
Chapter 33

Null Hypothesis
Significance Testing

The Null Hypothesis Significance Testing procedure, or NHST for
short, is a recipe-like data analysis technique that you can use to
support a scientific claim or new theory. The term significance car-
ries a very specific meaning in this context. We say a scientific claim
is statistically significant according to some threshold value a (usu-
ally a “ 0.05) if the probability of the observed data occurring “by
chance” is smaller than a. The notion of what data might occur “by
chance” is defined by some baseline probability model that assumes
the claim is not true, which we call the null hypothesis. The NHST
“recipe” was introduced in the last century for the purpose of defin-
ing a minimum standard for statistical analysis that scientists must
perform before reporting their research findings. Before any new
theory or new scientific claim is published, the scientist must follow
the NHST procedure to show that the data observed is not simply
due to chance (the null hypothesis).

The idea of a standardized procedure for analyzing data agreed
upon by all scientists in a field has greatly advanced scientific re-
search. Indeed we could say that for many decades the notion of
“doing Science” was synonymous with using the NHST recipe. The
NHST procedure has been passed through generations of scientists
without too much modifications and it is actively used to this day
for data analysis. Modern statistics has developed many more ad-
vanced, detailed, and nuanced ways of doing statistical analysis, but
it’s important that we learn about NHST because it is the most com-
mon type of statistical analysis you’re likely to encounter.
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33.1 Definitions
The main purpose of the NHST procedure is to test the plausibility of
some scientific claim, which is usually expressed as a mathematical
statement about a population parameter. We begin this chapter by
introducing all the necessary terminology and definitions needed to
understand and apply the NHST procedure.

33.1.1 Hypotheses
We formalize the scientific claim we want to test using two precise
precise mathematical statements called hypotheses.

• The alternative hypothesis, denoted HA, is a statement about the
value of a population parameter that corresponds to the new
scientific claim. The alternative hypothesis describes the new
theory that the scientists suspect is true.

• The null hypothesis, denoted H0, is a skeptical claim about the
value of the population parameter that is contrary to the alter-
native hypothesis. The null hypothesis is assumed to be true
unless we find evidence that shows otherwise.

The null hypothesis and the alternative hypothesis should be mutu-

ally exclusive and collectively exhaustive, meaning they cannot both be
true at the same time and together they cover all possible cases.

The two competing hypotheses are the starting point of the NHST
procedure, which involves designing a scientific experiment, per-
forming the experiment, collecting sample data, and doing the statis-
tical analysis based on the sample data to reach one of two possible
conclusions:

• We “reject the null hypothesis” whenever we find the observed
data to be very unlikely to occur by chance under H0. This is
the conclusion that scientists hope to reach at the end of their
statistical analysis, because it means the observations cannot be
explained by the baseline model.

• On the contrary, we “fail to reject the null hypothesis” when the
observed sample data can be explained by the null hypothesis.
In these cases, there is no need for an alternative theory beyond
the baseline model we already have.

The NHST procedure is shown in simplified form in Figure 33.1.
When we reach the conclusion “reject H0” we have not actually

shown HA to be true. Rejecting the null hypothesis is just a necessary
prerequisite for further study of alternative hypotheses.
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Figure 33.1: High-level overview of the NHST procedure, which starts with
two competing hypotheses HA and H0 and reaches one of two possible con-
clusions. The rest of this chapter is dedicated to understanding the details of
each step.

33.1.2 Statistical modelling and assumptions
So how exactly do we perform the statistical analysis necessary to
reach the correct conclusion? The answer is that we’ll statistical mod-
elling techniques to describe the distribution of hypothetical samples
taken from the population under the assumption that H0 is true. We can
then compare the characteristics of the real sample we obtained from
the population and make a judgement about how likely or unlikely
it is to occur under H0.

Statistical models embody what we know or assume to be true
about the population and the data sample. We often describe the
population in an idealized way simple probability distributions de-
scribed by a few parameters. For example, a common assumption
is that the population data is normally distributed according to X „

N pµ, s2
q with known variance s2 and an unknown mean µ.

In reality the population is probably not exactly symmetrical or
perfectly gaussian, but making making these simplifying assump-
tions allows to work with simple formulas for estimators, sample
statistics, and easily compute probabilities. We can’t chose assump-
tions just for the sake of convenience though; models must be rea-
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sonable approximations of populations, otherwise our conclusions
might be faulty.

33.1.3 Test statistic
Starting with a clear picture of the hypotheses we want to compare
and the statistical modelling assumptions we’re making allows us
to “do the math” for the statistical analysis procedure in advance
of performing the experiment and collecting the data. Indeed, over
the years statisticians have “done the math” for numerous statistical
analysis scenarios in order to simplify the task of working scientists
to just computing a single number, called the test statistic.

We’ll start by with the definitions:

• Estimator: a generic term applied to functions computed from
data samples like x “ tx1, x2, . . . , xnu. For example, the sample
mean is x “ gpxq “

1
n

∞
n

i“1 xi.
• Test statistic t, z, d, . . .: an estimator with applications to the NHST

analysis procedure. The term test static usually refers to the
value of the estimator computed from a particular sample x.
For example the value of the z test statistic is computed using
z “ hpx, µ, sq, where µ and s are the population parameters.

• Sampling distribution of the test statistic T, Z, D, . . .: a random
variable that describes the test statistic computed on random
samples like X “ tX1, X2, . . . , Xnu, where each Xi is a ran-
dom sample taken from the population. The sampling distri-
bution of the z statistic is described by the random variable
Z “ hpX, µ, sq.

Note the distinction between the lowercase z “ hpx1, x2, . . . , xn, µ, sq,
which is a particular value of the test statistic computed from a given
sample tx1, x2, . . . , xnu, and the uppercase Z “ hpX1, X2, . . . , Xn, µ, sq,
which is a random variable since it is computed from a random sam-
ple tX1, X2, . . . , Xnu. The actual computation we perform in each
case is described by the same function hp¨, µ, sq, but the inputs are
completely different.

It’s important that you understand the notion of a sampling dis-
tribution well before you proceed with this chapter. If you’re not
100% on top of the idea of random variable defined in terms of hy-
pothetical random samples of size n taken from a population, it’s
recommended you go back to the previous chapter and an review
the figures and examples given. It might also be a good idea to solve
some practice problems to get some hands on experience with the
concept. The relationships between the characteristics of the general
sampling distribution Z and particular values of the test statistic z
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is at the heart of the NHST logic. This is what will ultimately allow
us to judge how likely it is to observe a particular value of the test
statistic z under the null hypothesis, and thus make a decision about
the two alternatives under consideration.

The formulas for test statistics commonly have the following struc-
ture:

test statistic “
estimator ´ mean

standard error
,

where some base estimator quantity is “standardized” by subtract-
ing the mean and dividing by the standard error. For example, the
formula for the z-score is given by z “

x´µ
s . This transformation al-

lows us to compute the standardized z-score from the sample mean
x for any normally distributed population.

The use of standard test statistics is the main mathematical tool
that makes it possible to perform NHST. There are many types of test
statistics used for different type of statistical analysis and replying on
different sets of assumptions, but all of them boil down to the same
idea: a test statistic measures how far data deviates from what is
expected under the null hypothesis.

