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Concept maps

Figure 1: This diagram shows the concepts and topics covered in this book.

Consult the index on page 577 to find the exact location in the book
where each concept is defined.
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Figure 2: Chapter 5 is about linear transformations and their properties.

Figure 3: Chapter 6 covers theoretical aspects of linear algebra.

vi



Figure 4: Matrix computations play an important role throughout this book.
Matrices are used to represent linear transformations, systems of linear
equations, and various geometric operations.

Figure 5: The book concludes with three chapters on linear algebra appli-
cations. In Chapter 7 we’ll discuss applications to science, economics, busi-
ness, computing, and signal processing. In Chapter 8 we’ll explain probabil-
ity theory, and finally in Chapter 9 we’ll introduce quantum mechanics.

You can annotate the concept maps with your current knowledge of
each concept to keep track of your progress. Add a single dot (‚)
next to all concepts you’ve heard of, two dots (‚‚) next to concepts
you think you know, and three dots (‚‚‚) next to concepts you’ve
used in exercises and problems. By collecting some dots every week,
you’ll be able to move through the material in no time at all.

If you don’t want to mark up your book, you can download a
printable version of the concept maps here: bit.ly/LAcmaps.

vii



Preface

This is a book about linear algebra and its applications. The mate-
rial is presented at the level of a first-year university course, in an
approachable style that cuts to the point. It covers both practical and
theoretical aspects of linear algebra, with extra emphasis on explain-
ing the connections between concepts and building a solid under-
standing of the material.

This book is designed to give readers access to advanced math
modelling tools regardless of their academic background. Since the
book includes all the prerequisites needed to learn linear algebra, it’s
suitable for readers of any skill level—including those who don’t feel
comfortable with fundamental math concepts.

Why learn linear algebra?

Linear algebra is one of the most fundamental and all-around useful
subjects in mathematics. The practical skills learned by studying lin-
ear algebra—such as manipulating vectors and matrices—form an
essential foundation for applications in physics, computer science,
statistics, machine learning, and many other fields of scientific study.
Learning linear algebra can also be a lot of fun. Readers will experi-
ence numerous knowledge buzz moments when they feel math ideas
“click” into place and understand the connections between concepts.

The tools of linear algebra form a bridge to more advanced areas
of mathematics. For example, learning about abstract vector spaces
will help readers recognize the common “vector space structure” in
seemingly unrelated mathematical objects like matrices, polynomi-
als, and functions. Linear algebra techniques apply not only to stan-
dard vectors, but to all mathematical objects that are vector-like!

ix



x PREFACE

What’s in this book?

Each section is a self-contained tutorial that covers the definitions,
formulas, and explanations associated with a single topic. Check out
the concept maps on the preceding pages to see the book’s many
topics and the connections between them.

The book begins with a review chapter on numbers, algebra, sets,
equations, functions, geometry, and trigonometry (Chapter 1). If you
haven’t previously studied these concepts, or if you feel your math
skills are a little “rusty,” read this chapter and work through the ex-
ercises and problems provided. If you feel confident in your high
school math abilities, jump straight to Chapter 2, where the linear
algebra begins.

Chapters 2–6 cover the core topics of linear algebra: vectors,
bases, analytical geometry, matrices, linear transformations, matrix
representations, vector spaces, inner product spaces, eigenvectors,
and matrix decompositions. These chapters contain the material
required for every university-level linear algebra course. Each sec-
tion contains plenty of exercises so you can test your understanding
as you read; and each chapter concludes with an extensive list of
problems for further practice.

Chapters 7, 8, and 9 discuss various applications of linear algebra.
Though this material isn’t likely to appear on any final exam, these
chapters serve to demonstrate the power of linear algebra techniques
and their relevance to many areas of science. The mini-course on
quantum mechanics (Chapter 9) is unique to this book. Read this
chapter to understand the fascinating laws of physics that govern
the behaviour of atoms and photons.

Is this book for you?

The quick pace and lively explanations in this book provide inter-
esting reading for students and non-students alike. Whether you’re
learning linear algebra for a course, reviewing material as a prerequi-
site for more advanced topics, or generally curious about the subject,
this book will help you find your way in the land of linear algebra.

Students and educators can use this book as the main textbook for
any university-level linear algebra course. It contains everything stu-
dents need to know to prepare for a linear algebra final exam. Don’t
be fooled by the book’s small size compared to other textbooks: it’s
all in here. The text is compact because we’ve distilled the essentials
and removed the unnecessary crud.
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Introduction

In recent years we’ve seen countless advances in science and tech-
nology. Modern science and engineering fields have developed ad-
vanced models for understanding the real world, predicting the out-
comes of experiments, and building useful technology. Although
we’re still far from obtaining a “theory of everything” that can fully
explain reality and predict the future, we do have a significant under-
standing of the natural world on many levels: physical, chemical, bi-
ological, ecological, psychological, and social. And, since mathemat-
ical models are leveraged throughout these fields of study, anyone
interested in contributing to scientific and technological advances
must also understand mathematics.

The linear algebra techniques you’ll learn in this book are some
of the most powerful mathematical modelling tools that exist. At the
core of linear algebra lies a very simple idea: linearity. A function f
is linear if it obeys the equation

f pax1 ` bx2q “ a f px1q ` b f px2q,
where x1 and x2 are any two inputs of the function. We use the term
linear combination to describe any expression constructed from a set
of variables by multiplying each variable by a constant and adding
the results. In the above equation, the linear combination ax1 ` bx2
of the inputs x1 and x2 is transformed into the linear combination
a f px1q ` b f px2q of the outputs of the function f px1q and f px2q. Es-
sentially, linear functions transform a linear combination of inputs
into the same linear combination of outputs. If the input to the lin-
ear function f consists of five parts x1 and three parts x2, then the
output of the function will consist of five parts f px1q and three parts
f px2q. That’s it, that’s all! Now you know everything there is to know
about linear algebra. The rest of the book is just details.

1



2 INTRODUCTION

Linear models are super useful

A significant proportion of the math models used in science describe
linear relationships between quantities. Mathematicians, scientists,
engineers, and business analysts develop and use linear models to
make sense of the systems they study. Linear models are popular be-
cause they are easy to describe mathematically. We can obtain the
parameters of a linear model for a real-world system by analyzing
the system’s behaviour for relatively few inputs. Let’s illustrate this
important point with an example.

Example You’re visiting an art gallery. Inside, the screen of a tablet
computer is being projected onto a giant wall. Anything you draw
on the tablet instantly appears projected onto the wall. However, the
tablet’s user interface doesn’t give any indication about how to hold
the tablet “right side up.” How can you find the correct orientation
of the tablet so your drawing won’t appear rotated or upside-down?

px, yq

tablet

px1, y1q

wall projection

T

Figure 6: An unknown linear transformation T maps “tablet coordinates” to
“wall coordinates.” How can we characterize T?

The tablet’s screen is a two-dimensional input space described by co-
ordinates px, yq and the wall projection is a two-dimensional output
space described by wall coordinates px1, y1q. You’re looking for the
unknown transformation T that maps the pixels of the tablet screen
(the input space) to the projection on the wall (the output space):

px, yq TÝÑ px1, y1q.
This task is directly analogous to the tasks scientists and engineers
face every day when trying to model real-world systems by observ-
ing how systems transform inputs to outputs. If the unknown trans-
formation T is linear, you can learn what it is very quickly, using only
two swipes on the tablet screen.

To understand how T transforms screen coordinates px, yq to wall
coordinates px1, y1q, you can use this two-step “probing” procedure:
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1. Draw a horizontal line on the tablet to represent the x-direction
in the input space Ñ“ p1, 0q. You observe the output Õ pro-
jected on the wall. This tells you horizontal lines are trans-
formed to northeast diagonal lines in the wall-projection space.

2. Draw a vertical line in the y-direction Ò“ p0, 1q on the tablet.
You observe the output Ô appears on the wall. This means
vertical lines on the tablet screen turn into northwest diagonal
lines when projected on the wall.

tablet

wall projection

Ñ Õ

T

Ò Ô

T

Figure 7: Drawing a short horizontal arrowÑ on the tablet screen results in
a northeast diagonal projection on the wall Õ. Drawing a vertical arrow Ò
on the tablet results in a northwest diagonal line projected on the wallÔ.

Here comes the interesting part: now that you know the outputs Õ
and Ô produced for the two input directions, you can predict the
linear transformation’s output for any other input. Let’s look at the
math equations that show why this is true.

Suppose you want to predict what will appear on the wall if you
draw a line on the tablet in the direction p3, 2q. The coordinates p3, 2q
describe a swipe with length 3 units in the x-direction and 2 units
in the y-direction. The input coordinates p3, 2q can be written as
3p1, 0q ` 2p0, 1q “ 3 Ñ ` 2 Ò. Because you know T is linear, the
wall projection of this input will have a length equal to 3 times the
x-direction outputÕ plus 2 times the y-direction outputÔ:

T
`
3 Ñ ` 2Ò˘ “ 3T

`Ñ˘` 2T
`Ò˘ “ 3 Õ ` 2 Ô .

ÑÑÑÒÒ ÕÕÕÔ
ÔT

Figure 8: The linear transformation T maps the input 3 Ñ ` 2Ò to the output
3T

`Ñ˘` 2T
`Ò˘ “ 3 Õ ` 2 Ô.



4 INTRODUCTION

Knowing that the input Ñ produces the output Õ and the input Ò
produces the output Ô allows you to determine the linear transfor-
mation’s output for all other inputs. Every input pa, bq can be written
as a linear combination: pa, bq “ ap1, 0q ` bp0, 1q “ a Ñ ` b Ò. Since
you know T is linear, you know the corresponding output will be

T
`
a Ñ ` bÒ˘ “ aT

`Ñ˘` bT
`Ò˘ “ a Õ ` b Ô .

Since you can predict the output of T for all possible inputs, you have
obtained a complete characterization of the linear transformation T.

The probing procedure we used to characterize the two-dimensional
tablet-to-wall linear transformation (denoted T : R2 Ñ R2) can be
used to study arbitrary linear transformations with n-dimensional
inputs and m-dimensional outputs (denoted T : Rn Ñ Rm). Know-
ing the outputs of a linear transformation T for all “directions” in
its input space gives us a complete characterization of T.

TL;DR The linear property allows us to analyze multidimensional
systems and processes by studying their effects on a small set of in-
puts. This is the essential reason linear models are used so widely in
science. Without this linear structure, characterizing the behaviour
of unknown input-output systems would be a much harder task.

Linear transformations

Linear transformations will be a central topic throughout this book.
You can think of linear transformations as “vector functions” and un-
derstand their properties as analogous to the properties of the reg-
ular functions you’re familiar with. The action of a function on a
number is similar to the action of a linear transformation on a vector:

function f : R Ñ R ô linear transformation T : RnÑ Rm

input x P R ô input ~x P Rn

output f pxq P R ô output Tp~xq P Rm

inverse function f´1 ô inverse transformation T´1

roots of f ô kernel of T

Studying linear algebra will expose you to many new topics associ-
ated with linear transformations. You’ll learn about concepts like
vector spaces, projections, rotations, and orthogonalization proce-
dures. Indeed, a first linear algebra course introduces many ad-
vanced, abstract ideas; yet all the new ideas you’ll encounter can be
seen as extensions of ideas you’re already familiar with. Linear al-
gebra is the vector-upgrade to your high school knowledge of func-
tions.



5

Prerequisites

To understand linear algebra, you must have some preliminary
knowledge of fundamental math concepts like numbers, equations,
and functions. For example, you should be able to tell me the mean-
ing of the parameters m and b in the equation f pxq “ mx ` b. If
you do not feel confident about your basic math skills, don’t worry.
Chapter 1 is a prerequisites chapter specially designed to help bring
you quickly up to speed on the high school math material.

Executive summary

The book is organized into nine chapters. Chapters 2 through 6
are the core of linear algebra. Chapters 7 through 9 contain op-
tional reading about linear algebra applications. The concept maps
on pages v, vi, and vii illustrate the connections between the topics
we’ll cover. I know the maps may seem informationally intimidating
at first sight, but don’t worry—the book is split into tiny chunks, and
we’ll navigate the material step by step. It will be like Mario World,
but in n dimensions and with a lot of bonus levels.

Chapter 2 is a general introduction to linear algebra. Linear alge-
bra is the math of vectors and matrices, so we’ll start by defining the
mathematical operations we can perform on vectors and matrices.

In Chapter 3, we’ll tackle the computational aspects of linear al-
gebra. By the end of this chapter you’ll know how to solve systems of
equations, transform a matrix into its reduced row echelon form, com-
pute the product of two matrices, and find the determinant and the
inverse of a square matrix. Each of these computational tasks can be
tedious to carry out by hand and can require lots of steps. There is
no way around this; we must do the grunt work before we get to the
cool stuff.

In Chapter 4, we’ll review the properties and the equations that
describe basic geometric objects like points, lines, and planes. We’ll
learn how to compute projections onto vectors, projections onto
planes, and distances between objects. We’ll also review the mean-
ing of vector coordinates, which are lengths measured with respect
to a basis. We’ll learn about linear combinations of vectors, the span
of a set of vectors, and formally define what a vector space is.

Chapter 5 is about linear transformations. Armed with the com-
putational tools from Chapter 3 and the geometric intuition from
Chapter 4, we can tackle the core subject of linear algebra: linear
transformations. We’ll explore in detail the correspondence between
linear transformations (T : Rn Ñ Rm) and their representation as
mˆ n matrices. We’ll also learn how the entries in a matrix represen-
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tation depend on the choice of basis for the input and output spaces
of the transformation. Section 5.4 on the invertible matrix theorem
serves as a midway checkpoint for your understanding of linear al-
gebra. This theorem connects several seemingly disparate concepts:
reduced row echelon forms, matrix inverses, and determinants. The
invertible matrix theorem links all these concepts and highlights the
properties of invertible linear transformations that distinguish them
from non-invertible transformations.

Chapter 6 covers more advanced theoretical topics of linear al-
gebra. We’ll define the eigenvalues and the eigenvectors of a square
matrix. We’ll see how the eigenvalues of a matrix tell us important
information about the properties of the matrix, and learn about the
special names given to different types of matrices based on the prop-
erties of their eigenvalues. In Section 6.3 we’ll discuss abstract vector
spaces. Abstract vectors are mathematical objects that—like vectors—
have components and can be scaled, added, and subtracted by ma-
nipulating their components. Section 6.7 will discuss linear algebra
with complex numbers.

In Chapter 7, we’ll discuss the applications of linear algebra. If
you’ve done your job learning the material in the first six chapters,
you’ll get to learn all the cool things you can do with linear alge-
bra. Chapter 8 will introduce the basic concepts of probability theory.
Chapter 9 contains an introduction to quantum mechanics.

Figure 9: The dependency structure of the chapters in the book.

Figure 9 shows the prerequisite structure between the chapters. If
you’re new to linear algebra, it would be best to read the chapters
in order. If you already have some experience with the subject, you
can skip ahead to the parts you’re interested in. Use the table of
contents, the concept maps on pages v–vii, and the index on page 577
to navigate the book. The chapters and sections in the book are self-
contained so they will make sense even if you read them out of order.



Chapter 1

Math fundamentals

In this chapter we’ll review the fundamental ideas of mathematics—
the prerequisites for learning linear algebra. We’ll define the differ-
ent types of numbers and the concept of a function, which is a trans-
formation that takes numbers as inputs and produces numbers as
outputs. Linear algebra is the extension of these ideas to many di-
mensions: instead of doing math with numbers and functions, in
linear algebra we’ll be doing math with vectors and linear transfor-
mations.

Figure 1.1: A concept map showing the mathematical topics covered in this
chapter. We’ll learn how to solve equations using algebra, how to model the
world using functions, and some important facts about geometry. The mate-
rial in this chapter is required for your understanding of the more advanced
topics in this book.

9



10 MATH FUNDAMENTALS

1.1 Solving equations

Most math skills boil down to being able to manipulate and solve
equations. Solving an equation means finding the value of the un-
known in the equation.

Check this shit out:
x2 ´ 4 “ 45.

To solve the above equation is to answer the question “What is x?”
More precisely, we want to find the number that can take the place
of x in the equation so that the equality holds. In other words, we’re
asking,

“Which number times itself minus four gives 45?”

That is quite a mouthful, don’t you think? To remedy this verbosity,
mathematicians often use specialized symbols to describe math op-
erations. The problem is that these specialized symbols can be very
confusing. Sometimes even the simplest math concepts are inacces-
sible if you don’t know what the symbols mean.

What are your feelings about math, dear reader? Are you afraid
of it? Do you have anxiety attacks because you think it will be too
difficult for you? Chill! Relax, my brothers and sisters. There’s noth-
ing to it. Nobody can magically guess the solution to an equation
immediately. To find the solution, you must break the problem into
simpler steps. Let’s walk through this one together.

To find x, we can manipulate the original equation, transforming
it into a different equation (as true as the first) that looks like this:

x “ only numbers.

That’s what it means to solve an equation: the equation is solved be-
cause the unknown is isolated on one side, while the constants are
grouped on the other side. You can type the numbers on the right-
hand side into a calculator and obtain the numerical value of x.

By the way, before we continue our discussion, let it be noted: the
equality symbol (“) means that all that is to the left of “ is equal to
all that is to the right of “. To keep this equality statement true, for
every change you apply to the left side of the equation, you must
apply the same change to the right side of the equation.

To find x, we need to manipulate the original equation into its
final form, simplifying it step by step until it can’t be simplified any
further. The only requirement is that the manipulations we make
transform one true equation into another true equation. In this ex-
ample, the first simplifying step is to add the number four to both
sides of the equation:

x2 ´ 4 ` 4 “ 45 ` 4,



1.1 SOLVING EQUATIONS 11

which simplifies to
x2 “ 49.

Now the expression looks simpler, yes? How did I know to perform
this operation? I wanted to “undo” the effects of the operation ´4.
We undo an operation by applying its inverse. In the case where the
operation is the subtraction of some amount, the inverse operation
is the addition of the same amount. We’ll learn more about function
inverses in Section 1.4.

We’re getting closer to our goal of isolating x on one side of the
equation, leaving only numbers on the other side. The next step is to
undo the square x2 operation. The inverse operation of squaring a
number x2 is to take its square root

?
, so that’s what we’ll do next.

We obtain a
x2 “ ?49.

Notice how we applied the square root to both sides of the equation?
If we don’t apply the same operation to both sides, we’ll break the
equality!

The equation
?

x2 “ ?49 simplifies to

|x| “ 7.

What’s up with the vertical bars around x? The notation |x| stands
for the absolute value of x, which is the same as x except we ignore
the sign that indicates whether x is positive or negative. For example
|5| “ 5 and | ´ 5| “ 5, too. The equation |x| “ 7 indicates that both
x “ 7 and x “ ´7 satisfy the equation x2 “ 49. Seven squared is 49,
72 “ 49, and negative seven squared is also 49, p´7q2 “ 49, because
the two negative signs cancel each other out.

The final solutions to the equation x2 ´ 4 “ 45 are

x “ 7 and x “ ´7.

Yes, there are two possible answers. You can check that both of the
above values of x satisfy the initial equation x2 ´ 4 “ 45.

If you are comfortable with all the notions of high school math
and you feel you could have solved the equation x2 ´ 4 “ 45 on
your own, then you can skim through this chapter quickly. If on the
other hand you are wondering how the squiggle killed the power
two, then this chapter is for you! In the following sections we will
review all the essential concepts from high school math that you will
need to power through the rest of this book. First, let me tell you
about the different kinds of numbers.
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1.2 Numbers

In the beginning, we must define the main players in the world of
math: numbers.

Definitions

Numbers are the basic objects we use to count, measure, quantify,
and calculate things. Mathematicians like to classify the different
kinds of number-like objects into categories called sets:

• The natural numbers: N “ t0, 1, 2, 3, 4, 5, 6, 7, . . . u
• The integers: Z “ t. . . ,´3,´2,´1, 0, 1, 2, 3, . . . u
• The rational numbers: Q “ t 5

3 , 22
7 , 1.5, 0.125,´7, . . . u

• The real numbers: R “ t´1, 0, 1,
?

2, e, π, 4.94 . . . , . . . u
• The complex numbers: C “ t´1, 0, 1, i, 1` i, 2` 3i, . . . u

These categories of numbers should be somewhat familiar to you.
Think of them as neat classification labels for everything that you
would normally call a number. Each group in the above list is a set.
A set is a collection of items of the same kind. Each collection has
a name and a precise definition for which items belong in that col-
lection. Note also that each of the sets in the list contains all the sets
above it, as illustrated in Figure 1.2. For now, we don’t need to go
into the details of sets and set notation, but we do need to be aware
of the different sets of numbers.

N Z Q R C

Figure 1.2: An illustration of the nested containment structure of the dif-
ferent number sets. The set of natural numbers is contained in the set of
integers, which in turn is contained in the set of rational numbers. The set of
rational numbers is contained in the set of real numbers, which is contained
in the set of complex numbers.

Why do we need so many different sets of numbers? Each set of
numbers is associated with more and more advanced mathematical
problems.

The simplest numbers are the natural numbers N, which are suf-
ficient for all your math needs if all you’re going to do is count things.
How many goats? Five goats here and six goats there so the total is
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number 2 corresponds to a line segment of length two, which is a ge-
ometric object in a one-dimensional space. If we add a line segment
of length two in a second dimension, we obtain a square with area 22

in a two-dimensional space. Adding a third dimension, we obtain a
cube with volume 23 in a three-dimensional space. Indeed, raising a
base a to the exponent 2 is commonly called “a squared,” and raising
a to the power of 3 is called “a cubed.”

The geometrical analogy about one-dimensional quantities as
lengths, two-dimensional quantities as areas, and three-dimensional
quantities as volumes is good to keep in mind.

21 “2 22 “4 23 “8

Figure 1.5: Geometric interpretation for exponents 1, 2, and 3. A length
raised to exponent 2 corresponds to the area of a square. The same length
raised to exponent 3 corresponds to the volume of a cube.

Our visual intuition works very well up to three dimensions, but
we can use other means of visualizing higher exponents, as demon-
strated in Figure 1.6.

Operator precedence

There is a standard convention for the order in which mathematical
operations must be performed. The basic algebra operations have
the following precedence:

1. Parentheses

2. Exponents

3. Multiplication and Division

4. Addition and Subtraction

If you’re seeing this list for the first time, the acronym PEMDAS
and the associated mnemonic “Please Excuse My Dear Aunt Sally,”
might help you remember the order of operations.

For instance, the expression 5 ¨ 32` 13 is interpreted as “First find
the square of 3, then multiply it by 5, and then add 13.” Parentheses
are needed to carry out the operations in a different order: to multi-
ply 5 times 3 first and then take the square, the equation should read
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1

2

3

4

5

1

4

9

16

25

1

8

27

64

125

1

16

81

256

625

1

32

243

1024

3125

Figure 1.6: Visualization of numbers raised to different exponents. Each box
in this grid contains an dots, where the base a varies from one through five,
and the exponent n varies from one through five. In the first row we see
that the number a “ 1 raised to any exponent is equal to itself. The second
row corresponds to the base a “ 2 so the number of dots doubles each time
we increase the exponent by one. Starting from 21 “ 2 in the first column,
we end up with 25 “ 32 in the last column. The rest of the rows show how
exponentiation works for different bases.

p5 ¨ 3q2` 13, where parentheses indicate that the square acts on p5 ¨ 3q
as a whole and not on 3 alone.

Exercises

E1.1 Solve for the unknown x in the following equations:

a) 3x` 2´ 5 “ 4` 2 b) 1
2 x´ 3 “ ?3` 12´?3

c) 7x´4
2 ` 1 “ 8´ 2 d) 5x´ 2` 3 “ 3x´ 5

E1.2 Indicate all the number sets the following numbers belong to.

a) ´2 b)
?´3 c) 8˜ 4 d) 5

3 e) π
2

E1.3 Calculate the values of the following expressions:

a) 233´ 3 b) 23p3´ 3q c) 4´2
33 p6 ¨ 7´ 41q
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A perfect square is a quadratic expression that can be written as
the product of repeated factors px` pq:

x2 ` 2px` p2 “ px` pqpx` pq “ px` pq2.

Note x2 ´ 2qx` q2 “ px´ qq2 is also a perfect square.

Completing the square

In this section we’ll learn about an ancient algebra technique called
completing the square, which allows us to rewrite any quadratic ex-
pression of the form x2 ` Bx ` C as a perfect square plus some
constant correction factor px ` pq2 ` k. This algebra technique was
described in one of the first books on al-jabr (algebra), written by
Al-Khwarizmi around the year 800 CE. The name “completing the
square” comes from the ingenious geometric construction used by
this procedure. Yes, we can use geometry to solve algebra problems!

We assume the starting point for the procedure is a quadratic ex-
pression whose quadratic coefficient is one, 1x2 ` Bx ` C, and use
capital letters B and C to denote the linear and constant coefficients.
The capital letters are to avoid any confusion with the quadratic ex-
pression ax2 ` bx ` c, for which a ‰ 1. Note we can always write
ax2` bx` c as apx2` b

a x` c
a q and apply the procedure to the expres-

sion inside the brackets, identifying b
a with B and c

a with C.
First let’s rewrite the quadratic expression x2 ` Bx ` C by split-

ting the linear term into two equal parts:

x2 ` B
2 x` B

2 x` C.

We can interpret the first three terms geometrically as follows: the x2

term corresponds to a square with side length x, while the two B
2 x

terms correspond to rectangles with sides B
2 and x. See the left side

of Figure 1.8 for an illustration.

x

x

B
2

x

B
2

` C “ x

x

B
2

x

B
2

B
2

B
2

´
B
2

B
2 ` C

Figure 1.8: To complete the square in the expression x2 ` Bx` C, we need
to add the quantity p B

2 q2, which corresponds to a square (shown in darker
colour) with sides equal to half the coefficient of the linear term. We also
subtract p B

2 q2 so the overall value of the expression remains unchanged.

The square with area x2 and the two rectangles can be positioned to
form a larger square with side length

`
x ` B

2

˘
. Note there’s a small
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E1.9 Solve for x in the equation x4 ´ 4x2 ` 4 “ 0.

Hint: Use the substitution y “ x2.

1.7 The Cartesian plane

The Cartesian plane, named after famous philosopher and mathe-
matician René Descartes, is used to visualize pairs of numbers px, yq.

Consider first the number line representation for numbers.

´5 ´4 ´3 ´2 ´1 0 1 2 3 4 5

Figure 1.9: Every real number x corresponds to a point on the number line.
The number line extends indefinitely to the left (toward negative infinity)
and to the right (toward positive infinity).

The Cartesian plane is the two-dimensional generalization of the
number line. Generally, we call the plane’s horizontal axis “the
x-axis” and its vertical axis “the y-axis.” We put notches at regular
intervals on each axis so we can measure distances.

´4 ´3 ´2 ´1 1 2 3 4

´2

´1

0

1

2

x

y

Figure 1.10: Every point in the Cartesian plane corresponds to a pair of real
numbers px, yq. Points P “ pPx, Pyq, vectors ~v “ pvx, vyq, and graphs of
functions px, f pxqq live here.

Figure 1.10 is an example of an empty Cartesian coordinate sys-
tem. Think of the coordinate system as an empty canvas. What can
you draw on this canvas?
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A B

Domp f q Imp f q

x f pxq
f

Figure 1.14: Illustration of the input and output sets of a function f : A Ñ B.
The source set is denoted A and the domain is denoted Domp f q. Note that the
function’s domain is a subset of its source set. The target set is denoted B and
the image is denoted Imp f q. The image is a subset of the target set.

The complicated-looking expression between the curly brackets
uses set notation to define the set of nonnegative numbers R`. In
words, the expression R` “ tx P R | x ě 0u states that “R` is
defined as the set of all real numbers x such that x is greater than
or equal to zero.” We’ll discuss set notation in more detail in Sec-
tion 1.16. For now, you can just remember that R` represents the set
of nonnegative real numbers.

f pxq “ ?x
R R

R` R`

x
?

x

f

Figure 1.15: The input and output sets of the function f pxq “ ?
x. The

domain of f is the set of nonnegative real numbers R` and its image is R`.

To illustrate the difference between the image of a function and its
target set, let’s look at the function f pxq “ x2 shown in Figure 1.16.
The quadratic function is of the form f : R Ñ R. The function’s
source set is R (it takes real numbers as inputs) and its target set is R

(the outputs are real numbers too); however, not all real numbers are
possible outputs. The image of the function f pxq “ x2 consists only of
the nonnegative real numbers R` “ ty P R | y ě 0u, since f pxq ě 0
for all x.
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1.10 Geometry

The word “geometry” comes from the Greek roots geo, which means
“earth,” and metron, which means “measurement.” This name is
linked to one of the early applications of geometry, which was to
measure the total amount of land contained within a certain bound-
ary region. Over the years, the study of geometry evolved to be more
abstract. Instead of developing formulas for calculating the area of
specific regions of land, mathematicians developed general area for-
mulas that apply to all regions that have a particular shape.

In this section we’ll present formulas for calculating the perime-
ters, areas, and volumes for various shapes (also called “figures”)
commonly encountered in the real world. For two-dimensional fig-
ures, the main quantities of interest are the figures’ areas and the
figures’ perimeters (the length of the walk around the figure). For
three-dimensional figures, the quantities of interest are the surface
area (how much paint it would take to cover all sides of the figure),
and volume (how much water it would take to fill a container of this
shape). The formulas presented are by no means an exhaustive list
of everything there is to know about geometry, but they represent a
core set of facts that you want to add to your toolbox.

Triangles

The area of a triangle is equal to 1
2 times the length of its base times

its height:
A “ 1

2 aha.

Note that ha is the height of the triangle relative to the side a.

ha
c b

a

Figure 1.33: A triangle with side lengths a, b, and c. The height of the triangle
with respect to the side a is denoted ha.

The perimeter of a triangle is given by the sum of its side lengths:

P “ a` b` c.

Interior angles of a triangle rule The sum of the inner angles in
any triangle is equal to 180˝. Consider a triangle with internal angles
α, β and γ as shown in Figure 1.34. We may not know the values of
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Exercises

E1.13 Find the length of side x in the triangle below.

4 x

5

60◦

Hint: Use the cosine rule.

E1.14 Find the volume and the surface area of a sphere with radius 2.

E1.15 On a rainy day, Laura brings her bike indoors, and the wet
bicycle tires leave a track of water on the floor. What is the length
of the water track left by the bike’s rear tire (diameter 73 cm) if the
wheel makes five full turns along the floor?

1.11 Trigonometry

If one of the angles in a triangle is equal to 90˝, we call this trian-
gle a right-angle triangle. In this section we’ll discuss right-angle tri-
angles in great detail and get to know their properties. We’ll learn
some fancy new terms like hypotenuse, opposite, and adjacent, which
are used to refer to the different sides of a triangle. We’ll also use the
functions sine, cosine, and tangent to compute the ratios of lengths in
right triangles.

Understanding triangles and their associated trigonometric func-
tions is of fundamental importance: you’ll need this knowledge for
your future understanding of mathematical concepts like vectors
and complex numbers.

Figure 1.40: A right-angle triangle. The angle at the base is denoted θ and
the names of the sides of the triangle are indicated.
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x

y

1
sin θ

cos θ

θ

10
x

y

1

θ

10

pPx, Pyq “ pcos θ, sin θq

x2 ` y2 “ 1

Figure 1.41: The unit circle corresponds to the equation x2 ` y2 “ 1. The
coordinates of the point P on the unit circle are Px “ cos θ and Py “ sin θ.

θ

f pθq

0 π
6

1
2

π
3

?
3

2

π
2

1

2π
3

5π
6

π

f pθq “ sin θ
π
6

π
3

π
2

x2 ` y2 “ 1

θ

Figure 1.42: The function f pθq “ sin θ describes the vertical position of a
point P that travels along the unit circle. The graph shows the values of the
function f pθq “ sin θ for angles between θ “ 0 and θ “ π.

Figure 1.42 shows the graph of the function f pθq “ sin θ. The val-
ues sin θ for the angles 0, π

6 (30˝), π
3 (60˝), and π

2 (90˝) are marked.
There are three values to remember: sin θ “ 0 when θ “ 0, sin θ “ 1

2
when θ “ π

6 (30˝), and sin θ “ 1 when θ “ π
2 (90˝). See Figure 1.26

(page 60) for a graph of sin θ that shows a complete cycle around the
circle. Also see Figure 1.29 (page 62) for the graph of cos θ.

