stopping distance will be 13.8 x 0.20 = 2.7[m]. Yay for
disk brakes!

P4.40 The energy equation > E; = > Ef in this case is U; = Uy + Ky, or mg(6 —
6c0s50°) = mg(6 — 6cos 10°) + +mo?, which can be simplified to v? = 12g(cos 10° —
cos50°). Solving for v we find »—448v = 6.345[m/s]. Now for the projectile
motion part. The initial velocity is 4486.345[m/s] at an angle of 10° with re-

spect to the horizontal, so &=-{(442-0-778)7; = (6.24,1.10)[m/s]. Tarzan’s ini-
tial position is (x;,y;) = (6sin(10),6[1 — cos(10)]) = (1.04,0.0911)[m]. To find
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the total time of flight, we solve for t in 6——4:9+2+0.778++08:09H—andfind
Ws} Tarzan will land at

2 =6sin{H0)+442+=2691 ¢ = 6sin(10) + 6.24t = 2.85[m].
P4.41 We begin—by—writing—Based on the geometry of the setup, we see the
-displacement depends on the angle of the pendulum through the equation

0) = Usin(f). We also know the general equation of motion for a pendulum =
is 9( ) = Gmax cos(wt) where w = \/7 Eﬁ%er—#hewaﬂeway—whielﬂs—mevmg—te—the

whefeﬁ—%rﬁ%%—&ﬂd%—feﬂ&%—hew&eﬂg{meaﬁu%dﬂs—ad&s%ombmm the two
equations, we obtain a formula that describes the bucket’s transversal displacement

as a function of time, y(f) = ¢sin(6max cos(wt)). Enter the walkway, which is

moving in the x-direction }-it-takes—for-the pendutum-to-complete-one-eyele—One

w1th veloc1t v, meanin, the X- osmon of the oint

where the amt is falhn iven by x = vt. We want to rewrite y(f) as a function

of x, which we can do using the substitution t = £. We thus obtain the answer

x) = £sin(Omax cos (wx) ).

Chapter 5 solutions

Answers to exercises

E5.1 (a) 0. (b) 2. (c) co. Each limit expression describes what happens to the ratio

of two functions for large values of the input variable. ~ E5.2 (a) 2. (b) 0. (c) —

@3 ©0. (0. Es3Maxatx = L (1) = 4. E54@) 35 + g, S@dx =

2In(x — 3) +In(x +4). (b) +27 + 325, § B)dx = In(x — 1) + 2In(x — 2)~ © ﬁz—

(@dx=tn(x—1)— fIn(x+1) -1 x~1+1 E5.5 %” E5.6 %’1.

+ 2 NON+D(@N+1)
6

S W W,
4(x+1) T 2(x41)27
E5.7 (a) caN + cbw. (b) ca®N + cabN(N + 1) + . (c) 2.

Answers to problems

P5.1 (1) —6. (2) 2. (3) Doesn’t exist. (4) 8.6 (eyeballing it). (5) —5. (6) Doesn’t
exist. (7) —2. (8) —2. (9) —2. (10) No. (11)[-10,—5), [=5,2), [2,5), (5,10].

P52 (a) 4. (b) 6. () 5. P5.4 (1) Doesn’t exist. (2) 0. (3) Doesn’t exist.
(4) 0. (5) Doesn’t exist. (6) 0. (7) 1. (8) 0. (9) 1. P5.5 (1) Doesn’t exist.
@) 3. (3) 2a. P57 (1) % — 13x12, (2) o 3xm3 3) W = ax(e-D),
@) & = 24x1% () & — %x*%. © & - f%x*% 7) W = _8x%,
8) % — 2ax*—1 (9) dy:% e P58 (1) % = 3ax2 (2) % = 13 x 3x1.
@) % = 6x1. (4) = lebx=i (5) @8 — w1 (6) W _ 236t. P59 (a)