33.1.4 Critical value and decision rule
The purpose of reducing the data analysis task to the computation
of single number, the test statistic, is to allow scientists to use a very
simple decision rule. The decision rule used in NHST requires only
a simple numerical comparison to a predefined threshold, called the
critical value. Let’s take the time to formally define the notion of a
critical values and all the related concepts within the statistical test-
ing procedure.

• critical value CV: a specific value for the test statistic that we use
to decide whether to reject or retain H0. The critical value can
be determined in advance of the experiment, before we have
collected data or computed any test statistics.

• decision rule: a simple algorithm that determines which of the
two possible NHST conclusions we declare. The decision rule
performs a comparison of the test statistic z obtained from given
sample and the pre-determined critical value. If the value of
test statistic computed from the sample is greater than the crit-
ical value, we will reject the null hypothesis. If the observed
value of the test statistic is smaller is smaller than the critical
value then we fail to reject the null hypothesis.

• critical region: the set of values for the test statistic that will lead
us to reject H0. A test statistic value that falls within the critical
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region tells us that H0 a very unlikely explanation for the data
observed.

• region of acceptance: the set of values for test statistic that will
lead us to retain H0 as the most likely explanation for the ob-
served data. Another way to describe this outcome is to say
“fail to reject H0,” meaning observed value of the test statistic
is not very unlikely under H0 so there is no need to consider
any alternative hypotheses.

H0

Reject H0Fail to reject H0 CV

value of the test statistic

Figure 33.2: Illustration of the region of acceptance and the critical region used
to draw conclusion as part of the NHST procedure. If the value of the test
statistic computed falls above the critical value, our conclusion will be to
reject H0. If the value of the test statistic is below the critical value, we fail to
reject H0.

The region of acceptance is the complement of the critical region.
The critical values are the boundaries between the critical region and
the region of acceptance, as illustrated in Figure 33.2. The shape of
the critical region is determined by the type of comparison encoded
in the two hypotheses. Figure 33.2 shows an example of an upper-

tailed rejection region, but lower-tailed and two-tailed rejection regions
also exist (see discussion on page 60).

The notion of critical value and critical region apply generally
to instances of the NHST procedure. To keep things simple, in this
chapter we focus exclusively the z-test. The z-test is a general-purpose
statistical analysis procedure based on the z test statistic, which is
nothing other than the standard normal distribution which you’re
familiar with:

• zq: A value such that FZpzqq “ q, where F is the CDF for the
standard normal distribution Z „ N p0, 1q. The normal distri-
bution plays a central role and must often use compute quan-
tities like F

´1
Z

pqq and F
´1
Z

p1 ´ qq, to the shorthand notation zq

and z1´q is very convenient.
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• The critical values of the z-test are specified in terms of the nor-
mal distribution CVz “ z1´a where a is the Type I error param-
eter, which we’ll formally define in the next section.

33.1.5 Errors
There are two types of mistakes you could make when following the
NHST procedure:

• Type I error occurs when H0 is true, but you reject H0. This is
also called a false positive.

• Type II error occurs when HA is true but you fail to reject H0.
This is also called a false negative.

H0 is true HA is true

de
ci

si
on

re
ac

he
d

Reject H0

Type I error
false positive
Probability = a

Type II success
true positive
Probability = 1 - b

Fail to reject H0

Type I success
true negative
Probability = 1-a

Type II error
false negative
Probability = b

This table shows the four possible outcomes of following the NHST proce-
dure. There are two types of success cases and two types of errors cases,
depending on the decision you reach and which hypothesis is actually true.

We decide how tolerant we are to making Type I and Type II er-
rors in advance of doing the statistical analysis by choosing the error
rate parameters:

• Type I error rate a: The probability of making a Type I error.

a “ Pr
`
reject H0 | H0 is true

˘
.

The number a is also called the significance level or the rejection

level. For example, we could choose a “ 0.05. This means that
if H0 is actually true, we have only a 5% chance of rejecting a
true null hypothesis.

• Type II error rate b: The probability of making a Type II error:

b “ Pr
`
fail to reject H0 | HA is true

˘
.



33.1 DEFINITIONS 36

In words, the coefficient b describes the probability of false-
negatives—when HA is true, but following the NHST proce-
dure leads us to retain H0.
Statisticians more commonly talk about the Type II error rate
in the form of it’s inverse, Statistical Power.

• Statistical Power p1 ´ bq: The ability to detect a pattern in the
sample if a pattern exists in the population.

power “ p1 ´ bq “ Pr
`
reject H0 | HA is true

˘
.

For example, if we choose b “ 0.2, this means we’ll have 1 ´

0.2 “ 0.8 “ 80% chance to correctly reject the null hypothesis.

The parameters a and b are specific to the particular statistical ques-
tion you are studying, and can vary from experiment to experiment.

H0 HA

αβ

Reject H0Retain H0

D =XW −XE

ΔCV0

Figure 33.3: This diagram a sketch of the distribution of the z scores under
the null hypothesis and the alternative hypothesis. The tails of the distribu-
tions that correspond to Type I and Type II errors are highlited. The critical
value CVz represents the boundary critical region.

As you see in Figure 33.3, choosing the critical value CVz is of central
importance for the statistical test, since it affects both Type I error rate
a and the Type II error rate b. The choice of sample size n is equally
important. Using larger sample sizes will reduce the variance of the
sampling distributions and thus make the two probability distribu-
tions under the two hypotheses easier to distinguish.

33.1.6 Calculating the sample size
In order to satisfy the target false-positive error rate a and target
power of 1 ´ b, we require a minimum sample size n for our statis-
tical analyses. For the purpose of better flow of explanations, we’ll
delay the detailed discussion about the find-n-from-a-and-b calcu-
lation until the end of the chapter, where where we’ll show three
different ways of doing the calculations.
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33.1.7 Reporting results
Let’s now talk about all the juicy information we can draw from our
statistical tests.

• p-value: the probability you would get a value of the test statis-
tic at least as extreme as the one you calculated from your sample
purely by chance, assuming that H0 is true. For an upper-tailed
z-test, the p-value is

p “ Prp Z • z | H0q , where z “ gpx1, x2, . . . , xnq.

• Effect size: a statistic that estimates the size or magnitude of
the parameter predicted by the alternative hypothesis. For ex-
ample, say your HA claimed that mean of one population µ1
differed from another µ2. You could describe the effect size as
the difference between two sample means x1 ´ x2.

• Confidence interval: a range of numbers indicating the precision
of some estimate. For example the p1 ´ aq-confidence interval
for the population parameters q is

CI1´a “ r`, us, where Prp` § Q § uq “ 1 ´ a,

where ` and u depend on the estimator value q̂ obtained from
the observed sample and the sampling distribution of the esti-
mator Q. The p1 ´ aq is the proportion of intervals that would
contain the true value of q if we resampled and reran analyses
many times. A confidence interval tells us about the precision
of our estimate.

The p-value is a measure of the the strength of evidence against H0.
The smaller the p-value, the less probable it is to obtain a sample at
least as extreme as your observed sample under H0.

Note that a scientific result can be statistically significant (small p-
value), but of no practical significance if the effect size is very small. To
determine the practical significance of your results, you must judge
how important your estimated effect size is in the context of the sys-
tem or situation you’re looking at.

33.1.8 NHST procedure
Now that you have some understanding of the “ingredients” required
for NHST, let’s take a look at the steps of the NHST “recipe.”