Instead of trying to memorize the values of the functions cos θ
and sin θ separately, it’s easier to remember them as a combined
“package” pcos θ, sin θq, which describes the x- and y-coordinates of
the point P for the angle θ. Figure 1.43 shows the values of cos θ and
sin θ for the angles 0, π

6 (30˝), π
4 (45˝), π

3 (60˝), and π
2 (90˝). These

are the most common angles that often show up on homework and
exam questions. For each angle, the x-coordinate (the first number
in the bracket) is cos θ, and the y-coordinate (the second number in
the bracket) is sin θ.
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Vector as arrows
So far, we described how to perform algebraic operations on vectors
in terms of their components. Vector operations can also be inter-
preted geometrically, as operations on arrows in the Cartesian plane.

Vector addition The sum of two vectors corresponds to the com-
bined displacement of the two vectors. Figure 1.49 illustrates the
addition of two vectors, ~v1 “ p3, 0q and ~v2 “ p2, 2q. The sum of the
two vectors is the vector ~v1 `~v2 “ p3, 0q ` p2, 2q “ p5, 2q.

~v1 = (3, 0)

~v2 = (2, 2)
~v1 + ~v2 = (5, 2)

Figure 1.49: The addition of the vectors ~v1 and ~v2 produces the vector p5, 2q.

Vector subtraction Before we describe vector subtraction, note that
multiplying a vector by a scale factor α “ ´1 gives a vector of the
same length as the original, but pointing in the opposite direction.

This fact is useful if you want to subtract two vectors using the
graphical approach. Subtracting a vector is the same as adding the
negative of the vector:

~w´~v1 “ ~w` p´~v1q “ ~v2.

~w = (5, 2)

−~v1 = (−3, 0)

~v1 = (3, 0)

~v2 = (2, 2)

Figure 1.50: The vector subtraction ~w´~v1 is equivalent to the vector addi-
tion ~w` p´~v1q, where p´~v1q is like ~v1 but points in the opposite direction.

Figure 1.50 illustrates the graphical procedure for subtracting the
vector ~v1 “ p3, 0q from the vector ~w “ p5, 2q. Subtraction of ~v1 “
p3, 0q is the same as addition of ´~v1 “ p´3, 0q.
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Vectors and vector coordinates

One final point we need to clarify is the difference between real-
world vector quantities like the velocity of a tennis ball ~v and its
mathematical representation as a coordinate vector pvx, vy, vzq. If you
know the coordinate vector pvx, vy, vzq then you know what the real-
world velocity is, right? Not quite.

Let’s say you’re doing a physics research project on tennis serves.
You define an xyz-coordinate system for the tennis court, which al-
lows you to represent the ball’s velocity ~v as a triple of components
pvx, vy, vzq interpreted as: “The ball is moving with velocity vx units
in the x-direction, vy units in the y-direction, and vz units in the z-
direction.”

Suppose you want to describe the velocity vector ~v to a fellow
physicist via text message. Referring to your sheet of calculations,
you find the values ~v “ p60, 3,´2q, which you know were measured
in metres per second. You send this message:

The velocity is (60,3,-2) measured in metres per second.

A few minutes later the following reply comes back:

Wait whaaat? What coordinate system are you using?

Indeed the information you sent is incomplete. Vector components
depend on the coordinate system in which the vectors are repre-
sented. The triple of numbers p60, 3,´2q only makes sense once you
know the directions of the axes in the xyz-coordinate system. Realiz-
ing your mistake, you send a text with all the required information:

Using the coordinate system centred at the south post of
the net, with the x-axis pointing east along the court,
the y-axis pointing north along the net, and the z-axis
pointing up, the velocity is (60,3,-2) in metres per second.

A few seconds later, you get the reply:

OK got it now. Thx!

This hypothetical situation illustrates the importance of the coordi-
nate systems for describing vectors. If you don’t know what the co-
ordinate system is, knowing the coordinates pvx, vy, vzq doesn’t tell
you much. Only when you know the directions of the unit vectors ı̂,
̂, and k̂ can you interpret the instructions ~v “ vx ı̂` vy ̂` vz k̂.

It turns out, using the xyz-coordinate system with the three vec-
tors tı̂, ̂, k̂u is just one of many possible ways we can represent vec-
tors. We can represent a vector ~v as coordinates pv1, v2, v3q with re-
spect to any basis tê1, ê2, ê3u using the expression ~v “ v1 ê1 ` v2 ê2 `
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v3 ê3, which corresponds to the instructions: “Move v1 units in the di-
rection of ê1, move v2 units in the direction of ê2, and move v3 units
in the direction of ê3.”

What’s a basis, you ask? I’m glad you asked, because this is the
subject of the next section.

Basis

One of the most important concepts in the study of vectors is the
concept of a basis. Consider the three-dimensional vector space R3.
A basis for R3 is a set of vectors tê1, ê2, ê3u that can be used as a coor-
dinate system for R3. If the set of vectors tê1, ê2, ê3u is a basis, then
you can represent any vector ~v P R3 as coordinates pv1, v2, v3q with
respect to that basis:

~v “ v1 ê1 ` v2 ê2 ` v3 ê3.

The vector ~v is obtained by measuring out a distance v1 in the ê1
direction, a distance v2 in the ê2 direction, and a distance v3 in the ê3
direction.

You are already familiar with the standard basis tı̂, ̂, k̂u, which is
associated with the xyz-coordinate system. You know that any vector
~v P R3 can be expressed as a triple pvx, vy, vzqwith respect to the basis
tı̂, ̂, k̂u through the formula ~v “ vx ı̂` vy ̂` vz k̂. The whole point of
this section is to let you know that other bases (coordinate systems)
exist, and to get you into the habit of asking, “With respect to which
coordinate system?” every time you see a coordinate vector pa, b, cq.

An analogy

Let’s start with a simple example of a basis. If you look at the HTML
source code behind any web page, you’re sure to find at least one
mention of the colour stylesheet directive such as color:#336699;.
The numbers should be interpreted as a triple of values p33, 66, 99q,
each value describing the amount of red, green, and blue needed to
create a given colour. Let us call the colour described by the triple
p33, 66, 99q CoolBlue. This convention for colour representation is
called the RGB colour model and we can think of it as the RGB basis.
A basis is a set of elements that can be combined together to express
something more complicated. In our case, the R, G, and B elements
are pure colours that can create any colour when mixed appropri-
ately. Schematically, we can write this mixing idea as

CoolBlue “ p33, 66, 99qRGB “ 33R` 66G` 99B,
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Geometric solution

Solving a system of two linear equations in two unknowns can be un-
derstood geometrically as finding the point of intersection between
two lines in the Cartesian plane. In this section we’ll explore this cor-
respondence between algebra and geometry to develop yet another
way of solving systems of linear equations.

The algebraic equation ax ` by “ c containing the unknowns x
and y can be interpreted as a constraint equation on the set of possible
values for the variables x and y. We can visualize this constraint
geometrically by considering the coordinate pairs px, yq that lie in
the Cartesian plane. Recall that every point in the Cartesian plane
can be represented as a coordinate pair px, yq, where x and y are the
coordinates of the point.

Figure 1.59 shows the geometrical representation of three equa-
tions. The line `a corresponds to the set of points px, yq that satisfy
the equation x “ 1, the line `b is the set of points px, yq that satisfy
the equation y “ 2, and the line `c corresponds to the set of points
that satisfy x` 2y “ 2.

x

y

`a

1 2 3

1

2

(a) x “ 1

x

y
`b

1 2 3

1

2

(b) y “ 2

x

y

`c
1 2 3

1

2

(c) x ` 2y “ 2

Figure 1.59: Graphical representations of three linear equations.

You can convince yourself that the geometric lines shown in Fig-
ure 1.59 are equivalent to the algebraic equations by considering in-
dividual points px, yq in the plane. For example, the points p1, 0q,
p1, 1q, and p1, 2q are all part of the line `a since they satisfy the equa-
tion x “ 1. For the line `c, you can verify that the line’s x-intercept
p2, 0q and its y-intercept p0, 1q both satisfy the equation x` 2y “ 2.

The Cartesian plane as a whole corresponds to the set R2, which
describes all possible pairs of coordinates. To understand the equiv-
alence between the algebraic equation ax ` by “ c and the line ` in
the Cartesian plane, we can use the following precise math notation:

` : tpx, yq P R2 | ax` by “ cu.
In words, this means that the line ` is defined as the subset of the
pairs of real numbers px, yq that satisfy the equation ax ` by “ c.
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Figure 1.60 shows the graphical representation of the line `.
You don’t have to take my word for it, though! Think about it and

convince yourself that all points on the line ` shown in Figure 1.60
satisfy the equation ax ` by “ c. For example, you can check that
the x-intercept p c

a , 0q and the y-intercept p0, c
b q satisfy the equation

ax` by “ c.

x

y

`

c
b

c
a

Figure 1.60: Graphical representation of the equation ax` by “ c.

Solving the system of two equations

a1x` b1y “ c1,
a2x` b2y “ c2,

corresponds to finding the intersection of the lines `1 and `2 that
represent each equation. The pair px, yq that satisfies both algebraic
equations simultaneously is equivalent to the point px, yq that is the
intersection of lines `1 and `2, as illustrated in Figure 1.61.

x

y

`1

`2

px, yq

Figure 1.61: The point px, yq that lies at the intersection of lines `1 and `2.
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Example Let’s see how we can use the geometric interpretation to
solve the system of equations

x` 2y “ 5,
3x` 9y “ 21.

We’ve already seen three different algebraic techniques for finding
the solution to this system of equations; now let’s see a geometric ap-
proach for finding the solution. I’m not kidding you, we’re going to
solve the exact same system of equations a fourth time!

The first step is to draw the lines that correspond to each of the
equations using pen and paper or a graphing calculator. The second
step is to find the coordinates of the point where the two lines inter-
sect as shown in Figure 1.62. The point p1, 2q that lies on both lines `1
and `2 corresponds to the x and y values that satisfy both equations
simultaneously.

x

y

`1

`2

p1, 2q

1 2 3 4 5 6 7

1

2

3

Figure 1.62: The line `1 with equations x` 2y “ 5 intersects the line `2 with
equation 3x` 9y “ 21 at the point p1, 2q.

Visit the webpage at www.desmos.com/calculator/exikik615f to
play with an interactive version of the graphs shown in Figure 1.62.
Try changing the equations and see how the graphs change.

Exercises

E1.23 Plot the lines `a, `b, and `c shown in Figure 1.59 (page 106)
using the Desmos graphing calculator. Use the graphical representa-
tion of these lines to find: a) the intersection of lines `c and `a, b) the
intersection of `a and `b, and c) the intersection of lines `b and `c.

E1.24 Solve the system of equations simultaneously for x and y:

2x` 4y “ 16,
5x ´ y “ 7.
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E1.25 Solve the system of equations for the unknowns x, y, and z:

2x` y´ 4z “ 28,
x ` y ` z “ 8,

2x´ y´ 6z “ 22.

E1.26 Solve for p and q given the equations p` q “ 10 and p´ q “ 4.

1.16 Set notation

A set is the mathematically precise notion for describing a group of
objects. You don’t need to know about sets to perform simple math;
but more advanced topics require an understanding of what sets are
and how to denote set membership, set operations, and set contain-
ment relations. This section introduces all the relevant concepts.

Definitions

• set: a collection of mathematical objects
• S, T: the usual variable names for sets
• s P S: this statement is read “s is an element of S” or “s is in S”
• N, Z, Q, R: some important number sets: the naturals, the in-

tegers, the rationals, and the real numbers, respectively.
• H: the empty set is a set that contains no elements
• t ..... u: the curly brackets are used to define sets, and the ex-

pression inside the curly brackets describes the set contents.

Set operations:

• SY T: the union of two sets. The union of S and T corresponds
to the elements in either S or T.

• SX T: the intersection of the two sets. The intersection of S and
T corresponds to the elements that are in both S and T.

• SzT: set difference or set minus. The set difference SzT corre-
sponds to the elements of S that are not in T.

Set relations:

• Ă: is a strict subset of
• Ď: is a subset of or equal to
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1.17 Math problems

We’ve now reached the first section of problems in this book. The
purpose of these problems is to give you a way to comprehensively
practice your math fundamentals. Knowing how to solve math prob-
lems is a very useful skill to develop. At times, honing your math
chops might seem like tough mental work, but at the end of each
problem, you’ll gain a stronger foothold on all the topics you’ve been
learning about. You’ll also experience a small achievement buzz after
each problem you vanquish.

Sit down and take a crack at these practice problems today, or
another time when you’re properly caffeinated. If you make time for
some math practice, you’ll develop long-lasting comprehension and
true math fluency.

Without solving any problems, you’re likely to forget most of
what you’ve learned in the next few months. You might still re-
member the big ideas, but the details will be fuzzy and faded. By
solving some of the practice problems, you’ll remember a lot more
stuff. Don’t break the pace now: with math, it’s very much use it or
lose it!

Make sure you put your phone away while you’re working on the
problems. You don’t need fancy technology to do math; grab a pen
and some paper from the printer and you’ll be fine. The great math-
ematicians like Descartes, Hilbert, Leibniz, and Noether did most of
their work with pen and paper and they did well. Spend some time
with math the way they did.

P1.1 Solve for x in the equation x2 ´ 9 “ 7.

P1.2 Solve for x in the equation cos´1` x
A
˘´ φ “ ωt.

P1.3 Solve for x in the equation 1
x “ 1

a ` 1
b .

P1.4 Use a calculator to find the values of the following expressions:

a) 4
?

33 b) 210 c) 7
1
4 ´ 10 d) 1

2 lnpe22q
P1.5 Compute the following expressions involving fractions:

a)
1
2
` 1

4
b)

4
7
´ 23

5
c) 1 3

4 ` 1 31
32

P1.6 Use the basic rules of algebra to simplify the following expressions:

a) ab
1
a

b2cb´3 b)
abc
bca c)

27a2
?

9abba

d)
apb` cq ´ ca

b e)
a

c 3
?

b
b

4
3

a2
f)px` aqpx` bq´ xpa` bq



Chapter 2

Intro to linear algebra

The first chapter reviewed core ideas of mathematics. Now that
we’re done with the prerequisites, we can begin the main discussion
of linear algebra: the study of vectors and matrices.

2.1 Definitions

Vectors and matrices are the objects of study in linear algebra, and in
this chapter we’ll define them and learn the basic operations we can
perform on them.

We denote the set of n-dimensional vectors with real coefficients
as Rn. A vector ~v P Rn is an n-tuple of real numbers.1 For example,
a three-dimensional vector is defined as a triple of numbers:

~v def“ pv1, v2, v3q.
To specify the vector ~v, we must specify the values for its three com-
ponents, v1, v2, and v3. We’ll use the terms components and coordinates
interchangeably throughout the book.

A matrix A P Rmˆn is a rectangular array of real numbers with m
rows and n columns. For example, a 3ˆ 2 matrix is defined like this:

A def“
»
–

a11 a12
a21 a22
a31 a32

fi
fl.

To specify the matrix A, we need to specify the values of its six entries:
a11, a12, a21, a22, a31, and a32.

1The notation “s PS” is read “s is an element of S” or “s in S.”

131
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In the remainder of this chapter we’ll learn about the mathemati-
cal operations we can perform on vectors and matrices. Many prob-
lems in science, business, and technology can be described in terms
of vectors and matrices, so it’s important you understand how to
work with these math objects.

Context

To illustrate what’s new about vectors and matrices, let’s begin by
reviewing the properties of something more familiar: the set of real
numbers R. The basic operations for real numbers are:

• Addition (denoted `)
• Subtraction, the inverse of addition (denoted ´)
• Multiplication (denoted implicitly)
• Division, the inverse of multiplication (denoted by fractions)

You’re familiar with these operations and know how to use them to
evaluate math expressions and solve equations.

You should also be familiar with functions that take real numbers
as inputs and give real numbers as outputs, denoted f : R Ñ R.
Recall that, by definition, the inverse function f´1 undoes the effect of
f . If you are given f pxq and want to find x, you can use the inverse
function as follows: f´1 p f pxqq “ x. For example, the function f pxq “
lnpxq has the inverse f´1pxq “ ex, and the inverse of gpxq “ ?

x is
g´1pxq “ x2.

Having reviewed the basic operations for real numbers R, let’s
now introduce the basic operations for vectors Rn and matrices
Rmˆn.

Vector operations

The operations we can perform on vectors are:

• Addition (denoted `)
• Subtraction, the inverse of addition (denoted ´)
• Scaling (denoted implicitly)
• Dot product (denoted ¨ )
• Cross product (denoted ˆ)

We’ll discuss each of these vector operations in Section 2.2. Although
you should already be familiar with vectors and vector operations
from Section 1.13, it’s worth revisiting these concepts in greater
depth, because vectors are the foundation of linear algebra.
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Matrix operations

The mathematical operations defined for matrices A and B are:

• Addition (denoted A` B)
• Subtraction, the inverse of addition (denoted A´ B)
• Scaling by a constant α (denoted αA)
• Matrix product (denoted AB)
• Matrix-vector product (denoted A~v)
• Matrix inverse (denoted A´1)
• Trace (denoted TrpAq)
• Determinant (denoted detpAq or |A|)

We’ll define each of these operations in Section 2.3, and we’ll learn
about the various computational, geometric, and theoretical consid-
erations associated with these matrix operations throughout the re-
mainder of the book.

Let’s now examine one important matrix operation in closer de-
tail: the matrix-vector product A~x.

Matrix-vector product

Consider the matrix A P Rmˆn and the vector ~v P Rn. The matrix-
vector product A~x produces a linear combination of the columns of
the matrix A with coefficients ~x. For example, the product of a 3ˆ 2
matrix A and a 2ˆ 1 vector ~x results in a 3ˆ 1 vector, which we’ll
denote ~y:

~y “ A~x,

»
–

y1
y2
y3

fi
fl “

»
–

a11 a12
a21 a22
a31 a32

fi
fl
„

x1
x2


“
»
–

x1a11 ` x2a12
x1a21 ` x2a22
x1a31 ` x2a32

fi
fl

looooooooomooooooooon
row picture

“ x1

»
–

a11
a21
a31

fi
fl` x2

»
–

a12
a22
a32

fi
fl

loooooooooooomoooooooooooon
column picture

.

The key thing to observe in the above formula is the dual interpre-
tation of the matrix-vector product A~x in the “row picture” and in
the “column picture.” In the row picture, we obtain the vector ~y by
computing the dot product of the vector ~x with each of the rows of
the matrix A. In the column picture, we interpret the vector ~y as x1
times the first column of A plus x2 times the second column of A.
In other words, ~y is a linear combination of the columns of A. For
example, if you want to obtain the linear combination consisting of
three times the first column of A and four times the second column
of A, you can multiply A by the vector ~x “ “

3
4

‰
.
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Linear combinations as matrix products

Consider some set of vectors t~e1,~e2u, and a third vector ~y that is a
linear combination of the vectors~e1 and~e2:

~y “ α~e1 ` β~e2.

The numbers α, β P R are the coefficients in this linear combination.
The matrix-vector product is defined expressly for the purpose of

studying linear combinations. We can describe the linear combina-
tion ~y “ α~e1 ` β~e2 as the following matrix-vector product:

~y “
»
–
| |
~e1 ~e2
| |

fi
fl
„

α
β


.

The matrix E has~e1 and~e2 as columns. The dimensions of the matrix
E will be nˆ 2, where n is the dimension of the vectors~e1,~e2, and ~y.

Linear transformations

Dear readers, we’ve reached the key notion in the study of linear al-
gebra. This is the crux. The essential fibre. The main idea. I know
you’re ready to handle it because you’re familiar with functions of a
real variable f : R Ñ R, and you just learned the definition of the
matrix-vector product (in which the variables were chosen to sub-
liminally remind you of the standard conventions for the function
input x and the function output y “ f pxq). Without further ado, I
present to you the concept of a linear transformation.

The matrix-vector product corresponds to the abstract notion of
a linear transformation, which is one of the key notions in the study of
linear algebra. Multiplication by a matrix A P Rmˆn can be thought
of as computing a linear transformation TA that takes n-vectors as
inputs and produces m-vectors as outputs:

TA : Rn Ñ Rm.

Instead of writing ~y “ TAp~xq to denote the linear transformation TA
applied to the vector ~x, we can write ~y “ A~x. Since the matrix A
has m rows, the result of the matrix-vector product is an m-vector.
Applying the linear transformation TA to the vector ~x corresponds
to the product of the matrix A and the column vector ~x. We say TA
is represented by the matrix A.

Inverse When a matrix A is square and invertible, there exists an
inverse matrix A´1 which undoes the effect of A to restore the original
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input vector:
A´1pA~xq “ A´1 A~x “ ~x.

Using the matrix inverse A´1 to undo the effects of the matrix A is
analogous to using the inverse function f´1 to undo the effects of the
function f .

Example 1 Consider the linear transformation that multiplies the
first components of input vectors by 3 and multiplies the second
components by 5, as described by the matrix

A “
„

3 0
0 5


, A~x “

„
3 0
0 5

„
x1
x2


“

„
3x1
5x2


.

The inverse of the matrix A is

A´1 “
„ 1

3 0
0 1

5


, A´1pA~xq “

„ 1
3 0
0 1

5

„
3x1
5x2


“
„

x1
x2


“ ~x.

The inverse matrix multiplies the first component by 1
3 and the sec-

ond component by 1
5 , which effectively undoes what A did.

Example 2 Things get a little more complicated when matrices mix
the different components of the input vector, as in this example:

B “
«

1 2
0 3

ff
, which acts as B~x “

«
1 2
0 3

ff«
x1

x2

ff
“
«

x1 ` 2x2

3x2

ff
.

Make sure you understand how to compute B~x using both the row
picture and the column picture of the matrix-vector product.

The inverse of the matrix B is the matrix

B´1 “
«

1 ´2
3

0 1
3

ff
.

Multiplication by the matrix B´1 is the “undo action” for multiplica-
tion by B:

B´1pB~xq“
«

1 ´2
3

0 1
3

ff«
1 2
0 3

ff«
x1

x2

ff
“
«

1 ´2
3

0 1
3

ff«
x1 ` 2x2

3x2

ff
“
«

x1

x2

ff
“~x.

By definition, the inverse A´1 undoes the effects of the matrix A. The
cumulative effect of applying A´1 after A is the identity matrix 1,
which has 1s on the diagonal and 0s everywhere else:

A´1 A~x “ 1~x “ ~x ñ A´1 A “
„

1 0
0 1


“ 1.
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Note that 1~x “ ~x for any vector ~x.
We’ll discuss matrix inverses and how to compute them in more

detail later (Section 3.5). For now, it’s important you know they exist.

An overview of linear algebra

In the remainder of the book, we’ll learn all about the properties of
vectors and matrices. Matrix-vector products play an important role
in linear algebra because of their relation to linear transformations.

Functions are transformations from an input space (the domain)
to an output space (the image). A linear transformation T : Rn Ñ Rm

is a function that takes n-vectors as inputs and produces m-vectors as
outputs. If the function T is linear, the output ~y “ Tp~xq of T applied
to ~x can be computed as the matrix-vector product AT~x, for some
matrix AT P Rmˆn. We say T is represented by the matrix AT . Equiv-
alently, every matrix A P Rmˆn corresponds to some linear transfor-
mation TA : Rn Ñ Rm. Given the equivalence between matrices and
linear transformations, we can reinterpret the statement “linear alge-
bra is about vectors and matrices” by saying “linear algebra is about
vectors and linear transformations.”

You can adapt your existing knowledge about functions to the
world of linear transformations. The action of a function on a num-
ber is similar to the action of a linear transformation on a vector. The
table below summarizes several useful correspondences between
functions and linear transformations.

function f : R Ñ R ô linear transformation TA : RnÑ Rm

represented by the matrix A P Rmˆn

input x P R ô input ~x P Rn

output f pxq P R ô output TAp~xq “ A~x P Rm

g ˝ f pxq “ gp f pxqq ô TBpTAp~xqq “ BA~x

function inverse f´1 ô matrix inverse A´1

roots of f ô kernel of TA “ null space of A “ N pAq
image of f ô image of TA “ column space of A “ CpAq

Table 2.1: Correspondences between functions and linear transformations.

This table of correspondences serves as a roadmap for the rest of the
material in this book. You’ll notice the table introduces several new
linear algebra concepts like kernel, null space, and column space, but
not too many. You can totally do this!
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Remember to always connect the new concepts of linear algebra
to concepts you’re already familiar with. For example, the roots of
a function f pxq are the set of inputs for which the function’s output
is zero. Similarly, the kernel of a linear transformation T is the set
of inputs that T sends to the zero vector. The roots of a function
f : R Ñ R and the kernel of a linear transformation TA : RnÑ Rm

are essentially the same concept; we’re just upgrading functions to
vector inputs.

In Chapter 1, I explained why functions are useful tools for mod-
elling the real world. Well, linear algebra is the “vector upgrade”
to your real-world modelling skills. With linear algebra you’ll be
able to model complex relationships between multivariable inputs
and multivariable outputs. To build modelling skills, you must first
develop your geometric intuition about lines, planes, vectors, bases,
linear transformations, vector spaces, vector subspaces, etc. It’s a lot
of work, but the effort you invest will pay dividends.

Links

[ Linear algebra lecture series by Prof. Strang from MIT ]
http://bit.ly/1ayRcrj (row and column picture example)

[ A system of equations in the row picture and column picture ]
https://www.youtube.com/watch?v=uNKDw46_Ev4

Exercises

E2.1 Find the inverse matrix A´1 for the matrix A “ “
7 0
0 2

‰
. Verify

that A´1pA~vq “ ~v for any vector ~v “ “ v1
v2

‰
.

E2.2 Given the matrices A “ “
1 3
4 5

‰
and B “ “´1 0

3 3

‰
, and the vectors

~v “ “
1
2

‰
and ~w “

”´3
´4

ı
, compute the following expressions.

a) A~v b) B~v c) ApB~vq d) BpA~vq e) A~w f) B~w

E2.3 Find the components v1 and v2 of the vector ~v “ “ v1
v2

‰
so that

E~v “ 3~e2 ´ 2~e1, where E is the following matrix:

E “
»
–
| |
~e1 ~e2
| |

fi
fl.

What next?

We won’t bring geometry, vector spaces, algorithms, and the appli-
cations of linear algebra into the mix all at once. Instead, let’s start



138 INTRO TO LINEAR ALGEBRA

with the basics. Since linear algebra is about vectors and matrices,
let’s define vectors and matrices precisely, and describe the math op-
erations we can perform on them.

2.2 Vector operations

Section 1.13 introduced some basic notions about vectors. Under-
standing vectors is so important for linear algebra that it’s worth
going beyond the rudimentary understanding of vectors as “direc-
tional quantities,” and so we took the time to describe vectors more
abstractly—as math objects. With vectors defined, our next step is to
specify their properties and the operations we can perform on vec-
tors. This is what this section is all about.

Definitions

Consider the vectors ~u “ pu1, u2, u3q and ~v “ pv1, v2, v3q, and an
arbitrary constant α P R. Vector algebra can be summarized as the
following operations:

• Addition: ~u`~v def“ pu1 ` v1, u2 ` v2, u3 ` v3q
• Subtraction: ~u´~v def“ pu1 ´ v1, u2 ´ v2, u3 ´ v3q
• Scaling: α~u def“ pαu1, αu2, αu3q
• Dot product: ~u ¨~v def“ u1v1 ` u2v2 ` u3v3

• Cross product: ~uˆ~v def“ pu2v3´ u3v2, u3v1´ u1v3, u1v2´ u2v1q
• Length: }~u} def“

b
u2

1 ` u2
2 ` u2

3

In the next few pages we’ll see what these operations can do for us.

Notation

The set of real numbers is denoted R. An n-dimensional real vector
consists of n real numbers slapped together in a bracket. We denote
the set of three-dimensional vectors as R3 def“ pR, R, Rq. Similarly, the
set of n-dimensional real vectors is denoted Rn.

When learning about new math operations, it’s important to keep
track of the types of inputs and the types of outputs of each opera-
tion. In computer science, this information is called the type signature.
For example, the type signature “op : R Ñ R” tells us the math op-
eration op takes real numbers as inputs and produces real numbers
as outputs. Certain operations take pairs of numbers as inputs, like
addition for example: addpa, bq (usually denoted a ` b). The type
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Exercises

E2.4 Given the vectors ~u “ p1, 1, 0q and ~v “ p0, 0, 3q, compute the
following vector expressions:

a) ~u`~v b) ~u´~v c) 3~u`~v d) }~u}
E2.5 Given ~v “ p1, 2, 3q and ~w “ p0, 1, 1q, compute the following
vector products: a) ~v ¨ ~w; b) ~vˆ ~w; c) ~wˆ~v; d) ~wˆ ~w.

E2.6 For each of the following vectors, ~v1 “ 10=10˝, ~v2 “ 10=30˝,
~v3 “ 10=60˝, ~v4 “ 10=120˝, complete the following tasks:

a) Draw the vector in a Cartesian plane.
b) Compute the vector’s x- and y-coordinates.
c) Compute the projection of the vector in the direction ı̂. Your

answer should be a vector quantity.
d) Compute the projection of the vector in the direction ̂.
e) Compute the projection of the vector in the direction ~d “ p1, 1q,

and find the length of the projection.

Hint: Recall the formula for the projection of the vector ~v in the di-
rection ~d is defined as Π~dp~vq “

´
~d ¨~v
}~d}2

¯
~d.

2.3 Matrix operations

A matrix is a two-dimensional array (a table) of numbers. Consider
the m by n matrix A P Rmˆn. We denote the matrix as a whole A and
refer to its individual entries as aij, where aij is the number in the ith

row and the jth column of A. What are the mathematical operations
we can perform on this matrix?

Addition and subtraction

The matrix addition and subtraction operations take pairs of matri-
ces as inputs and produce matrices as outputs:

` : Rmˆn ˆRmˆn Ñ Rmˆn and ´ : Rmˆn ˆRmˆn Ñ Rmˆn.

Addition and subtraction are performed as follows:

C “ A˘ B ô cij “ aij ˘ bij, @i P r1, . . . , ms, j P r1, . . . , ns.
For example, addition for two 3ˆ 2 matrices is expressed as

»
–

a11 a12
a21 a22
a31 a32

fi
fl`

»
–

b11 b12
b21 b22
b31 b32

fi
fl “

»
–

a11 ` b11 a12 ` b12
a21 ` b21 a22 ` b22
a31 ` b31 a32 ` b32

fi
fl.

Matrices must have the same dimensions to be added or subtracted.
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Exercises

E2.7 Given the matrices A “ “
3 4
2 1

‰
, B “ “´1 0 1 2

4 3 2 1

‰
, and C “”´2 3 0

2 ´2 1

ı
, compute the expressions.

a) AT b)CT c) A2 d) AB e) AC f) BA g)CTA
h)detpAq i)detpBq j)detpCq k)detpATq l)detpAA´1q
m)TrpAq n)TrpATq

Hint: Some of these expressions may not exist.

E2.8 Given the 1 ˆ 3 matrices (row vectors) ~u “ p1, 2, 3q and ~v “
p2,´1, 0q, compute the following products:

a)~u~uT b)~v~vT c)~u~vT d)~uT~u e)~vT~v f)~uT~v

Hint: The transpose of a 1ˆ 3 row vector is a 3ˆ 1 column vector.

E2.9 Find the unknowns α and β in the equation
”

2 α
β ´3

ı”
1
4

ı
“
”

0
0

ı
.

2.4 Linearity

What is linearity and why is this entire book dedicated to learning
about it? Consider an arbitrary function that contains terms with
different powers of the input variable x:

f pxq “ a{xloomoon
one-over-x

` bloomoon
constant

` mxloomoon
linear term

` qx2
loomoon

quadratic

` cx3loomoon
cubic

.

The term mx is the linear term in this expression—it contains x raised
to the first power. All the other terms are nonlinear. The linear term
is special because changes in the value of the input x lead to propor-
tional changes in the value of mx. If the input is 2x, the linear term
will have value 2mx. If the input is 100x, the linear term will have
value 100mx. This input-output proportionality does not hold for
nonlinear terms.

In this section we’ll discuss the special properties of expressions
and equations containing only linear terms.

Introduction

A single-variable function takes as its input a real number x and out-
puts a real number f pxq. The type signature of this function is

f : R Ñ R.
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2.5 Overview of linear algebra

In linear algebra, you’ll learn new computational techniques and de-
velop new ways of thinking about math. With these new tools, you’ll
be able to use linear algebra techniques for many applications. Let’s
look at what lies ahead in this book.