T+x+5+2+5 +...,N(b)Zax—l—b;—N(c)3x2+6ux+3a2. P5.10 (1) 99 = a — bt.
(@) § = 2x. (3) 14110x* — 65404x° — 224427 + 8192x + 1379. (4) & = 2y +8.
(5) 185.9022654x% + 154.36334.  P5.11 (1) p'(x) = Q) g (x) = Sxtrerteod

(3x+2 (1+x+2x2)2 °
/ _ _ad—bc / —anx~ " lgpna 14 onx ! X
@ r(x) = (cxrd)?” “4) s'(x) = D)2 . P5.12 (1) T
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Appendix C

Constants, units, and
conversion ratios

In this appendix you will find a number of tables of useful informa-
tion that you might need when solving math and physics problems.

Fundamental constants of Nature

Many of the equations of physics include constants as parameters of
the equation. For example, Newton’s law of gravitation says that the
force of gravity between two objects of mass M and m separated by a

distance r is Fy = G%Im, where G is Newton's gravitational constant.

Symbol Value Units Name

G 6.67384 x 10711 m3kg~!s™2  gravitational constant

g 9.80665 ~ 9.81 ms~?2 Earth free-fall acceleratios
mp 1.672621 x 10~ kg proton mass

Me 9.109382 x 10731 kg electron mass

Na %%%%%%M mol ™! Avogadro’s number

kg 1.380648 x 102 JK1 Boltzmann’s constant

R 8.3144621 JK1 mol ™! gas constant R = Nakg
Mo 1.256 637 x 10~° N A2 permeability of free space
€0 8.854187 x 10~12 Fm~! permittivity of free space
c 299 792 458 ms~! speed of light ¢ = \/ﬁ

e 1.602176 x 10~1° C elementary charge

h 6.626 069 x 1034 Ts Planck’s constant
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Appendix D

SymPy tutorial

Computers can be very useful for dealing with complicated math ex-
pressions or when slogging through tedious calculations. Through-
out this book we used SymPy to illustrate several concepts from math
and physics. We'll now review all the math and physics tools avail-
able through the SymPy command line. Don’t worry if you're not
a computer person; we'll only discuss concepts we covered in the
book, and the computer commands we’ll learn are very similar to
the math operations you're already familiar with. This section also
serves as a final review of the material covered in the book.

Introduction

You can use a computer algebra system (CAS) to compute compli-
cated math expressions, solve equations, perform calculus proce-
dures, and simulate physics systems.

All computer algebra systems offer essentially the same func-
tionality, so it doesn’t matter which system you use: there are free
systems like SymPy, Magma, or Octave, and commercial systems like
Maple, MATLAB, and Mathematica. This tutorial is an introduction to
SymPy, which is a symbolic computer algebra system written in the
programming language PythonPython. In a symbolic CAS, num-
bers and operations are represented symbolically, so the answers
obtained are exact. For example, the number /2 is represented in
SymPy as the object Pow(2,1/2), whereas in numerical computer alge-
bra systems like Octave, the number /2 is represented as the approx-
imation 1.41421356237310 (a float). For most purposes the approxi-
mation is okay, but sometimes approximations can lead to problems:
float (sqrt(2))*float(sqrt(2)) = 2.00000000000000044 # 2.
Because SymPy uses exact representations, you'll never run into such
problems: Pow(2,1/2)*Pow(2,1/2)= 2.
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520 SYMPY TUTORIAL

This tutorial presents many explanations as bleeks-of-code-code
snippets. Be sure to try the code examples on your own by typing the
commands into SymPy. It's always important to verify for yourself!

Using SymPy

The easiest way to use SymPy, provided you're connected to the inter-
net, is to visit http://live.sympy.org. You'll be presented with an
interactive prompt into which you can enter your commands—right
in your browser.