Step 1: Set up two competing claims that define the property you
want to test (H0 vs. HA). Consider assumptions behind each
hypothesis and choose the appropriate null and alternative mod-
els and data collection method.
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Step 2: Decide how conservative or risky you want to be in your
decision-making by choosing a statistical significance level (a)
and statistical power (1 ´ b).

Step 3: Calculate the required sample size n you’ll need and the
critical value CVz, then collect the necessary data.

Step 4: Using your data, check your assumptions.

Step 5: Decide whether to reject or fail to reject the hypothesis H0
based on the comparison of the value of the test statistic z “

gpx1, x2, . . . , xnq and the critical value CVz.

Step 6: Measure the strength of your evidence. Calculate the p-
value associated with your test statistic z, report the effect size
and its associated confidence interval. Plot your results.

Figure 33.4: A visual overview of the data flow between the different steps of
the NHST procedure. On the left we see theoretical calculations and design
considerations, while on the right the actual data procedures.

Note the key step happens in Step 5 where we apply the decision
rule based on comparing the value of the test statistic to the predeter-
mined threshold value CVz. In other words, we decide based on the
value of z statistic if the evidence is strong enough to reject H0. The
main “feature” of the NHST procedure is that it gives you the abil-
ity to make precise, quantitative claims backed by well-established
statistical analysis methods.
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33.2 Statistical model for beer prices
The best way to understand NHST is to apply it to a real-world sit-
uation. Let’s focus our attention on a particular example of a deci-
sion making process. We’ll go through the six steps of the NHST
procedure for a hypothetical scenario where we perform statistical
analysis on data about beer prices. First we’ll start by applying the
procedure “mechanically” by plugging numbers into equations, then
later on in the chapter we’ll look “under the hood” to show all the
gory math details of the probabilistic reasoning behind each equa-
tion. Don’t worry you can handle this.

Before we get started, we should warn you that we’re about to
make some pretty wild assumptions: we’ll assume that beer prices
are normally distributed and that we know the true population vari-
ance for the distribution. On top of that, we’ll use a dubious data
collection protocol that violates a fundamental stats assumption (that
observations are randomly selected and independent). These unre-
alistic assumptions and reckless sampling procedures serves a noble
purpose—to make your first contact with the world of NHST a little
bit gentler. Thanks to the simplifying assumptions about normality
and the known variance, we’ll be able to use the z-test for difference of

sample means for the data analysis, which the simple enough for you
to understand all the formulas. Don’t worry, we’ll have plenty of
time to discuss more realistic statistical testing procedures in Chap-
ter ??.

33.2.1 Hipster problems
Imagine you feel like heading out for a drink after a long day of
studying statistics. You live in the West End of the city. Because
of rampant gentrification, all your favourite local bars have either
closed or upped the price of draught IPAs, charging an outrageous
eight or nine dollars per pint. You’ve only got six dollars and change
to spare, but don’t worry, there is hope. Your savvy friend Kayla
says she went out in the East End last week and got a super hoppy
small-batch craft beer for only $5.25. That sounds way too good to
be true. Is there a rigorous, numerical procedure that could help you
test whether Kayla’s claim “beer is cheaper in the East End” is true?
The Null Hypothesis Significance Testing recipe is what you need.
Let’s collect some data and follow the six steps of NHST to decide
whether it’s worth biking to the East End in search of cheap beer.
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33.2.2 Step 1
During the first step we want to clearly write down the two hy-
potheses under consideration and state the assumptions we’re mak-
ing about our population and sampling procedure.

The alternative hypothesis HA is that East End beer is cheaper on
average than West End beer. This is the “scientific” claim we want to
investigate. The null hypothesis H0 describes the case where mean
beer price is the same on both ends of the city, or worse, that East
End beer is actually more expensive. This is the statement we aim
to reject. If we call the mean price of beer on the West End µW , and
the mean price of beer on the East End µE, we can write the two
hypotheses as follows:

H0 : µW § µE, HA : µW ° µE.

Note that these two hypotheses are mutually exclusive—both can’t
be true at the same time—East End beer cannot be less expensive and

simultaneously more expensive than West End beer. They are also
collectively exhaustive—together they cover every possible relation-
ships between µW and µE. We can state these same hypotheses in
terms of the difference between the means. Our alternative hypoth-
esis (HA) is that the difference in beer prices is positive, while the
null hypothesis (H0) is that the difference in beer prices is zero or
negative:

H0 : µW ´ µE § 0, HA : µW ´ µE ° 0.

Both hypotheses are stated in terms of the difference in beer prices
for the population parameters µW and µE, which are unknown. We’ll
estimate the value of µW ´ µE by collecting two samples of beer
prices: one from the East End xE “ rxE1, xE2, . . . , xEns and one from
the West End xW “ rxW1, xW2, . . . , xWns. We’ll compute the mean of
each sample and calculate the difference between the sample means:

xW ´ xE “
1
n

nÿ

i

xWi ´
1
n

nÿ

j

xEj.

We also assume that:

• The sampling method for each population is simple random
sampling.

• The observations in each sample are independent.
• Beer prices in the East and West End are normally distributed

with variance s2
“ 5.
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These assumptions allow us to use the z-test for a difference between
means. We will calculate a z-score for our sample difference xW ´ xE

under the assumption that H0 is true. If the z-score is high, meaning
the sample difference is quite large and therefore unusual under H0,
we can reject the idea that µW ´ µE § 0. We will bike East and get
beer! If the z-score is close to zero, it means the sample difference is
consistent with H0. In that case, we’ll retain H0 and stay home and
drink water.

33.2.3 Step 2
In order to quantify and control the likelihood of coming to a wrong
conclusion we must choose appropriate values for the parameters a
and b. Let’s go over the two ways you could mess up.

Type I error If the null hypothesis is true but we reject the null hy-
pothesis, we would be making a Type I error. You would be making
a Type I error if you went the East End because you believed there
was cheap beer there, but you actually only found expensive beer.
Let’s decide we’re willing to make this mistake in one out of every
20 cases. We choose the value a “

1
20 “ 0.05 as the upper bound on

this type of error:

Pr
`
Type I error

˘
“ Pr

`
reject H0 | H0 is true

˘
§ a “ 0.05.

Type II error If the alternative hypothesis is actually true but we
fail to reject the null hypothesis we would be making a Type II er-
ror. This second type of error would be the situation where you
stay home because you believe that beer on the East is expensive,
but you’re wrong and you miss out on actual cheap beer. Suppose
we decide this type of error is not quite as bad as a Type I error.
We’re willing to tolerate at a probability of b “ 0.2 at most. This
choice of b means our statistical test will have statistical power at least
p1 ´ bq “ 0.8:

Statistical Power “ Pr
`
reject H0 | HA is true

˘
• p1 ´ bq “ 0.8.
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Beer prices are the same East End beer is cheaper
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d Bike to East End
Biking for nothing
(Type I error)
Probability = 5%

Yay, cheap beer!
(Type II success)
Probability = 80%

Stay home
No time wasted
(Type I success)
Probability = 95%

Miss out on cheap beer
(Type II error)
Probability = 20%

This table shows the possible outcomes when you follow the NHST proce-
dure to make a decision about your beer plans. There are two types of errors
that can occur and two success scenarios where you make the right decision.