Computational linear algebra
The first steps toward understanding linear algebra will seem a lit-
tle tedious. In Chapter 3 you’ll develop basic skills for manipulat-
ing vectors and matrices. Matrices and vectors have many compo-
nents and performing operations on them involves many arithmetic
steps—there is no way to circumvent this complexity. Make sure
you understand the basic algebra rules (how to add, subtract, and
multiply vectors and matrices) because they are a prerequisite for
learning more advanced material. You should be able to perform
all the matrix algebra operations with pen and paper for small and
medium-sized matrices.

The good news is, with the exception of your homework assign-
ments and final exam, you won’t have to carry out matrix algebra by
hand. It is much more convenient to use a computer for large matrix
calculations. The more you develop your matrix algebra skills, the
deeper you’ll be able to delve into the advanced topics.

Geometric linear algebra
So far, we’ve described vectors and matrices as arrays of numbers.
This is fine for the purpose of doing algebra on vectors and matrices,
but this description is not sufficient for understanding their geomet-
ric properties. The components of a vector ~v P Rn can be thought
of as distances measured along a coordinate system with n axes. The
vector~v can therefore be said to “point” in a particular direction with
respect to the coordinate system. The fun part of linear algebra starts
when you learn about the geometric interpretation of the algebraic
operations on vectors and matrices.

Consider some unit vector that specifies a direction of interest r̂.
Suppose we’re given some other vector ~v, and we’re asked to find
how much of ~v is in the r̂ direction. The answer is computed using the
dot product: vr “ ~v ¨ r̂ “ }~v} cos θ, where θ is the angle between ~v
and r̂. The technical term for the quantity vr is “the length of the
projection of ~v in the r̂ direction.” By “projection,” I mean we ignore
all parts of ~v that are not in the r̂ direction. Projections are used in
mechanics to calculate the x- and y-components of forces in force
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diagrams. In Section 4.2 we’ll learn how to calculate all kinds of
projections using the dot product.

To further consider the geometric aspects of vector operations,
imagine the following situation. Suppose I gave you two vectors ~u
and ~v, and asked you to find a third vector ~w that is perpendicular
to both ~u and ~v. A priori this sounds like a complicated question to
answer, but in fact the required vector ~w can easily be obtained by
computing the cross product ~w “ ~uˆ~v.

In Section 4.1 we’ll learn how to describe lines and planes in
terms of points, direction vectors, and normal vectors. Consider
the following geometric problem: given the equations of two planes
in R3, find the equation of the line where the two planes intersect.
There is an algebraic procedure called Gauss–Jordan elimination we
can use to find the solution.

The determinant of a matrix has a geometric interpretation (Sec-
tion 3.4). The determinant tells us something about the relative ori-
entation of the vectors that make up the rows of the matrix. If the
determinant of a matrix is zero, it means the rows are not linearly in-
dependent, in other words, at least one of the rows can be written in
terms of the other rows. Linear independence, as we’ll see shortly,
is an important property for vectors to have. The determinant is a
convenient way to test whether vectors are linearly independent.

As you learn about geometric linear algebra, practice visualiz-
ing each new concept you learn about. Always keep a picture in
your head of what is going on. The relationships between two-
dimensional vectors can be represented in vector diagrams. Three-
dimensional vectors can be visualized by pointing pens and pencils
in different directions. Most of the intuition you build about vectors
in two and three dimensions are applicable to vectors with more
dimensions.

Theoretical linear algebra
Linear algebra will teach you how to reason about vectors and ma-
trices in an abstract way. By thinking abstractly, you’ll be able to
extend your geometric intuition of two and three-dimensional prob-
lems to problems in higher dimensions. Much knowledge buzz awaits
as you learn about new mathematical ideas and develop new ways
of thinking.

You’re no doubt familiar with the normal coordinate system
made of two orthogonal axes: the x-axis and the y-axis. A vector
~v P R2 is specified in terms of its coordinates pvx, vyq with respect
to these axes. When we say ~v “ pvx, vyq, what we really mean is
~v “ vx ı̂` vy ̂, where ı̂ and ̂ are unit vectors that point along the x-
and y-axes. As it turns out, we can use many other kinds of coor-
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dinate systems to represent vectors. A basis for R2 is any set of two
vectors tê1, ê2u that allows us to express all vectors ~v P R2 as linear
combinations of the basis vectors: ~v “ v1 ê1` v2 ê2. The same vector~v
corresponds to two different coordinate pairs, depending on which
basis is used for the description: ~v “ pvx, vyq in the basis tı̂, ̂u and
~v “ pv1, v2q in the basis tê1, ê2u. We’ll learn about the properties
of bases in great detail in the coming chapters. The choice of basis
plays a fundamental role in all aspects of linear algebra.

In the text above, I explained that computing the product be-
tween a matrix and a vector A~x “ ~y can be thought of as a linear
transformation, with input ~x and output ~y. Any linear transforma-
tion (Section 5.1) can be represented (Section 5.2) as a multiplication
by a matrix A. Conversely, every m ˆ n matrix A P Rmˆn can be
thought of as performing a linear transformation TA : Rn Ñ Rm. The
equivalence between matrices and linear transformations allows us
to identify certain matrix properties with properties of linear trans-
formations. For example, the column space CpAq of the matrix A (the
set of vectors that can be written as a combination of the columns of
A) corresponds to the image space of the linear transformation TA
(the set of possible outputs of TA).

The eigenvalues and eigenvectors of matrices (Section 6.1) allow
us to describe the actions of matrices in a natural way. The set of
eigenvectors of a matrix are special input vectors for which the ac-
tion of the matrix is described as a scaling. When a matrix acts on
one of its eigenvectors, the output is a vector in the same direction
as the input vector scaled by a constant. The scaling constant is the
eigenvalue (own value) associated with this eigenvector. By specify-
ing all the eigenvectors and eigenvalues of a matrix, it is possible to
obtain a complete description of what the matrix does. Thinking of
matrices in terms of their eigenvalues and eigenvectors is a powerful
technique for describing their properties and has many applications.

Linear algebra is useful because linear algebra techniques can be
applied to all kinds of “vector-like” objects. The abstract concept of a
vector space (Section 6.3) captures precisely what it means for some
class of mathematical objects to be “vector-like.” For example, the
set of polynomials of degree at most two, denoted P2pxq, consists
of all functions of the form f pxq “ a0 ` a1x` a2x2. Polynomials are
vector-like because it’s possible to describe each polynomial in terms
of its coefficients pa0, a1, a2q. Furthermore, the sum of two polynomi-
als and the multiplication of a polynomial by a constant both cor-
respond to vector-like calculations of coefficients. Once you realize
polynomials are vector-like, you’ll be able to use notions like linear
independence, dimension, and basis when working with polynomials.
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Useful linear algebra

One of the most useful skills you’ll learn in linear algebra is the abil-
ity to solve systems of linear equations. Many real-world problems
are expressed as linear equations in multiple unknown quantities.
You can solve for n unknowns simultaneously if you have a set of
n linear equations that relate the unknowns. To solve this system
of equations, eliminate the variables one by one using basic tech-
niques such as substitution and subtraction (see Section 1.15); how-
ever, the procedure will be slow and tedious for many unknowns. If
the system of equations is linear, it can be expressed as an augmented
matrix built from the coefficients in the equations. You can then use
the Gauss–Jordan elimination algorithm to solve for the n unknowns
(Section 3.1). The key benefit of the augmented matrix approach is
that it allows you to focus on the coefficients without worrying about
the variable names. This saves time when you must solve for many
unknowns. Another approach for solving n linear equations in n un-
knowns is to express the system of equations as a matrix equation
(Section 3.2) and then solve the matrix equation by computing the
matrix inverse (Section 3.5).

In Section 6.6 you’ll learn how to decompose a matrix into a prod-
uct of simpler matrices. Matrix decompositions are often performed
for computational reasons: certain problems are easier to solve on a
computer when the matrix is expressed in terms of its simpler con-
stituents. Other decompositions, like the decomposition of a matrix
into its eigenvalues and eigenvectors, give you valuable information
about the properties of the matrix. Google’s original PageRank al-
gorithm for ranking webpages by “importance” can be explained as
the search for an eigenvector of a matrix. The matrix in question
contains information about all hyperlinks that exist between web-
pages. The eigenvector we’re looking for corresponds to a vector
that describes the relative importance of each page. So when I tell
you eigenvectors are valuable information, I’m not kidding: a little
350-billion-dollar company called Google started as an eigenvector
idea.

The techniques of linear algebra find applications in many areas
of science and technology. We’ll discuss applications such as mod-
elling multidimensional real-world problems, finding approximate so-
lutions to equations (curve fitting), solving constrained optimization
problems using linear programming, and many other in Chapter 7. As
a special bonus for readers interested in physics, a short introduc-
tion to quantum mechanics can be found in Chapter 9; if you have
a good grasp of linear algebra, you can understand matrix quantum
mechanics at no additional mental cost.
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Our journey into the land of linear algebra will continue in the next
chapter with the study of computational aspects of linear algebra.
We’ll learn how to solve large systems of linear equations, practice
computing matrix products, discuss matrix determinants, and com-
pute matrix inverses.

2.6 Introductory problems
We’ve been having fun learning about vector and matrix operations,
and we’ve also touched upon linear transformations. I’ve summa-
rized what linear algebra is about; now it’s time for you to put in
the effort and check whether you understand the definitions of the
operations.

Don’t cheat yourself by thinking my summaries are enough; you
can’t magically understand everything about linear algebra merely
by reading about it. Learning doesn’t work that way! The only way
to truly “get” math—especially advanced math—is to solve prob-
lems using the new concepts you’ve learned. Indeed, the only math
I remember from my university days is math that I practiced by solv-
ing lots of problems. There’s no better way to test whether you un-
derstand than testing yourself. Of course, it’s your choice whether
you’ll dedicate the next hour of your life to working through the
problems in this section. All I’ll say is that you’ll have something to
show for your efforts; and it’s totally worth it.

P2.1 Which of the following functions are linear?

a)qpxq “ x2 b) f pxq “ gphpxqq,where gpxq “?3x and hpxq “´4x
c) ipxq “ 1

mx d) jpxq “ x´a
x´b

P2.2 Find the sum of the vector p1, 0, 1q and the vector p0, 2, 2q.
P2.3 Your friend is taking a quantum physics class and needs your help
answering the following vectors question. “Let |ay “ 1|0y ` 3|1y and |by “
4|0y ´ 1|1y. Find |ay ` |by.”
Hint: The angle-bracket notation describes vectors: |0y “ ı̂ and |1y “ ̂.

P2.4 Given unit vectors ı̂ “ p1, 0, 0q, ̂ “ p0, 1, 0q, and k̂ “ p0, 0, 1q, find the
following cross products: a) ı̂ˆ ı̂, b) ı̂ˆ ̂, c) p´ı̂q ˆ k̂` ̂ˆ ı̂, d) k̂ˆ ̂` ı̂ˆ ı̂`
̂ˆ k̂` ̂ˆ ı̂.

P2.5 Given ~v “ p2,´1, 3q and ~w “ p1, 0, 1q, compute the following vector
products: a) ~v ¨ ~w, b) ~vˆ ~w, c) ~vˆ~v, and d) ~wˆ ~w.

P2.6 Given the vectors ~u “ p1, 1, 1q, ~v “ p2, 3, 1q, and ~w “ p´1,´1, 2q,
compute the following products:

a) ~u ¨~v b) ~u ¨ ~w c) ~v ¨ ~w
d) ~uˆ~v e) ~uˆ ~w f) ~vˆ ~w



Chapter 3

Computational linear
algebra

This chapter covers the computational aspects of performing matrix
calculations. Understanding matrix computations is important be-
cause the rest of the chapters in this book depend on them. Suppose
we’re given a huge matrix A P Rnˆn with n “ 1000. Behind the
innocent-looking mathematical notation of the matrix inverse A´1,
the matrix product AA, and the matrix determinant detpAq, are hid-
den monster computations involving all the 1000ˆ 1000 “ 1 million
entries of the matrix A. Millions of arithmetic operations must be
performed. . . so I hope you have at least a thousand pencils ready!

Okay, calm down. I won’t actually make you calculate millions of
arithmetic operations. In fact, to learn linear algebra, it is sufficient
to know how to carry out calculations with 3ˆ 3 and 4ˆ 4 matrices.
Yet, even for such moderately sized matrices, computing products,
inverses, and determinants by hand are serious computational tasks.
If you’re ever required to take a linear algebra final exam, you’ll need
to make sure you can do these calculations quickly. And even if no
exam looms in your imminent future, it’s still important you practice
matrix operations by hand to get a feel for them.

This chapter will introduce you to four important computational
tasks involving matrices.

Gauss–Jordan elimination Suppose we’re trying to solve two
equations in two unknowns x and y:

ax` by “ c,
dx` ey “ f .

163
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If we add α-times the first equation to the second equation, we obtain
an equivalent system of equations:

ax ` by “ c
pd` αaqx` pe` αbqy “ f ` αc.

This is called a row operation: we added α-times the first row to the
second row. Row operations change the coefficients of the system of
equations, but leave the solution unchanged. Gauss–Jordan elimina-
tion is a systematic procedure for solving systems of linear equations
using row operations.

Matrix multiplication The product AB between matrices A P
Rmˆ` and B P R`ˆn is the matrix C P Rmˆn whose entries cij are
defined by the formula cij “

ř`
k“1 aikbkj for all i P r1, . . . , ms and

j P r1, . . . , ns. In Section 3.3, we’ll unpack this formula and learn its
intuitive interpretation: that computing C “ AB is computing all the
dot products between the rows of A and the columns of B.

Determinant The determinant of a matrix A, denoted detpAq, is an
operation that gives us useful information about the linear indepen-
dence of the rows of the matrix. The determinant is connected to
many notions of linear algebra: linear independence, geometry of
vectors, solving systems of equations, and matrix invertibility. We’ll
discuss these aspects of determinants in Section 3.4.

Matrix inverse In Section 3.5, we’ll build upon our knowledge of
Gauss–Jordan elimination, matrix products, and determinants to de-
rive three different procedures for finding the matrix inverse A´1.

3.1 Reduced row echelon form
In this section we’ll learn to solve systems of linear equations using
the Gauss–Jordan elimination procedure. A system of equations can
be represented as a matrix of coefficients. The Gauss–Jordan elimi-
nation procedure converts any matrix into its reduced row echelon form
(RREF). We can use the RREF to easily find the solution (or solutions)
of the system of equations.

Heads up: the material covered in this section requires your full-
on, caffeinated attention, as the procedures you’ll learn are some-
what tedious. Gauss–Jordan elimination involves many repetitive
manipulations of arrays of numbers. It’s important you follow the
step-by-step manipulations, as well as verify each step I present on
your own with pen and paper. Don’t just take my word for it—always
verify the steps!
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Solving equations

Suppose you’re asked to solve the following system of equations:

1x1 ` 2x2 “ 5
3x1 ` 9x2 “ 21.

The standard approach is to use one of the equation-solving tricks we
learned in Section 1.15 to combine the equations and find the values
of the two unknowns x1 and x2.

Observe that the names of the two unknowns are irrelevant to the
solution of the system of equations. Indeed, the solution px1, x2q to
the above system of equations is the same as the solution ps, tq to the
system of equations

1s` 2t “ 5
3s` 9t “ 21.

The important parts of a system of linear equations are the coefficients
in front of the variables, and the constants on the right side of each
equation.

Augmented matrix

The system of linear equations can be written as an augmented matrix:
„

1 2 5
3 9 21


.

The first column corresponds to the coefficients of the first variable;
the second column is for the second variable; and the last column
corresponds to the constants on the right side. It is customary to
draw a vertical line where the equal signs in the equations would
normally appear. This line helps distinguish the coefficients of the
equations from the column of constants on the right side.

Once we have the augmented matrix, we can simplify it by using
row operations (which we’ll discuss shortly) on its entries. After sim-
plification by row operations, the augmented matrix will be trans-
formed to „

1 0 1
0 1 2


,

which corresponds to the system of equations

x1 “ 1
x2 “ 2.
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we want to find the points px, y, zq that satisfy all three equations
simultaneously. There are four possibilities for the solution set:

• One solution. Three non-parallel planes intersect at a point.
• Infinitely many solutions. If one of the plane equations is re-

dundant, the solution corresponds to the intersection of two
planes. Two non-parallel planes intersect on a line.

• Infinitely many solutions in two dimensions. If two of
the equations are redundant, the solution space is a two-
dimensional plane.

• No solution. If no common points exist at the intersection of
all three planes, then the system of equations has no solution.

(a) One solution (b) Infinite solutions

Figure 3.1: Three planes can intersect at a unique point, as in figure (a);
or along a line, as in figure (b). In the first case, there is a unique point
pxo, yo, zoq common to all three planes. In the second case, all points on the
line tpo ` t~v, @t P Ru are shared by the planes.

(a) No solution (b) No solution

Figure 3.2: These illustrations depict systems of three equations in three un-
knowns that have no solution. No common points of intersection exist.



174 COMPUTATIONAL LINEAR ALGEBRA

Computer power

The computer algebra system at http://live.sympy.org can be
used to compute the reduced row echelon form of any matrix.

Here is an example of how to create a sympy Matrix object:

>>> from sympy.matrices import Matrix
>>> A = Matrix([[1, 2, 5], # use SHIFT+ENTER for newline

[3, 9, 21]])

In Python, we define lists using the square brackets [ and ]. A matrix
is defined as a list of lists.

To compute the reduced row echelon form of A, call its rref()
method:

>>> A.rref()
( [1, 0, 1] # RREF of A # locations of pivots

[0, 1, 2], [0, 1] )

The rref() method returns a tuple containing the RREF of A and
an array that tells us the 0-based indices of the columns that contain
leading ones. Usually, we’ll want to find the RREF of A and ignore the
pivots; to obtain the RREF without the pivots, select the first (index
zero) element in the result of A.rref():

>>> Arref = A.rref()[0]
>>> Arref
[1, 0, 1]
[0, 1, 2]

The rref() method is the fastest way to obtain the reduced row ech-
elon form of a SymPy matrix. The computer will apply the Gauss–
Jordan elimination procedure and show you the answer. If you want
to see the intermediary steps of the elimination procedure, you can
also manually apply row operations to the matrix.

Example Let’s compute the reduced row echelon form of the same
augmented matrix by using row operations in SymPy:

>>> A = Matrix([[1, 2, 5],
[3, 9, 21]])

>>> A[1,:] = A[1,:] - 3*A[0,:]
>>> A
[1, 2, 5]
[0, 3, 6]
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We use the notation A[i,:] to refer to entire rows of the matrix. The
number i specifies the 0-based row index: the first row of A is A[0,:]
and the second row is A[1,:]. The code example above implements
the row operation R2 Ð R2 ´ 3R1.

To obtain the reduced row echelon form of the matrix A, we carry
out two more row operations, R2 Ð 1

3 R2 and R1 Ð R1 ´ 2R2, using
the following commands:

>>> A[1,:] = S(1)/3*A[1,:]
>>> A[0,:] = A[0,:] - 2*A[1,:]
>>> A
[1, 0, 1] # the same result as A.rref()[0]
[0, 1, 2]

Note we represent the fraction 1
3 as S(1)/3 in order to obtain the ex-

act rational expression Rational(1,3). If we were to input 1
3 as 1/3,

SymPy would interpret this either as integer or floating point divi-
sion, which is not what we want. The single-letter helper function S
is an alias for the function sympify, which ensures a SymPy object is
produced. Another way to input the exact fraction 1

3 is S(’1/3’).
If you need to swap two rows of a matrix, you can use the stan-

dard Python tuple assignment syntax. To swap the position of the
first and second rows, use

>>> A[0,:], A[1,:] = A[1,:], A[0,:]
>>> A
[0, 1, 2]
[1, 0, 1]

Using row operations to compute the reduced row echelon form of
a matrix allows you to see the intermediary steps of a calculation;
which is useful, for instance, when checking the correctness of your
homework problems.

There are other applications of matrix methods that use row op-
erations (see Section 7.6), so it’s good idea to know how to use SymPy
for this purpose.

Discussion

In this section, we learned the Gauss–Jordan elimination procedure
for simplifying matrices, which just so happens to be one of the most
important computational tools of linear algebra. Beyond being a
procedure for finding solutions to systems of linear equations, the
Gauss–Jordan elimination algorithms can be used to solve a broad
range of other linear algebra problems. Later in the book, we’ll use
the Gauss–Jordan elimination algorithm to compute inverse matrices
(Section 3.5) and to “distill” bases for vector spaces (Section 4.5).
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3.3 Matrix multiplication

Suppose we’re given the matrices

A “
„

a b
c d


and B “

„
e f
g h


,

and we want to compute the matrix product AB.
Unlike matrix addition and subtraction, matrix multiplication is

not performed entry-wise:
„

a b
c d

„
e f
g h


‰

„
ae b f
cg dh


.

Instead, the matrix product is computed by taking the dot product
between each row of the matrix A and each column of the matrix B:

~r1 Ñ
~r2 Ñ

„
a b
c d

„
e f
g h



Ò Ò
~c1 ~c2

“
„
~r1 ¨~c1 ~r1 ¨~c2
~r2 ¨~c1 ~r2 ¨~c2



“
„

ae` bg a f ` bh
ce` dg c f ` dh


.

Recall the dot product between two vectors ~v and ~w is computed
using the formula ~v ¨ ~w “ ř

i viwi.
Now, let’s look at a picture that shows how to compute the prod-

uct of a matrix with four rows and another matrix with five columns.
To compute the top left entry of the result, take the dot product of the
first row of the first matrix and the first column of the second matrix.

Figure 3.3: Matrix multiplication is performed rows-times-columns. The
first-row, first-column entry of the product is the dot product of r1 and c1.

Similarly, the entry on the third row and fourth column of the prod-
uct is computed by taking the dot product of the third row of the first
matrix and the fourth column of the second matrix. See Figure 3.4.

For the matrix product to work, the rows of the first matrix must
have the same length as the columns of the second matrix.

Matrix multiplication rules

• Matrix multiplication is associative:

pABqC “ ApBCq “ ABC.
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Figure 3.4: The third-row, fourth-column entry of the product is computed
by taking the dot product of r3 and c4.

• The touching dimensions of the matrices must be the same. For
the triple product ABC to exist, the rows of A must have the
same dimension as the columns of B, and the rows of B must
have the same dimension as the columns of C.

• Given two matrices A P Rmˆn and B P Rnˆk, the product AB
is an mˆ k matrix.

• Matrix multiplication is not a commutative operation.

Figure 3.5: The order of multiplication matters for matrices: the product AB
does not equal the product BA.

Example Consider the matrices A P R2ˆ3 and B P R3ˆ2. The prod-
uct AB “ C P R2ˆ2 is computed as

„
1 2 3
4 5 6



loooomoooon
A

»
–

1 2
3 4
5 6

fi
fl

loomoon
B

“
„

1` 6` 15 2` 8` 18
4` 15` 30 8` 20` 36


“
„

22 28
49 64



looomooon
C

.

We can also compute the product BA “ D P R3ˆ3:
»
–

1 2
3 4
5 6

fi
fl

loomoon
B

„
1 2 3
4 5 6



loooomoooon
A

“
»
–

1` 8 2` 10 3` 12
3` 16 6` 20 9` 24
5` 24 10` 30 15` 36

fi
fl “

»
–

9 12 15
19 26 33
29 40 51

fi
fl

looooooomooooooon
D

.

In each case, the touching dimensions of the two matrices in the
product are the same. Note that C “ AB ‰ BA “ D, and in fact,
the products AB and BA are matrices with different dimensions.
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3.5 Matrix inverse

In this section, we’ll learn four different approaches for computing
the inverse of a matrix. Since knowing how to compute matrix in-
verses is a pretty useful skill, learning several approaches is hardly
overkill. Note that the matrix inverse is unique, so no matter which
method you use to find the inverse, you’ll always obtain the same
answer. You can verify your calculations by computing the inverse
in different ways and checking that the answers agree.

Existence of an inverse

Not all matrices are invertible. Given a matrix A P Rnˆn, we can
check whether it is invertible by computing its determinant:

A´1 exists if and only if detpAq ‰ 0.

Calculating the determinant of a matrix serves as an invertibility test.
The exact value of the determinant is not important; it could be big
or small, positive or negative; as long as the determinant is nonzero,
the matrix passes the invertibility test.

Adjugate matrix approach

The inverse of a 2ˆ 2 matrix can be computed as follows:

„
a b
c d

´1
“ 1

ad´ bc

„
d ´b
´c a


.

The above formula is the 2ˆ 2 version of a general formula for ob-
taining the inverse based on the adjugate matrix:

A´1 “ 1
detpAqadjpAq.

What is the adjugate matrix, you ask? The adjugate matrix is kind
of complicated, so let’s proceed step by step. We’ll first define a few
prerequisite concepts.

In this section, we’ll work on a matrix A P R3ˆ3 and refer to its
entries as aij, where i is the row index and j is the column index:

A “
»
–

a11 a12 a13
a21 a22 a23
a31 a32 a33

fi
fl.

First we’ll define three concepts associated with determinants:
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3.6 Computational problems

We’ve reached the problem section where you’re supposed to prac-
tice all the computational techniques of linear algebra. This is not
going to be the most exciting three hours of your life, but you’ll get
through it. You need to know how to solve computational problems
by hand and apply the Gauss–Jordan elimination procedure; and
you need to know how to multiply matrices, calculate determinants,
and find matrix inverses. These computational techniques enable all
the advanced procedures we’ll develop later in the book. If you skip
these practice problems, you’ll have trouble later when it comes to
mastering more advanced topics that rely on these basic matrix op-
erations as building blocks. Do this important work now, and you’ll
be on your way to becoming fluent in linear algebra computations...
plus, the rest of the book will be much more pleasant.

P3.1 Mitchell is on a new diet. His target is to eat exactly 25 grams of fat
and 32 grams of protein for lunch today. There are two types of food in the
fridge, x and y. One serving of food x contains one gram of fat and two
grams of protein, while a serving of food y contains five grams of fat and
one gram of protein. To figure out how many servings of each type of food
he should eat, Mitchell writes the following system of equations:

x ` 5y “ 25
2x ` y “ 32 ñ

„
1 5 25
2 1 32


.

Help Mitchell find how many servings of x and y he should eat.

Hint: Find the reduced row echelon form of the augmented matrix.

P3.2 Alice, Bob, and Charlotte are solving this system of equations:

3x `3y “ 6
2x ` 3

2 y “ 5
ñ

„
3 3 6
2 3

2 5


.

Alice follows the standard procedure to obtain a leading one by performing
the row operation R1 Ð 1

3 R1. Bob starts with a different row operation,
applying R1 Ð R1 ´ R2 to obtain a leading one. Charlotte takes a third
approach by swapping the first and second rows: R1 Ø R2. Their respective
versions of the augmented matrix are shown below.

a)

«
1 1 2
2 3

2 5

ff
b)

«
1 3

2 1
2 3

2 5

ff
c)

«
2 3

2 5
3 3 6

ff

Help Alice, Bob, and Charlotte finish solving the system of equations by
writing the remaining row operations each of them must perform to bring
their version of the augmented matrix into reduced row echelon form.



Chapter 4

Geometric aspects of
linear algebra

In this section, we’ll study geometric objects like lines, planes, and
vector spaces. We’ll use what we learned about vectors and matrices
in the previous chapters to perform geometric calculations such as
projections and distance measurements.

Developing your intuition about the geometric problems of linear
algebra is very important: of all the things you learn in this course,
your geometric intuition will stay with you the longest. Years from
now, you may not recall the details of the Gauss–Jordan elimination
procedure, but you’ll still remember that the solution to three linear
equations in three variables corresponds to the intersection of three
planes in R3.

4.1 Lines and planes
Points, lines, and planes are the basic building blocks of geometry. In
this section, we’ll explore these geometric objects, the equations that
describe them, and their visual representations.

Concepts
• p “ ppx, py, pzq: a point in R3

• ~v “ pvx, vy, vzq: a vector in R3

• v̂ “ ~v
}~v} : the unit vector in the same direction as the vector ~v

• An infinite line ` is a one-dimensional space defined in one of
several possible ways:

Ź ` : tpo ` t ~v, t P Ru: a parametric equation of a line with
direction vector ~v passing through the point po

209
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Ź ` :
!

x´pox
vx

“ y´poy
vy

“ z´poz
vz

)
: a symmetric equation

• An infinite plane P is a two-dimensional space defined in one
of several possible ways:

Ź P : tAx` By` Cz “ D u: a general equation
Ź P : tpo ` s~v` t ~w, s, t P Ru: a parametric equation
Ź P : t~n ¨ rpx, y, zq ´ pos “ 0 u: a geometric equation of the

plane that contains point po and has normal vector n̂
• dpa, bq: the shortest distance between geometric objects a and b

Points
We can specify a point in R3 by its coordinates p “ ppx, py, pzq, which
is similar to how we specify vectors. In fact, the two notions are
equivalent: we can either talk about the destination point p or the
vector ~p that takes us from the origin to the point p. This equivalence
lets us add and subtract vectors and points. For example, ~d “ q´ p
denotes the displacement vector that takes the point p to the point q.

We can also specify a point as the intersection of two lines. As an
example in R2, let’s define p “ ppx, pyq to be the intersection of the
lines x ´ y “ ´1 and 3x ` y “ 9. We must solve the two equations
simultaneously to find the coordinates of the point p. We can use the
standard techniques for solving equations to find the answer. The
intersection point is p “ p2, 3q. Note that for two lines to intersect at
a point, the lines must not be parallel.

x

y

p2, 3q

3x ` y “ 9

x ´ y “ ´1

Figure 4.1: Two non-parallel lines in R2 intersect at a point.

Example 1 Find where the lines x ` 2y “ 5 and 3x ` 9y “ 21 in-
tersect. To find the point of intersection, we solve these equations
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Distance between a line and the origin

The closest distance between the line with equation ` : tpo ` t~v, t P
Ru and the origin O “ p0, 0, 0q is given by the formula

dp`, Oq “
››››po ´ po ¨~v

}~v}2 ~v
›››› .

x
y

z
`

dp`, Oq

O

Figure 4.8: The closest distance between the line ` and the origin.

Example 5 The closest distance between the line ` : tp4, 5, 6q `
tp1, 0, 1q, t P Ru and the origin O “ p0, 0, 0q is calculated as follows:

dp`, Oq “
››››p4, 5, 6q ´ p4, 5, 6q ¨ p1, 0, 1q

12 ` 02 ` 12 p1, 0, 1q
››››

“
››››p4, 5, 6q ´ 4` 0` 6

2
p1, 0, 1q

››››

“ }p´1, 5, 1q} “ 3
?

3.

Distance between a plane and the origin

The closest distance between the plane with geometric equation P :
~n ¨ rpx, y, zq ´ pos “ 0 and the origin O is given by

dpP, Oq “ |~n ¨ po|
}~n} .

For example, the distance between the plane P : p´3, 0,´4q ¨
rpx, y, zq ´ p1, 2, 3qs “ 0 and the origin is computed as

dpP, Oq “ |p´3, 0,´4q ¨ p1, 2, 3q|
}p´3, 0,´4q} “ | ´ 3´ 12|

5
“ 15

5
“ 3.
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look for a one-size-fits-all formula for the different cases; derive the
appropriate formula for each case starting from the basic projection
operations Π` and ΠP.

4.2 Projections

In this section we’ll learn to compute projections of vectors onto lines
and planes. Given an arbitrary vector, we’ll find how much of this
vector points in a given direction (projection onto a line). We’ll also
find the part of the vector that lies in some plane (projection onto
a plane). The dot product, ~u ¨ ~v “ u1v1 ` u2v2 ` u3v3, will play a
central role in these calculations.

Each projection formula corresponds to a vector diagram. Vec-
tor diagrams, also known as “picture proofs,” are used to describe
the precise sequence of operations for computing a projection. Fo-
cussing on vector diagrams makes it much easier to understand pro-
jection and distance formulas. Indeed, the pictures in this section are
a heck of a lot more important than the formulas. Be sure you un-
derstand each vector diagram, and don’t worry about memorizing
the corresponding formula. You can easily reproduce the formula by
starting from the vector diagram.

Concepts

• S Ď Rn: S is a vector subspace of Rn. In this section, we assume
S Ď R3. The subspaces of R3 are lines ` and planes P that pass
through the origin.

• SK: the orthogonal complement to S, SK def“t~wPRn | ~w ¨S “ 0u.
The symbol K stands for perpendicular to.
• ΠS: the projection onto the subspace S.
• ΠSK : the projection onto the subspace SK.

Definitions

Let S be a vector subspace of Rn, denoted S Ď Rn. In this section,
we’ll focus on the subspaces of the vector space R3 because they are
easy to visualize and understand intuitively. The vector subspaces
of R3 are lines and planes that pass through the origin. We defer the
general discussion of subspaces in n dimensions until Section 4.4.