If you want to use SymPy on your own computer, you must install
Python and-the python first install Python and the Python package
sympy. You can then open a command prompt and start a SymPy
Python session using;:
you@host> python

Python X.Y.Z
[GCC a.b.c (Build Info)] on platform

Type "help", "copyright", or "license" for more information.
>>>

\DIFdelbegin \DIFdel{from sympy import *

>>>

}\DIFdelend

The >>> prompt indicates you're in the Pytheon Python shell which

accepts Python eemmands—Python commands. Type the followin
in the Python shell:

\DIFadd{>>> from sympy import *
>>>

}

The command from sympy import * imports all the SymPy func-
tions into the current namespace. All SymPy functions are now avail-
able to you. To exit the python shell press CTRL+D.

Hhighly—recommend—you—also—install4python,—which—is—an
improved-interactive-python-shelllf-you-have-ipython and-SymPy
installed,—yotean-—start-an—ipython shell-with-SymPy pre-imported
using-the-command-+sympy—For an even better experience, you can
try jupyter notebook, which is a web frontendfor-the—ipythen
shell—interface for accessing the Python shell. Search the web for
“jupyter notebook” and follow the installation instructions specific

to your operating system. It’s totally worth it!
Each section in this appendix begins with a python import state-

ment for the functions used in that section. If you use the statement
from sympy import * in the beginning of your code, you don’t
need to run these individual import statements, but I've included
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them so you’ll know which SymPy vocabulary is covered in each
section.

Fundamentals of mathematics

Let’s begin by learning about the basic SymPy objects and the oper-
ations we can carry out on them. We’'ll learn the SymPy equivalents
of many math verbs like: “to solve” (an equation), “to expand” (an
expression), “to factor” (a polynomial).

Numbers
>>> from sympy import sympify, S, evalf, N

In PythenPython, there are two types of number objects: ints and
floats.

>>> 3

3 # an int
>>> 3.0

3.0 # a float

Integer objects in Python ijjlgggmare a faithful representation of the
set of integers Z = {.. -1,0,1,2,...}. Floating point numbers

are approximate representatlons of the reals R. Regardless-of-its
abselutesizea-A floating point number is-only-aceurateto-has 16

decimals of precision.
Spec1al care is requlred when spec1fy1ng rational numbers ;

wﬁ}ﬂetﬂufeﬁraﬁea}}yfeﬂvefkﬂieaﬁswer—%e
if you want to get exact answers. If you try to divide two numbers,
Python will compute a floating point numberbutinstead-round-the

answer-to-the-closestinteger:

>>> 1/7
0 # int/int gives int

approximation:

T A thi blem. ‘ Vivision ] . ]

>>> \DIFdelbegin \DIFdel{1.0}\DIFdelend \DIFaddbegin \DIFadd{1}\DIFaddend

0.14285714285714285 # \DIFdelbegin \DIFdel{float/int gives }\DIF
This—result-is-better;but-it’s—still-only-The floating point number

0.14285714285714285 is an approximation of the exact number } € Q;
. since-a"The float approximation has 16 decimals while the decimal
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The first statement instructs-python-to-convert /% to1-0/7 when

Thesecond-statementimports all the SymPy functions. The remaining
other three statements define some generic symbols %, y, z, and t,
and several other symbols with special properties.
Note the difference between the following two statements:
>>> x + 2
X + 2 # an Add expression
>>> p + 2
NameError: name ’p’ is not defined

The name x is defined as a symbol, so SymPy knows that x + 2is an
expression; but the variable p is not defined, so SymPy doesn’t know
what to make of p + 2. To use p in expressions, you must first define
it as a symbol:

>>> p = Symbol(’p’) # the same as p = symbols(’p?’)

>>> p + 2

p+2 # = Add(Symbol(’p’), Integer(2))

You can define a sequence of variables using the following notation:
>>> a0, al, a2, a3 = symbols(’a0:4’)

You can use any name you want for a variable, but it’s best if you
avoid the letters Q,C,0,S,I,N and E because they have special uses
in SymPy: I is the unit imaginary number %E—VZ:}% E is the
base of the natural logarithm, S() is the sympify function, N() is used
to obtain numeric approximations, and 0 is used for big-0 notation.