33.2.4 Step 3
Having chosen the parameters a “ 0.05 and b “ 0.2 for our statistical
experiment, we can now compute the sample size n and critical value
z1´a to use for our statistical test.

Finding the critical value The critical value z1´a is the value such
that

Pr
`
Z • z1´a | H0 is true

˘
§ a “ 0.05.

Since we’re talking about standard z-score, you can find the value
z1´a in a lookup table, or you use Python module norm as follows:

>>> from scipy.stats.distributions import norm
>>> Z = norm(0, 1)
>>> Z.ppf(0.95)
1.6448536269514722

The decision rule for the statistical experiment is the following:
#

if z ° 1.645 ñ reject H0

if z § 1.645 ñ fail to reject H0

In other words, if the difference in beer prices has a z-score of 1.645
or more, you’ll reject the idea that the means of beer prices between
East and West are the same (or less). Following this approach ensures
your Type I error rate stays below 5%, since Pr pZ • 1.645q “ 0.05. If
in reality µW ´ µE § 0, we’ll only be unlucky enough to get a sample
that gives us a value of z ° 1.645 in one out of 20 cases.
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Calculating the sample size In order to keep your target Type I er-
ror rate at a “ 0.05 and also have power 1 ´ b “ 0.80, you’ll need to
have a sufficiently large sample size n. Power is influenced by the
sample size n and by the effect size (the amount by which average
beer prices differ). The ability to detect a difference in beer prices de-
pends on how large those differences are. To carry out the power cal-
culation, we must decide on the minimum difference in beer prices
µW ´ µE that we want to be able to detect, if it exists.

You count your pocket change and decide it’s worth biking to the
East End if beer is at least $2.62 cheaper there on average. This is a
somewhat arbitrary decision and it is motivated by the specifics of
this scenario and not some some absolute mathematical truth. The
range between $0 and $2.62 is called your “zone of indifference.”
You might not have the power to detect differences this small, but
you don’t really care since you’re not going to bike to the East End
for a difference less than $2.62 anyways.

To find out the sample size n you need to satisfy these conditions,
you can use this formula:

n “
p|z1´a| ` |zb|q

2
ps2

E
` s2

W
q

pµW ´ µEq2 ,

where s2
W

and s2
W

are the assumed variances of west and East End
beer prices (both 5), µW ´ µE is your minimum detectable difference
(2.62), z1´a is your critical value (1.645), and zb is the critical value
of the normal distribution at b (z0.20 “ ´0.84). We’ll explain where
this formula comes from later on; for now let’s just just plug in the
values:

n “
p1.64 ` 0.84q

2
p5 ` 5q

2.622 “ 8.959851 « 9.

Great! We now know that with nine sample beer prices from the East
End and nine samples from the West End, we’ll be able to correctly
reject the null hypothesis in at least 8 out of 10 tests, when the differ-
ence in beer prices is 2.62 or more:

Pr
`
Z • 1.645 | µW ´ µE • 2.62

˘
• 1 ´ b “ 0.80.

Collecting data Suppose you text nine friends that live in the East
End, and 9 friends in the West End and ask them to check the price
of beer in the pub closest to their house. While you wait for texts
to come back, you wonder whether this data collection strategy vi-
olates two of our three assumptions: that samples are random and
that observations are independent. If you’re only getting beer prices
from pubs that happen to be located near your friends, does every
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beer price really have an equally opportunity of being selected in
your sample? Since your friends have similar tastes and hang out at
similar places, won’t your sample be biased? Before you can finish
that thought, your phone starts pinging with sample beer prices:

xE “ r7.7, 5.9, 7.0, 4.8, 6.3, 6.3, 5.5, 5.4, 6.5s,
xW “ r11.8, 10.0, 11.0, 8.6, 8.3, 9.4, 8, 6.8, 8.5s.

Finally you’ve got data!

33.2.5 Step 4
Now that you have your samples, it’s time to check our assumptions.
Recall that we assumed the populations of beer prices where these
samples are taken from are normally distributed with variance s2

E
“

s2
W

“ 5.
Let’s start by making two histograms to check that beer prices are

normally distributed, as shown in Figure 33.5.

East End West End
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Figure 33.5: Histogram plots showing the distribution of beer prices from
the two samples.

These histograms look reasonably bell-shaped, but it’s hard to tell
given that you’ve only got 9 samples per city end. You decide the it’s
good enough.

Next you calculate the variance of each sample of beer prices. The
sample variance for the East End is s

2
E

“ 0.7702778 and the variance
for the West End is s

2
W

“ 2.440278. The two sample variances are
very different from each other much smaller than the assumed pop-
ulation variance 5. This should normally make us reconsider our as-
sumptions and the use of the z-test, but let’s say you’re very thirsty
and decide ignore these discrepancies. You’re willing to go ahead
with the z-test even if the assumptions are not satisfied because there
is beer on the line!
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33.2.6 Step 5
With your data you can compute the sample means xE and xW :

xE “
1
9

9ÿ

i“1
xEi “ 6.155, xW “

1
9

9ÿ

i“1
xWi “ 9.155,

and compute your z test statistic:

z “
pxW ´ xEq ´ pµW ´ µEqb

s2
W

n
`

s2
E

n

Under H0, µW ´ µE could be any value less than or equal to zero.
Because zero is the most extreme value that’s still possible under H0,
this is the number we’ll use for the hypothesized difference in beer
prices.

z “
p9.155 ´ 6.155q ´ p0qb

5
9 `

5
9

“ 2.84605.

Having obtained the value of the test statistic z “ 2.84605, we can fi-
nally make our decision. Since the value of the test statistic is greater
than the critical value z1´a “ 1.645, our conclusion is to reject the
null hypothesis. In other words, observing a difference of z “ 2.84605
standard errors above the hypothesized difference of 0 is very un-
likely if the null hypothesis is true. This means it’s plausible that
beer is cheaper in the East End. Hop on that bike and go get you
some cheap beer—the scientific method demands it!

33.2.7 Step 6
But wait, before you get excited about this difference in beer prices
and start looking for your bike helmet, there is some really impor-
tant information you need to consider. How strong is your evidence
of cheap East End beer? More importantly, how much cheaper is that
East End beer? Let’s calculate the p-value, effect size, and a confi-
dence interval to find out.

You can think of the p-value as a rough measure of the strength
of evidence against H0. It’s the probability of observing a value of
the z statistic equal to or more extreme than our result z “ 2.84605,
assuming that the null hypothesis of µW ´ µE § 0 is true, and that all
our statistical assumptions are met. The p-value corresponds to the
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area under the curve of the null distribution,

p “

ª 8

z

fZ0pxq dx “ 1 ´ FZ0pzq,

where FZ0 is the cumulative density distribution the test statistic un-
der the null hypothesis Z0 „ N p0, 1q. We’ll use the trusty norm func-
tion from scipy.stats.distributions to compute the p-value:

>>> from scipy.stats.distributions import norm
>>> z = 2.84605
>>> 1 - norm.cdf(z)
0.0022132629289599204

The p-value 0.0022 tells us that if the price of beer on the East and
West End were actually equal, we would end up with a sample that
gives us a z-score of at least 2.84605 in only about 22 out of 10000
tests.