The projection operation onto the subspace S is a linear transfor-
mation that takes as inputs vectors in R3, and produces outputs in
the subspace S:

ΠS : R3 Ñ S.
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0, which shows the vector Π`Kp~uq is indeed perpendicular to `.
Adding the results of the two projections, we obtain the whole ~u:
p 16

7 , 32
7 , 48

7 q ` p 12
7 , 3

7 , ´6
7 q “ p 28

7 , 35
7 , 42

7 q “ p4, 5, 6q “ ~u.

Projection onto a plane

Now consider the two-dimensional plane P passing through the ori-
gin with normal vector~n:

P : tpx, y, zq P R3 | ~n ¨ px, y, zq “ 0u.
The perpendicular space SK is a line with direction vector~n:

PK : tpx, y, zq P R3 | px, y, zq “~0` t~n, t P Ru.
Again, the vector space R3 decomposes into the direct sum of P and
PK: R3 “ P‘ PK.

We want to find ΠP, but it will actually be easier to find ΠPK first
and then compute ΠPp~uq using ΠPp~uq “ ~v “ ~u ´ ~w, where ~w “
ΠPKp~uq. See Figure 4.11 for an illustration.

P

~n

ΠPKp~uq

ΠPp~uq

~u

Figure 4.11: Any vector ~u can be written as the sum of two projections de-
fined with respect to the plane P. The projection ΠPp~uq is parallel to the
plane P, while the projection ΠPKp~uq is perpendicular to the plane P.

Since PK is a line, we know the formula for projecting onto it is

ΠPKp~uq “
~u ¨~n
}~n}2~n.

We can now obtain the formula for ΠP:

ΠPp~uq “ ~v “ ~u´ ~w “ ~u´ΠPKp~uq “ ~u´
~u ¨~n
}~n}2~n.
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4.3 Coordinate projections

In science, it’s common to express vectors as components: pvx, vy, vzq.
Thinking of vectors as lists of components is fine for computational
purposes, since vector operations require manipulating the compo-
nents of vectors. However, focussing on a vector’s components over-
looks an important concept—the basis with respect to which the vec-
tor’s components are expressed.

It’s not uncommon for students to have misconceptions about lin-
ear algebra due to an incomplete understanding of the fundamental
distinction between vectors and their components. Since I want you
to have a thorough understanding of linear algebra, we’ll review—in
full detail—the notion of a basis and how to compute vector compo-
nents with respect to different bases.

Before we begin, let’s quickly review what we know about vec-
tors and vector components from previous sections of the book.
In Section 1.13, we described vectors in terms of their x- and y-
components. Given a standard xy-coordinate system, we can de-
compose a vector ~F in terms of its components:

Fx “ }~F} cos θ, Fy “ }~F} sin θ,

where θ is the angle the vector ~F makes with the x-axis. We can
express the vector as coordinates with respect to the basis tı̂, ̂u as ~F “
Fx ı̂` Fy ̂ “ pFx, Fyqı̂ ̂. The number Fx corresponds to the length of the
projection of the vector ~F onto the x-axis.

In the last section, we discussed the projection operation and
learned how to compute projections using the dot product or as a
matrix-vector product:

Fx ı̂ “ ~F ¨ ı̂
}ı̂}2 ı̂ “ Πxp~Fq “

„
1 0
0 0



loomoon
MΠx

„
Fx
Fy



loomoon
~F

,

where Πx : R2 Ñ R2 is the projection onto the x-axis (a linear trans-
formation) and MΠx is the matrix representation of Πx with respect
to the basis tı̂, ̂u.

In this section, we’ll extend what we know about basic vectors
coordinates with respect to the basis tı̂, ̂u, and formally define vector
coordinates with respect to any basis.

Concepts

We can define three different types of bases for an n-dimensional
vector space V:
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E4.17 Consider the matrix

A “
»
–

1 3 3 3
2 6 7 6
3 9 9 10

fi
fl.

Find the RREF of A, and bases forRpAq, CpAq, and N pAq.

4.6 Geometric problems

So far, we’ve defined all the important linear algebra concepts like
vectors and matrices, and we’ve learned some useful computational
techniques like the Gauss–Jordan elimination procedure. It’s now
time to apply what you’ve learned to solve geometric problems.

Points, lines, and planes can be difficult to understand and con-
ceptualize. But now that you’re armed with the tools of vectors, pro-
jections, and geometric intuition, you can solve all kinds of compli-
cated geometric analysis problems—such as those waiting for you at
the end of this paragraph. Remember to always sketch a diagram be-
fore you begin to write equations. Diagrams are great for visualizing
and determining the steps you’ll need to solve each problem.

P4.1 Find the intersections of the these pairs of lines: a) `1: 2x` y “ 4 and
`2: 3x´ 2y “ ´1, b) `1: y` x “ 2 and `2: 2x` 2y “ 4, c) `1: y` x “ 2 and
`2: y´ x “ 0.

P4.2 Find the lines of intersection between these pairs of planes: a) P1:
3x ´ 2y ´ z “ 2 and P2: x ` 2y ` z “ 0, b) P3: 2x ` y ´ z “ 0 and P4:
x` 2y` z “ 3.

P4.3 Find whether the planes are parallel, perpendicular, or neither: a) P1:
x´ y´ z “ 0 and P2: 2x´ 2y´ 2z “ 4, b) P3: 3x` 2y “ 1 and P4: y´ z “ 0,
c) P5: x´ 2y` z “ 5 and P6: x` y` z “ 3.

P4.4 Find the distance from the point r “ p2, 3, 5q to the plane P defined by
the equation 2x` y´ 2z “ 0.

P4.5 Find the closest distance between p “ p5, 3, 5q and Q : 2x` y´ 2z “ 1.

Hint: Consider an arbitrary point in the plane Q, such as q “ p0, 1, 0q.
P4.6 Find the distance between the points a) p “ p4, 7, 3q and q “ p1, 1, 1q,
b) m “ p4,´2, 0q and n “ p0, 1, 0q, c) r “ p1, 0, 1q and s “ p´1, 1,´1q, d) i “
p2, 1, 2q and j “ p1,´2,´1q.
P4.7 Find the general equation of the plane that passes through the points
q “ p1, 3, 0q, r “ p0, 2, 1q, and s “ p1, 1, 1q.
P4.8 Find the symmetric equation of the line ` described by the equations

x “ 2t´ 3, y “ ´4t` 1, z “ ´t.



Chapter 5

Linear transformations

Linear transformations are a central idea of linear algebra—they
form the cornerstone that connects all the seemingly unrelated
concepts we’ve studied so far. We previously introduced linear
transformations, informally describing them as “vector functions.”
In this chapter, we’ll formally define linear transformations, describe
their properties, and discuss their applications.

In Section 5.2, we’ll learn how matrices can be used to represent
linear transformations. We’ll show the matrix representations of im-
portant types of linear transformations like projections, reflections,
and rotations. Section 5.3 discusses the relation between bases and
matrix representations. We’ll learn how the bases chosen for the in-
put and output spaces determine the entries of matrix representa-
tions. A single linear transformation can correspond to many differ-
ent matrix representations, depending on the choice of bases for the
input and output spaces.

Section 5.4 discusses and characterizes the class of invertible linear
transformations. This section serves to connect several topics we cov-
ered previously: linear transformations, matrix representations, and
the fundamental subspaces of matrices.

5.1 Linear transformations

Linear transformations take vectors as inputs and produce vectors
as outputs. A transformation T that takes n-dimensional vectors as
inputs and produces m-dimensional vectors as outputs is denoted
T : Rn Ñ Rm.

The class of linear transformations includes most of the useful
transformations of analytical geometry: stretchings, projections,
reflections, rotations, and combinations of these. Since linear trans-
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formations describe and model many real-world phenomena in
physics, chemistry, biology, and computer science, learning the
theory behind them is worthwhile.

Concepts

Linear transformations are mappings between vector inputs and vec-
tor outputs. The following concepts describe the input and output
spaces:

• V: the input vector space of T
• W: the output vector space of T
• dimpUq: the dimension of the vector space U
• T : V Ñ W: a linear transformation that takes vectors ~v P V as

inputs and produces vectors ~w P W as outputs. The notation
Tp~vq “ ~w describes T acting on ~v to produce the output ~w.

T

T

~v1 ~w1

~v2 ~w2

V W

Figure 5.1: An illustration of the linear transformation T : V Ñ W.

• ImpTq: the image space of the linear transformation T is the set
of vectors that T can output for some input ~v P V. The mathe-
matical definition of the image space is

ImpTq def“ t~w P W | ~w “ Tp~vq, for some ~v P Vu Ď W.

The image space is the vector equivalent of the image set of a
single-variable function Imp f q def“ ty P R | y “ f pxq, @x P Ru.
• KerpTq: the kernel of the linear transformation T; the set of vec-

tors mapped to the zero vector by T. The mathematical defini-
tion of the kernel is

KerpTq def“ t~v P V | Tp~vq “~0u Ď V.
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The kernel of a linear transformation is the vector equivalent of
the roots of a function: tx P R | f pxq “ 0u.

~v

~w

ImpTq

KerpTq
~0

T

V W

Figure 5.2: Two key properties of a linear transformation T : V Ñ W; its
kernel KerpTq Ď V, and its image space ImpTq Ď W.

Example The linear transformation T : R2 Ñ R3 is defined by the
equation Tpx, yq “ px, y, x` yq. Applying T to the input vector p1, 0q
produces the output vector p1, 0, 1` 0q “ p1, 0, 1q. Applying T to the
input vector p3, 4q produces the output vector p3, 4, 7q.

The kernel of T contains only the zero vector KerpTq “ t~0u. The
image space of T is a two-dimensional subspace of the output space
R3, namely ImpTq “ spanpp1, 0, 1q, p0, 1, 1qq Ď R3.

Matrix representations

Given bases for the input and output spaces of a linear transforma-
tion T, the transformation’s action on vectors can be represented as
a matrix-vector product:

• BV “ t~e1,~e2, . . . ,~enu: a basis for the input vector space V
• BW “ t~b1,~b2, . . . ,~bmu: a basis for the output vector space W
• MT P Rmˆn: a matrix representation of the linear transforma-

tion T:
~w “ Tp~vq ô ~w “ MT~v.

To be precise, we denote the matrix representation as rMTsBW BV
to show it depends on the input and output bases.
• CpMTq: the column space of the matrix MT

• RpMTq: the row space of the matrix MT

• N pMTq: the null space the matrix MT
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Properties of linear transformations

We’ll start with the feature of linear transformations that makes them
suitable for modelling a wide range of phenomena in science, engi-
neering, business, and computing.

Linearity

The fundamental property of linear transformations is—you guessed
it—their linearity. If ~v1 and ~v2 are two input vectors and α and β are
two constants, then

Tpα~v1 ` β~v2q “ αTp~v1q ` βTp~v2q “ α~w1 ` β~w2,

where ~w1 “ Tp~v1q and ~w2 “ Tp~v2q.
T

T

T

~v1 ~w1

1
4~v1 ` 3

4~v2
1
4 ~w1 ` 3

4 ~w2

~v2 ~w2

V W

Figure 5.3: A linear transformation T maps the linear combination of inputs
1
4~v1 ` 3

4~v2 to the linear combination of outputs 1
4 ~w1 ` 3

4 ~w2.

Linear transformations map any linear combination of inputs to
the same linear combination of outputs. If you know the outputs
of T for the inputs ~v1 and ~v2, you can deduce the output T for any
linear combination of the vectors ~v1 and ~v2 by computing the ap-
propriate linear combination of the outputs Tp~v1q and Tp~v2q. This is
perhaps the most important idea in linear algebra: it’s the linear that
we refer to when we talk about linear algebra. Linear algebra is not
about lines, but about mathematical transformations that map linear
combinations of inputs to the same linear combinations of outputs.

In this chapter, we’ll study various aspects and properties of lin-
ear transformations, the abstract objects that map input vectors to
output vectors. The fact that linear transformations map linear com-
binations of inputs to corresponding linear combinations of outputs
will be of central importance in many calculations and proofs. Make
a good note and store a mental image of the example shown in Fig-
ure 5.3.
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5.2 Finding matrix representations

Every linear transformation T : Rn Ñ Rm can be represented as a
matrix MT P Rmˆn. Suppose you’re given the following description
of a linear transformation: “T is the counterclockwise rotation of all
points in the xy-plane by 30˝,” and you want to find the matrix MT
that corresponds to this transformation.

Do you know how to find the matrix representation of T? This
section describes a simple and intuitive probing procedure for find-
ing matrix representations. Don’t worry; no alien technology is in-
volved, and we won’t be probing any humans—only linear transfor-
mations! As you read, try to bridge your understanding between the
abstract, mathematical specification of a transformation Tp~vq and its
concrete implementation as a matrix-vector product MT~v. We’ll use
the probing procedure to study various linear transformations and
derive their matrix representations.

Once we find the matrix representation of a given transforma-
tion, we can efficiently apply that transformation to many vectors.
This is exactly how computers carry out linear transformations.
For example, a black-and-white image file can be represented as
a long list that contains the coordinates of the image’s black pix-
els: t~x1,~x2, . . . ,~x`u. The image is obtained by starting with a white
background and drawing a black pixel in each of the locations ~xi
on the screen.1 To rotate the image, we can process the list of pixels
using the matrix-vector product ~yi “ MT~xi, where MT is the matrix
representation of the desired rotation. The transformed list of pixels
t~y1,~y2, . . . ,~y`u corresponds to a rotated version of the image. This
is essentially the effect of using the “rotate tool” in an image editing
program—the computer multiplies the image by a rotation matrix.

Concepts

The previous section covered linear transformations and their matrix
representations:

• T : Rn Ñ Rm: a linear transformation that takes inputs in Rn

and produces outputs in Rm

• MT P Rmˆn: the matrix representation of T

The action of the linear transformation T is equivalent to multiplica-
tion by the matrix MT :

~w “ Tp~vq ô ~w “ MT~v.
1Location on a computer screen is denoted using pixel coordinates ~xi “ phi , viq.

The number hi describes a horizontal distance measured in pixels from the left edge
of the image, and vi measures the vertical distance from the top of the image.
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Theory

To find the matrix representation of the transformation T : Rn Ñ Rm,
it is sufficient to probe T with the n vectors of the standard basis for
the input space Rn:

ê1 “

»
———–

1
0
...
0

fi
ffiffiffifl, ê2 “

»
———–

0
1
...
0

fi
ffiffiffifl, . . . , ên “

»
———–

0
...
0
1

fi
ffiffiffifl.

The matrix MT that corresponds to the action of T on the standard
basis is

MT “

»
——–

| | |
Tp~e1q Tp~e2q ¨ ¨ ¨ Tp~enq
| | |

fi
ffiffifl.

This is an mˆ n matrix whose columns are the outputs of T for the n
probe inputs.

The remainder of this section illustrates the probing procedure
for finding matrix representations of linear transformations.

Projections

We’ll start with a class of linear transformations you’re already fa-
miliar with: projections. I hope you still remember what you learned
in Section 4.2 (page 219).

X projection

The projection onto the x-axis is denoted Πx. The projection Πx acts
on any vector or point by leaving the x-component unchanged and
setting the y-component to zero. The action of Πx on two sample
points is illustrated in Figure 5.5.

Let’s analyze how the projection Πx transforms the two vectors
of the standard basis:

Πx

ˆ„
1
0

˙
“
„

1
0


, Πx

ˆ„
0
1

˙
“
„

0
0


.

The action of Πx on the basis ı̂ is to leave it unchanged. The action of
Πx on the basis ̂ is to send it to the zero vector.

The matrix representation of Πx is therefore given by:

MΠx “
„

Πx

ˆ„
1
0

˙
Πx

ˆ„
0
1

˙
“

„
1 0
0 0


.
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x

y

θ
A

B

p1, 0q

p0, 1q

pcos θ, sin θq

p´ sin θ, cos θq

θ

θ

x

y

Figure 5.11: The linear transformation Rθ rotates every point in the plane by
the angle θ in the counterclockwise direction. Note the effect of Rθ on the
basis vectors p1, 0q and p0, 1q.

To find the matrix representation of Rθ , probe it with the standard
basis as usual:

MRθ
“
„

Rθ

ˆ„
1
0

˙
Rθ

ˆ„
0
1

˙
.

To compute the values in the first column, observe that Rθ rotates the
vector p1, 0qT “ 1=0 to the vector 1=θ “ pcos θ, sin θqT. The second
input ê2 “ p0, 1qT “ 1= π

2 is rotated to 1=pπ
2 ` θq “ p´ sin θ, cos θqT.

Therefore, the matrix for Rθ is

MRθ
“

»
–
| |

1=θ 1=pπ2 θ̀q
| |

fi
fl “

«
cos θ ´ sin θ

sin θ cos θ

ff
.

Finding the matrix representation of a linear transformation is like a
colouring-book activity for mathematicians. Filling in the columns is
just like colouring inside the lines—nothing too complicated.

Inverses

Can you determine the inverse matrix of MRθ
? You could use the

formula for finding the inverse of a 2ˆ 2 matrix, or you could use
the r A | I s-and-RREF algorithm for finding the inverse; but using
either of these approaches would be waaaaay too much work. Try
to guess the matrix representation of the inverse without doing any
calculations. If Rθ rotates points by `θ, can you tell me what the
inverse operation does? I’ll leave a blank line here to give you some
time to think. . . .
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Change of basis for matrices

Given the matrix representation rMTsBW BV
of the linear transforma-

tion T : V Ñ W, you’re asked to find the matrix representation of T
with respect to different bases B1V and B1W . This is the change-of-basis
task for matrices.

We’ll discuss the important special case where the input space
and the output space of the linear transformation are the same. Let
T : V Ñ V be a linear transformation, and let B “ tê1, ê2, . . . , ênu and
B1 “ tê11, ê12, . . . , ê1nu be two bases for the vector space V.

Recall the change-of-basis matrix r1sB1 B that converts vectors
from B coordinates to B1 coordinates, and its inverse r1sB B1 , which
converts vectors from B1 coordinates to B coordinates:

r~vsB1 “ r1sB1 Br~vsB and r~vsB “ r1sB B1r~vsB1 .

A clarification of notation is in order. The change-of-basis matrix
r1sB1 B is not equal to the identity matrix 1n. However, the change-

of-basis operation is logically equivalent to an identity transforma-
tion: the vector ~v doesn’t change—only its coordinates change. If
you don’t remember the change-of-basis operation for vectors, now’s
the time to flip back to Section 4.3 (page 229) and review before con-
tinuing.

Given the matrix representation rMTsB B of the linear transforma-
tion T with respect to B, we want to find the matrix rMTsB1 B1 , which
is the representation of T with respect to the basis B1. The compu-
tation is straightforward. Perform the change-of-basis operation on
the input and output vectors:

rMTsB1 B1 “ r1sB1 B rMTsB B r1sB B1 .

This group of three matrices is interpreted as follows. Imagine an in-
put vector r~vsB1 multiplying the three matrices r1sB1 B rMTsB B r1sB B1
from the right. In the first step, r1sB B1 converts the vector from the
basis B1 to the basis B so the matrix rMTsB B can be applied. In the
last step, the matrix B1r1sB converts the output of rMTsB B to the basis
B1. The combined effect of multiplying by this specific arrangement
of three matrices is the same as applying T to the input vector ~v:

r1sB1 B rMTsB B r1sB B1r~vsB1 “ rTp~vqsB1 ,

which means

rMTsB1 B1 “ r1sB1 B rMTsB B r1sB B1 .

This formula makes sense intuitively: to obtain a matrix with respect
to a different basis, we must surround it by appropriate change-of-
basis matrices.
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Invertible matrix theorem. For an nˆ n matrix A, the following state-
ments are equivalent:

p1q A is invertible

p2q The equation A~x “~b has exactly one solution for each~b P Rn

p3q The null space of A contains only the zero vector N pAq “ t~0u
p4q The equation A~x “~0 has only the trivial solution ~x “~0
p5q The columns of A form a basis for Rn:

• The columns of A are linearly independent
• The columns of A span Rn; CpAq “ Rn

p6q The rank of the matrix A is n

p7q The RREF of A is the nˆ n identity matrix 1n

p8q The transpose matrix AT is invertible

p9q The rows of A form a basis for Rn:
• The rows of A are linearly independent
• The rows of A span Rn;RpAq “ Rn

p10q The determinant of A is nonzero detpAq ‰ 0

These 10 statements are either all true or all false for any given matrix
A. We can split the set of n ˆ n matrices into two disjoint subsets:
invertible matrices, for which all 10 statements are true, and non-
invertible matrices, for which all statements are false.

Proving the invertible matrix theorem

It’s essential that you understand the details of this theorem, includ-
ing its proof. The reasoning that connects these 10 statements unites
all the chunks of linear algebra we’ve discussed. Not being a “proof
person” is not a valid excuse! Be sure to read the proof, as it will help
to solidify your understanding of the material covered thus far.

Proofs by contradiction

Since our arrival at the invertible matrix theorem marks an impor-
tant step, we’ll first quickly review some handy proof techniques,
just to make sure everyone’s ready. A proof by contradiction starts by
assuming the opposite of the fact we want to prove, and after several
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Discussion

In this chapter, we learned about linear transformations and their
matrix representations. The equivalence Tp~xq “ MT~x is important
because it forms a bridge between the abstract notion of a linear
transformation and its concrete implementation as a matrix-vector
product. Everything you know about matrices can be applied to lin-
ear transformations, and everything you know about linear transfor-
mations can be applied to matrices. Which is mind-blowing, if you
think about it.

We say T is represented by the matrix rMTsBW BV
with respect to

the basis BV for the input space, and the basis BW for the output
space. In Section 5.2, we learned about the probing procedure for
finding matrix representations with respect to the standard basis,
while Section 5.3 discussed the notion of change of basis for matrices.
Hold tight, because in the next chapter we’ll learn about the eigen-
values and eigenvectors of matrices and discuss the eigendecomposi-
tion of matrices, which is a type of change of basis.

Section 5.4 gave us the invertible matrix theorem along with a
taste of what it takes to prove formal math statements. It’s extra im-
portant that you attempt some of the proofs in the exercise section
on page 293. Although proofs can be complicated, they’re so worth
your time because they force you to clarify the definitions and prop-
erties of all the math concepts you’ve encountered thus far. Attempt
the proofs in the problems section to find out if you’re a linear alge-
bra amateur, or a linear algebra expert.

5.5 Linear transformations problems

Understanding linear transformations is extremely important for
your overall understanding of linear algebra. This is why it’s crucial
for you to solve all the problems in this section. By working on these
problems, you’ll discover whether you really understand all the new
material covered in this chapter. Remember in the book’s introduc-
tion, when I mentioned that linear algebra is all about vectors and
linear transformations? Well, if you can solve all the problems in this
section, you’re 80% of the way to understanding all of linear algebra.

P5.1 Determine whether each of the following transformations are linear.

a) T1px, yq “ py, x` yq b) T2px, yq “ px` 3, y´ 3q
c) T3px, yq “ p|x|, |y|q d) T4px, y, zq “ p3x ´ 2y` z, 2x ` y´ 4zq
e) T5pxq “ px, 2x, 3xq f) T6px, y, z, wq “ p5x, 4y, 3z, 2w, 1q

If the transformation is linear, find its matrix representation. If the transfor-
mation is nonlinear, show a calculation where the linear property fails.



Chapter 6

Theoretical linear algebra

Let’s take a trip down memory lane: 170 pages ago, we embarked on
a mind-expanding journey through the land of linear algebra. We en-
countered vector and matrix operations. We studied systems of lin-
ear equations, solving them with row operations. We covered miles
of linear transformations and their matrix representations. With the
skills you’ve acquired to reach this point, you’re ready to delve into
the abstract, theoretical aspects of linear algebra—that is, since you
know all the useful stuff, you can officially move on to the cool stuff.

In math, we often use abstraction to find the commonalities
between different mathematical objects. These parallels give us a
deeper understanding of the mathematical structures we compare.
This chapter extends what we know about the vector space Rn to
the realm of abstract vector spaces of vector-like mathematical ob-
jects (Section 6.3). We’ll discuss linear independence, find bases,
and count dimensions for these abstract vector spaces. We’ll define
abstract inner product operations and use them to generalize the
concept of orthogonality for abstract vectors (Section 6.4). We’ll
explore the Gram–Schmidt orthogonalization procedure for distill-
ing orthonormal bases from non-orthonormal bases (Section 6.5).
Finally, we’ll introduce vectors and matrices with complex entries
(Section 6.7). Section 6.7 also reviews everything we’ve learned in
this book, so be sure to read it even if complex numbers are not
required for your course. Along the way, we’ll develop a taxon-
omy for the different types of matrices according to their proper-
ties and applications (Section 6.2). We’ll also investigate matrix
decompositions—techniques for splitting matrices into products of
simpler matrices (Section 6.6). The chapter begins by discussing the
most important decomposition technique of them all: the eigende-
composition, which is a way to uncover the “natural basis” for any
matrix.

297
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6.1 Eigenvalues and eigenvectors

The set of eigenvectors of a matrix is a special set of input vectors
for which the action of the matrix is described as a simple scaling. In
Section 5.2, we observed how linear transformations act differently
on different input spaces. We also observed the special case of the
“zero eigenspace,” called the null space of a matrix. The action of a
matrix on the vectors in its null space is equivalent to a multiplication
by zero. We’ll now put these eigenvalues and eigenvectors under the
microscope and see what more there is to see.

Decomposing a matrix in terms of its eigenvalues and its eigen-
vectors gives valuable insights into the properties of the matrix. Cer-
tain matrix calculations, like computing the power of the matrix, be-
come much easier when we use the eigendecomposition of the matrix.
For example, suppose we’re given a square matrix A,

A “
„

9 ´2
´2 6


,

and we want to compute A7. In other words, we want to compute

A7 “
„

9 ´2
´2 6

„
9 ´2
´2 6

„
9 ´2
´2 6

„
9 ´2
´2 6

„
9 ´2
´2 6

„
9 ´2
´2 6

„
9 ´2
´2 6


.

That’s an awful lot of matrix multiplications! Now imagine how
many times we’d need to multiply the matrix if we wanted to find
A17 or A77. Too many times, that’s how many. Let’s be smart about
this. Every matrix corresponds to some linear operation. This means
it’s legit to ask, “What does the matrix A do?” Once we figure that
out, we can compute A77 by simply doing what A does 77 times.

The best way to see what a matrix does is to look inside it and
see what it’s made of (you may need to gradually gain the matrix’s
trust before it lets you do this). To understand the matrix A, you
must find its eigenvectors and its eigenvalues. The word eigen is the
German word for “self.” The eigenvectors of a matrix are its “self
vectors,” and correspond to a natural choice of basis for describing
the action of the matrix. The eigendecomposition is a change-of-basis
operation that expresses the matrix A with respect to its eigenbasis
(“self-basis”). The eigendecomposition of the matrix A is a product
of three matrices:

A “
«

9 ´2
´2 6

ff
“

«
1 2
2 ´1

ff

looomooon
Q

«
5 0
0 10

ff

looomooon
Λ

«
1
5

2
5

2
5 ´ 1

5

ff

looomooon
Q´1

“ QΛQ´1.
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You can multiply the three matrices QΛQ´1 to obtain A. Note that
the middle matrix Λ (the capital Greek letter lambda) has entries only
on the diagonal. The diagonal matrix Λ is sandwiched between the
matrix Q on the left and Q´1 (the inverse of Q) on the right.

The eigendecomposition of A allows us to compute A7 in a civi-
lized manner:

A7“ AAAAAAA

“ QΛ Q´1Qloomoon
1

Λ Q´1Qloomoon
1

Λ Q´1Qloomoon
1

Λ Q´1Qloomoon
1

Λ Q´1Qloomoon
1

Λ Q´1Qloomoon
1

ΛQ´1

“ QΛ1Λ1Λ1Λ1Λ1Λ1ΛQ´1

“ QΛΛΛΛΛΛΛQ´1

“ QΛ7Q´1.

All the inner Q´1s cancel with the adjacent Qs. How convenient!
Since the matrix Λ is diagonal, it’s easy to compute its seventh
power:

Λ7 “
„

5 0
0 10

7
“
„

57 0
0 107


“
„

78125 0
0 10 000 000


.

Thus we can express our calculation of A7 as

A7 “
«

9 ´2
´2 6

ff7

“
«

1 2
2 ´1

ff

loomoon
Q

«
78125 0

0 10 000 000

ff«
1
5

2
5

2
5 ´ 1

5

ff

loomoon
Q´1

.

We still need to multiply these three matrices together, but we’ve cut
the work from six matrix multiplications to two. The answer is

A7 “ QΛ7Q´1 “
«

8015625 ´3968750
´3968750 2062500

ff
.

With this technique, we can compute A17 just as easily:

A17 “ QΛ17Q´1 “
«

80000152587890625 ´39999694824218750
´39999694824218750 20000610351562500

ff
.

We could even compute A777 “ QΛ777Q´1 if we wanted to. I hope
by now you get the point: once you express A in its eigenbasis, com-
puting the powers of A requires computing the powers of its eigenval-
ues, which is much simpler than carrying out matrix multiplications.
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Figure 6.1: This concept map illustrates the connections and relations be-
tween special types of matrices. We can understand matrices through the
constraint imposed on their eigenvalues or their determinants. This diagram
shows only a subset of the many connections between the different types of
matrices. We’ll discuss matrices with complex entries in Section 6.7.

Discussion

We’ve defined several special categories of matrices and described
their properties. You’re now equipped with some very precise ter-
minology for describing different types of matrices. Each of these
special matrices plays a role in certain applications.

This section also highlighted the importance of the eigenvalue
description of matrices. Indeed, we can understand all special ma-
trices in terms of the constraints imposed on their eigenvalues. The
concept map in Figure 6.1 summarizes the relationships between the
different special types of matrices. The map also refers to unitary
and Hermitian matrices, which extend the concepts of orthogonal and
symmetric matrices to describe matrices with complex entries.
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Exercises

E6.8 Find the determinants and inverses of these triangular matrices:

A “
»
–

1 4 15
0 5 5
0 0 3

fi
fl , B “

„
x 0
y z


, C “

„ 1
5 0
0 5


.

E6.9 Is the matrix
“

1 2
3 4

‰
symmetric?

E6.10 In this section we learned about different types of matrices:
diagonal, triangular, positive (semi)definite, symmetric, and orthog-
onal matrices. What types of matrices are these?

a) A“
„ 1 2 3

0 4 1
0 0 7


b) B“

»
—–

1?
2

1?
6

1?
3

1?
2
´ 1?

6
´ 1?

3

0 2?
6
´ 1?

3

fi
ffifl c) C“

„ 0 1 0
1 0 0
0 0 1



Hint: Compute the matrices’ eigenvalues to analyse their properties.

6.3 Abstract vector spaces

You can apply your knowledge of vectors more generally to other
vector-like mathematical objects. For example, polynomials behave
similarly to vectors. To add two polynomials Ppxq and Qpxq, we add
together the coefficients of each power of x—the same way vectors
are added component by component.

In this section, we’ll learn how to use the terminology and con-
cepts associated with vectors to study other mathematical objects.
In particular, we’ll see that notions such as linear independence, basis,
and dimension can be applied to mathematical objects like matrices,
polynomials, and functions. We’ll use the notation v for describing
abstract vectors as opposed to the usual ~v used for ordinary vectors.

Definitions

An abstract vector space pV, F,`, ¨q consists of four things:

• A set of vector-like objects V “ tu, v, . . .u
• A field F of scalar numbers, usually F “ R

• An addition operation “`” for elements of V that dictates how
to add vectors: u` v

• A scalar multiplication operation “¨” for scaling a vector by an
element of the field. Scalar multiplication is usually denoted
implicitly αu (without the dot).
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A vector space satisfies the following eight axioms, for all scalars
α, β P F and all vectors u, v, w P V:

1. u` pv`wq “ pu` vq `w (associativity of addition)

2. u` v “ v` u (commutativity of addition)

3. There exists a zero vector 0 P V, such that u` 0 “ 0` u “ u
for all u P V.

4. For every u P V, there exists an inverse element ´u such that
u` p´uq “ u´ u “ 0.

5. αpu` vq “ αu` αv (distributivity I)

6. pα` βqu “ αu` βu (distributivity II)

7. αpβuq “ pαβqu (associativity of scalar multiplication)

8. There exists a unit scalar 1 such that 1u “ u.

If you know anything about vectors, the above properties should
be familiar. Indeed, these are the standard properties for the vec-
tor space Rn, where the field F is R, and for which standard vector
addition and scalar multiplication operations apply.

