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Discussion

We did a lot of hands-on activities with vectors in this section and
skipped over some of the theoretical details. Now that you've been
exposed to the practical side of vector calculations, it’s worth clarify-
ing certain points that we glossed over.

Vectors vs. points

We used the notation R? to describe two kinds of math objects: the
set of points in the Cartesian plane and the set of vectors in a two-
dimensional space. The point P = (Py, P;) and the vector 7 = (v, vy)
are both represented by pairs of real numbers, so we use the notation
P € R? and 7 € R? to describe them. This means that a pair of
numbers (3,2) € R? could represent the coordinates of a point, or the
components of a vector, depending on the context.

Let’s take a moment to review the definitions of points and vec-
tors and clarify the types of operations we can perform on them:

e Space of points IR: the set of points P = (Py, P;) corresponds
to locations in the Cartesian plane. The point P = (P, Py) cor-
responds to the geometric instructions: “Starting at the origin
(0,0), move Py units along the x-axis and P, units along the y-
axis.” The distance between points P and Q is denoted d(P, Q).

e Vector space R*: the set of vectors 7 = (vy,v,) describes dis-
placements in the Cartesian plane. The vector 7 = (vy,vy)
corresponds to the instructions: “Starting anywhere, move vy
units along the x-axis and vy units along the y-axis.” Vectors
can be combined and manipulated using the vector algebra op-
erations il + U, i — U, wii, ii - U, and | 7.

Note the geometric instructions for points and vectors are very sim-
ilar; the only difference is the starting point. The coordinates of a
point (Py, Py) specify a fixed position relative to the origin (0,0), while
the components of a vector (vy,vy) describe a relative displacement
that can have any starting point.

Let’s look at some examples of calculations that combine points
and vectors. Consider the points P and Q in the Cartesian plane, and
the displacement vector Jpg between them. The displacement vector
Upg gives the “move instructions” for getting from point P to point
Q and is defined by the equation:

dpg = Q—P.
This equation says that subtracting two points produces a vector,

which make sense if you think about it—the “difference” between
two points is a displacement vector.
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We can use the displacement vector pg in calculations like this:
P+Z7PQ = P+(Q*P) = Q.

In words, this calculation shows that “Starting at the point P and
moving by @pg brings us to the point Q.”

The above equations use addition and subtraction operations be-
tween a mix of points and vectors. This is rather unusual: normally
we only use operations like “+” and “-” between math objects of the
same kind. In this case, we're allowed to mix points and vectors be-
cause they both describe “move instructions” of the same kind.

Let’s keep going. What other useful calculations can we do by
combining points and vectors? Suppose we wanted to find the mid-
point M that lies exactly in the middle between points P and Q.
We can find the midpoint M using the displacement vector 7pgy and
some basic vector algebra. If starting from P and moving by @pg
brings us all the way to the point Q, then starting from P and mov-
ing by %Z‘)’pQ will bring us to the midpoint: M = P + %Z_J’pQ.

The mathematical bridge between points and vectors allows us to
use vector techniques to solve geometry problems. By learning to de-
scribe geometric objects like points, lines, and circles using vectors,
we can do complicated geometry calculations using simple algebraic
manipulations like vector operations. This exemplifies a general pat-
tern in mathematics: applying techniques developed in one domain
to solve problems in another domain.

Example You come to class one day and there’s a surprise quiz that
asks you to write the formula for the distance d(P, Q) between two
points P = (Py,Py) and Q = (Qx, Qy). You don’t remember ever
learning about such a formula and feel caught off guard. How can
the teacher ask for a formula they haven’t covered in class yet? This
seems totally unfair!

After a minute of stressing out, you take a deep breath, come back
to your senses, and resolve to give this problem a shot. You start
by sketching a coordinate system, placing points P and Q in it, and
drawing the line that connects the two points. What is the formula
that describes the length of this line?

The line from P to Q looks like the hypotenuse of a triangle,
which makes you think that trigonometry could somehow be used to
find the answer. Unfortunately, trying to remember the trigonome-
try formulas has only the effect of increasing your math anxiety. You
take this as a sign that you should look for other options. In math,
it’s important to trust your gut instincts.