A low p-value only tells you that you’re likely to find cheaper
beer in the East End, but it doesn’t say anything about the magni-
tude of the difference. The effect size is the estimated difference in
average price, which will certainly impact your choice. For instance,
if the estimated difference in beer prices was only 5 cents, you may
question whether it’s worth risking your biking on the streets for 45
minutes just to save a nickel per pint. In other words, you want to
know if the difference in beer prices is of practical significance.

We obtain the estimated difference in beer prices by computing
the difference between the sample means

xW ´ xE “ 9.155 ´ 6.155 “ 3.

Based on the two samples we collected, we estimate that East End
beer is about $3 cheaper on average than West End beer. This is called
a point estimate, meaning it corresponds to a single value that is our
“best guess” of the true difference in beer prices.

We can also calculate a confidence interval for this estimate to get
an idea of how precise it is. Recall that a 100p1 ´ aq%-confidence
interval (CI) describes a range of values that contain the true value
with probability p1 ´ aq. We will use a one-sided confidence interval
to go along with our one-sided hypothesis test. We only care about
the lower bound of the CI because we only care about the lower end
of the precision of our estimate. If our precision estimate tells us
that East End beer might not actually be as cheap as we estimated,
that could influence our decision. On the other hand, we will not
change our decision if East End beer is likely to be even cheaper than
expected. The formula for a one-sided confidence interval is given
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by

CI1´a “

˜
pxW ´ xEq ´ za

c
s2

E

n
`

s2
W

n
, 8

¸
,

Putting all the values we know into the confidence interval formula
we obtain

CI0.95 “

˜
3 ´ 1.645 ¨

c
5
9

`
5
9

, 8

¸

“ p3 ´ 1.733982, 8q

“ p1.266018, 8q.

This interval p1.266018, 8q is likely to contain the true difference in
average beer prices with 95% confidence. In other words, we’re 95%
confident that that the true mean difference in beer prices is • $1.27.
That lower bound is rather low. In fact, it dips into our “zone of
indifference.” Recall that we’re interested in biking to the East End
only if the expected beer prices are $2.62 cheaper than in the West
End. This is good to keep in mind so you won’t be disappointed.

Remember that the interval is a random variable and the true
mean difference in beer prices is fixed. That means if we repeated
this test with new data many times, the CI would capture the true
mean difference in beer price in about 95% of cases. In other other
5% of cases, the lower bound of the confidence interval would end
up higher than the true mean.

To test our beer-pothesis, we used the rule:

reject H0 if z ° z1´a.

It would be equivalent for us to use a rule involving p-values:

reject H0 if p † a

or to use confidence intervals:

reject H0 if CI does not contain µW ´ µE “ 0

In all of these cases, our result is statistically significant when we
reject H0.

33.2.8 Reporting your results
No matter whether you choose your test statistic, p-value, or CI to
decide on statistical significance, you should include all these values
when reporting your results, along with your choice fo the values
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of a and b, your assumptions, and your data collection protocol. We
don’t just want to reach a conclusion about the existence of a pattern,
after all, we want to be able to explain how certain we are of our
conclusion and quantify the size of the pattern we have observed.

Say you want to convince a very skeptic friend to join you on a
beer run to the East End. You tell your friend you used the formal hy-
pothesis testing procedure with a false positive rate of a “ 0.05 and
concluded that it’s unlikely that the beer prices are the same. You tell
them the z-score you calculated and explain that if beer prices were

the same, you’d only get a z-score this high in 22 out of 10000 tests.
Your friend obviously asks about how much cheaper the prices are,
at which point you pull out the 3 dollars estimate for the effect size,
which gets their attention. Being skeptical and statistics savvy, you
friend claims that your estimate 3 is obtained from small samples
and might not be accurate. They say “Sure, in the particular samples
you obtained, you found an effect size of 3, but if you had obtained
different samples you would have computed a different effect size.”
This is where you pull out the 95% confidence interval p1.266018, 8q

and interpret it for your friend saying that you’re 95% confident that
beer prices are at least $1.26 cheaper in the East End than in the West
End. To top it all off, you pull out some plots you just made to illus-
trate your point:

plot or plots go here. I’m thinking paired dot plot (small sample size)...

Now that’s a convincing proposal even for the biggest skeptic.

33.2.9 Statistical reality check
Finally you convince your friend to join you on the bike ride. It’s
cheap beer time! You bike 45 minutes eastward, stop at the first pa-
tio you find and stare in horror at the prices you see posted. Eight
dollars per pint! You pedal furiously from bar to bar, only to dis-
cover that prices are pretty much the same as in your neighbour-
hood. Sweaty and beerless, you ask yourself what went wrong? You
followed all the steps of the NHST procedure, but still somehow
reached a wrong conclusions: beer prices in the East End are not
actually cheaper than in the West End. In other words, you made a
Type I error.

The first thing to remember is that NHST doesn’t guarantee a cor-
rect outcome, it just gives you an bounded estimate of the a Type I
error that you can expect if you follow the NHST procedure. Re-
member that a “ 0.05 corresponds to 5% false-positive rate when
we observe extreme values in the sample and falsely reject H0, even
when H0 is true. You samples of beer prices could just randomly
have come out extra different. The East End sample could just have
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happened to be well below the true population average. Although
this should only happen in 5% of cases, it’s still possible that it hap-
pens.

More importantly, recall that all of these calculations were made
under some very specific assumptions. The probabilities of making
Type I and Type II errors only hold if your assumptions are valid.
Let’s start with how we collected data. Recall from [chapter about
collecting data], that for a sample to be truly random, each price of
beer in the city should have an equal chance of being included in
your sample. A better strategy in this situation would be to get a
list of all the bars in your city, then have a computer randomly select
a portion of them to use in your sample. You could then contact
the bars directly to ask for their beer prices, instead of texting your
friends.

Next, it was pretty unreasonable to assume beer prices are nor-
mally distributed. There are lots of variables in the natural world
that tend to follow a normal distribution like human heights, but not
all things are normally distributed. We can’t assume that beer prices
follow a normal distribution without some background knowledge.

If our sample size n had been larger (n • 30), we could have
gotten away with the population following some non-normal dis-
tribution. That’s because the central limit theorem tells us that the
distribution of the the estimators XE and XW will be normally dis-
tributed regardless of the distribution of the population.

Perhaps the most unreasonable assumption was assuming we
knew the true population variance of beer prices on the East and West
End. Actually, it’s pretty hard to think of a real-life situation where
we would know the population variance. This unrealistic assump-
tion means the z-test wasn’t the right statistical test for this data anal-
ysis scenario. In the next chapter, we’ll learn about the t-test which
uses estimates the variance computed from sample the data samples.

To understand why these assumptions are so important, we need
to look under the hood of the NHST procedure we used, and see
exactly how we modelled our population and test statistic.

* * *

Don’t worry if you were not able to follow all the numeric calcula-
tions presented in each step. The essential thing is that you under-
stand the general logic behind NHST and become familiar with the
design, data collection, calculations, and reporting steps needed to
perform statistical tests.
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We intentionally skipped the details of the numeric calculations
for the p-value and the confidence interval in the above text. These
are straightforward to perform either using lookup tables or com-
puter software. We’ll talk more about that in discussion section. If
you’re impatient and interested in seeing how the calculations done,
you can check this spreadsheet.