Theory

Believe it or not, we’re actually done with all the theory for this sec-
tion. Move along folks, there’s nothing more to see here aside from
the definitions above—which are restatements of the properties of
vector addition and vector scaling that you’ve already seen before.

The only thing left to do is illustrate these concepts through some
examples.

Examples

Matrices, polynomials, and functions are vector-like math objects.
The following examples demonstrate how we can treat these math
objects as abstract vector spaces pV, F,`, ¨q.

Matrices

Consider the vector space of m ˆ n matrices over the real numbers
Rmˆn. The addition operation for two matrices A, B P Rmˆn is the
usual rule of matrix addition: pA` Bqij “ aij ` bij.

This vector space is mn-dimensional, which can be seen by con-
structing a basis for the space. The standard basis for Rmˆn consists
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basis for looking at a matrix. A diagonalizable matrix A can be writ-
ten as

A “ QΛQ´1,

where Q is a matrix whose columns are eigenvectors of A, and Λ is
a diagonal matrix containing the eigenvalues of A.

The eigendecomposition of a matrix is a similarity transformation
(a change of basis) where the new basis matrix consists of eigenvec-
tors of the matrix.

If A is positive semidefinite then its eigenvalues are nonnegative.
If the matrix A is symmetric then its eigenvalues are real numbers.

When the matrix A is normal, meaning it satisfies AAT “ ATA,
we can choose Q to be an orthogonal matrix O that satisfies OTO “
1. Calculating the inverse of an orthogonal matrix is easy: O´1 “
OT. The eigendecomposition for normal matrices is A “ OΛOT.

Singular value decomposition

We can generalize the concepts of eigenvalues and eigenvectors to
non-square matrices. Consider a matrix A P Rmˆn. Since the matrix
A is not a square matrix, we can’t use the standard eigendecomposi-
tion. However, there is a trick for turning a non-square matrix into a
square matrix while preserving some of its properties: multiply the
matrix by its transpose. The matrix AAT P Rnˆn has the same col-
umn space as the matrix A. Similarly, ATA P Rmˆm has the same
row space as the matrix A.

The singular value decomposition breaks a matrix into the product
of three matrices: an mˆm orthogonal matrix U which consists of left
singular vectors, an mˆ n matrix Σ with the singular values σi on the
diagonal, and an nˆ n orthogonal matrix VT of right singular vectors:

A “

»
—–
| |

û1 ¨ ¨ ¨ ûm

| |

fi
ffifl

looooooomooooooon
U

»
—–

σ1 0 ¨ ¨ ¨
0 σ2 ¨ ¨ ¨
0 0 ¨ ¨ ¨

fi
ffifl

loooooooomoooooooon
Σ

»
———–

— v̂1 —

...

— v̂n —

fi
ffiffiffifl

loooooooomoooooooon
VT

“ UΣVT.

To find the matrices U, Σ, and V, perform eigendecomposition on
the matrix products AAT and ATA.

Consider first the matrix AAT. Since AAT is a square matrix, we
can compute its eigendecomposition AAT “ UΛ`UT. The eigenvec-
tors of AAT span the same space as the column space of the matrix
A. We call these vectors the left singular vectors of A.
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The left singular vectors of A (the columns of U) are the eigen-
vectors of the matrix AAT:

U “

»
—–
| |

û1 ¨ ¨ ¨ ûm

| |

fi
ffifl, where tpλi, ûiqu “ eigenvectspAATq.

To find the right singular vectors of A (the rows of VT), perform the
eigendecomposition on the matrix ATA, denoted ATA “ VΛrVT.
Build the orthogonal matrix VT by stacking the eigenvectors of ATA
as rows:

VT “

»
——–

— v̂1 —
...

— v̂n —

fi
ffiffifl, where tpλi, v̂iqu “ eigenvectspATAq.

The eigenvalues of the matrix ATA are the same as the eigenvalues
of the matrix AAT. In both cases, the eigenvalues λi correspond to
the squares of the singular values of the matrix A.

On its diagonal, the matrix of singular values Σ P Rmˆn con-
tains the singular values σi, which are the positive square roots of
the eigenvalues λi of the matrix AAT (or the matrix ATA):

σi “
a

λi , where tλiu “ eigenvalspAATq “ eigenvalspATAq.
The singular value decomposition shows the inner structure of the
matrix A. We can interpret the operation ~y “ A~x “ UΣVT~x as a
three-step process:

1. Convert the input ~x to the basis of right singular vectors t~viu.
2. Scale each component by the corresponding singular value σi.

3. Convert the output from the t~uiu basis to the standard basis.

This three-step procedure is analogous to the three-step procedure
we used to understand the eigendecomposition of square matrices
in Section 6.1 (see page 305).

* * *

The singular value decomposition (SVD) has numerous applica-
tions in statistics, machine learning, and computer science. Apply-
ing the SVD to a matrix is like looking inside it with X-ray vision,
since you can see its σis. The action of A “ UΣVT occurs in n par-
allel streams: the ith stream consists of multiplying the input vector
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6.7 Linear algebra with complex numbers

So far we’ve discussed the math of vectors and matrices with real
components. In fact, the linear algebra techniques you’ve learned
apply to any field F. The term field applies to any mathematical object
for which the operations of addition, subtraction, multiplication, and
division are defined.

Since the complex numbers C are a field, we can perform linear
algebra over the field of complex numbers. In this section, we’ll de-
fine vectors and matrices with complex components, and discover
that they behave similarly to their real counterparts. You’ll see that
complex linear algebra is no more complex than real linear algebra.
It’s the same, in fact, except for one small difference: instead of ma-
trix transpose AT, we use the Hermitian transpose A:, which is the
combination of the transpose and an entry-wise complex conjugate
operation.

Complex vectors are not just an esoteric mathematical concept
intended for specialists. Complex vectors can arise as answers for
problems involving ordinary real matrices. For example, the rotation
matrix

Rθ “
„

cos θ ´ sin θ
sin θ cos θ



has complex eigenvalues λ1 “ eiθ and λ2 “ e´iθ and its eigenvec-
tors have complex components. If you want to know how to calcu-
late the eigenvalues and eigenvectors of rotation matrices, you need
to understand how to do linear algebra calculations with complex
numbers.

This section serves as a review of all the important linear algebra
concepts we’ve learned in this book. I recommend you read this sec-
tion, even if you’re not required to know about complex matrices for
your course. As your guide through the land of linear algebra, it’s
my duty to make sure you understand linear algebra in the complex
field. It’s good stuff; I guarantee there’s knowledge buzz to be had in
this section.

Definitions

Recall the basic notions of complex numbers introduced in Sec-
tion 1.14:

• i: the unit imaginary number; i “ ?´1 and i2 “ ´1
• z “ a` bi: a complex number z whose real part is a and whose

imaginary part is b
• C: the set of complex numbers C “ ta` bi | a, b P Ru
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6.8 Theory problems

It’s now time to test your understanding of the theoretical concepts
we discussed in this chapter. The eigenvector equation A~eλ “ λ~eλ

is one of the deepest ideas in linear algebra. I’ve prepared several
problems so you can challenge yourself and test your understanding
of eigenvalues and eigenvectors. The problems will test your the-
oretical understanding as well as your stamina, because computing
eigenvectors requires many steps of arithmetic and takes a long time.
The first eigenvector problem you’ll solve might take you up to an
hour. Don’t be alarmed by this—that’s totally normal. After solving
a few eigenvector problems, your problem-solving time will drop
to 30 minutes; and quickly after that you’ll able to solve eigenvalue
problems easily in 15 minutes.

It’s up to you how fluent you want to become. Certainly if you
have a linear algebra exam coming up, it would be good to solve all
the problems and maybe even solve problems in other books, too. If
you’re just reading about linear algebra for fun, you probably don’t
need to suffer through the steps of finding eigenvalues using only
pen and paper. Solve the problems using SymPy instead—you can’t
say no to that!

In this chapter we also learned about abstract vector spaces, an-
other important theoretical idea in linear algebra. All the techniques
you’ve learned about vectors can be applied to polynomials, matri-
ces, functions, and other vector-like objects. That’s all nice in theory,
but we’re going to move beyond passive appreciation and get into
the nitty gritty by solving problems that involve bases, linear inde-
pendence, dimensions, and orthogonality in abstract vector spaces.
It might seem like crazy stuff, but if you trust the idea of equivalent
representations and the abstract notion of a linear transformation,
you’ll see it’s all good and that you can work with abstract vectors.

Finally, the problems that involve linear algebra over the com-
plex field will serve as the final review of what you’ve learned in
this book. This is the final boss. You’ll be asked to review and com-
bine your computational, geometric, and theoretical linear algebra
skills, applying them to vectors and matrices with complex coeffi-
cients. Are you ready for this?

I’m not going to lie to you and say the problems are easy, but
this is the final push, so hang in there and you’ll be done with all the
linear algebra theory in just a few hours. After finishing the problems
in this chapter, the rest of the book winds down with three chapters
of cool applications, which are much lighter reading. So grab a pen,
pull out some paper and kick some problem ass!
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P6.1 Yuna wants to cheat on her exam and she needs your help. Please
help her compute the eigenvalues of the following matrices, and slip her the
piece of paper carefully so the teacher doesn’t notice. Yuna will give you a
chocolate bar to thank you.

a)
„

3 1
12 2


b)

»
–

0 1 0
2 0 2
0 1 0

fi
fl

P6.2 Find the eigenvalues of the following matrices.

a)
„

4 2
0 5


b)
„

3 1
1 2


c)

»
–

2 0 1
1 2 0
0 4 ´1

fi
fl d)

»
–
´3 0 0
4 1 0
2 1 ´1

fi
fl

P6.3 Compute the eigenvalues of the matrix A “ “
1 1
1 0

‰
.

P6.4 Show that the vectors~e1 “ p1, 1
ϕ qT and~e2 “ p1,´ϕqT are eigenvectors

of the matrix A “ “
1 1
1 0

‰
. What are the eigenvalues associated with these

eigenvectors?

Hint: Compute A~e1 and A~e2 to see what happens. Use the fact that ϕ satisfies
the equation ϕ2 ´ ϕ´ 1 “ 0 to simplify expressions.

P6.5 We can write the matrix A “ “
1 1
1 0

‰
as the product of three matrices

QΛX, where Q contains the eigenvectors of A, and Λ contains its eigenval-
ues: „

1 1
1 0


“

«
1 1
1
ϕ ´ϕ

ff

loooomoooon
Q

«
ϕ 0
0 ´1

ϕ

ff

loooomoooon
Λ

„
? ?
? ?



loomoon
X

.

Find the matrix X.

P6.6 Compute the eigenvalues and eigenvectors of these matrices:

a) A “
„

0 1
1 0


b) B “

»
–

0 1 0
0 0 1
´6 ´1 4

fi
fl

P6.7 Given A “
„

2 2
5 ´1


, find A10.

P6.8 Consider the sequence of triples tpxn, yn, znqun“0,1,2,... produced ac-
cording to the formula:

»
—–

1
2

1
2 0

1
8

3
4

1
8

0 1
2

1
2

fi
ffifl

looooooomooooooon
M

»
—–

xn

yn

zn

fi
ffifl “

»
—–

xn`1

yn`1

zn`1

fi
ffifl.

Give a formula for px8, y8, z8q in terms of px0, y0, z0q. This recurrence re-
lation is related to “surface smoothing” algorithms used in 3D graphics; see
https://youtu.be/mX0NB9IyYpU for more explanations.
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Applications

In this chapter, we’ll learn about applications of linear algebra. We’ll
cover a wide range of topics from different areas of science, busi-
ness, and technology to give you an idea of the spectrum of possi-
ble calculations based on vector and matrix algebra. Don’t worry if
you’re not able to follow all the details in each section—we’re taking
a broad approach here, covering many different topics in the hope
that some will interest you. Note that most of the material covered
in this chapter is not likely to show up on your linear algebra final,
so no pressure—this is just for fun.

Before we start, I want to say a few words about scientific ethics.
Linear algebra is a powerful tool for solving problems and modelling
the real world. But with great power comes great responsibility. I
hope you’ll make an effort to think about the ethical implications
when you use linear algebra to solve problems. Certain applica-
tions of linear algebra, like building weapons, interfering with crops,
and building mathematically-complicated financial scams are clearly
evil, so you should avoid them. Other areas where linear algebra can
be applied are not so clear-cut: perhaps you’re building a satellite
localization service to find missing people in emergency situations,
but the same technology could be used by governments to spy on
and persecute your fellow citizens. Do you want to be the person
responsible for bringing about an Orwellian state? All I ask of you
is to run a quick “System check” before you set to work on a project:
ask yourself “Am I working for the System?” Don’t just say “It’s my
job” and proceed without caution. If you find what you’re doing for
your employer is unethical, then maybe you should find a different
job. There are a lot of jobs out there for people who know math, and
if the bad guys can’t hire qualified people like you, their power will
decrease—and that’s a good thing.

Our System check is complete. On to the applications!

363
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7.1 Balancing chemical equations

Suppose you’re given the chemical equation H2`O2 Ñ H2O, which
indicates that hydrogen molecules (H2) and oxygen molecules (O2)
can combine to produce water molecules (H2O). Chemical equations
describe how a set of reactants are transformed into a set of products.
In this case, the reactants are hydrogen and oxygen molecules and
the products are water molecules.

The equation H2 `O2 Ñ H2O is misleading since it doesn’t tell
us the correct stoichiometric ratios: how much of each type of molecule
is consumed and produced. We say the equation is not balanced. To
balance the equation, we must add coefficients in front of each reac-
tant and each product, so that the total number of atoms on both
sides of the reaction is the same: 2H2 `O2 Ñ 2H2O. Two hydro-
gen molecules are required for each oxygen molecule, since water
molecules contain one oxygen and two hydrogen atoms.

Let’s look at another example. The combustion of methane gas is
described by the following chemical equation:

CH4 `O2 Ñ CO2 `H2O .

We want to answer the following two questions. How many
molecules of oxygen will be consumed during the combustion of
1000 molecules of methane? How many CO2 molecules will be
produced as a result?

Before we can answer such questions, we must find the coeffi-
cients a, b, c, and d that balance the methane-combustion equation:

aCH4 ` bO2 Ñ cCO2 ` dH2O.

For the equation to be balanced, the same number of atoms of each
type must appear on each side of the equation. For the methane
combustion reaction to be balanced, the following equations must
be satisfied:

a “ c for C atoms to be balanced,
4a “ 2d for H atoms to be balanced,
2b “ 2c` d for O atoms to be balanced.

We can move the c and d terms to the left side of each equation and
rewrite the system of equations as a matrix equation:

a ´ c “ 0
4a ´ 2d “ 0

2b´ 2c´ d “ 0
ñ

»
–

1 0 ´1 0
4 0 0 ´2
0 2 ´2 ´1

fi
fl

loooooooooomoooooooooon
A

»
——–

a
b
c
d

fi
ffiffifl “

»
–

0
0
0

fi
fl.
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7.2 Input–output models in economics

Suppose you’re the top economic official of a small country and you
want to make a production plan for the coming year. For the sake of
simplicity, let’s assume your country produces only three commodi-
ties: electric power, wood, and aluminum. Your job is to choose the
production rates of these commodities: xe, xw, and xa. Your coun-
try must produce enough to satisfy both the internal demand and
the external demand for these commodities. The problem is com-
plicated because the production rates in one industry may affect the
production rates of other industries. For instance, it takes some elec-
tric power to produce each unit of aluminum, so your production
plan must account for both external demand for electric power, as
well as internal demand for electric power for aluminum production.
When complex interdependences exist between the different inter-
nal industries, as is often the case, it makes the process of picking the
right production rates more complex.

In reality, most high-ranking government officials make their de-
cisions about which industry to sponsor based on the dollar amounts
of the kickbacks and bribes they received during the previous year.
Let’s ignore reality for a moment and assume you’re an honest
economist interested in using math to do what is right for the coun-
try instead of abusing your position of power like a blood-thirsty
leech.

Let’s assume the electric production xe must satisfy an external
demand of 25 units, plus an additional 0.05 units for each unit of
wood produced (electricity needed for saw mill operations) and an
additional 0.3 units for each unit of aluminum produced. The wood
production must be 10 units plus additional small amounts that de-
pend on xe and xa (wood for construction). The production of alu-
minum must match 14 units of external demand plus an additional
0.1 units for each unit of electric power (for repairs of electric cables).
We can model the interdependence between the industries using the
following system of equations:

xe “ 25 ` 0.05xw ` 0.3xa

xw “ 10 ` 0.01xe ` 0.01xa

xa “ 14loomoon
external demand

` 0.1xeloooooooooooooomoooooooooooooon
internal demand

.

You can use linear algebra to solve this complicated industry inter-
dependence problem and choose appropriate production rates. Ex-
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wire junction must equal the total current flowing out of the junction.
You can think of this as a manifestation of the conservation of charge
principle: the total charge coming into a junction equals the total
charge flowing out of the junction, because charges cannot be created
or destroyed.

* * *

Recall that to solve a circuit is to find the currents that flow in each
wire and the voltage across each resistor. We’ll now illustrate how
to solve a complicated circuit by introducing current variables, ap-
plying Kirchhoff’s laws to obtain systems of linear equations, and
solving these equations using linear algebra.

Using linear algebra to solve circuits

The first step is to define variables for each of the quantities of in-
terest in the circuit as shown in Figure 7.2. We’ll call I1 the current
that flows down through the middle wire of the circuit, which then
splits into the current I2 in the left branch and the current I3 going
to the right. Next we follow the currents in the circuit and label the
terminals of each resistor “`” and “´” to indicate its polarity—the
direction of the voltage drop across it. The rule to follow is simple:
the label “`” goes on the side where the current enters the resistor,
and the label “´” goes on the side where the current leaves the resis-
tor. We write the “`” on the side where the current enters because
electric potential always drops when passing through a resistor. It’s
important to keep track of the polarity of resistors when writing the
KVL equations for the circuit.

Ai2
10V

´`
B

R1

`

´

C

5V

´ `
D

R2

`

´
i1

i3 F

20V´
`

E
R3

`´

Figure 7.2: The circuit with branch currents labelled. Each resistor is as-
signed a polarity relative to the current flowing through it.

We’re now in a position to apply Kirchhoff’s voltage and current
laws to this circuit and obtain a set of equations that relate the un-
known currents. Let’s first apply Kirchhoff’s voltage law to the loop
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7.4 Graphs

A graph is an abstract mathematical model that describes connections
between a set of nodes. We call the nodes vertices and the connections
edges. The graph is defined as a pair of sets G “ pV, Eq, where V is
the set of vertices and E is the set of edges in the graph. We can also
describe the edges by specifying the adjacency matrix of the graph.

Rather than define graphs formally and in detail, we’ll look at
a simple graph example to give you an idea of the main concepts
and introduce graph notation. Figure 7.3 shows a small graph with
five vertices and seven edges. This abstract link structure could rep-
resent many real-world scenarios: five websites and the hyperlinks
between them, five Twitter accounts and their “following” relation-
ships, or seven financial transactions between five businesses.

1

2

3

4

5

Figure 7.3: A simple graph with five vertices and seven edges.

The graph in Figure 7.3 is represented mathematically as G “ pV, Eq,
where V “ t1, 2, 3, 4, 5u is the set of vertices, and E “ tp1, 2q, p1, 3q,
p2, 3q, p3, 5q, p4, 1q, p4, 5q, p5, 1qu is the set of edges. Note the edge from
vertex i to vertex j is represented as the pair pi, jq.

Adjacency matrix

The adjacency matrix representation of the graph in Figure 7.3 is a 5ˆ
5 matrix A that contains information about the edges in the graph.
Specifically, Aij “ 1 if the edge pi, jq exists, otherwise Aij “ 0 if the
edge doesn’t exist:

A “

»
————–

0 1 1 0 0
0 0 1 0 0
0 0 0 0 1
1 0 0 0 1
1 0 0 0 0

fi
ffiffiffiffifl

.

Each row contains ones in the positions where edges exist. The adja-
cency matrix representation works in tandem with the integer labels
of the vertices—Vertex 1 corresponds to the first row of A, Vertex 2
to the second row, and so on for the other rows. We don’t need labels
for the vertices since the labels can be deduced from their position in
the matrix A.
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7.6 Linear programming

In the early days of computing, computers were primarily used to
solve optimization problems, so the term “programming” is often
used to describe optimization problems. Linear programming is the
study of linear optimization problems that involve linear constraints.
These types of optimization problems play an important role in busi-
ness: the whole point of corporations is to constantly optimize profits
subject to time, energy, and legal constraints.

Many optimization problems can be expressed as linear programs.
To solve an optimization problem is to find the optimal value, which
is either the maximum or the minimum of some function, called the
objective function. In a linear program, the objective function is a mul-
tivariable linear function gpx1, x2, . . . , xnq and the constraints on the
variables of the problem are also linear. A linear program with n
variables and m constraints is expressed as a maximization problem,

max
x1,x2,...,xn

gpx1, x2, . . . , xnq “ c1x1 ` c2x2 ` ¨ ¨ ¨ ` cnxn,

subject to m linear constraints,

a11x1 ` a12x2 ` ¨ ¨ ¨ ` a1nxn ď b1,
a21x1 ` a22x2 ` ¨ ¨ ¨ ` a2nxn ď b2,

...
am1x1 ` am2x2 ` ¨ ¨ ¨ ` amnxn ď bm.

The solution to this linear program is the vector px1, x2, . . . , xnq that
makes gpx1, x2, . . . , xnq as large as possible, and also satisfies all the
constraints. For example, the variables x1, x2, . . . , xn could represent
the production rates of n different products made by a company. If
the coefficients c1, c2, . . . , cn represent the selling price for each of the
n products, then cixi represents the revenue generated by selling xi
units of product i, and gpx1, x2, . . . , xnq “ c1x1 ` c2x2 ` ¨ ¨ ¨ ` cnxn
represents the total revenue for a given choice of production rates.
The m inequalities could represent various limitations of human re-
sources, production capacity, or logistics constraints. To solve the
linear program is to find the production rates x1, x2, . . . , xn that max-
imize revenue, subject to the constraints.

The simplex algorithm is a systematic procedure for finding so-
lutions to linear programming problems. The simplex algorithm is
somewhat similar to the Gauss–Jordan elimination procedure since
it uses row operations on a matrix-like structure called a tableau. For
this reason, linear programming and the simplex algorithm are often
forced upon students taking a linear algebra course, especially busi-
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ness students. I’m not going to lie to you and tell you the simplex al-
gorithm is very exciting, but it is very powerful. For this reason, you
should know it exists, and develop a general intuition about how it
works. And, as with all things corporate-related, it’s worth learning
about so you’ll know the techniques of the enemy.

Since the details of the simplex algorithm might not be of interest
to all readers of the book, I split the topic of linear programming into
a separate tutorial, which you can read online at the link below.

[ Linear programming tutorial ]
https://minireference.github.io/linear_programming/tutorial.pdf

7.7 Least squares approximate solutions

An equation of the form A~x “ ~b could have exactly one solution (if
A is invertible), infinitely many solutions (if A has a null space), or
no solution at all (if~b is not in the column space of A). In this section,
we’ll discuss the case with no solution, and describe an approach for
computing an approximate solution ~x˚ such that the vector A~x˚ is as
close as possible to~b.

We could jump right away to the formula for the least squares
approximate solution (~x˚ “ pATAq´1 AT~b), but this would hardly be
enlightening or useful for your understanding. Instead, let’s learn
about the least squares approximate solution in the context of a ma-
chine learning problem in which we’ll try to predict some unknown
quantities based on a linear model learned from past observations.
This is called linear regression and it’s one of the most useful applica-
tions of linear algebra.

Your company’s database of current clients contains all the infor-
mation about the frequency of purchases f , value of purchases V,
promptness of payment P, and other useful information. You know
what is really useful information, though? Knowing the customer
lifetime value (CLV)—the total revenue this customer will generate
during their entire relationship with your company. You have data
on the CLVs of existing customers and you want to leverage this data
to predict the CLVs of new customers.

Suppose you have data for N existing customers in the form of
vectors, expressed as ~ai “ p fi, Vi, Pi, . . .q, and you calculate a cus-
tomer lifetime value (CLV) for each existing customer, bi “ CLVi.
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The resulting dataset consists of observations~ai and outcomes bi:

D “

$
’’’’’&
’’’’’%

»
—————–

— ~a1 —
— ~a2 —
— ~a3 —

...
— ~aN —

fi
ffiffiffiffiffifl

,

»
—————–

b1
b2
b3
...

bN

fi
ffiffiffiffiffifl

,
/////.
/////-

“ tA,~bu.

The clients’ observational data is stored in an N ˆ n matrix A, and
the corresponding CLVs are stored as an N ˆ 1 column vector~b.

Statement of the problem Given the~ak of a new customer, predict
the customer’s bk, based on the information in the dataset D.

Linear model

A simple way to model the dependence of the label bi on the obser-
vational data ~ai “ pai1, ai2, . . . , ainq is to use a linear model with n
parameters m1, m2, . . . , mn:

y~mpx1, x2, . . . , xnq “ m1x1 `m2x2 ` ¨ ¨ ¨ `mnxn “ ~m ¨~x.

If your model is accurate, then y~mp~aiq will closely approximate bi.
But how can we measure the accuracy of the approximation?

Let’s define error terms that measure how the model’s predictions
y~mp~aiq differ from the observed values bi. The error term for the ith

customer is
eip~mq “ |y~mp~aiq ´ bi|2.

The expression eip~mqmeasures the squared error between the model’s
prediction and the known value. Our goal is to choose a model that
makes the sum of all the error terms as small as possible:

Sp~mq “
Nÿ

i“1

eip~mq “
Nÿ

i“1

|y~mp~aiq ´ bi|2 .

We’ll refer to the function Sp~mq as the objective function, which is the
usual terminology for optimization problems. Our goal is to choose
the value of ~m that minimizes Sp~mq, the sum of squared errors of the
model’s predictions.

Intuitively, it makes sense to minimize the objective function
Sp~mq because it captures how the predictions of the model y~mp~aiq dif-
fer from the values bi. The objective function will be zero (Sp~mq “ 0)
if the model perfectly predicts the data. On the other hand, any
model prediction y~mp~aiq that overshoots or undershoots the correct
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modelling power, they’re easy to implement, and they lead to com-
putational problems that are easy to solve.

Links

[ Further discussion about least squares problems on Wikipedia ]
https://en.wikipedia.org/wiki/Linear_regression
https://en.wikipedia.org/wiki/Linear_least_squares_(mathematics)

[ More about the Moore–Penrose inverse ]
https://en.wikipedia.org/wiki/Moore-Penrose_inverse

Exercises

E7.10 You want to determine whether a coin is fair, so you toss it
repeatedly and record the number of times it lands heads. On the
first trial, you flip the coin eight times and obtain four heads, which
is a heads-to-flips ratio of 4

8 . On subsequent trials you obtain heads-
to-flips ratios of 9

16 , 13
24 , 17

32 , and 20
40 . Find the best-fitting linear model

hpxq “ mx to describe the number of heads in a trial with x flips.

E7.11 Find the best-fitting affine model y “ b`mx to the px, yq data
points p0, 3.9q, p1, 3.2q, and p2, 1.9q. Perform all the calculations by
hand.

Hint: Find the Moore–Penrose inverse.

E7.12 Calculate the total squared error Spm˚q “ }Am˚ ´~b}2 of the
best-fit linear model obtained in Example 1 (page 383). Use the SymPy
calculation at bit.ly/leastsq_ex1 as your starting point.

Hint: The Matrix method .norm() might come in handy.

E7.13 Revisit Example 2 (page 385) and find the total squared error
of the best-fit affine model Sp~m1˚q “ }A~m1˚ ´~b}2. You can start from
the calculation provided here bit.ly/leastsq_ex2 and extend it.

7.8 Computer graphics

Linear algebra is the mathematical language of computer graphics.
Whether you’re building a simple two-dimensional game with stick
figures, or a fancy three-dimensional visualization, knowing linear
algebra will help you understand the graphics operations that draw
pixels on the screen.

In this section, we’ll discuss some basic computer graphics
concepts. In particular, we’ll introduce homogeneous coordinates, a
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The reason we need so much processing power is because 3D
models are made of thousands of little polygons. Drawing a 3D
scene (also known as rendering) involves performing linear algebra
manipulations on all these polygons. This is where the GPU comes
in. The job of the GPU is to translate, rotate, and scale the poly-
gons of the 3D models by placing them into the scene, and then
computing what the scene looks like when projected to the two-
dimensional window (the screen) through which you’re observing
the virtual world. This transformation—from the model coordinates
to world coordinates, and then to screen coordinates (pixels)—is car-
ried out in a graphics processing pipeline.

object
space

model
matrix

world
space

view
matrix

camera
space

proj.
matrix

screen
space

Figure 7.12: A graphics processing pipeline for drawing 3D objects on the
screen. A 3D model is composed of polygons expressed with respect to a
coordinate system centred on the object. The model matrix positions the
object in the scene, the view matrix positions the camera in the scene, and
finally the projection matrix computes what should appear on the screen.

We can understand the graphics processing pipeline as a se-
quence of matrix transformations: the model matrix M, the view
matrix V, and the projection matrix Πs. The GPU applies this se-
quence of operations to each of the object’s vertices, px, y, z, 1qo, to
obtain the pixel coordinates, px1, y1qs, of the vertices on the screen:

„
x1
y1



s
“ ΠsVM

»
——–

x
y
z
1

fi
ffiffifl

m

ñ px, y, z, 1qm MTVTΠT
s “ px1, y1qs.

In the context of computer graphics, it is customary to represent the
graphics processing pipeline in the “transpose picture,” so that ver-
tex data flows from left to right as in Figure 7.12. Instead of repre-
senting vertices as column vectors multiplied by matrices M, V, and
Πs from the left, we represent vertices as row vectors multiplied by
matrices MT, VT, and ΠT

s from the right. All the reasoning remains
the same, and all the transformation matrices described above still
work; you just might need to transpose them if you’re using them in
a program.

Finally, a comment on efficiency. It is not necessary to compute
the matrix-vector products with MT, VT, and ΠT

s for each vertex.
It’s much more efficient to pre-compute a combined transformation
matrix, CT “ MTVTΠT

s , and apply CT to each of the coordinates of
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the links below if you want to learn more about homogeneous coor-
dinates, projective spaces, or computer graphics.

Links

[ A detailed tutorial series on WebGL ]
https://github.com/greggman/webgl-fundamentals/

[ Visualization of polygon drawing in a 3D scene ]
http://orbides.org/apps/superslow.html

7.9 Cryptography

Cryptography is the study of secure communication. The two main
tasks that cryptographers aim to achieve are private communication
(no eavesdroppers) and authenticated communication (no imperson-
ators). Using algebraic operations over finite fields Fq, it’s possible
to achieve both of these goals. Math is the weapon for privacy!

The need for private communication between people has ex-
isted long before the development of modern mathematics. Thanks
to modern mathematical techniques, we can now perform crypto-
graphic operations with greater ease, and build cryptosystems with
security guaranteed by mathematical proofs. In this section, we’ll
discuss the famous one-time pad encryption technique invented by
Gilbert Vernam. One-time pad encryption is important because
Claude Shannon proved it is absolutely secure. In order to understand
what that means precisely, we’ll first need some context about the
concepts studied in the field of cryptography.

Context

The secure communication scenarios we’ll discuss in this section in-
volve three parties:

• Alice is the message sender
• Bob is the message receiver
• Eve is the eavesdropper

Alice wants to send a private message to Bob, but Eve has the ability
to see all communication between Alice and Bob. You can think of
Eve as a Facebook administrator, or an employee of the Orwellian,
privacy-invading web application du jour. To defend against Eve,
Alice will encrypt her messages before sending them to Bob, using
a secret key only Alice and Bob have access to. Eve will be able to
capture the encrypted messages (called ciphertexts) but they will be
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Discussion

We’ll conclude with some basic advice for programmers who want
to use cryptography in their software. Rather than trying to roll your
own crypto functions, keep in mind it’s best to use established li-
braries. Libraries are good for you—there are many ways cryptosys-
tems can fail, and experts have thought about defending against
many potential attacks. Don’t be a cowboy programmer—use the
libraries.

Links

[ Signal is a secure messaging app for mobile ]
https://whispersystems.org/

[ Public-key cryptography general concepts ]
https://en.wikipedia.org/wiki/Public-key_cryptography

Exercises
E7.14 Alice wants to send the message ~m “ 0110 1000 0110 1001 to
Bob. They have pre-shared the secret key~k “ 1010 0111 0010 0111.
Compute the ciphertext~c “ Encp~m,~kq “ ~m‘~k that Alice will send to
Bob. Verify that Bob will obtain the correct message after decrypting.

