Errata in the fifth edition of No Bullshit Guide to Math \& Physics

Ivan Savov, Minirefrence Co.

July 1, 2023

Mistakes to be fixed in v5.5

- E2.1 The correct answers are a) $t_{f}=16[\mathrm{~s}], d=960[\mathrm{~m}]$ and $\left.\mathbf{b}\right) t_{f}=7[\mathrm{~s}], d=455[\mathrm{~m}]$.
- P5.13 (1) The correct answer is $\frac{d w}{d x}=\frac{d w}{d v} \frac{d v}{d u} \frac{d u}{d x}=\frac{-2}{v^{3}} \cdot 3(1+2 u) \cdot \frac{3}{2} x^{2}=\frac{-9}{27} \frac{\left(1+x^{3}\right) x^{2}}{\left(\frac{1}{2} x^{3}+\frac{1}{4} x^{6}\right)^{3}}$.
- P5.55 The correct answer for the second part is $\frac{d^{2} r}{d x^{2}}+\frac{d^{2} r}{d y^{2}}+\frac{d^{2} r}{d z^{2}}=\frac{2}{r}$ and not $\frac{3}{r}$.
- The answers and solutions to the exercises from Chapter 3 were missing from Appendix A. Here a screenshot of the missing answers:

Answers to exercises

E3.1 a) $(4,0)$ b) $(-2,-3)$. c) $(7,3)$. E3.2 a) $\vec{v}_{1}=(5 \sqrt{3}, 5)=(8.66,5)$. b) $\vec{v}_{2}=(0,-12)$.
c) $\vec{v}_{3}=(-2.95,0.52)$. E3.3 a) $\vec{u}_{1}=4 \angle 0^{\circ}$. b) $\vec{u}_{2}=\sqrt{2} \angle 45^{\circ}$. c) $\vec{u}_{3}=\sqrt{10} \angle 108.43^{\circ}$.

Mistakes fixed in v5.4

- P2.10 Made problem statement consistent with graph to say "acceleration from $t=0[\mathrm{~s}]$ to $t=2[\mathrm{~s}]$ is \ldots " and not "acceleration from $t=0[\mathrm{~s}]$ to $t=3[\mathrm{~s}]$ is \ldots "
- P4.40 The formula for determining Tarzan's initial velocity is correct, but the numeric answer should be $v=6.345[\mathrm{~m} / \mathrm{s}]$ and not $v=4.48[\mathrm{~m} / \mathrm{s}]$ as given. With this new value of the initial velocity, the total distance travelled becomes $x_{f}=2.85[\mathrm{~m}]$.
- P4.41 The formula for $y(x)$ given in the answer key and the solution were wrong. The correct answer is $y(x)=\ell \sin \left(\theta_{\max } \cos \left(\omega \frac{x}{v}\right)\right)=\ell \sin \left(\theta_{\max } \cos \left(\frac{\sqrt{g}}{\sqrt{\ell v}} x\right)\right)$.

Mistakes fixed in v5.3

- E1.16 The correct calculation is $\log (z)-\log (2 z)=-\log (2)$, not $-\log (z)$. Instead of changing the answer I changed the question to match the answer: $\log (z)-\log \left(z^{2}\right)=$ $-\log (z)$.

Mistakes fixed in v5.2

- Page 337, formula for integral of $\frac{1}{(x-\beta)^{m}}$ is $\frac{-1}{(m-1)(x-\beta)^{m-1}}$, not $\frac{1-m}{(x-\beta)^{m-1}}$.
- Page 337, formula for the integral of $\frac{1}{a} \int \frac{1}{y^{2}+k} d y$ is $\frac{1}{a \sqrt{k}} \tan ^{-1}\left(\frac{y}{\sqrt{k}}\right)$, not $\frac{\sqrt{k}}{a} \tan ^{-1}\left(\frac{y}{\sqrt{k}}\right)$.

Mistakes fixed in v5.1

- P1.41: Both calculations should use the radius instead of the diameter.
- P1.44: Answer should be $4 \sin 40+\frac{1}{4}(2 \pi(0.5))+4 \cos 40+2=8.42[\mathrm{~m}]$.
- P1.47: Answer should be $180-40=140$ degrees.
- P1.51: Question describes the water tank with dimensions $12 \times 6 \times 3$, but the solution uses $15 \times 6 \times 5$. The question was changed to match the existing solution: the water tank now has length $15[\mathrm{~m}]$ and height $5[\mathrm{~m}]$.
- P2.9 part (3). v_{f} should be $6[\mathrm{~m} / \mathrm{s}]$, not $10[\mathrm{~m} / \mathrm{s}]$.
- P2.10 part 4. Distance should be $13[\mathrm{~m}]$ not $14[\mathrm{~m}]$.
- Page 202, revolution of the Earth example. v_{t} should be $328.32[\mathrm{~m} / \mathrm{s}]$ not $464.32[\mathrm{~m} / \mathrm{s}]$, giving a final answer of $1181.95[\mathrm{~km} / \mathrm{h}]$ not $1671.56[\mathrm{~km} / \mathrm{h}]$.
- Page 264, section 5.5 Limit formulas. Removed formulas $\lim _{x \rightarrow 0} \frac{\ln (x+a)}{x}=a$, and $\lim _{x \rightarrow 0}\left(a^{1 / x}-1\right)=\ln (a)$.
- Page 286. Should be "Consider the point $P=\left(x_{P}, y_{P}\right)$ that lies on the circle $x^{2}+y^{2}=R^{2}$ " with R^{2} instead of just R.
- Page 401. Conversion for inches is $1[\mathrm{in}]=2.54[\mathrm{~cm}]$, not $1[\mathrm{~T}]=1000[\mathrm{~kg}]$.

Please let me know if you find any other mistakes: ivan@minireference.com.