The key point to remember I want you to remember about the
NHST procedure is that you must choose appropriate values for a
and b that are appropriate for your application. Don’t just choose
some values just because you’ve seen them in other papers. Once
you choose the values for a and b, you’ll be able to calculate the
sample size n you need, and only then you can start collecting data.
Review Figure 33.4 on page 38 to remember the dependencies be-
tween the six steps of the NHST procedure.

33.3 Explanations
If you’re seeing the NHST procedure for the first time it’s natural if
it seems very complicated and involved. Don’t worry about that for
now! You’ll get a chance to become more familiar with the NHST
procedure in the next chapter where we’ll apply the NHST proce-
dure to building many other scenarios that depend on different test
statistics. By the end of this book you’ll have seen the steps of NHST
so often that you’ll be able to do them in your sleep! For now I want
you to focus on understanding the general idea behind NHST, and
why each of the steps is required. The following extra explanations
will hopefully help with that.

33.3.1 Hypothesis Testing as a Trial
Statisticians like to use double-negatives. When the p-value in some
statistical test is high, they say things like, “We failed to reject the null
hypothesis.” Why don’t they just say that they proved their null hy-
pothesis true, and their alternative hypothesis false? Do they need to
read the No Bullshit Guide to Clear and Grammatically Acceptable
Sentence Structure? This unconventional sentence structure actually
serves a purpose. In this case it reflects the philosophy underlying
NHST that is also used throughout science—the null hypothesis test-
ing recipe is similar to a trial in court.

Suppose Bob is undergoing a trial. Jurors must presume Bob is
innocent (H0) until there is extremely persuasive evidence that he’s
guilty (HA). The burden of proof is on the prosecution: they have to
show compelling evidence for the alternative hypothesis. If the pros-
ecution can’t present strong enough evidence to convict Bob, then the

https://docs.google.com/spreadsheets/d/15EdOuy_Cb26xN1HCTSIktWhzYLFBjD4YirUTIL6EPGg/edit?usp=sharing
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jurors’ verdict will be “not guilty.” Jurors will only reject H0 in light
of compelling evidence that Bob is guilty. Otherwise they declare
Bob is not guilty. Note that they’re not saying that Bob is innocent,
they’re just saying they haven’t seen enough evidence for HA. This
is just like in “statistics duty,” where scientists must go in assuming
the null hypothesis is true unless otherwise convinced by their data.
When a statistical test fails to reject the null hypothesis, this doesn’t
mean that we’ve shown the null hypothesis is true, just that the al-
ternative hypothesis is not convincing.

Even with convincing evidence, is it really fair to say that Bob
is “guilty”? Unlike in court, in statistics, we don’t really think so.
Statisticians are a little more conservative (or at least they should
be). Rejecting the null hypothesis doesn’t necessarily mean the alter-
native one is true either. It means the alternative hypothesis survives
to be tested again. It means we should call a re-trial with new evi-
dence. Even if you reject your null hypothesis, you should main-
tain some skepticism of your alternative, at least until more tests
(with new data) reach a positive conclusion. Good science relies on
replication—the idea that multiple, independent studies need to be
carried and reach the same conclusion.

Understanding the p-value Okay, let’s continue with the trial anal-
ogy. Suppose the prosecution presents a lot of very persuasive evi-
dence making Bob look pretty guilty. An NHST statistician would
think, “If Bob were innocent, this would be a super bizarre and un-
fortunate combination of coincidences.” That’s because they judge
the probability of data, given the null hypothesis (innocence). This
is exactly what the p-value tells you, but with numbers. It quantifies
the probability of finding evidence at least as suspicious as what’s
been found, in a world where Bob is innocent (H0 is true). Note
that the p-value doesn’t tell you the probability that Bob is innocent
(PpH0|dataq), nor does it tell you the chance that you will falsely im-
prison Bob (PprejectH0|H0q).

Choosing a significance level At what point is the evidence com-
pelling enough to reject the idea that Bob is innocent? In law, the
threshold is “a reasonable doubt.” In stats, it’s a. Remember that
a is the risk of a Type I error, so to decide its value, you have to
think about the cost of finding a pattern that isn’t there. If the worst-
case-scenario is false hope of cheap beer, then go wild and choose a
recklessly high significance level (a “ 0.1 maybe). Just be careful in
situations like Bob’s trial. If you choose the significance level a “ 0.1,
this means you’re cool with trials that send one out of every 10 inno-
cent people to jail. This is probably not how you want to run things,
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so remember to always think about the real-life consequences and
choose a low a when Type I errors are critical.

Choosing a level of statistical power Also consider the consequence
of the other possible error: not finding a pattern that is there. Are you
failing to uncover cheap beer, are you setting a criminal free, or are
you labelling a life-saving drug as worthless? When Type II errors
are serious, you should choose lower b values, which leads to tests
with higher statistical power.

The right balance between significance and power The astute reader
may still be wondering why exactly we don’t choose a “ 0 and
1 ´ b “ 1 and avoid all errors. Dear perfectionist reader, it’s okay
to make mistakes. If you think about it, when you try to perfect one
thing, there’s always some other thing that you end up compromis-
ing (sleep, happiness, time spent learning about NHST, etc). It’s the
same with stats. Decreasing the chance of a Type I error increases
your chance of a Type II error. In other words, statistical power de-
creases when significance levels are set lower. In both stats and life,
the trick is to find a healthy balance.

To increase the power of a test without compromising a, you need
to use larger sample sizes or study phenomena with bigger effect
sizes. That’s because it’s easier to detect patterns when you have a
lot of data or if the the patterns are large. You can only control the
potential effect size when you’re running a manipulative experiment
and you’re able to increase the magnitude of the intervention (for
example, increase the dosage in a medical trial). In many situations,
increasing the sample size can be infeasible or prohibitively expen-
sive. So what is a resource-limited statistician to do? You should do
your best to actually quantify the cost of a Type I error compared to a
Type II error. Is convicting innocent Bob ten times worse than setting
guilty Bob free? Then your a should be ten times lower than your b.

The alternative hypothesis is not on trial Note that the details of
the alternative hypothesis HA do not come into play in the NHST
procedure, except in the consideration of statistical power. Indeed,
all we have shown is that intervention X causes “something different
from the baseline model” so NHST doesn’t really test any specific
aspects of the alternative hypothesis. This is a known limitation of
NHST procedure, which can be remedied by reporting estimates of
the effect size observed and confidence intervals.
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33.3.2 Looking under the hood
In this chapter we applied the general NHST procedure to a partic-
ular data analysis scenario where we compared the difference be-
tween two population means using the z-test. In this section we’ll
look in a little bit more detail at the probability models that under-
pin the formulas we used, in order to understand where the formulas
come from.

The fundamental question we investigated concerns difference in
beer prices µW ´ µE, which is an expression involving the difference
between two population parameters. To known the true value of the
expression µW ´ µE, we’d have to call every bar in the city and asked
them for their beer list, then took the mean of the West End beers
prices and subtracted the mean of the East End beer prices. As you
can imagine, this is impractical to do since there are lots of bars and
pubs in the city.

We can estimate the value of µW ´ µE by collecting two samples
of beer prices: one from the East End xE “ rxE1, xE2, . . . , xEns and
one from the west xW “ rxW1, xW2, . . . , xWns, finding the mean of
each sample, then computing the difference between sample means:

d ” xW ´ xE “
1
n

nÿ

i

xWi ´
1
n

nÿ

j

xEj.