7.10 Error-correcting codes

The raw information-carrying capacity of a DVD is roughly 5.64GB;
which is about 20% more than the 4.7GB of data that your computer
will let you write to it. Why this overhead? Are DVD manufacturers
trying to cheat you? Actually, they’re looking out for you; the extra
space is required for the error-correcting code that is applied to your
data before writing it to the disk. Without the error-correcting code,
even the tiniest scratch on the surface of the disk would make the
disk unreadable, destroying your precious data. In this section, we’ll
learn how error-correcting codes work.

Error-correcting codes play an essential part in the storage,
the transmission, and the processing of digital information. Even
the slightest change to a computer program will make it crash—
computer programs simply don’t like it when you fiddle with their
bits. Crashing was the norm back in the 1940s as illustrated by this
quote:

“Two weekends in a row I came in and found that all my stuff had been
dumped and nothing was done. I was really annoyed because I wanted
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codewords~c1 “ 0010 and~c2 “ 0101 is dp~c1,~c2q “ 3, because it takes
three substitutions (also called bit flips) to convert ~c1 to ~c2 or vice
versa.

An pn, k, dq code is defined by a function Enc : t0, 1uk Ñ t0, 1un

that encodes messages ~xi P t0, 1uk into codewords ~ci P t0, 1un. Usu-
ally the encoding procedure Enc is paired with a decoding proce-
dure, Dec : t0, 1un Ñ t0, 1uk, which recovers messages from (possi-
bly corrupted) codewords.

~x
P t0, 1uk

Enc ~c
P t0, 1un

~c 1
P t0, 1un

 
Dec ~x 1

P t0, 1uk

Figure 7.14: An error-correcting scheme using the encoding function Enc
and the decoding function Dec to protect against the effect of noise (denoted
 ). Each message ~x is encoded into a codeword~c. The codeword~c is trans-
mitted through a noisy channel that can corrupt the codeword by transform-
ing it into another bitstring ~c 1. The decoding function Dec looks for a valid
codeword ~c that is close in Hamming distance to ~c 1. If the protocol is suc-
cessful, the decoded message will match the transmitted message ~x 1 “ ~x,
despite the noise ( ).

Linear codes

A code is linear if its encoding function Enc is a linear transformation:

Encp~xi `~xjq “ Encp~xiq ` Encp~xjq, for all messages ~xi,~xj.

An pn, k, dq linear code encodes k-bit messages into n-bit codewords
with minimum inter-codeword distance d. Linear codes are inter-
esting because their encoding function Enc can be implemented as
a matrix multiplication. We use the following terms when defining
linear codes as matrices:

• G P Fkˆn
2 : the generating matrix of the code. Each codeword ~ci

is produced by multiplying the message ~xi by G from the right:

Encp~xiq “~ci “ ~xiG.

• RpGq: the row space of the generator matrix is called the code
space. We say a codeword ~c is valid if ~c P RpGq, which means
there exists some message ~x P t0, 1uk such that ~xG “~c.

• H P F
pn´kqˆn
2 : the parity check matrix of the code. The syndrome

vector~s of any bitstring~c 1 is obtained by multiplying~c 1T by H
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7.11 Fourier analysis

Way back in the 17th century, Isaac Newton carried out a famous ex-
periment using light beams and glass prisms. He showed that when
a beam of white light passes through a prism, it splits into a rainbow
of colours: the rainbow is red at one end, followed by orange, yel-
low, green, blue, and finally violet at the other end. This experiment
showed that white light is made of components with different colours.
Using the language of linear algebra, we can say that white light is a
“linear combination” of different colours.

Today we know that different colours of light correspond to elec-
tromagnetic waves with different frequencies: red light has a fre-
quency around 450 THz, while violet light has a frequency around
730 THz. We can therefore say that white light is made of compo-
nents with different frequencies. The notion of describing complex
phenomena in terms of components with different frequencies is the
main idea behind Fourier analysis.

Fourier analysis is used to describe sounds, vibrations, electric
signals, radio signals, light signals, and many other phenomena. The
Fourier transform allows us to represent all these “signals” in terms
of components with different frequencies. Indeed, the Fourier trans-
form can be understood as a change-of-basis operation that converts
a signal from a time basis to a frequency basis:

rvst ô rvs f .

For example, if v represents a musical vibration, then rvst corre-
sponds to the vibration as a function of time, while rvs f corresponds
to the frequency content of the vibration. Depending on the proper-
ties of the signal in the time domain and the choice of basis for the
frequency domain, different Fourier transformations are possible.

We’ll study three different bases for the frequency domain based
on orthonormal sets of sinusoidal and complex exponential func-
tions. The Fourier series is a representation for continuous periodic
functions f ptq P tR Ñ Ru; that is, functions that satisfy f pT ` tq “
f ptq. The Fourier basis used in the Fourier series is the set of sines
and cosines of the form sinp 2πn

T tq and cosp 2πn
T tq, which form an or-

thogonal set. The Fourier transform is the continuous version of the
Fourier series. Instead of a countable set of frequency components,
the frequency representation of the signal is described by a complex-
valued continuous function f pωq P tR Ñ Cu. Instead of a continu-
ous time parameter t P R, certain signals are described in terms of N
samples from the time signal: t f rtsutPr0,1,...,N´1s. The discrete Fourier
transform is a version of the Fourier transform for signals defined at
discrete time samples. Table 7.2 shows a summary of these three
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»
——————————–

f p0q
...

f ptq
...

f pTq

fi
ffiffiffiffiffiffiffiffiffiffifl

“

»
—————————–

fi
ffiffiffiffiffiffiffiffiffifl

»
———————————–

a0
a1
b1
a2
b2
a3
b3
...

fi
ffiffiffiffiffiffiffiffiffiffiffifl

Figure 7.18: The Fourier series synthesis equation (FSS) represented as a
matrix-vector product. A periodic signal f ptq is represented as a series
of Fourier coefficients pa0, a1, b1, a2, b2, a3, b3, . . .q. The first column of the
change-of-basis matrix corresponds to the constant component 1 “ cosp0q.
The remaining columns correspond to cosines and sines with different fre-
quencies.

This is called a Fourier series approximation since the frequency rep-
resentation does not contain the components with frequencies N`1

T ,
N`2

T , and higher. Nevertheless, these finite-series approximations
of signals are used in many practical scenarios; it’s much easier to
compute a finite number of Fourier coefficients instead of an infinite
number.

Example For an example calculation of the Fourier coefficients of
the square wave signal, see bit.ly/fourier_series_square_wave by
Joshua Vaughan. Note the square wave analyzed is an odd function,
so its coefficients an are all zero.

Figure 7.19: The square-wave signal can be approximated by a linear com-
bination of sine functions with different frequencies.

In the next section, we’ll describe the Fourier transform, which is
a continuous-frequency version of the Fourier series.
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[ Three compilations of linear algebra applications ]
http://aix1.uottawa.ca/~jkhoury/app.htm
https://medium.com/@jeremyjkun/633383d4153f
http://people.math.harvard.edu/~knill/teaching/math21b2018/handouts/use.pdf

[ A document that describes many applications in detail ]
http://www.geverstine.com/reprints/Everstine_linearalgebra.pdf

[ 33 miniatures: algorithmic applications of linear algebra ]
http://kam.mff.cuni.cz/~matousek/stml-53-matousek-1.pdf

[ A book about linear algebra applications to data science ]
http://amazon.com/Data-Science-from-Scratch/dp/149190142X

7.12 Applications problems

It would be easy to think of all the applications of linear algebra pre-
sented in this chapter as a TV program, designed to entertain rather
than teach. Certainly you can continue to the next chapter without
solving any problems, but do you really want to do that to yourself?

Presented next are a number of practice problems that will test
your understanding of the new concepts and give you a great op-
portunity to practice your linear algebra skills. The linear algebra
techniques we learned in previous chapters are key building blocks
for applications. So don’t sit on your laurels thinking, “Yay, I’m in
Chapter 7 and I know linear algebra now, I’m so good.” Prove it.

P7.1 Consider the following chemical equation that describes how your
body burns fat molecules: C55H104O6 `O2 Ñ CO2 `H2O. Balance this
chemical equation.

P7.2 Check out this circuit containing two batteries and five resistors:

V1

B R1

I1

C I3
R3 D

I4

R4

GHA

I2

R2

F

V2

E

R5

I5

a) Label the polarity of each resistor in the circuit.
b) Write three KVL equations and two KCL equations.
c) Rewrite the equations in the form R~I “ ~V, where R is a 5ˆ 5 matrix,
~I “ pI1, I2, I3, I4, I5qT, and ~V is a vector of constants.

d) Find the value of the currents I1 and I5 given V1 “ 15[V], V2 “ 10[V],
R1 “ 1[Ω], R2 “ 1[Ω], R3 “ 4[Ω], R4 “ 2[Ω], R5 “ 2[Ω].
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Hint: Your answers should be 3ˆ 3 matrices. Recall that sinpπ
6 q “ 1

2 .

(a) Original (b) Transformation 1 (c) Transformation 2

(d) Transformation 3 (e) Transformation 4 (f) Transformation 5

Figure 7.20: The effects of various linear transformations on a triangle.

P7.11 Find the homogeneous coordinates representations of each of the
transformations shown in Figure 7.21. The input to each transformation is
the triangle with vertices p0, 0q, p2, 1q, p0, 1q shown in Figure 7.20 (a).

Hint: Use your answers from parts (b) and (d) to answer parts (e) and (f).

P7.12 Find the homogeneous coordinates representation of the perspective
transformation illustrated in the following figure. The observer is located at
the origin p0, 0q and the projection line is given by the equation 2x` y “ 2.

x

y

O

p = (1, 3)

q = (3, 2)

2x + y = 2

p′

q′

Use the matrix to find the coordinates of the projected points p1 and q1.

P7.13 Alice and Bob share the key~k “ 10010111 01010011 10011110. Bob
receives the ciphertext~c “ 11100100 00100110 11101110 sent by Alice. What
is the message sent by Alice? Find an ASCII lookup table on the web and
use it to convert the binary message into characters.



Chapter 8

Probability theory

In this chapter, we’ll use linear algebra concepts to explore the world
of probability theory. Think of this as bonus material because the
topics we’ll discuss are not normally part of a linear algebra course.
Given the general usefulness of probabilistic reasoning and the fact
that you have already covered all the prerequisites, it would be a
shame not to learn a bit about probability theory and its applications.

The chapter is structured as follows. In Section 8.1, we’ll dis-
cuss probability distributions, which are mathematical models for
describing random events. Section 8.2 introduces the concept of a
Markov chain, which can be used to characterize the random transi-
tions between different states of a system. Of the myriad of topics
in probability theory, we’ve chosen to discuss probability distribu-
tions and Markov chains because they correspond one-to-one with
vectors and matrices. This means you should feel right at home. In
Section 8.3, we’ll describe Google’s PageRank algorithm for ranking
webpages, which is an interesting application of Markov chains.

8.1 Probability distributions

Many phenomena in the world are inherently unpredictable. When
you throw a six-sided die, one of the outcomes t1, 2, 3, 4, 5, 6uwill re-
sult, but you don’t know which one. Similarly, when you toss a coin,
you know the outcome will be either heads or tails but you can’t
predict which outcome will result. Probabilities are used to describe
events where uncertainty plays a role. We can assign probabilities
to the different outcomes of a dice roll, the outcomes of a coin toss,
and also to many real-world systems. For example, we can build a
probabilistic model of hard drive failures using past observations.

439
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We can then calculate the probability that your family photo albums
will survive the next 10 or 20 years. Backups my friends, backups.

Probabilistic models can help us better understand random
events. The fundamental concept in probability theory is that of a
probability distribution, which describes the likelihood of different
outcomes of a random event. For example, the probability distri-
bution for the roll of a fair die is pX “ p 1

6 , 1
6 , 1

6 , 1
6 , 1

6 , 1
6 qT, and the

probability distribution for a coin toss is pY “ p 1
2 , 1

2 qT. Each entry
of a probability distribution corresponds to the probability mass of a
given outcome. This terminology borrows from the concept of mass
distribution used in physics. The entries of a probability distribution
satisfy the following conditions: each entry is a nonnegative number,
and the sum of the entries is one. These two conditions are known
as the Kolmogorov axioms of probability.

Strictly speaking, understanding linear algebra is not required
for understanding probability theory. However, vector notation is
very effective for describing probability distributions. Your existing
knowledge of vectors and the rules for matrix multiplication will al-
low you to quickly understand many concepts in probability theory.
Probabilistic reasoning is highly useful, so it’s totally worth taking
the time to learn about it.

Random variables

A random variable X is described by a probability distribution pX.
Before we formally define the notion of a probability distribution,
we must introduce some formalism. We denote by X (calligraphic
X) the sample space of the random variable X, which is the set of all
possible outcomes of the random variable. A discrete random vari-
able has a finite sample space. For example, we can describe the
outcome of rolling a six-sided die using the random variable X P X ,
where the sample space is X “ t1, 2, 3, 4, 5, 6u. The number of possi-
ble outcomes is six: |X | “ 6.

We can describe the random outcome of a coin toss as a random
variable Y P theads, tailsu. The possible outcomes of the coin toss
are Y “ theads, tailsu. The number of possible outcomes is two:
|Y | “ 2.

In the case of the hard drive failure model, we can define the ran-
dom variable L P N as the years of a hard drive’s lifetime before it
fails. Using the random variable L we can describe interesting sce-
narios using probabilistic reasoning. For example, the condition that
a hard drive will function correctly for at least eight years can be
described as L ě 8.
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Probability distributions

The probability distribution of a discrete random variable X P X is
a vector of |X | nonnegative numbers that sum to one. Using mathe-
matically precise notation, we write the definition of pX as follows:

pX P R|X | such that pXpxq ě 0,@x P X and
ÿ

xPX
pXpxq “ 1.

A probability distribution is a vector in R|X | that satisfies two special
requirements: its entries must be nonnegative and the sum of the
entries must be one.

Events

In addition to the individual outcomes of a random variable, we can
define events that consist of compositions of individual outcomes.
Events correspond to different subsets of the sample space and are
usually defined using words like “tevent descriptionu,” which is the
standard curly-bracket notation used to denote sets and subsets.

Recall the random variable X that describes the outcome of
rolling a six-sided die. The sample space for this random vari-
able is X “ t1, 2, 3, 4, 5, 6u. We can define various events that
involve the six-sided die and describe them as subsets of the sample
space. For example, the event tX is oddu corresponds to the subset
t1, 3, 5u Ă X .

Events are useful because they allow us to describe specific com-
binations of outcomes that are of practical interest. We can use the
logical operators OR and AND to define composite events. The logical
OR operator for events corresponds to the union operation for sets.
For example, X resulting in an odd number,

tX is oddu “ tX “ 1u OR tX “ 3u OR tX “ 5u,
corresponds to the union of sets t1u Y t3u Y t5u “ t1, 3, 5u Ă X .

The logical AND operator corresponds to the intersection of sets,
and is often used to describe composite events that involve multiple
random variables.

With these simple principles for describing probabilistic phenomena,
we can build rich combinations of random events, expectations, and
statistics—and develop methods for predicting the likelihood of fu-
ture events. In the remainder of this section, we’ll explore concepts
of probabilistic reasoning through a series of examples.
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In the next section, we’ll learn about an application of conditional
probability distributions that describes the state of a system under-
going random transitions between a number of possible states. This
is a special case of a conditional probability distribution for which
the random conditioning variable and random outcome variable are
of the same dimension. Indeed, the outcome variable and the con-
ditional space both represent states of the same system at different
times.

Links

[ Discussion on the Bayesian way of thinking about probabilities ]
https://en.wikipedia.org/wiki/Bayesian_probability

[ Detailed discussion about Bayes rule ]
http://yudkowsky.net/rational/bayes
http://yudkowsky.net/rational/technical

Exercises

E8.1 Do the following vectors represent probability distributions?

a)
´

1
2 , 1

2 , 1
2

¯T
b)
´

1
4 , 1

4 , 1
4 , 1

4

¯T
c)p0.3, 0.3,´0.1, 0.5qT

E8.2 Compute the expected value µX and the variance σ2
X of the ran-

dom variable X that describes the outcome of rolling a six-sided die.
The probability distribution of X is pX“ p 1

6 , 1
6 , 1

6 , 1
6 , 1

6 , 1
6 qT.

8.2 Markov chains

So far, we’ve talked about random events without any reference to
the flow of time. In this section we’ll combine the idea of random
variables with the notion of time. A random process is a model of
a system that undergoes transitions between states over time. The
state of the system at time t is described by a random variable Xt.
We obtain the next state of the system Xt`1 from the following con-
ditional probability distribution:

pXt`1|XtXt´1¨¨¨X0
pxt`1|xtxt´1 ¨ ¨ ¨ x0q.

The random variable Xt`1 depends on the previous states of the sys-
tem: Xt, Xt´1, Xt´2, ¨ ¨ ¨ , X0. Studying such history-dependent pro-
cesses is a formidable task due to the myriad of possible influences
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pXt`1|Xt
pxt`1|xtq describe how the next state of the ball’s possession

xt`1 depends on the previous state of the ball’s possession xt. The
transition matrix of the Markov chain in our current example is

pXt`1|Xt
“

»
—–

0.2 0.1 0.3
0.4 0.8 0.3
0.4 0.1 0.3

fi
ffifl “ M.

To maintain consistency with the notation for conditional probabil-
ity distributions, we refer to the entries of M as pXt`1|Xt

pxt`1|xtq. The
“given” variable xt selects the column of the matrix M, and the dif-
ferent entries in this column represent the transition probabilities for
that state. Using the matrix M and some basic linear algebra tech-
niques, we can calculate the probability of finding the ball in any
given player’s possession after many iterations of the “pass the ball”
Markov process.

C

A B0.2

0.4

0.4

0.8

0.1

0.1

0.3

0.3

0.3

Figure 8.1: A representation of the transition probabilities between three
states: “Alice has the ball,” “Bob has the ball,” and “Charlie has the ball.”

Let’s walk through an example calculation in which we assume
the ball starts in Alice’s possession. Since we know that Alice has
the ball at t “ 0, we can describe the initial state of the system by
the probability distribution pX0

“ p1, 0, 0qT, with 100% of the proba-
bility on Alice. We obtain the probability of finding the ball in each
player’s possession after one time step, or unit of time, by multiply-
ing the initial probability vector pX0

by the matrix M:

pX1
“ MpX0

“

»
—–

0.2 0.1 0.3
0.4 0.8 0.3
0.4 0.1 0.3

fi
ffifl

»
—–

1
0
0

fi
ffifl “

»
—–

0.2
0.4
0.4

fi
ffifl.
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E8.4 Go to https://live.sympy.org and create a Matrix object de-
scribing the passing-the-ball Markov chain transition probabilities.
Use the Matrix methods .eigenvects() and .nullspace() to con-
firm the stationary distribution of the Markov chain is

` 5
31 , 20

31 , 6
31

˘
.

Hint: You can create a Matrix object using

>>> M = Matrix([[ 2/10, 1/10, 1/3 ],
[ 4/10, 8/10, 1/3 ],
[ 4/10, 1/10, 1/3 ]])

If you start from a matrix with exact rational entries, you’ll obtain
the exact answer in terms of rational numbers. You can also use the
function S (short for sympify) to create rationals: S(1/3) = 1

3 .

Hint: The eigenspace that corresponds to the eigenvalue λ “ 1 is the
null space of the matrix pM´13q. Use the SymPy command eye(3) to
create a 3ˆ 3 identity matrix 13, then apply the nullspace method.

Hint: Use vec.norm(1) to compute the `1-norm of the vector vec.

E8.5 Find the stationary distribution of the following Markov chain:

C “

»
—–

0.8 0.3 0.2
0.1 0.2 0.6
0.1 0.5 0.2

fi
ffifl.

8.3 Google’s PageRank algorithm

Consider the information contained in the links between webpages.
Each link from Page A to Page B can be interpreted as a recommen-
dation by Page A’s author for the contents of Page B. In web-speak
we say links from Page A to Page B are “sending eyeballs” to Page B,
presumably because there is something interesting to see on Page B.
These observations about “eyeball worthiness” are the inspiration
behind Google’s PageRank algorithm. We find a good summary of
the idea behind PageRank in Google’s 2001 patent application:

A method assigns importance ranks to nodes in [...] the
world wide web or any other hypermedia database.
The rank assigned to a document is calculated from the
ranks of documents citing it. In addition, the rank of a
document is calculated from a constant representing the
probability that a browser through the database will ran-
domly jump to the document. — Patent US6285999
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Links

[ The original PageRank paper ]
http://ilpubs.stanford.edu/422/1/1999-66.pdf

[ Further discussion about the PageRank algorithm ]
https://en.wikipedia.org/wiki/PageRank

[ The power iteration method for finding the PageRank eigenvector ]
https://en.wikipedia.org/wiki/Power_iteration

Exercises

E8.6 Compute the PageRank vector for the network of webpages
shown in Figure 7.3 on page 373.

Hint: Use https://live.sympy.org and define the matrix M1 using
the syntax Matrix([[...], ...]), then mix it with an all-ones ma-
trix ones(n,n). Use the nullspace method from E8.4 to obtain the
eigenvector in the λ “ 1 eigenspace.

8.4 Probability problems

To better understand random variables and probability distributions,
you need to practice using these concepts to solve real-world prob-
lems. It just so happens there are some practice problems on this
very topic in this section—how convenient is that? Don’t skip them!

Solving practice problems will help you understand probability
theory and Markov chains. If you haven’t played with SymPy yet,
now is a great chance to get to know this powerful computer alge-
bra system because Markov chain calculations are difficult to do by
hand.

P8.1 Given a random variable X with three possible outcomes t1, 2, 3u and
probability distribution pX“ pp1, p2, p3q, prove that p1 ď 1.

Hint: Use the Kolmogorov’s axioms and build a proof by contradiction.

P8.2 The probability of heads for a fair coin is p “ 1
2 . The probability of

getting heads n times in a row is given by the expression pn. What is the
probability of getting heads four times in a row?

P8.3 You have a biased coin that lands on heads with probability p, and
consequently lands on tails with probability p1´ pq. Suppose you want to
flip the coin until you get heads. Define the random variable N as the num-
ber of tosses required until the first heads outcome. What is the probability
mass function PNpnq for success on the nth toss? Confirm that the formula is
a valid probability distribution by showing

ř8
n“1 PNpnq “ 1.

Hint: Find the probabilities for cases n “ 1, 2, 3, . . . and look for a pattern.



Chapter 9

Quantum mechanics

By the end of the 19th century, physicists thought they had figured
out most of what there is to know about the laws of nature. New-
ton’s laws of mechanics described the motion of objects in space,
and Maxwell’s equations described electricity and magnetism. Wave
phenomena—including the propagation of sound, light, and waves
on the surface of liquids—were also well understood. Only a few
small inconsistencies between theory and experiments with atoms
and radiation remained unsolved.

“[ . . . ] it seems probable that most of the grand underlying principles
have now been firmly established and that further advances are to be
sought chiefly in the rigorous application of these principles to all the
phenomena which come under our notice.”

—Albert A. Michelson in 1894

Physicists like Michelson were worried about the future of physics
research. It was as if they were wondering, “What are we going to
do now that we’ve figured everything out?” Little did they know
about the quantum storm that was about to hit physics, and with it,
the complete rewrite of our understanding of nature at the smallest
scale.

Understanding the structure of atoms—the smallest constituents
of matter known at the time—was no trivial task. Describing the
absorption of electromagnetic radiation by metals also turned out
to be quite complicated. In both cases, the physical theories of the
time predicted that the energy of physical systems could take on any
value; yet experimental observations showed discrete energy levels.
Imagine you throw a (very-very tiny) ball, and the laws of physics
force you to choose an initial velocity for the ball from a list of “al-
lowed” values: 0 m/s, 1 m/s, 2 m/s, 3 m/s, and so forth. That would

465
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be weird, no? Weird indeed, and this is the situation physicists were
facing in the beginning of the 20th century: their theories described
the energy levels of atoms as real numbers E P R, but experiments
showed that only a discrete set of energy levels exist. For example,
the energy levels that the electrons of the hydrogen atom can take on
are:

E P t 21.8ˆ10´19 J, 5.44ˆ10´19 J, 2.42ˆ10´19 J,

13.6ˆ10´20 J, 8.71ˆ10´20 J, 6.05ˆ10´20 J, . . . u.
Other experimental observations suggested that electromagnetic ra-
diation is not a continuous wave, but comes in discrete “wave pack-
ets,” which we call photons today. The theory of quantum mechanics
was born out of a need to explain these observations. The term quan-
tum, from the Latin quantus for quantity, was coined to describe the
discrete nature of the phenomena that physicists were trying to ex-
plain.

During the first half of the 20th century, in experiment after ex-
periment, quantum principles were used to correctly predict many
previously-unexplained observations. During the second half of the
20th century, biologists, chemists, engineers, and physicists applied
quantum principles to all areas of science. This process of “upgrad-
ing” classical models to quantum models led to a better understand-
ing of the laws of nature, and the discovery of useful things like tran-
sistors and lasers.

The fundamental principles of quantum mechanics can be ex-
plained in the space on the back of an envelope. Understanding
quantum mechanics is a matter of combining a little knowledge of
linear algebra (vectors, inner products, projections) with some prob-
ability theory (Chapter 8). In this chapter, we’ll take a little excursion
to the land of physics to learn about the ideas of great scientists like
Bohr, Planck, Dirac, Heisenberg, and Pauli. Your linear algebra skills
will allow you to learn about some fascinating 20th-century discov-
eries. This chapter is totally optional reading, reserved for readers
who insist on learning about the quantum world. If you’re not in-
terested in quantum mechanics, it’s okay to skip this chapter, but I
recommend you check out Section 9.3 on Dirac notation for vectors
and matrices. Learning Dirac notation serves as an excellent review
of the core concepts of linear algebra.

9.1 Introduction

The principles of quantum mechanics have far-reaching implications
for many areas of science: physics, chemistry, biology, engineering,
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philosophy, and many other fields of study. Each field of study has
its own view on quantum mechanics, and has developed a special-
ized language for describing quantum concepts. We’ll formally in-
troduce the postulates of quantum mechanics in Section 9.5, but be-
fore we get there, let’s look at some of the disciplines where quantum
principles are used.

Physics Physicists use the laws of quantum mechanics as a tool-
box to understand and predict the outcomes of atomic-scale physics
experiments. By “upgrading” classical physics models to reflect the
ideas of quantum mechanics, physicists (and chemists) obtain more
accurate models that lead to better predictions.

For example, in a classical physics model, the motion of a particle
is described by its position xptq and velocity vptq as functions of time:

classical state “ pxptq, vptqq, for all times t.

At any given time t, the particle is at position xptq and moving with
velocity vptq. Using Newton’s laws of motion and calculus, we can
predict the position and the velocity of a particle at all times.

In a quantum description of the motion of a particle in one dimen-
sion, the state of a particle is represented by a wave function |ψpx, tqy,
which is a complex-valued function of position x and time t:

quantum state “ |ψpx, tqy, for all times t.

At any given time t, the state of the particle corresponds to a
complex-valued function of a real variable |ψpxqy P tR Ñ Cu. The
wave function |ψpxqy is also called the probability-amplitude function.
The probability of finding the particle at position xa is proportional
to the value of the squared norm of the wave function:

Prptparticle position “ xauq 9 ˇ̌|ψpxaqy
ˇ̌2.

Instead of having a definite position xptq as in the classical model, the
position of the particle in a quantum model is described by a proba-
bility distribution calculated from its wave function |ψpxqy. Instead
of having a definite momentum pptq, the momentum of a quantum
particle is another function calculated based on its wave function
|ψpxqy.

Classical models provide accurate predictions for physics prob-
lems involving macroscopic objects, but fail to predict the physics of
atomic-scale phenomena. Much of 20th-century physics research ef-
forts were dedicated to the study of quantum concepts like ground
states, measurements, spin angular momentum, polarization, uncer-
tainty, entanglement, and non-locality.
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Computer science Computer scientists understand quantum me-
chanics using principles of information. Quantum principles impose
a fundamental change to the “data types” used to represent infor-
mation. Classical information is represented as bits, elements of the
finite field of size two Z2:

bit: x “ 0 or x “ 1.

In the quantum world, the fundamental unit of information is the
qubit, which is a two-dimensional unit vector in a complex inner
product space:

qubit: |xy “ α|0y ` β|1y.
This change to the underlying information model requires reconsid-
ering fundamental information processing tasks like computation,
data compression, encryption, and communication.

Philosophy Philosophers have also updated their conceptions of
the world to incorporate the laws of quantum mechanics. Obser-
vations of physics experiments forced them to reconsider the fun-
damental question, “What are things made of?” Another interesting
question philosophers have considered is whether the quantum state
|ψy of a physical system really exists, or if |ψy is a representation of
our knowledge about the system.

A third central philosophy concept that quantum mechanics calls
into question is determinism—the clockwork-model of the universe,
where each effect has a cause we can trace, like the connections be-
tween gears in a mechanical clock. The laws of physics tell us that
the next state of the universe is determined by the current state of the
universe, and the state changes according to the equations of physics.
However, representing the universe as a quantum state has implica-
tions for our understanding of how the universe “ticks.” Clockwork
(deterministic) models of the universe are not wrong—they just re-
quire a quantum upgrade.

Many scientists are also interested in the philosophical aspects
of quantum mechanics. Physicists call these types of questions foun-
dations or interpretations. Since different philosophical interpretations
of quantum phenomena cannot be tested experimentally, these ques-
tions are considered outside the scope of physics research. Neverthe-
less, these questions are so deep and fascinating that physicists con-
tinue to pursue them, and contribute interesting philosophical work.

[ Philosophical issues in quantum theory ]
http://plato.stanford.edu/entries/qt-issues/
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Physical models of the world

We’ll situate our discussion of quantum mechanics within two con-
ceptual worlds:

• The real world is where physical experiments are performed.
• The mathematical world is a purely theoretical construct that

aims to model certain aspects of the real world.

The better the mathematical model, the more closely its predictions
correspond to the behaviour of real-world systems. Sill, no math or
physics model can ever predict real-world outcomes with 100% ac-
curacy. When we say that a certain mathematical model is better
than another, we mean it can predict the outcomes of controlled ex-
periments with greater accuracy. Physicists are very open to new
theories—anyone can be a physicist! You can start by constructing
any crazy mathematical model for describing nature, and if your
model correctly predicts the outcomes of experiments, other physi-
cists will start using it.

We can make a further distinction among mathematical models,
classifying them into two categories depending on the type of math
they use:

• Classical models describe the world in terms of real variables
like positions and velocities.

• Quantum models describe systems in terms of vectors in com-
plex vector spaces.

Table 9.1 compares the objects used in the two types of mathematical
models of the real world. In physics, classical models describe the
motion of particles using trajectories~rptq, whereas quantum models
use wave functions |ψp~r, tqy. In computer science, classical informa-
tion is stored in bits i P t0, 1u, whereas quantum information is stored
in qubits |xy P C2.

Example Let’s analyze the difference between classical and quan-
tum models of the real world using an example. Consider a photon
(a particle of light) going through an optical circuit that consists of
several lenses, mirrors, and other optical instruments. A photon de-
tector is placed at position x f at the end of the circuit. The objective
of the experiment is to predict if the photon will arrive at the detector
and cause it to “click.” The two possible outcomes of the experiment
are click (photon arrives at detector) or noclick (photon doesn’t
arrive at detector).1

1We’re assuming the detector has 100% efficiency (detects every photon that arrives
at it) and generates zero noise (no false-positive clicks).
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Real world:

• The motion of a ball thrown in the air
• The motion of an electron through space
• The paths of light particles moving through optical circuits
• The electric current flowing though a superconducting loop

Classical models:

• xptq P tR Ñ Ru
• ~rptq P tR Ñ R3u
• i P Z2 “ t0, 1u (a bit)
• j P Zd

Quantum models:

• |ψpx, tqy P tRˆR Ñ Cu
• |ψp~r, tqy P tR3 ˆR Ñ Cu
• |xy P C2 (a qubit)
• |yy P Cd

Table 9.1: Examples of the math used in classical and quantum models.

A classical model of the motion of the photon calculates the pho-
ton’s position at all times xptq and leads to the prediction i “ 1
(click) if x f “ xptq, for some t. On the other hand, if the detec-
tor does not lie on the photon’s trajectory, then the classical model
will predict i “ 0 (noclick).

A quantum model would describe the photon’s trajectory
through the circuit as a linear combination of two different pos-
sible paths:

|ψy “ α|0y ` β|1y where |α|2 ` |β|2 “ 1.