The-underscore-symbel-_ is-a-special-variable-that-contains-the
restltof the last printed-value-Thevariable- _ isanalogousto-theans
buttonren-certain-caletlators,-and-is-usefulinmulti-step-caleulations:

>>> 343

>>> %2
12

Expressions

>>> from sympy import simplify, factor, expand, collect

You define SymPy expressions by combining symbols with basic math
operations and other functions:

>>> expr = 2*x + 3*x - sin(x) - 3xx + 42

>>> simplify (expr) \DIFaddbegin \DIFadd{# simplify the e
}\DIFaddend 2#x - sin(x) + 42
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Recall that the roots of the polynomial P(x) are defined as the solu-
tions to the equation P(x) = 0. We can use the solve function to find
the roots of the polynomial:

>>> roots = solve(P,x)

>>> roots

[1, 2, 3]

# let’s check if P equals (x-1) (x-2) (x-3)

>>> simplify( P - (x-roots[0])*(x-roots[1])*(x-roots[2]) )
0

Equality checking

In the last example, we used the simplify function on the difference
of two expressions to check whether two-expressions—they were
equal. This way of checking equality works because P = Q if
and only if P — Q = 0. To know whether P = Q, we can calculate

simplify(P-Q) and see if the result equals 0. This is the best way

to check if-whether two expressions are equal in SymPy because it
attempts all possible simplifications when comparing the expres-
sions. Below is a list of other ways to check whether two quantities

are equal, with example cases where they—failequality fails to be
detected:

Trigonometry
from sympy import sin, cos, tan, trigsimp, expand_trig

The trigonometric functions sin and cos take inputs in radians:

>>> sin(pi/6)

1/2

>>> cos(pi/6)

sqrt(3)/2

For angles in degrees, you need a conversion factor of 1g;[rad/°]:

>>> 5in(30%pi/180) # 30 deg = pi/6 rads

1/2

The inverse trigonometric functions sin—{x)=aresin(x}and-cos— {x)=arecos

sin~!(x) = arcsin(x) and cos ! (x) = arccos(x) are used as follows:

>>> asin(1/2)

pi/6

>>> acos(sqrt(3)/2)

pi/6

Recall that %@ﬁ%ﬁi?tam x) = ) The inverse function of

tan(x) is tan—"{x) = =tan ! (x) = arctan(x) = atan(x)
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>>> z = 4 + 3%I

>>> z

4 + 3xI

>>> re(z)

4

>>> im(z)

3

The polar representation of a complex number is z={z}£6=1zle’z = |z| /0 = |ze".
For a complex number z = a + bi, the quantity |z| = va? + b? is
known as the absolute value of z, and 0 is its phase or its arqument:

>>> Abs(z)

5

>>> arg(z)

atan(3/4)

The complex conjugate of z = a + bi is the number Z—=a—biz = a — bi,
which has the same absolute value as z but opposite phase:

>>> conjugate( z )

4 - 3xI

Complex conjugation is important for computing the absolute value

of z (fzt=~/2%|z| = v/zZ) and for division by z (%%ﬁé\iﬁﬁ)'

Euler’s formula

>>> from sympy import expand, rewrite

Euler’s formula shows an important relation between the exponen-

tial function e* and the trigonometric functions sin(x) and cos(x):
e'¥ = cosx +isinx.

To obtain this result in SymPy, you must specify that the number x

is real and also tell expand that you're interested in complex expan-

sions:

>>> x = symbols(’x’, real=True)

>>> \DIFaddbegin \DIFadd{expand(}\DIFaddend exp(I*x)\DIFdelbegin \DIFdel{.

cos(x) + Ixsin(x)

>>> re( exp(I*x) )

cos(x)

>>> im( exp(I*x) )

sin(x)

Basically, cos(x) is the real part of ¢™*, and sin(x) is the imaginary

part of ¢™*. Whaaat? I know it’s weird, but weird things are bound to

happen when you input imaginary numbers to functions.