We define the single-letter variable d to represent the difference be-
tween sample means, in order to avoid writing xW ´ xE all the time.

The statistic d “ xW ´ xE is an instance of the random variable
D ” XW ´ XE, which is a function of the random samples XE “

rXE1, XE2, . . . , XEns and XW “ rXW1, XW2, . . . , XWns. By modelling
the distribution of individual sample values XWi and XEi, we can get
an idea of which values of d are probable—this is called the sampling
distribution of the random variable D.

Modelling XW and XE requires making assumptions about the
two populations of beer prices. We assumed the price of beer on both
ends of the city were normally distributed with known variance s2

“

5. These assumptions allowed us to model beer prices in the East End
(XE) and the West End (XW) of the city as normal distributions (N )
with unknown means µE and µW , and known variance s2

“ 5:

XE „ N pµE, 5q , XW „ N pµW , 5q .

We can treat the sample beer prices we obtained as independent
draws from N pµE, 5q and N pµW , 5q, assuming we collected beer prices
through a random sampling process and ensured that each observa-
tion was independent. The central limit theorem tells us the sample
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means for independent samples of size n from a population with
variance s2 are normally distributed with variance s2

x
“

s2

n
“

5
n

:

XE „ N
`
µE, 5

n

˘
, XW „ N

`
µW , 5

n

˘
.

The difference between the random variables XW ´ XE is also normal
with mean equal to the difference of means and variance equal to the
sum of the variances for XE and XW :

D ” XW ´ XE „ N
`
µW ´ µE, 5

n
`

5
n

˘
.

The variable D describes difference between random sample means
XE and XW .

Instead of working with the random variable D to compute prob-
abilities, we can “standardize” D by subtract its mean pµW ´ µEq (the
difference under a given hypothesis), then divide by the its standard
deviation:

Z “
D ´ pµW ´ µEqb

10
n

.

The resulting random variable Z has the standard normal distribu-
tion N p0, 1q, with mean zero and standard deviation one.

For every probability calculation that we might want to perform
using the random variable D there is an equivalent probability cal-
culation we can carry out using the random variable Z. One of the
nice properties of gaussian random variables is that they they can
be transformed to the standard normal distribution, and we want to
take advantage of this property to simplify simplify the following
calculations:

• Whenever we need to compute the value of the cumulative dis-
tribution FDpdq “

≥
d

´8 fDpxq dx, we can instead compute the

cumulative distribution FZ

´
d´µD

sD

¯
, where FZ is the CDF of the

standard normal Z „ N p0, 1q.
• Whenever you want to compute a value of the inverse cumu-

lative distribution F
´1
D

pqq, you can instead find the equivalent
z-score, zq “ F

´1
Z

pqq, then compute µD ` zqsD which is equal
to F

´1
D

pqq.

It’s important to note that doing the change-of-variables transforma-
tion D to Z is not a required step, but simply a computational trick.
If you look at Table ZZ in Appendix YY you’ll see the table that con-
tains all the values of the CDF of the standard normal distribution Z,
which you can use to lookup any value of zq that you’re interested
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in. The main benefit of standardization is that you can do proba-
bility calculations simply by “looking up” the appropriate values in
Table ZZ. This means you can do statistical analysis without need-
ing a computer—all the probability calculations have been done for
you for the standard normal and recorded for you so don’t need a
computer. As you can imagine, in the early days of statistics when
computers were not available, such computational “hacks” were all
the rage since it allowed people to do statistical analysis using only
basic algebra followed by table lookups.

In the modern day when computing power is plentiful, the need
for tables of pre-computer probabilities for standard test statistics has
decreased. Today we can easily do probability calculations with ran-
dom variable D „ N

´
µD, 10

n

¯
just as easily as with the standard

normal Z „ N p0, 1q. Even if we no longer need the standardiza-
tion procedure for computational purposes, it’s still worth learning
about the z-score for the procedural standardization it provides. By
converting all possible normally distributed test statistics to standard
test statistic z, we just need to learn about one set of formula for the
NHST statistical analysis. In this chapter we learned about the z-test
for comparing the difference between beer prices, but the exact same
steps apply to differences between sample means from any two nor-
mal populations with known variance.

We could carry out the entire NHST procedure using the d-test
statistic whose sampling distribution is described by the random
variable D ” XW ´ XE „ N

´
0, 10

9

¯
. If we want to use the d-test

as part of the NHST procedure, in Step 3 we’ll need to find the criti-
cal value CVd we need to build the decision rule:

#
if d ° CVd ñ reject H0

if d § CVd ñ fail to reject H0

Recall that the critical value for the test is computed based on the
formula CVd “ F

´1
D

p0.95q “ 1.734, which involves computing the
inverse of the CDF of the random variable D. The value 0.95 corre-
sponds to 1 ´ a, where a “ 0.05 is the maximum allowed probability
of Type I error we chose in Step 2. The value of F

´1
D

pqq can obtained
using the formula =NORM.INV(q,0,SQRT(10/9)) in Excel, by calling
qnorm(q,0,sqrt(10/9)) in R, or by calling norm.ppf(q,0,sqrt(10/9))
in Python after importing norm from scipy.stats.distributions.
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33.3.3 Sampling distributions under the two hypothe-
ses

The two hypotheses we consider as part of the NHST procedure, cor-
respond to two “alternative realities” and thus two different proba-
bility models for the sampling distribution of the test statistic. Let’s
take a moment to derive the explicit formulas the probability distri-
butions under each hypothesis. We’ll show the probability distribu-
tions of both the non-standardized real difference between means D

(measured in dollars), and the standardized z-scores.

• The null hypothesis is that average beer prices are the same
everywhere in the city or more expensive in the East:

H0 : µW ´ µE § 0.

• Under specific case of the null hypothesis (H0 : µW ´ µE “ 0),
the sampling distributions of the test statistics d and z are

D0 „ N p0, sDq ô Z0 „ N p0, 1q ,

where Z0 “
D0´0

sD
and sD “

5
n

`
5
n

“
10
n

.
• The alternative hypothesis is that beer prices are on average

cheaper in the East End than in the West End of the city. We
could make a very broad statement like “there is some differ-
ence,” stated mathematically as:

HA : µW ´ µE ° 0,

which states that average beer price is cheaper in the East End
than in the West End, but doesn’t say how much cheaper. A
more precise way to state an alternative hypothesis is

HA : µW ´ µE “ µDA
,

where µDA
is some unknown constant computed as the differ-

ence between the average beer prices of the populations µDA
“

µE ´ µW . For example, the value µDA
“ 2.62 represents the

alternative hypothesis that beer prices are $2.62 cheaper in the
East End than in the West End.

• Under the alternative hypothesis (HA : µW ´ µE “ µDA
), the

sampling distributions of the test statistics d and z are

DA „ N
`
µDA

, sD

˘
ô ZA „ N p0, 1q ,

where ZA “
DA´µD

A

sD
.
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33.3.4 Understanding the sample size formula
The process of calculating the correct choice of sample size n and
and critical value CVz requires solving the following two equations
simultaneously:

Pr
`
Z0 ° CVz | H0 is true

˘
“ a, Pr

`
ZA § CVz | HA is true

˘
§ b,

where Z0 ”
pXW´XEq´0

sD
„ N p0, 1q is the distribution of the test

statistic z under the null hypothesis, and ZA ”
pXW´XEq´µD

A

sD
„

N p0, 1q is the distribution of the test statistic d under the alternative
hypothesis.