Here |1y describes paths that arrive at the detector, and |0y describes
paths that don’t. The coefficients α and β describe the relative
“weights” of the different paths. Using the quantum model, we can
obtain a probabilistic prediction of whether the detector will click or
not:

Prp noclickq “ |α|2 and Prpclickq “ |β|2.

For this example, both the classical and the quantum models de-
scribe the same real-world phenomenon. We can test the validity of
both models by comparing the models’ predictions with what hap-
pens in reality.

Note that the two models make very different assumptions about
reality. The classical model assumes the photon follows a single path
through the circuit, whereas the quantum model assumes the photon
can take multiple paths through the circuit. Despite the difference in
the mathematical substrate of the models and their fundamentally
different views of reality, we can compare the two models’ predic-
tions on the same footing. Note it doesn’t make sense to say one
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model is more real than the other. The only thing that is real is the
photon in the optical circuit, and the photon doesn’t care whether
you use classical or quantum models to describe its path.

Quantum model peculiarities

We’ll now comment on the relative “intuitiveness” of classical and
quantum models and introduce the concept of quantum measurement,
which is of central importance in quantum mechanics.

Classical models have the advantage of being more intuitively
understandable than quantum models. The variables in classical
models often correspond to measurable aspects of real-world sys-
tems. We can identify the position variable in a classical model with
the position of a particle in the real world. Velocity and momentum
are harder to understand intuitively, but we have some general intu-
ition about motion and collisions from everyday life. In general, we
can understand classical models more readily because it’s easier for
us to think about a mechanistic, clockwork-like universe, in which
objects push on each other with clearly defined cause and effect, like
a clock that goes click, click, click.

In contrast, we do not enjoy such intuitive interpretation of quan-
tum models, since our senses cannot directly perceive movement
and interaction at the quantum level. Because quantum models’
states do not directly correspond to observable aspects in the real
world, quantum models are often described as mysterious and coun-
terintuitive. Quantum models are harder to understand in part be-
cause they use complex vector quantities to represent systems, and
complex numbers are more difficult to visualize. For example, visu-
alizing the complex-valued state of a photon |ψy is difficult, since you
must think about both the real part and the imaginary part of |ψy.
Even though we can’t see what |ψy looks like, we can describe it us-
ing an equation, and do math calculations with it. In particular, we
can compare the predictions obtained from calculations based on the
quantum state |ψy to measurements performed in the real world.

The process of quantum measurement is how we map the predic-
tions of the quantum model to observable quantities. A quantum
measurement acts on a particle’s wave function |ψy to produce a clas-
sical outcome. Performing quantum measurements is like asking
questions of particles, and the measurement outcomes are the an-
swers to these questions.

What is your position? ô positionp|ψyq “ x P R

What is your momentum? ô momentump|ψyq “ p P R

What is your spin momentum? ô spinÒÓp|ψyq “ s P tÒ, Óu
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Since measurement outcomes correspond to real-world quantities
that can be measured, we can judge the merits of quantum models
the same way we judge the merits of classical models—in terms of
the quality of their predictions.

Chapter overview

In the next section, we’ll describe a tabletop experiment involving
lasers and polarization lenses, with an outcome that’s difficult to ex-
plain using classical physics. The remainder of the chapter will in-
troduce the tools needed to explain the outcome of this experiment
in terms of quantum mechanics. We’ll start by introducing a special
notation for vectors that is used to describe quantum phenomena
(Section 9.3).

In Section 9.5, we’ll formally define the “rules” of quantum me-
chanics, also known as the postulates of quantum mechanics. We’ll
learn the “rules of the game” using the simplest possible quantum
systems (qubits), and define how quantum systems are prepared,
how we manipulate them using quantum operations, and how we ex-
tract information from them using quantum measurements. This part
of the chapter is based on the notes from the introductory lectures of
a graduate-level quantum information course, so don’t think you’ll
be getting some watered-down, hand-wavy version of quantum me-
chanics. You’ll learn the real stuff, because I know you can handle
it.

In Section 9.6 we’ll apply the quantum formalism to the polariz-
ing lenses experiment, showing that a quantum model leads to the
correct qualitative and quantitative prediction for the observed out-
come. We’ll close the chapter with short explanations of different
applications of quantum mechanics with pointers for further explo-
ration about each topic.

Throughout the chapter, we’ll focus on matrix quantum me-
chanics and use computer science language to describe quantum
phenomena. A computer science approach allows us to discuss the
fundamental aspects of quantum theory without introducing all the
physics required to understand atoms. Finally, I just might throw in
a sample calculation using the wave function of the hydrogen atom,
to give you an idea of what that’s like.

9.2 Polarizing lenses experiment

Let’s run through a simple tabletop experiment that illustrates the
limitations of classical, deterministic reasoning. The outcome of the
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tiny conductive bands that interact with the electric component of
incoming light particles. Light rays that hit the polarizing lens will
either pass through or be reflected depending on their polarization.
Light particles with a polarization perpendicular to the conductive
bands pass through the lens, while light particles with polarization
parallel to the conductive bands are reflected. This is because the
surface of the lens has different conductive properties in the parallel
and perpendicular directions.

Figure 9.2: Incoming photons interact with the horizontal conductive bands
of a polarizing lens. The horizontal bands of the lens reflect the horizontal
component of the photons’s electric field. Vertically-polarized photons pass
through the lens because the conductive bands are perpendicular to their
electric field. Thus, a vertically polarizing lens denoted V allows only verti-
cally polarized light to pass through.

Consider the illustration in Figure 9.3. The effect of a vertically po-
larizing lens on a beam of light is to only allow vertically polarized
light to pass through.

unpolarized light Ñ V Ñ vertically polarized light

Figure 9.3: A vertically polarizing lens (V) allows only vertically polarized
light particles to pass through.

In Figure 9.4 we see another aspect of polarizing lenses. If the light
is already vertically polarized, adding a second vertically polarizing
lens will not affect the beam. All light that passes through the first
lens will also pass through the second.

Taking a vertically polarizing lens and rotating it by 90 degrees
turns it into a horizontally polarizing lens. See Figure 9.5.
Note that horizontally polarizing lenses and vertically polarizing
lenses are complementary: vertically polarized light will not pass
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To understand any vector space, it is essential to construct a basis
for the space. A natural choice for a basis is the standard basis, which
we’ll denote t|0y, |1y, |2y, . . . , |d ´ 1yu. The basis vectors are defined
as:

|0y “

»
———–

1
0
...
0

fi
ffiffiffifl, |1y “

»
———–

0
1
...
0

fi
ffiffiffifl, . . . , |d´ 1y “

»
———–

0
...
0
1

fi
ffiffiffifl.

Note the indices are shifted by one so the first basis vector has index
0, not index 1. This zero-based indexing is chosen to make certain
links between quantum theory and computer science more apparent.

One benefit of Dirac notation is that it doesn’t require writing
subscripts. To refer to a vector associated with properties a, b, and
c, we can write |a, b, cy, instead of the more convoluted expression
~va,b,c.

We’ll now focus solely on the two-dimensional complex vector
space C2; however, the results and definitions presented below also
apply to vectors of any dimension.

Vectors

In Dirac notation, a vector in C2 is denoted as a ket:

|vy “ α|0y ` β|1y ô
„

α
β


“ α

„
1
0


` β

„
0
1


,

where α P C and β P C are the components of |vy and t|0y, |1yu is the
standard basis for C2:

|0y “
„

1
0


, |1y “

„
0
1


.

Why do we call the angle-bracket thing a “ket,” you ask? Let me tell
you about the bra part, and then it will start to make sense.

The Hermitian transpose of the ket-vector |vy “ α|0y ` β|1y is the
bra-vector xv|:

xv| “ αx0| ` βx1| ô rα, βs “ αr1, 0s ` βr0, 1s.
Recall that the Hermitian transpose, also called the complex trans-
pose, is the combination of the regular transpose (~v Ñ ~vT) and the
complex conjugation of each component of the vector (vi Ñ vi), and
is denoted as the dagger operator “ : ” (see page 340 for a refresher
on the dagger operator). Now observe how much simpler the bra
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input some data into a machine, and wait for the machine to process
the data and output the answer.

We can think of both digital and quantum technology as black
box processes, with internal workings that we can’t access directly.
In both cases, the intermediate representation of data is in a format
that is unintelligible: we can’t understand what is encoded in quan-
tum states any more than we can understand what is encoded in dig-
ital data. For instance, an mp3 file contains ones and zeros; but, unless
we’re unusually gifted, it’s impossible to tell which artist plays the
song 010100101010101000111 . . . just by looking at the raw, digital
data. To understand information processing in the digital and quan-
tum worlds, we must study the “adaptors”—the processes used to
convert the internal data representation into signals we can intelligi-
bly perceive.

To further highlight the parallel structure between digital infor-
mation processing and quantum information processing, we’ll now
review the mp3 compression task as an example of a digital informa-
tion processing pipeline.

Digital signal processing

A sound card is a computer component that converts between analog
signals that we can hear and digital signals that computers under-
stand. The sound card digitizes sound using an analog-to-digital
converter (ADC). For music playback, the sound card uses a digital-
to-analog converter (DAC), which transforms digital sounds into
analog sound vibrations to be played through speakers. The ADC
receives signal via the sound card’s line-in and microphone jacks; the
DAC outputs sound via the sound card’s line-out and headphone
jacks.

sound ADC .wav

P Zn
2

.mp3

P Zk
2

digital processing

DAC sound 1

Figure 9.9: A digital information processing pipeline for sound recording
and playback. Sound vibrations are captured by a microphone and con-
verted to digital form using an analog-to-digital converter (ADC). Next the
digital wav file is converted to the more compact mp3 format using digital
processing. In the last step, sound is converted back into analog sound vi-
brations by a digital-to-analog converter (DAC).

Figure 9.9 illustrates a full digital information processing pipeline
for sound. We use an analog-to-digital converter (ADC) to transform
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of quantum effects like constructive interference.
The other big difference between classical and quantum compu-

tation is that the quantum computer outputs the state |yy only once.
You can think of quantum measurement as asking a question about
the state |yy. You’re free to perform any measurement, but you can
ask only one question, since quantum measurements disrupt the
state of a system.

x
P Zk

2

State

preparation
|xy
P Cm

|yy
P Cn

quantum operations

Measurement y

P Z`
2

Figure 9.10: A quantum information processing pipeline. A classical bit-
string x of length k is used as instructions for preparing an m-dimensional
quantum state |xy. Next, quantum operations are performed on the state |xy
to convert it to the output state |yy. Finally, the state |yy is measured to obtain
the classical bitstring y as output.

Quantum processing pipelines are analogous to digital informa-
tion processing pipelines. The process of state preparation in quantum
processing is analogous to the analog-to-digital conversion step in
digital processing. In both cases we convert the input to the format
required for the processing step. Similarly, quantum measurements
correspond to the digital-to-analog conversion step. In both cases
we must convert the output to a format we can understand.

In the next section, we’ll discuss the components of the quantum
information processing pipeline in more detail. We’ll introduce the
four postulates of quantum mechanics, which specify how quantum
systems are represented and what we can do with them. The pos-
tulates of quantum mechanics roughly correspond to the conversion
steps illustrated in Figure 9.10. One postulate defines how quantum
states are prepared, another postulate describe the types of opera-
tions we can perform on quantum states, and a third postulate for-
mally defines the process of quantum measurement. The next section
is the “quantum mechanics explained in the space on the back of an
envelope” part alluded to in the introduction of this chapter. We’ve
set the scene, introduced Dirac notation, and now we can finally dis-
cuss the details of the quantum formalism.

9.5 Postulates of quantum mechanics

The postulates of quantum mechanics dictate the rules for working
within the “quantum world.” The four postulates define:
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γ
photon

Photodetector 1

Photodetector 0

p1´ αq|1y

|0y

Figure 9.13: The state of a photon after encountering a p1´ αq-silvered mir-
ror is |γy “ α|0y ` β|1y. The probability that the horizontal photodetector
“clicks” is |α|2, and is obtained by projecting |γy on the subspace |0yx0|. The
probability that the top photodetector clicks is equal to |β|2, and is obtained
by projecting |γy on the subspace |1yx1|.

Composite quantum systems

So far we discussed state preparation, quantum operations, and
quantum measurements of individual qubits. There’s just enough
room on the back of our envelope to discuss quantum models for
systems made of multiple qubits.

Classically, if we have two bits b1 P t0, 1u and b2 P t0, 1u, we
can concatenate them to obtain a bit string b1b2 P t0, 1u2, which can
have one of four possible values: 00, 01, 10, and 11. The combined
state of two qubits |ϕ1y P C2 and |ϕ2y P C2 is the tensor product state
|ϕ1yb |ϕ2y in the four-dimensional tensor product space C2bC2 “ C4.
A basis for the tensor product space can be obtained by taking all
possible combinations of the basis vectors for the individual qubits:
t|0y b |0y, |0y b |1y, |1y b |0y, |1y b |1yu.
Postulate 4. The state space of a composite quantum system is equal
to the tensor product of the state spaces of the individual systems. If
systems 1, 2, . . . , n exist in states |ϕ1y, |ϕ2y, ¨ ¨ ¨ , |ϕny, then the state of
the composite system is |ϕ1y b |ϕ2y b ¨ ¨ ¨ b |ϕny.
Postulate 4 tells us how we can combine the state spaces of different
quantum systems to describe a composite system. Many interesting
quantum applications involve operations on multiple qubits and are
described by vectors in a tensor product space, so let’s look more
closely at this “b”-thing.

Tensor product space If you’d never heard of tensor products before,
don’t worry—the only scary part is the tensor product symbol “b,”
which we’ll explain in this section. A tensor product space consists of
all possible combinations of the basis vectors for the two subspaces.
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she performs, and her measurement disturbs the state |ψy whenever
she picks a basis different from the one used by Alice. Since it’s not
possible to measure quantum systems without disturbing them, the
eavesdropper Eve reveals her presence by introducing errors in the
transmitted data. Some of the check bits Alice and Bob compare in
Step 3 will disagree, and thus Alice and Bob will know that some-
one is eavesdropping on them. Though quantum mechanics does
not prevent eavesdropping, it does give Alice and Bob the ability to
detect when an eavesdropper is present.

The BB84 protocol established the beginning of a new field at
the intersection of computer science and physics that studies quan-
tum key distribution protocols. The field has developed rapidly from
theory to research, and today there are even commercial quantum
cryptography systems. It’s interesting to compare quantum cryptog-
raphy with the public key cryptography systems discussed in Sec-
tion 7.9. The security of the RSA public-key encryption is based on
the computational difficulty of factoring large numbers. The secu-
rity of quantum cryptography is guaranteed by the laws of quantum
mechanics.

[ Bennett–Brassard quantum cryptography protocol from 1984 ]
https://en.wikipedia.org/wiki/BB84

[ Using quantum phenomena to distribute secret keys ]
https://en.wikipedia.org/wiki/Quantum_key_distribution

Quantum computing

The idea of quantum computing has existed since the early days of
quantum mechanics. Richard Feynman originally proposed the idea
of a quantum simulator in 1982, which is a quantum apparatus that
can simulate the quantum behaviour of another physical system.
Imagine a device that can simulate the behaviour of physical sys-
tems that would otherwise be too difficult and expensive to build.
The quantum simulator would be much better at simulating quan-
tum phenomena than any simulation of quantum mechanics on a
classical computer.

Another possible application of a quantum simulator could be to
encode classical mathematical optimization problems as constraints
in a quantum system, then let the quantum evolution of the system
“search” for good solutions. Using a quantum simulator in this way,
it might be possible to find solutions to optimization problems much
faster than any classical optimization algorithm could.

Once computer scientists started thinking about quantum com-
puting, they weren’t satisfied with studying optimization problems
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alone, and they set out to qualify and quantify all the computational
tasks that are possible with qubits. A quantum computer stores and
manipulates information that is encoded as quantum states. It’s pos-
sible to perform certain computational tasks on a quantum computer
much faster than on any classical computer. We’ll discuss Grover’s
search algorithm and Shor’s factoring algorithm below, but first let’s in-
troduce the basic notions of quantum computing.

Quantum circuits Computer scientists like to think of quantum
computing tasks as series of “quantum gates,” in analogy with the
logic gates used to construct classical computers. Figure 9.20 shows
an example of a quantum circuit that takes two qubits as inputs and
produces two qubits as outputs.

H ô

»
—————–

1?
2

0 0 1?
2

0 1?
2

1?
2

0
1?
2

0 0 ´ 1?
2

0 1?
2

´ 1?
2

0

fi
ffiffiffiffiffifl

Figure 9.20: A quantum circuit that applies the Hadamard gate to the first
qubit, then applies the controlled-NOT gate from the first qubit to the second
qubit.

This circuit in Figure 9.20 is the combination of two quantum
gates. The first operation is to apply the Hadamard gate H on the
first qubit, leaving the second qubit untouched. This operation is
equivalent to multiplying the input state by the matrix H b 1. The
second operation is called the controlled-NOT (or controlled-X) gate,
which applies the X operator (also known as the NOT gate) to the
second qubit whenever the first qubit is |1y, and does nothing other-
wise:

CNOTp|0y b |ϕyq “ |0y b |ϕy, CNOTp|1y b |ϕyq “ |1y b X|ϕy.
The circuit illustrated in Figure 9.20 can be used to create entan-
gled quantum states. If we input the quantum state |00y “ |0yb|0y
into the circuit, we obtain the maximally entangled state |Φ`y “

1?
2
p|00y ` |11yq as output, as depicted in Figure 9.21.
Quantum circuits can also represent quantum measurements.

Figure 9.22 shows how a quantum measurement in the standard
basis is represented.
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|0〉 H
|0〉 |Φ+〉

Figure 9.21: Inputting |0yb|0y into the circuit produces an EPR state |Φ`y “
1?
2
p|00y ` |11yq on the two output wires of the circuit.

α|0〉 + β|1〉
Bs

0 or 1

Figure 9.22: Measurement in the standard basis Bs “ t|0y, |1yu. The projec-
tors of this measurement are Π0 “ |0yx0| and Π1 “ |1yx1|.

We use double lines to represent the flow of classical information in
the circuit.

Quantum registers Consider a quantum computer with a single
register |Ry that consists of three qubits. The quantum state of this
quantum register is a vector in C2 bC2 bC2:

|Ry “ pα1|0y ` β1|1yq b pα2|0y ` β2|1yq b pα3|0y ` β3|1yq ,

where the tensor product b is used to combine the quantum states
of the individual qubits. We’ll call this the “physical representation”
of the register and use 0-based indexing for the qubits. Borrowing
language from classical computing, we’ll call the rightmost qubit the
least significant qubit, and the leftmost qubit the most significant qubit.

The tensor product of three vectors with dimension two is a vec-
tor with dimension eight. The quantum register |Ry is thus a vector
in an eight-dimensional vector space. The quantum state of a three-
qubit register can be written as:

|Ry “ a0|0y ` a1|1y ` a2|2y ` a3|3y ` a4|4y ` a5|5y ` a6|6y ` a7|7y,
where ai are complex components. We’ll call this eight-dimensional
vector space the “logical representation” of the quantum register.
Part of the excitement about quantum computing is the huge size
of the “logical space” where quantum computations take place. The
logical space of a 10-qubit quantum register has dimension 210 “
1024. That’s 1024 complex components we’re talking about. That’s
a big state space for just a 10-qubit quantum register. Compare this
with a 10-bit classical register, which can store one of 210 “ 1024
discrete values.

We won’t discuss quantum computing further here, but I still
want to show you some examples of single-qubit quantum opera-
tions and their effect on the tensor product space, so you’ll have an
idea of the craziness that is possible.
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Quantum gates Let’s say you’ve managed to construct a quantum
register; what can you do with it? Recall the single-qubit quantum
operations Z, X, and H we described earlier. We can apply any of
these operations on individual qubits in the quantum register. For
example, applying the X “ “

0 1
1 0

‰
gate to the first (most significant)

qubit of the quantum register corresponds to the following quantum
operation:

X ô Xb 1b 1 “

»
——————————–

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

fi
ffiffiffiffiffiffiffiffiffiffifl

.

The operator Xb1b1 “toggles” the first qubit in the register while
leaving all other qubits unchanged.

Yes, I know the tensor product operation is a bit crazy, but that’s
the representation of composite quantum systems and operations so
please get used to it. What if we apply the X operator to the middle
qubit?

X ô 1b Xb 1 “

»
——————————–

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

fi
ffiffiffiffiffiffiffiffiffiffifl

.

Compare the structure of the operators Xb1b1 and 1bXb1. See
how the action of Xs affects different parts of the tensor product
space C8?

To complete the picture, let’s also see the effects of applying the
X gate to the third (least significant) qubit in the register:

X
ô 1b 1b X “

»
——————————–

0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

fi
ffiffiffiffiffiffiffiffiffiffifl

.

Crazy stuff, right? Don’t worry, in time you’ll get used to the space-
within-a-space structure concept.
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Okay, so what?

Quantum computers give us access to a very large state space. The
fundamental promise of quantum computing is that a small set of
simple quantum operations (quantum gates) can be used to perform
interesting computational tasks. Sure it’s difficult to interact with
and manipulate quantum systems, but the space is so damn big that
it’s worth checking out what kind of computing you can do in there.
It turns out there are already several useful things you can do using
a quantum computer. The two flagship applications for quantum
computing are Grover’s search algorithm and Shor’s factoring algo-
rithm.

Grover’s search algorithm Suppose you’re given an unsorted list
of n items and you want to find a particular item in that list. This is
called an unstructured search problem. This is a hard problem to solve
for a classical computer since the algorithm must parse through the
entire list, which takes roughly n steps. In contrast, the unstructured
problem can be solved in roughly

?
n steps on a quantum computer

using Grover’s search algorithm.
The quantum speed for the unstructured search problem sure is

nice, but it’s really nothing to get excited about. The real money-
maker for the field of quantum computing has been Shor’s factoring
algorithm for factoring products of prime numbers.

Shor’s factoring algorithm The security of the RSA cryptosystem
we discussed in Section 7.9 is based on the assumption that factor-
ing products of large prime numbers is computationally intractable.
Given the product de of two unknown prime numbers d and e, it is
computationally difficult to find the factors e and d. No classical al-
gorithm is known that can factor large numbers; even the letter agen-
cies will have a hard time finding the factors of de when d and e are
chosen to be sufficiently large prime numbers. Thus, if an algorithm
that could quickly factor large numbers existed, attackers would be
able to break many of the current security systems. Shor’s factoring
algorithm fits the bill, theoretically speaking.

Shor’s algorithm reduces the factoring problem to the problem
of period finding, which can be solved efficiently using the quantum
Fourier transform. Shor’s algorithm can factor large numbers effi-
ciently (in polynomial time). This means RSA encryption would be
easily hackable by running Shor’s algorithm on a sufficiently large,
and sufficiently reliable quantum computer. The letter agencies are
excited about this development since they’d love to be able to hack
all present-day cryptography. Can you imagine not being able to log
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in securely to any website because Eve is listening in, hacking your
crypto using her quantum computer?

Currently, Shor’s algorithm is only a theoretical concern. Despite
considerable effort, no quantum computers exist today that can ma-
nipulate quantum registers with thousands of qubits.

Discussion

Quantum computing certainly presents interesting possibilities, but
it’s a little early to imagine a quantum computing revolution in to-
morrow’s newspaper. As with startup ventures, it’s the implementa-
tion that counts—not the idea. The current status of quantum com-
puting as a technology is mixed. On one hand, certain quantum al-
gorithms performed in logical space are very powerful; on the other
hand, the difficulty of building a quantum computer is not to be un-
derestimated.

It’s also important to keep in mind that quantum computers are
not better at solving arbitrary computational problems than the com-
puters we already use. The problems that may benefit from a quan-
tum speedup have a particular structure, which can be tackled with
a choreographed pattern of constructive and destructive interference
in quantum registers. Yet not all computationally hard problems
have this structure. Quantum computing technology is at a cross-
road: it could become a revolutionary development, or it could turn
out that building a large-scale quantum computer is not worth the
engineering challenge. So although it’s cool we can execute certain
tasks faster on a quantum computer, don’t throw out your classical
computer just yet.

Even if the quest to build a quantum computer doesn’t pan out,
we’re certain to learn many interesting things about fundamental
physics along the way. Besides, learning about the fundamental na-
ture of quantum information is more scientifically valuable than try-
ing to hack people’s email. In the next section, we’ll give an example
of a new communication task that was discovered through the study
of quantum information science.

Quantum teleportation Figure 9.23 illustrates a surprising aspect
of quantum information: we can “teleport” a quantum state |ψy from
one lab to another. The quantum state |ψy starts in the first qubit of
the register, which is held by Alice, and ends in the third qubit, which
is in Bob’s lab, but there is no quantum communication channel be-
tween the two labs. This is why the term “quantum teleportation”
was coined to describe this communication task, since the state |ψy
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can realize the potential of every child born anywhere in the world.
Right now it seems like it won’t be an easy change, but this is how
it seemed when people were trying to figure out quantum mechan-
ics, too. All it takes is a critical mass of people who realize and truly
internalize the fact we’re all on the same team, and all the divisions
we see between us are pure bullshit. If we make sure that two gen-
erations of kids grow up without economic strife or bullets flying by
their heads, then—I guarantee you—they will be able to figure out
the rest. Together, an educated citizenry armed with the knowledge
of math, history, science, and technology is more powerful than a
dozen Systems combined. All the System has is an outdated hierar-
chical power structure and capital to pay people and make them do
as they’re told. We’ve got six billion people, the internet, and print-
ing presses on our side. Who do you think will win?

9.9 Quantum mechanics problems

Let’s recap what just happened here. Did we really cover all the
topics of an introductory quantum mechanics course? Yes, we did!
Thanks to your solid knowledge of linear algebra, learning the pos-
tulates of quantum mechanics took only a few dozen pages. Sure we
went quickly and skipped the more physics-y topics, but we covered
all the core ideas of quantum theory.

But surely it’s impossible to learn quantum mechanics in such a
short time? Well, you tell me. You’re here. The problems are here.
Prove to me you’ve really learned quantum mechanics by tackling
the practice problems presented in this section like a boss. It’s the
end of the book, so don’t be saving your energy. Solve these prob-
lems and then you’re done.

P9.1 You work in a quantum computing startup and your boss asks you to
implement the quantum gate Q “ 1?

2

“
1 1
1 1

‰
. Can you do it?

Hint: Recall the requirements for quantum gates.

P9.2 The Y gate is defined as Y “
”

0 ´i
i 0

ı
. Compute the effect of the opera-

tor YY on the vectors of the standard basis t|0y, |1yu.
P9.3 Compute XHHYpα|0y ` β|1yq.
Hint: Use the Hadamard gate’s properties to simplify the calculation.

P9.4 Specifying an arbitrary vector α|0y ` β|1y P C2 requires four param-
eters: the real and imaginary parts of α and β. Thus one might think that
qubits have four degrees of freedom. However, the unit-length requirement
and the fact that we can ignore the global phase of a qubit correspond to
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Conclusion

By tackling the linear algebra concepts in this book, you’ve proven
you can handle computational complexity, develop geometric in-
tuition, and understand abstract math ideas. These are precisely
the types of skills you’ll need in order to understand more ad-
vanced math concepts, build scientific models, and develop useful
applications. Congratulations on taking this important step to-
ward your mathematical development. Throughout this book, we
learned about vectors, linear transformations, matrices, abstract
vector spaces, and many other math concepts that are useful for
building math models.

Mathematical models serve as a highly useful common core for
all sciences, and the techniques of linear algebra are some of the most
versatile modelling tools that exist. Every time you use an equation
to characterize a real-world phenomenon, you’re using your math
modelling skills. Whether you’re applying some well-known scien-
tific model to describe a phenomenon or developing a new model
specifically tailored to a particular application, the deeper your math
knowledge, the better the math models you’ll be able to leverage.
Let’s review and catalogue some of the math modelling tools we’ve
learned about, and see how linear algebra fits into a wider context.

To learn math modelling, you must first understand basic math
concepts such as numbers, equations, and functions f : R Ñ R.
Once you know about functions, you can use different formulas f pxq
to represent, model, and predict the values of real-world quantities.
Working with functions is the first modelling superpower conferred
on people who become knowledgeable in math. For example, under-
standing the properties of the function f pxq “ Ae´x{B in the abstract
enables you to describe the expected number of atoms remaining in
a radioactive reaction Nptq “ No e´γt, predict the voltage of a dis-
charging capacitor over time vptq “ Vo e´ t

RC , and understand the ex-
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ponential probability distribution pXpxq “ λe´λx.
To further develop your math modelling skills, the next step is

to generalize the concepts of inputs x, outputs y, and functions f
to other input-output relationships. In linear algebra, we studied
functions of the form T : Rn Ñ Rm that obey the linear property:

Tpα~x1 ` β~x2q “ αTp~x1q ` βTp~x2q.
This linear structure enables us to study the properties of many func-
tions, solve equations involving linear transformations, and build
useful models for many applications (some of which we discussed
in Chapter 7). The mathematical structure of a linear transforma-
tion T : Rn Ñ Rm can be represented as multiplication by a matrix
MT P Rmˆn. The notion of matrix representations (T ô MT) was
central throughout this book. Even if you forget the computational
procedures we learned, the idea of representations should stick with
you, and you should be able to recognize representations in many
contexts. That’s a big deal, because most advanced math topics in-
volve studying the parallels between different abstract notions. Un-
derstanding linear transformations and their representations is an
important first step toward advanced math topics.

The computational skills you learned in Chapter 3 are also useful;
though you probably won’t be solving any problems by hand using
row operations from this point forward, since computers outclass
humans on matrix arithmetic tasks. Good riddance. Until now, you
did all the work and used SymPy to check your answers. From now
on, you can let SymPy do all the calculations and your job will be to
chill.

If you didn’t skip the sections on abstract vector spaces, you
know about the parallels between the vector space R4 and the ab-
stract vector spaces of third-degree polynomials a0 ` a1x ` a2x2 `
a3x3 and 2 ˆ 2 matrices

“
a b
c d

‰
. This is another step up the ladder

of abstraction, as it deepens your understanding of all math objects
with vector-like structure.

It was my great pleasure to be your guide through the subject of
linear algebra. I hope you walk away from this book with a solid un-
derstanding of how the concepts of linear algebra fit together. In the
book’s introduction, I likened linear algebra to playing with LEGOs.
Indeed, if you feel comfortable manipulating vectors and matrices,
performing change-of-basis operations, and using the matrix decom-
position techniques to see inside matrices, you’ll be able to “play”
with all kinds of complex systems and problems. For example, con-
sider the linear transformation T that you want to apply to an in-
put vector ~v. Suppose the linear transformation T is most easily de-
scribed in the basis B1, but the vector ~v is expressed with respect to
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the basis B. “No problem,” you can say, and proceed to build the
following chain of matrices that compute the output vector ~w:

r~wsB “ r1sB B1 rATsB1 B1 r1sB1 Br~vsB.

Do you see how matrices and vectors fit together neatly like LEGOs?
I can’t tell you what the next step on your journey will be. With

your new linear algebra modelling skills, a thousand doors have
opened for you; now you must explore and choose. Will you learn
how to code and start a software company? Maybe you’ll use your
analytical skills to go to Wall Street and destroy the System from the
inside. Or perhaps you’ll apply your modelling skills to revolution-
ize energy generation, thus making human progress sustainable. Re-
gardless of your choice of career, I hope you’ll stay on good terms
with math and continue learning whenever you have the chance.
Good luck with your studies!

Social stuff

Be sure to contact me if you have any feedback about this book. It
helps to hear which parts of the book readers like, hate, or don’t
understand. I consider all feedback in updating and improving fu-
ture editions of this book. This is how the book got good in the first
place—lots of useful feedback from readers. You can reach me by
email at ivan@minireference.com.

Another thing you can do to help us is to review the book on
Amazon.com, Goodreads, Google Books, or otherwise spread the
word about the No Bullshit Guide textbook series. Talk to your
friends and let them in on the knowledge buzz.

If you want to know what Minireference Co. has been up to,
check out our blog at minireference.com/blog/. The blog is a
mix of 30% publishing technology talk, 50% startup business talk,
and 20% announcements. Checking the blog is the easiest way
to follow the progress of our revolution in the textbook industry.
For real; we’re totally serious about making education accessible
through affordable textbooks. You can also connect via Twitter
@minireference and Facebook fb.me/noBSguide.
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General linear algebra links

Below are some useful links to resources where you can learn more
about linear algebra. We covered a lot of ground, but linear algebra is
endless. Don’t sit on your laurels and think you’re the boss now that
you’ve completed this book and its problem sets. You have the tools,
but you need to practice using them. Try reading about the same
topics from some other sources. See if you can do the problem sets
in another linear algebra textbook. Try to use linear algebra in the
coming year and further solidify your understanding of the material.