By a fortunate coincidence, you were recently reading about the
connection between points and vectors, and specifically about the



194 VECTORS

displacement vector tpg = Q — P. The line in your sketch rep-
resents the vector Upg. You realize that the distance between the
points P and Q is the same as the length of the vector 7pgy. You

remember the formula for the length of a vector 7 is 7] = 4 /v3 + v}

and you know the formula for the displacement vector is pgy =
(Qx — Py, Qy — Py), so you combine these formulas to obtain the an-

swer: d(P,Q) = ||Upg| = \/(Qx — Py)? + (Qy — Py)%. One more win
for the “don’t worry and try it” strategy for solving math problems!
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Vectors and vector coordinates

One final point we need to clarify is the difference between real-
world vector quantities like the velocity of a tennis ball 7 and its
mathematical representation as a coordinate vector (vy, vy, v;). If you
know the coordinate vector (vy, oy, v,) then you know what the real-
world velocity is, right? Not quite.

Let’s say you're doing a physics research project on tennis serves.
You define an xyz-coordinate system for the tennis court, which al-
lows you to represent the ball’s velocity 7 as a triple of components
(vx, vy, ;) interpreted as: “The ball is moving with velocity v, units
in the x-direction, vy units in the y-direction, and v, units in the z-
direction.”

Suppose you want to describe the velocity vector 7 to a fellow
physicist via text message. Referring to your sheet of calculations,
you find the values ¢ = (60, 3, —2), which you know were measured
in metres per second. You send this message:

The velocity is (60,3,-2) measured in metres per second.
A few minutes later the following reply comes back:
Wait whaaat? What coordinate system are you using?

Indeed the information you sent is incomplete. Vector components
depend on the coordinate system in which the vectors are repre-
sented. The triple of numbers (60,3, —2) only makes sense once you
know the directions of the axes in the xyz-coordinate system. Realiz-
ing your mistake, you send a text with all the required information:

Using the coordinate system centred at the south post of
the net, with the x-axis pointing east along the court,

the y-axis pointing north along the net, and the z-axis
pointing up, the velocity is (60,3,-2) in metres per second.

A few seconds later, you get the reply:
0K got it now. Thx!

This hypothetical situation illustrates the importance of the coordi-
nate systems for describing vectors. If you don’t know what the co-
ordinate system is, knowing the coordinates (vy, vy, v,) doesn’t tell
you much. Only when you know the directions of the unit vectors 7,
7, and k can you interpret the instructions 7 = v, + vyf + v:k.

It turns out, using the xyz-coordinate system with the three vec-
tors {1, 7, k} is just one of many possible ways we can represent vec-
tors. We can represent a vector ¢ as coordinates (vq, v, v3) with re-
spect to any basis {é1,é;,83} using the expression ¥ = v18; + v2ép +
v383, which corresponds to the instructions: “Move v units in the di-
rection of é;, move v, units in the direction of é,, and move v3 units
in the direction of é5.”
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Discussion

It would be hard to over-emphasize the importance of the basis—the
coordinate system you use to describe vectors. The choice of coordi-
nate system is the bridge between real-world vector quantities and
their mathematical representation in terms of components. Every
time you start a new problem that involves vector calculations, the
first thing you should do is choose the coordinate system you want
to use, and indicate it clearly in the diagram.

Using a non-standard coordinate system can sometimes simplify
the equations you have to solve. For example, let’s say we want
to study the motion of a block sliding down an incline with veloc-
ity 7, as illustrated in Figure 3.11. Using the standard xy-basis, the
velocity vector is represented as (v cos ), —vsin ) Xy, which has com-
ponents in both the x- and y-directions and requires using trigono-
metric functions. If instead you use the non-standard x'y’-basis, the
components of the velocity will be (v,0),/,. Note the velocity only
has a component along the x’-direction, which will simplify all sub-
sequent calculations.
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Figure 3.11: The vector 7 is described by the coordinates (v cos 8, —vsin 0)yy
with respect to the standard basis xy. The same vector 7 is described by the
coordinates (v,0),+,» with respect to the “tilted” basis x"y’.

Recall the polar coordinates representation we used to describe
points r£60 and vectors ||7|£6 in two dimensions (see page 187).
This is another example of an alternative coordinate system that’s
useful for describing rotations and circular motion. Note certain
textbooks will write the polar coordinates of the vector 7 = ||7|£6
using the bracket notation (|7, 0), which can easily be confused
with the Cartesian coordinates of the vector (vy,vy). Indicating the
coordinate system as a subscript after the bracket can avoid any
confusion: 7 = (||F],0),6 = (vx, vy)xy-
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