> (Sas(x)).fe‘ H?itE(EBf]B) E?E]B( *32) (2 E?i]@( l*?i) (2
S ] . . . ] ] i E. ey E] ] ]. . i
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Vectors

A vector ¥ € R" is an n-tuple of real numbers. For example, consider
a vector that has three components:

7=(0,00). ¢ RRR) =R

To specify the vector 7, we specify the values for its three components
01, U7, and 03.

A matrix A € R"*" is a rectangular array of real numbers with
m rows and n columns. A vector is a special type of matrix; we
you can think of a—veetor#< R either-as-arow—vector{the vector
7€ R” as a 1 x n matrix}-era-celumn-veetor{11-matrix). Because
of this equivalence between vectors and matrices, there-isno-need
for-a-special-vector-objeet-in SymPy ;-and-we use Matrix objects are
used—fe%vec—tefsas%eﬂm

This is how we define vectors and compute their properties:

Dot product
The dot product of the 3-vectors if and @ can be defined two ways:
il - U== UxUx + Uy0y + U0z == [ii[| 7] cos(p) € R,
algeeric def. geometric def.

where ¢ is the angle between the vectors i and @. In SymPy,

>>> u = Matrix([ 4,5,6])
>>> v = Matrix([-1,1,2])
>>> u.dot(v)

13

We can combine the algebraic and geometric formulas for the dot
product to obtain the cosine of the angle between the vectors

v UxUx + UyDy + U0z
cos(¢) = = = e
a2\ 2] |7 '

and use the acos function to find the angle measure:

>>> acos(u.dot(v)/(u.norm() *v.norm())) .evalf ()
0.921263115666387 # in radians = ©52.76 degrees

Just by looking at the coordinates of the vectors i and 7, it’s diffi-
cult to determine their relative direction. Thanks to the dot product,
however, we know the angle between the vectors is 52.76°, which
means they kind of point in the same direction. Vectors that are at
an angle ¢ = 90° are called orthogonal, meaning at right angles with
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each other. The dot product ef-veetorstor-which-¢p—>90"isnegative
becatise-they-pointnostly in-opposite directionsbetween two vectors
is negative when the angle between them is ¢ > 90°.

The notion of the “angle between vectors” applies more gener-
ally to vectors with any number of dimensions. The dot product for
n-dimensional vectors is i - 7 = ;' ; u;0;. This means we can talk
about “the angle between” 1000-dimensional vectors. That’s pretty
crazy if you think about it—there is no way we could possibly “visu-
alize” 1000-dimensional vectors, yet given two such vectors we can
tell if they point mostly in the same direction, in perpendicular di-
rections, or mostly in opposite directions.

The dot product is a commutative operation if - 7 = 7 - ii:
>>> u.dot(v) == v.dot(u)

True

Cross product

The cross product, denoted x, takes two vectors as inputs and pro-
duces a vector as output. The cross products of individual basis ele-
ments are defined as follows:

~

ixj=k  jxk=1  kxi=7
The cross product is defined by the following equation:

it x T = (uyv; — Uz0y, Uz0x — UxVz, UxDy — UyVy) .
Hereis-'s how to compute the cross product of two vectorsin-SymPy:—

>>> u = Matrix([ 4,5,6])
>>> v = Matrix([-1,1,2])
>>> u.cross(v)

[4, -14, 9]

The vector il x ¥ is orthogonal to both i and 7. The norm of the cross
product |ii x 7| is proportional to the lengths of the vectors and the
sine of the angle between them:

(u.cross(v) .norm()/(u.norm()*v.norm())) .n()
0.796366206088088 # = sin(0.921..)

The " et H-suitedforthi . . "
leudated by iplvine” 4 hici £4] :

— —

il x T = (uyvz — U0y, UzVx — UxDz, UyDy — UyTy) .
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540 SYMPY TUTORIAL

>>> u.cross(v)

(4, -14, 9]
>>> v.cross(u)
[-4, 14,-9]

Watch out for this, because it’s a new thing. The product of two num-
bers and-the and b is commutative: ab = ba. The dot product of two

vectors are-commutativeoperations—The-eross-produet-howeveri
and 7 is commutative: if - 7 = 7 - ii. However the cross product is not
commutative: i x ¥ # U x il, it is anticommutative: i X T = —0 x il.