[ Video lectures of Gilbert Strang’s linear algebra class at MIT ]
http://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010

[ The essence of linear algebra video playlist by 3Blue1Brown ]
http://bit.ly/essence_of_LA

[ A free online textbook with amazing interactive visualizations ]
http://immersivemath.com/ila/index.html

[ Lecture notes by Terrence Tao ]
http://www.math.ucla.edu/~tao/resource/general/115a.3.02f/

[ Wikipedia overview on matrices ]
https://en.wikipedia.org/wiki/Matrix_(mathematics)

[ Linear algebra wikibook (with solved problems) ]
https://en.wikibooks.org/wiki/Linear_Algebra

[ Proofs involving linear algebra ]
http://proofwiki.org/wiki/Category:Linear_Algebra

[ Linear algebra from first principles using diagrams only ]
https://graphicallinearalgebra.net/
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Answers and solutions

Chapter 1 solutions

Answers to exercises
E1.1 a) x “ 3; b) x “ 30; c) x “ 2; d) x “ ´3. E1.2 a) Z, Q, R, C; b) C; c) N, Z, Q, R, C;
d) Q, R, C; e) R, C. E1.3 a) 21; b) 0; c) 2

27 . E1.4 a) x “ 2; b) x “ 25; c) x “ 100.
E1.5 a) f´1pxq “ x2, x “ 16. b) g´1pxq “ ´ 1

2 lnpxq, x “ 0. E1.6 a) px´ 1qpx´ 7q;
b) px ` 2q2; c) px ` 3qpx ´ 3q. E1.7 a) x2 ` 2x ´ 15 “ px ` 1q2 ´ 16 “ 0, which
has solutions x “ 3 and x “ ´5; b) x2 ` 4x` 1 “ px` 2q2 ´ 3 “ 0, with solutions
x “ ´2`?3 and x “ ´2´?3. E1.8 x1 “ 3

2 and x2 “ ´1. E1.9 x “ ˘?2. E1.10
Domain: R. Image: r´2, 2s. Roots: t. . . ,´ π

2 , π
2 , 3π

2 , 5π
2 , . . .u. E1.11 a) ppxq is even

and has degree 4. b) qpxq is odd and has degree 7. E1.12 a) x “ 5 and x “ ´3;
b) x “ 1`?3 and x “ 1´?3. E1.13 x “ ?21. E1.14 V “ 33.51 and A “ 50.26.
E1.15 Length of track “ 5C “ 5πd “ 11.47 m. E1.16 x “ 5 cosp45˝q “ 3.54, y “
5 sinp45˝q “ 3.54; C “ 10π. E1.17 a) π

6 rad; b) π
4 rad; c) π

3 rad; d) 3π
2 rad. E1.18

a) ´1; b) 1; c) 0. E1.19 a) 0; b) 1; c) 1
2 ; d) 1. E1.20 a) p4, 0q. b) p´2,´3q. c) p7, 3q.

E1.21 a) ~v1 “ p5?3, 5q “ p8.66, 5q. b) ~v2 “ p0,´12q. c) ~v3 “ p´2.95, 0.52q. E1.22
a) ~u1 “ 4=0˝. b) ~u2 “

?
2=45˝. c) ~u3 “

?
10=108.43˝. E1.23 a) p1, 1

2 q. b) p1, 2q.
c) p´2, 2q. E1.24 x “ 2, y “ 3. E1.25 x “ 5, y “ 6, and z “ ´3. E1.26 p “ 7 and
q “ 3. E1.27 a) t2, 4, 6, 7u; b) t1, 2, 3, 4, 5, 6u; c) t1, 3, 5u; d)H; e) t1, 2, 3, 4, 5, 6, 7u; f) t7u;
g) t2, 4, 6, 7u; h) H. E1.28 a) p´8, 3

2 q; b) p´8,´5s; c) p´1, 4q; d) p4,8q; e) r 14
3 ,8q;

f) p´8,´4s Y r2,8q.

Solutions to selected exercises
E1.12 a) Rewrite the equation putting all terms on the right-hand side: 0 “ x2 ´
2x´ 15. We can factor this quadratic by inspection. Are there numbers a and b such
that a ` b “ ´2 and ab “ ´15? Yes, a “ ´5 and b “ 3, so 0 “ px ´ 5qpx ` 3q.
b) Rewrite the equation so all terms are on the left-hand side: 3x2 ´ 6x ´ 6 “ 0.
Nice, the cubic terms cancel! We’ll use the quadratic formula to solve this equation

x “ 6˘
?
p´6q2´4p3qp´6q

6 “ 6˘6
?

3
6 “ 1˘?3.

E1.13 The cosine rule tells us x2 “ 42 ` 52 ´ 2p4qp5q cosp60˝q “ 21. Therefore x “?
21.
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P1.34 The first tank contains 1
4 ˆ 4000 “ 1000 L. The second tank contains three times

more water, so 3000 L. The total is 4000 L.

P1.35 The amount of wood in a pack of wood is proportional to the area of a circle
A “ πr2. The circumference of this circle is equal to the length of the rope C “ `.
Note the circumference is proportional to the radius C “ 2πr. If we want double the
area, we need the circle to have radius

?
2r, which means the circumference needs to

be
?

2 times larger. If we want a pack with double the wood, we need to use a rope of
length

?
2`.

P1.36 In 10 L of a 60% acid solution there are 6 L of acid and 4 L of water. A 20% acid
solution will contain four times as much water as it contains acid, so 6 L acid and 24 L
water. Since the 10 L we start from already contains 4 L of water, we must add 20 L.

P1.37 The document must have a 768{1004 aspect ratio, so its height must be 6ˆ
1004
768 “ 7.84375 inches.

P1.38 If we rewrite 1` 2` 3` ¨ ¨ ¨ ` 98` 99` 100 by pairing numbers, we obtain the
sum p1` 100q` p2` 99q` p3` 98q` ¨ ¨ ¨ . This list has 50 terms and each term has the
value 101. Therefore 1` 2` 3` ¨ ¨ ¨ ` 100 “ 50ˆ 101 “ 5050.

P1.49 There exists at least one banker who is not a crook. Another way of saying the
same thing is “not all bankers are crooks”—just most of them.

P1.50 Everyone steering the ship at Monsanto ought to burn in hell, forever.

P1.51 a) Investors with money but without connections. b) Investors with connec-
tions but no money. c) Investors with both money and connections.

Chapter 2 solutions

Answers to exercises
E2.1 A´1 “

„
1
7 0

0 1
2


. E2.2 a) A~v “ “

7
14

‰
; b) B~v “ “´1

9

‰
; c) ApB~vq “ “

26
41

‰
;

d) BpA~vq “ “´7
63

‰
; e) A~w “

”´15
´32

ı
; f) B~w “ “ 3´21

‰
. E2.3 v1 “ ´2, v2 “ 3. E2.4

a) p1, 1, 3q; b) p1, 1,´3q; c) p3, 3, 3q; d)
?

2. E2.5 a) 5; b) p´1,´1, 1q; c) p1, 1,´1q;
d) p0, 0, 0q. E2.6 a) This part has been omitted for brevity. b) ~v1 “ p9.848, 1.736q;
~v2 “ p8.66, 5q; ~v3 “ p5, 8.66q; ~v4 “ p´5, 8.66q. c) Πı̂p~v1q “ 9.848; Πı̂p~v2q “ 8.66;
Πı̂p~v3q “ 5; Πı̂p~v4q “ ´5. d) Π ̂p~v1q “ 1.736; Π ̂p~v2q “ 5; Π ̂p~v3q “ 8.66;
Π ̂p~v4q “ 8.66. e) Π~dp~v1q “ p5.79, 5.79q and }Π~dp~v1q} “ 8.19; Π~dp~v2q “ p6.83, 6.83q
and }Π~dp~v2q} “ 9.66; Π~dp~v3q “ p6.83, 6.83q and }Π~dp~v3q} “ 9.66; Π~dp~v4q “ p1.83, 1.83q
and }Π~dp~v4q} “ 2.59. E2.7 a)

“
3 2
4 1

‰
; b)

„´2 2
3 ´2
0 1


; c)

“
17 16
8 9

‰
; d)

“
13 12 11 10
2 3 4 5

‰
; e)

“ 2 1 4´2 4 1
‰
;

f) Doesn’t exist; g)
„´2 ´6

5 10
2 1


; h) ´5; i) Doesn’t exist; j) Doesn’t exist; k) ´5; l) 1; m) 4;

n) 4. E2.8 a) 14; b) 5; c) 0; d)
” 1 2 3

2 4 6
3 6 9

ı
; e)

„
4 ´2 0
´2 1 0
0 0 0


; f)

„
2 ´1 0
4 ´2 0
6 ´3 0


. E2.9 α “ ´ 1

2 and

β “ 12. E2.10 a) Yes; b) No; c) Yes.

Solutions to selected exercises
E2.1 To find A´1 we must consider the action of A “ “

7 0
0 2

‰
on an arbitrary vector

~v “ “ v1
v2

‰
, and perform the inverse action. Since A multiplies the first component by 7,

A´1 must divide the first component by 7. Since A multiplies the second component

by 2, A´1 must divide the second component by 2. Thus A´1 “
„

1
7 0

0 1
2


.
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E2.10 An expression is linear in the variable v if it contains v raised only to the first
power. This is the case for the first and third expressions but not the second, since it

contains
?

x “ x
1
2 .

Answers to problems
P2.1 a) qpxq is nonlinear; b) f pxq, gpxq, and hpxq are all linear; c) ipxq is nonlinear;
d) jpxq is nonlinear. P2.2 p1, 2, 3q. P2.3 |ay ` |by “ 5|0y ` 2|1y. P2.4 a) 0;
b) p0, 0, 1q; c) p0, 1,´1q; d) p0, 0,´1q. P2.5 a) 5; b) p´1, 1, 1q; c) p0, 0, 0q; d) p0, 0, 0q.
P2.6 a) 6. b) 0. c) ´3. d) p´2, 1, 1q. e) p3,´3, 0q. f) p7,´5, 1q. P2.7 a) p2, 3, 3, 7, 8q.
b) p0,´1,´3,´1,´2q. c) 30. P2.8 p´ 2

3 , 1
3 , 2

3 q or p 2
3 ,´ 1

3 ,´ 2
3 q. P2.9 p12,´4,´12q.

P2.10 The tractor’s trajectory is a half-circle. The total distance travelled is 3.14 km.

P2.12 M~v “
”

αz1`βz2

γz1`δz2

ı
. P2.13 A “ “

3 0
0 1

‰
; B “ “

1 1
0 1

‰
; C “ “

3 1
0 1

‰
. AB “ “

3 3
0 1

‰
;

BA “ “
3 1
0 1

‰ “ C. P2.14 a)
“´5 ´5

4 2

‰
; b)

“´5 10 ´5
20 5 10

‰
; c)

“
17 28
41 64

‰
; d) Doesn’t exist;

e)
” 18 21

9 12
8 9

ı
; f) r 9 12 s; g)

”´4
´7

ı
; h) 0; i)

“ 2 1´4 ´2
‰
; j) 8; k) 11; l)´3; m) 20. P2.15 a) detpBq;

b) det A; c) 0. P2.16 a) 6; b) 3
2 ; c) 15; d) 30.

Solutions to selected problems
P2.1 A function is linear in x if it contains x raised only to the first power. Basically,
f pxq “ mx (for some constant m) is the only possible linear function of one variable.

P2.8 See bit.ly/1cOa8yo for calculations.

P2.9 Any multiple of the vector ~u1 ˆ ~u2 “ p´3, 1, 3q is perpendicular to both ~u1 and
~u2. We must find a multiplier t P R such that tp´3, 1, 3q ¨ p1, 1, 0q “ 8. Computing
the dot product we find ´3t ` t “ 8, so t “ ´4. The vector we’re looking for is
p12,´4,´12q. See bit.ly/1nmYH8T for calculations.

P2.10 The direction of the tractor changes constantly throughout the day, and the
overall trajectory has the shape of a half-circle. The total distance travelled by the
tractor is equal to half the circumference of a circle of radius R. Since it took the trac-
tor six hours of movement at v “ 0.524 km/h to travel half the circumference of the
circle, we have 1

2 C “ πR “ vpt f ´ tiq “ 0.524p6q, from which we find R “ 1 km. The
total distance travelled by the tractor is πR “ 3.14 km.

P2.11 Using algebra we find }~u´~v}2 “ }~u}2`}~v}2´ 2~u ¨~v. Using the cosine rule we
find }~u´~v}2 “ }~u}2`}~v}2´ 2}~u}}~v} cospϕq. Equating these two expressions, we can
obtain the geometric formula for the cosine product.

P2.13 Using the definition of the matrix vector product, we can imitate the action of
each linear transformation T by choosing appropriate entries in the matrix. The top
row corresponds to the first component of the output; the bottom row corresponds to
the second component of the output. Observe that BA “ C. The composite transfor-
mation of applying TA followed by TB (denoted TB ˝ TA), is equivalent to the transfor-
mation TC . Note AB ‰ BA: the matrix product AB corresponds to compositing the
composition of the linear transformations in the opposite order TA ˝ TB.

Chapter 3 solutions

Answers to exercises
E3.1 x “ 4, y “ ´2. E3.3 a) No solution; b) p0, 2q; c) tp2, 0q ` sp´1, 1q,@s P Ru.
E3.4 a) X “ BA´1; b) X “ C´1B´1 A´1ED´1; c) X “ AD´1. E3.5 P “ “

19 22
43 50

‰
;
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Notation
This appendix contains a summary of the notation used in this book.

Math notation

Expression Read as Used to denote

a, b, x, y variables
“ is equal to expressions that have the same value
def“ is defined as new variable definitions

a` b a plus b the combined lengths of a and b
a´ b a minus b the difference in lengths between a and b

aˆ b “ ab a times b the area of a rectangle
a2 def“ aa a squared the area of a square of side length a

a3 def“ aaa a cubed the volume of a cube of side length a
an a exponent n a multiplied by itself n times?

a def“ a
1
2 square root of a the side length of a square of area a

3
?

a def“ a
1
3 cube root of a the side length of a cube with volume a

a{b “ a
b a divided by b a parts of a whole split into b parts

a´1 def“ 1
a one over a division by a

f pxq f of x the function f applied to input x
f´1 f inverse the inverse function of f pxq

f ˝ g f compose g function composition; f ˝ gpxq def“ f pgpxqq
ex e to the x the exponential function base e

lnpxq natural log of x the logarithm base e
ax a to the x the exponential function base a

logapxq log base a of x the logarithm base a

θ, φ theta, phi angles
sin, cos, tan sin, cos, tan trigonometric ratios

% percent proportions of a total; a% def“ a
100
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Set notation

You don’t need a lot of fancy notation to do math, but it really helps
if you know a little bit of set notation.

Symbol Read as Denotes

t . . . u the set . . . definition of a set
| such that describe or restrict the elements of a set

N the naturals the set N
def“ t0, 1, 2, . . .u. Also N`def“ Nzt0u.

Z the integers the set Z
def“ t. . . ,´2,´1, 0, 1, 2, 3, . . .u

Q the rationals the set of fractions of integers
R the reals the set of real numbers
C the set of complex numbers

Fq finite field the set t0, 1, 2, 3, . . . , q´ 1u
Ă subset one set strictly contained in another
Ď subset or equal containment or equality
Y union the combined elements from two sets
X intersection the elements two sets have in common

SzT S set minus T the elements of S that are not in T
a P S a in S a is an element of set S
a R S a not in S a is not an element of set S
@x for all x a statement that holds for all x
Dx there exists x an existence statement
Ex there doesn’t exist x a non-existence statement

Sˆ T Cartesian product all pairs ps, tqwhere s P S and t P T

An example of a condensed math statement that uses set notation
is “Em, n P Z such that m

n “ ?
2,” which reads “there don’t exist

integers m and n whose fraction equals
?

2.” Since we identify the set
of fractions of integers with the rationals, this statement is equivalent
to the shorter “

?
2 R Q,” which reads “

?
2 is irrational.”

Vectors notation

Expression Denotes

Rn the set of n-dimensional real vectors
~v a vector

pvx, vyq vector in component notation
vx ı̂` vy ̂ vector in unit vector notation
}~v}=θ vector in length-and-direction notation
}~v} length of the vector ~v

θ angle the vector ~v makes with the x-axis
v̂ def“ ~v

}~v} unit vector in the same direction as ~v
~u ¨~v dot product of the vectors ~u and ~v
~uˆ~v cross product of the vectors ~u and ~v
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Complex numbers notation

Expression Denotes

C the set of complex numbers C
def“ ta` bi | a, b P Ru

i the unit imaginary number i def“ ?´1 and i2 “ ´1
Retzu “ a real part of z “ a` bi
Imtzu “ b imaginary part of z “ a` bi
|z|=ϕz polar representation of z “ |z| cos ϕz ` i|z| sin ϕz

|z| “
a

a2 ` b2 magnitude of z “ a` bi
ϕz “ tan´1pb{aq phase or argument of z “ a` bi

z “ a´ bi complex conjugate of z “ a` bi
Cn the set of n-dimensional complex vectors

Vector space notation

Expression Denotes

U, V, W vector spaces
W Ď V vector space W subspace of vector space V

t~v P V | xcondy u subspace of vectors in V satisfying condition xcondy
spanp~v1, . . . ,~vnq span of vectors ~v1, . . . ,~vn

dimpUq dimension of vector space U

RpMq row space of M
N pMq null space of M
CpMq column space of M
N pMTq left null space of M

rankpMq rank of M; rankpMq def“ dimpRpMqq “ dimpCpMqq
nullitypMq nullity of M; nullitypMq def“ dimpN pMqq

Bs the standard basis
t~e1, . . . ,~enu an orthogonal basis
tê1, . . . , ênu an orthonormal basis

r1sB1 B the change-of-basis matrix from basis B to basis B1

ΠS projection onto subspace S
ΠSK projection onto the orthogonal complement of S
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Abstract vector spaces notation

Expression Denotes

pV, F,`, ¨q abstract vector space of vectors from the set V, whose co-
efficients are from the field F, addition operation “`” and
scalar-multiplication operation “¨ ”

u, v, w abstract vectors
xu, vy inner product of vectors u and v
}u} norm of u

dpu, vq distance between u and v

Notation for matrices and matrix operations

Expression Denotes

Rmˆn the set of mˆ n matrices with real entries
A a matrix

aij entry in the ith row and jth column of A
|A| determinant of A, also denoted detpAq

A´1 matrix inverse
AT matrix transpose
1 identity matrix; 1A “ A1 “ A and 1~v “ ~v

AB matrix-matrix product
A~v matrix-vector product

~wTA vector-matrix product
~uT~v vector-vector inner product; ~uT~v def“ ~u ¨~v
~u~vT vector-vector outer product

refpAq row echelon form of A
rrefpAq reduced row echelon form of A

rankpAq rank of A def“ number of pivots in rrefpAq
A „ A1 matrix A1 obtained from matrix A by row operations

R1,R2, . . . row operations, of which there are three types:
Ñ Ri Ð Ri ` kRj: add k-times row j to row i
Ñ Ri Ø Rj: swap rows i and j
Ñ Ri Ð mRi: multiply row i by constant m

ER elementary matrix for row operationR;RpMq def“ERM
r A |~b s augmented matrix containing matrix A and vector~b
r A | B s augmented matrix array containing matrices A and B

Mij minor associated with entry aij. See page 196.
adjpAq adjugate matrix of A. See page 198.

pATAq´1AT Moore–Penrose inverse of A. See page 379.
Cmˆn the set of mˆ n matrices with complex entries

A: Hermitian transpose; A: def“ pAqT
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Notation for linear transformations

Expression Denotes

T : Rn Ñ Rm linear transformation T from the input space Rn

to the output space Rm

MT P Rmˆn matrix representation of T
ImpTq “ CpMTq the image space of T “ column space of MT

KerpTq “ N pMTq the kernel of T “ null space of MT

S ˝ Tp~xq composition of linear transformations;
S ˝ Tp~xq def“ SpTp~xqq “ MS MT~x

M P Rmˆn an mˆ n matrix
TM : Rn Ñ Rm the linear transformation defined as TMp~vq def“ M~v

TMT : Rm Ñ Rn the adjoint linear transformation TMTp~aq def“~aTM

Matrix decompositions

Expression Denotes

A P Rnˆn a matrix (assume diagonalizable)
pApλq def“|A´ λ1| characteristic polynomial of A

λ1, . . . , λn eigenvalues of A = roots of pApλq
Λ P Rnˆn diagonal matrix of eigenvalues of A
~eλ1 , . . . ,~eλn eigenvectors of A

Q P Rnˆn matrix whose columns are eigenvectors of A
A “ QΛQ´1 eigendecomposition of A

A “ OΛOT eigendecomposition of a normal matrix

B P Rmˆn a generic matrix
σ1, σ2, . . . singular values of B

Σ P Rmˆn matrix of singular values of B
~u1, . . . ,~um left singular vectors of B
U P Rmˆm matrix of left singular vectors of B
~v1, . . . ,~vn right singular vectors of B
V P Rnˆn matrix of right singular vectors of B

B “ UΣVT singular value decomposition of B
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Bayes’ rule, 449
Bayesian, 448
best fit solution, 382, 384
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binary, 404
Born’s rule, 495
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Cartesian plane, 35, 38, 85
Cauchy–Schwarz inequality, 325
change of basis, 95, 229, 230, 304,

421, 424, 482
for matrices, 282, 485

characteristic polynomial, 194,
301, 304, 345, 350

Cholesky decomposition, 336
ciphertext, 403, 407
circle, 67
closed under

addition, 233, 234
scalar multiplication, 233

codomain, see output space
coefficients, 134, 165, 226, 321

Fourier, 425, 427
cofactor, 197, 208
column picture, 133, 137, 146, 290
column space, 136, 232, 236, 239,

246, 259, 264, 384
column vector, 134, 147, 238, 341
commutative, 14, 24, 141, 319
completing the square, 28, 31
complex conjugate, 97, 340, 480
complex number, 13, 96, 112
complex transpose, see Hermitian

transpose
components, 76, 82, 95, 131, 225,

323, see also coordinates
complex, 339, 480

cone, 70
conjugate, 97, 340, 480
conjugate transpose, see

Hermitian transpose
conjugate-linear, 352
coordinate system, see also basis

Cartesian, 35, 82, 92
polar, 97

coordinates, 2, 83, 93, 131, 210,
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225, 245, 264, 329, 481,
see also components

homogeneous, 390
cosine, 20, 62, 72
cosine rule, 67
Cramer’s rule, 193
cross product, 83, 141, 192, 215
cryptography, 402
cylinder, 69

dagger, see Hermitian transpose
De Moivre’s formula, 102
decryption, 403, 406, 409
degenerate eigenvalue, 301, 304
determinant, 150, 164, 185, 188,

196, 286, 288, 301, 306
determinant test, 191, 194, 288
diagonalization, 300, 303, 308
digital signature, 409
dimension, 172, 232, 239, 241,

245, 251, 265, 304, 318
Dirac notation, 479, 483
direction vector, 170, 211, 273
distance, 216, 223, 325, 397

Hamming, 413, 416
distributive, 24
domain, 39, 123, 261, 292, 421
dot product, 83, 140, 146, 181,

214, 219, 225, 323, 327

eigenbasis, 298, 302, 304, 306, 333
eigendecomposition, 298, 301,

305, 307, 310, 332, 376
eigenspace, 280, 302, 304, 307,

316, 351, 458
eigenvalue, 190, 194, 298, 306,

334, 339, 345, 375, 454
eigenvector, 298, 301, 307, 333,

339, 350, 376, 454
encryption, 403, 406, 409
entries, see matrix entries
error-correcting code, 412, 528
Euler’s formula, 102, 345, 350
expand, 24, 25
expected value, 445
exponent, 15
exponential, 20, 64

factor, 15, 23, 26

factoring, 26, 34
field, 318, 322, 323, 339, 353, 354
finite field, 353, 404, 417, 468
Fourier basis, 421, 425, 427, 431
Fourier coefficients, 425, 427
Fourier series, 426
Fourier transformation, 421, 429
fraction, 13, 112
free variable, 170, 214, 238, 248
Frobenius inner prod., see inner

prod. for matrices
Frobenius norm, see

Hilbert–Schmidt norm
function, 38, 50

even, 59
odd, 59

fundamental subspace, 232, 236,
240, 261

basis, 246

Gauss–Jordan elimination, 168,
174, 194, 199, 214, 238,
243, 343, 365, 369

geometric multiplicity, 301, 308
golden ratio, 33
Gram–Schmidt

orthogonalization, 328, 337
graph, 373, 458
graphics processing unit, 398
Grover’s search algorithm, 525

Hadamard basis, 482, 485, 498
Hadamard gate, 494, 522
Hamming code, 416, 419
Hamming distance, 413, 416
Hermitian matrix, 346
Hermitian transpose, 340, 480
Hilbert–Schmidt norm, 326, 349
homogeneous coordinates, 390
homogeneous equations, 236

idempotence, 274
identity matrix, 135, 149, 178,

198, 313, 343, 393, 495
image, 39, 123, 136, 158, 258
image space, 136, 158, 258, 261,

264
imaginary number, see complex

number
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infinity, 170, 209, 321, 425, 448
information theory, 503, 529
injective, 41, 262, 293
inner product, 143, 148, 272, see

also dot product
abstract, 322, 329
complex, 341, 347, 352, 481
for functions, 326, 352, 424
for matrices, 325, 348

inner product space, 322, 348, 490
input set, see source set
input space, 261, 282, 293
intersection, 172, 213, 390
interval, 110, 121
inverse, 11

function, 14, 20, 43, 136
matrix, 134, 136, 149, 196,

202, 287, 305, 308, 343
Moore–Penrose, 382, 388
transformation, 4, 267, 292

invertibility test, 196, 203
invertible, 149, 185, 196, 203, 287

matrix, 185, 267, 287
transformation, 267, 292

isolate, 11, 20, 103

kernel, 4, 136, 237, 258, 262, 265,
292

ket, 480, 483, see also bra
Kirchhoff’s laws, 369

`1-norm, 455
`2-norm, 143
leading one, see pivot
least squares approximate

solution, 379
left null space, 232, 237, 239, 384
length, 13, 72, 84, 98
length preserving, see orthogonal

matrix
Leontief input-output model, 366
line, 154, 173, 209, 217, 221, 394

parametric equation, 211
symmetric equation, 211

linear, 1, 56, 152, 257, 323, 380
combination, 1, 134, 227,

231, 241, 320, 421, 511
equation, 103, 118, 153, 164

independence, 194, 227, 240,
243, 288, 301, 328

transformation, 2, 134, 183,
238, 257, 269, 281, 312

linear programming, 378
linear regression, 379
logarithm, 20, 65
low-rank approximation, 335
LU decomposition, 335

Markov chain, 450, 457
matrix, 131, 136, 145, 263, 269

diagonal, 179, 302, 312, 333
elementary, 184, 200, 291, see

also row operations
entries, 131, 134, 145, 165,

185, 196, 266, 283, 484
Hermitian, 346
identity, see identity matrix
invariant properties, 286
lower triangular, 313, 336
multiplication, 146, 147, 181,

263, 389, 414, 452, 492
normal, 316
operations, 133, 145
orthogonal, 313, 333, 346
permutation, 315, 336
positive definite, 316
positive semidefinite, 316,

327, 336
product, see matrix

multiplication
projection, 148, 263, 270, 316
rank, 167, 232, 240, 286, 288
reflection, 274, 280, 315, 392
representation, 136, 263,

269, 282, 392, 446, 484
rotation, 277, 314, 339, 392
symmetric, 313, 320, 325, see

also Hermitian matrix
trace, 149, 286, 306
transpose, 147, 238, 246, 382,

see also Hermitian tr.
unitary, 346, 492
upper triangular, 313, 336

matrix-vector product, 133, 146,
177, 183, 238, 269, 381,
389, 425, 447
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metric, 327
minor, 187, 197

nilpotent, 361
non-homogeneous, 236
noncommutative, 178, 182, 183
nonnegative, 39, 55, 110, 123
norm, 143, 324, 348, 467, 496

Euclidian, 143
Hilbert–Schmidt, 326, 349
`1-norm, 455
`2-norm, 143

normal vector, 210, 214, 277, 401
null space, 136, 232, 235, 237, 239,

242, 247, 259, 265, 274,
288, 292, 301, 415

nullity, 240, 242, 293
number line, 35

objective function, 378, 380
one-time pad, 406
one-to-one, see injective
one-to-one correspondence, see

bijective
onto, see surjective
origin, 36, 55, 73
orthogonal, 214, 227, 247, 265,

323, 328, 384, 415, 421
basis, see basis
complement, 219, 221, 274,

384, 415
matrix, 313, 333, 337, 346
projection, 228, 270, 392
subspace, 220, 331, 415
sum, 239, 265, 331

orthogonalization, 328, 330, 337
orthonormal basis, see basis
outer product, 148, 272, 483, 484
output set, see targe set
output space, 261, 282, 293

PageRank, 456, 459, 463
parabola, 53
parallelepiped, 185, 188
parallelogram, 150, 185, 188
parity check, 420
particular solution, 236, 237
permutation, 315, 336
perp, see orthogonal complement

perspective projection, 389, 394
pivot, 167, 168, 174, 246, 251
plaintext, 403, 407
plane, 154, 171, 173, 210, 214, 217,

222, 390, 401
general equation, 214, 401
geometric equation, 214
parametric equation, 215

point, 173, 209, 216, 384, 389
polar coordinates, 97, 207
polarizing lens, 473, 506
polynomial, 56, 101
probability distribution, 441, 496

conditional, 445, 451
projection, 148, 219, 263, 270, 495
pyramid, 70

QR decomposition, 337, 338
quadratic, 20, 26, 30, 53, 58, 381

formula, 31, 57
quantum, 465, 506

bit, see qubit
cryptography, 519
entanglement, 501, 522, 527
information theory, 504, 529
measurement, 495
mechanics, 465, 489, 510
operations, 492
state, 467, 490, 499, 523
superposition, 510, 511
teleportation, 526
wave function, 467, 469, 513

qubit, 468, 488, 491

radian, 68, 72, 77
random variable, 440
range, see image
rank, 167, 192, 232, 240, 286, 288
rank–nullity theorem, 240, 242
rational, 13, 112
reduced row echelon form, 164,

167, 171, 174, 194, 200,
238, 244, 289

reflection, 274, 280, 315, 392
relation, 49, 52, see also function
repetition code, 416
representation, 136, 165, 184, 263,

269, 392, 421, 446, 484
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Rivest–Shamir–Adleman (RSA)
cryptosystem, 409

roots, see solution set
rotation, 277, 314, 339, 392
row echelon form, 167, 336
row operations, 166, 174, 184,

190, 198, 238, 244, 336
row picture, 133, 137, 146
row space, 232, 237, 239, 242, 244,

246, 259, 265, 414
row vector, 147, 237, 341, 399, 415
RREF, see reduced row echelon

form
RSA cryptosystem, 409

sample space, 440
scalar product, see dot product
scale factor, 185, 207, 289
set, 12, 38, 97, 109

difference, 109, 331
intersection, 109, 119
subset, 12, 109
union, 109, 110

Shor’s factoring algorithm, 525
similarity transformation, 286
simplex algorithm, 378
sine, 20, 60, 72
sine rule, 67
singular value decomposition,

333, 338, 349
solution set, 11, 20, 31, 56, 118,

136, 172, 235, 237
solution space, 170, 173
source set, 39
source space, see input space
span, 227, 232, 233, 235, 288, 331
sphere, 69
spherical coordinates, 207, 514
squared error, 380, 387

stationary distribution, 454, 458
subset, 235, 441
substitution, 18, 59, 104
surjective, 41, 262, 293
SVD, 333, 338, 349
swap (row op.), 166, 175, 190

tangent, 63, 72
target set, 39, 261, 292
target space, see output space
Taylor series, 154, 309
term, 23, 56, 57
trace, 149, 286, 306
transition matrix, 451, 457
transpose, 147, 238, 246, 340, 382
trigonometric identities, 78

undo, see inverse
unit circle, 68, 73
unit vector, 87, 227, 272, 468

vector, 36, 80
direction, 170, 211, 273
linearly independent, see

linear independence
normal, 210, 214, 277, 401
operations, 132, 138
unit, see unit vector

vector product, see cross product
vector space, 225, 231, 243, 328

abstract, 318, 348
inner product, 322, 348, 490

vector subspace, 219, 231, 234
view frustum, 400
volume, 69, 188, 514

wave function, 467, 469, 513

XOR, 404
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