Mechanics

The module called sympy.physics.mechanics contains elaborate
tools for describing mechanical systems, manipulating reference
frames, forces, and torques. These specialized functions are not nec-
essary for a first-year mechanics course. The basic SymPy functions
like solve, and the vector operations you learned in the previous
sections are powerful enough for basic Newtonian mechanics.

Dynamics

The net force acting on an object is the sum of all the external forces

acting on it fnet => E. Since forces are vectors, we need to use vector
addition to compute the net force.

Compute Epet = Fy + B, where F; = 4i[N] and F, = 5/30°[N]:

>>> F_1 = Matrix( [4,0] )

>>> F_2 = Matrix( [5*cos(30%pi/180), 5*sin(30%pi/180)] )
>>> F_net = F_1 + F_2

>>> F_net

[4 + 5*sqrt(3)/2, 5/2]

\DIFdelbegin \DIFdel{# in Newtons

}\DIFdelend >>> F_net.evalf()

[8.33012701892219, 2.5] # in Newtons

To express the answer in length-and-direction notation, use norm to
find the length of Feranie, and use the two-input inverse tangent
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function atan2 ! tofind-itsto compute the direction:

>>> F_net.norm() .evalf ()

8.69718438067042 # |F_net| in [N]
>>> (atan2(F_net[1],F_net[0])*180/pi).n()
16.7053138060100 # angle in degrees

The net force on the object is Eoet = 8.697./16.7° [N].

Kinematics

Let x(t) denote the position of an object, v(t) denote its velocity, and
a(t) denote its acceleration. Together x(t), v(t), and a(t) are known
as the equations of motion of the object.

Starting from the knowledge of Fret, e can compute a(t) = E net,

then obtain v(t) by integrating a(t), and finally obtain x(t) by i nte-
grating v(f):

F i+ \dt i+ \dt
L A T
— kinematics

Newton’s 2 Jaw

Uniform acceleration motion (UAM)

Let’s analyze the case where the net force on the object is constant.

A constant force causes a constant acceleration a = % = constant. If

the acceleration function is constant over time a(t) = a. We find v(¢)
and x(t) as follows:

>>> t, a, v_i, x_i = symbols(’t a v_i x_i’)

>>> v = v_i + integrate(a, (t,0,t))
>>> v

a*xt + v_i

>>> x = x_i + integrate(v, (t,0,t))
>>> x

a*t**x2/2 + v_ixt + x_i

You may remember these equations from Section 2.4 (page 196).
They are the uniform accelerated motion (UAM) equations:

a(t) =a,
o(t) = v; +at,
x(t) = x; + v;t + ~at’.

2

The funclion-atan2(y,x) compules the correct direction for-all-vectors {x, 1),
i e B e e T
27 2
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FORMULAS

548
dy
o — y — Jy dx
\ Exponential and Logarithmic
er e~ e*+C
x~1 In x x(Inx—1)+C
e log, x g x(nx—1)+C
aX
a*Ina a* —+C
Ina
\ Trigonometric \
cosx sin x —cosx +C
—sinx cos x sinx 4+ C
sec? x tan x —Ineosx+C—1Incosx|+ C_
[ Inverse trigonometric
1
D) sin~1(x) xsinT (x) +4/1—x2+C
—x
1
BV cos1(x) xcos H(x)—+/1—x2+C
—x
1
T tan—1(x) xtan~!(x) — JIn(1+x2) + C
[ Hyperbolic
cosh x sinh x coshx +C
sinh x cosh x sinhx + C
sech? x tanh x Ineeshx—+CIn (coshx) + C
[ Inverse hyperbolic
X 1 -1
- sinh () + C=In(x + /a2 +x2) +C
(a2 + x2)3 \a? + x?
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