After some algebraic calculations, we can convert the two proba-
bility inequalities to two simple algebraic inequalities:

CVz “ z1´asD, CVz • µDA
` zbsD.

The first equations follows from the fact that we choose the cutoff
value CVz in order to satisfy the Type I error level. The second in-
equality tells us the minimum value of CVz for the Type II errors to
be as intended. After combining these expressions and looking for
the equality condition, we obtain zasD “ µDA

` z1´bsD, which after

some algebra steps leads us the formula n “
pza´z1´bq2ps2

W
`s2

W
q

µ2
D

A

.

It might be helpful to see the above calculations with the partic-
ular values z0.95 “ 1.64 and z0.2 “ ´0.84, for the values a “ 0.05
and b “ 0.2 we have chosen. Recall that we also assumed the value
µDA

“ 2.62 for the real difference between mean beer prices. Plug-
ging these values into the combined equations for the value of CVz

gives us the rather simple equation

CVz “ 1.64 ¨ sD “ p2.62q ´ 0.84 ¨ sD.

Since we know sD “

b
10
n

we can solve for n to find n « 9. You can
visualize the two sides of this equation in Figure 33.6.
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H0 HA
0.84 ⋅SE1.64 ⋅SE

D =XE −XW

ΔCV0

Figure 33.6: The dual constraint of the critical value CVz. In order to have
Type I errors at most a percent of the time we must choose CVz to be 1.64
standard deviations away from the centre of the distribution under H0. In
order to keep Type II errors small, we must choose CVz to be more than 0.84
standard deviations away from the mean of the sampling distribution under
HA.

33.4 Discussion
Our understanding of statistics and the NHST procedure is always
evolving. Statisticians have been engaging in cordial scientific de-
bate on the pros and cons of NHST (peppered with occasional cre-
ative name-calling like “bone-headedly misguided”). Like most sta-
tistical techniques, NHST has some valid criticisms which have led
to recommendations for improvement. We’ve baked some of these
suggestions into the NHST recipe described above: statistical power
considerations, assumption checks, estimating effect sizes, and cal-
culating confidence intervals.

History of statistical testing
The NHST procedure we presented in this chapter has an interesting
history, which will now examine briefly. The idea of using a null hy-

pothesis was originally proposed by Ronald Fisher in his book Statis-

tical Methods for Research Workers. Fisher starts from the assumption
that scientists have observed some pattern in data, and possibly have
some new theory that can explain the data. Before they can make any
claims about their new theory, they must first show that the data ob-
served cannot be explained by some baseline model, which he called
the null hypothesis. The name null hypothesis comes from the fact that
this is the hypothesis that stands to be nullified.

Fisher introduced p-values as the statistical tool to judge the sta-

tistical significance of a pattern in some observed data. Observing a
lower p-value is stronger evidence for the pattern than observing a
large p-value. For example, a small p-value like p “ 0.01 means the
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observations are very unlikely to be due to chance (one in a hun-
dred), versus a large p-value like p “ 0.33 (one chance in three).
Note that Fisher initially proposes the threshold value of p “ 0.05 as
a convenient rule of thumb, not as some universal standard of sig-
nificance:

“The value for which P=.05, or 1 in 20, is 1.96 or nearly
2; it is convenient to take this point as a limit in judg-
ing whether a deviation is to be considered significant or
not.”

—Ronald Fisher, Statistical Methods for Research Workers

Somehow this recommendation for the significance level of 0.05 stuck,
and became the “gold standard” for research findings that deter-
mines which results get published in many science journals. This
was certainly not Fisher’s intent, as he wrote that different types of
research may require different standards of significance. For Fisher,
the best thing to do for science authors is not to make any signif-
icance judgments but to report the p-values they obtained, and let
readers decide for themselves whether the results are significant in
the context.

Later, Jerzy Neyman and Egon Pearson introduced the notion of
the alternative hypothesis and formulated statistical analysis as a bi-
nary decision rule used to reach one of two possible conclusions:
“reject null hypothesis” or “fail to reject the null hypothesis.” Instead
of asking readers of scientific papers to judge the significance of the
evidence provided for themselves, we can asks paper’s authors to
make that determination and report a hard conclusion, based on two
tolerance-to-error parameters a and b. Note that for Neyman and
Pearson the actual p-value is not important; it’s just some number
that we know will be smaller than predetermined value a to con-
trol Type I errors. The goal of introducing the hypothesis testing
approach was to take away the arbitrary and situation-dependent
notion of “significance” and replace it with a well-defined inferen-
tial procedure, governed by the tradeoff between the parameters a
(tolerance for false positives) and b (tolerance for false negatives).

Over time, scientific research “best practices” evolved to give us
NHST which is a hybrid that mixes concepts from both Fisher’s sig-
nificance testing, and the Neyman–Pearson hypothesis testing method-
ologies. Instead of carefully choosing the a and b values specific to
each problem they want to study, many scientists blindly choose the
a “ 0.05 rule of thumb to get a cutoff value, and only think about ex-
periment power after having collected the data. For optimal statisti-
cal results, we recommend that you follow the six steps as described
in this chapter: and perform power analysis before collecting your
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data samples. Additionally, we recommend that you always report
effect size and confidence intervals for any estimated parameters, in-
stead of just focussing on p-values.

One-tailed and two-tailed tests
The definitions and worked example we presented in this chapter
were using upper-tailed tests, which correspond to the case when the
alternative hypothesis tests for a positive model parameter q. There
are two other hypothesis formulation scenarios that you need to be
aware of to complete your knowledge NHST, so we’ll briefly de-
scribe them in this section.

In all the scenarios we’ll use a critical value of the form CVz “ zq

defined through the equation FZpzqq “ q, where F is the CDF for
the standard normal distribution Z „ N p0, 1q. The critical values of
the z-test are specified in terms of the normal distribution, and are
of the form CVz “ z1´a, CVz “ za, or CVz “ ˘z1´a{2, depending on
comparison encoded in the hypotheses H0 and HA. In all cases the
decision rule corresponds to a comparison of the value of a test statis-
tic z and the critical value, but type of comparison will according to
one of the three possible cases:

• upper-tailed: When you want to test for the possibility of a pos-
itive parameter

H0 : q § 0, HA : q ° 0.

Decision rule: Reject H0 if z ° z1´a, otherwise retain H0.
• lower-tailed: When you want to test for the possibility of a neg-

ative parameter

H0 : q • 0, HA : q † 0.

Decision rule: Reject H0 if z † za, otherwise retain H0.
• two-tailed test: When you want to test for the possibility of a

parameter in two directions

H0 : q “ 0, HA : q ‰ 0.

Decision rule: Reject H0 if z † za{2 or if z ° z1´a{2, otherwise
retain H0.

The acceptance region is defined by a different type of inequality in
each of the above cases: it is tz P R

ˇ̌
z § CVzu for upper tailed tests,

tz P R
ˇ̌

z • CVzu for lower-tailed tests, and tz P R
ˇ̌

|z| § CVzu for
two-tailed tests. The critical region is the complement of the region
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of acceptance for the statistical test. Recall that the critical region is
the set of values for the test statistic that will lead us to reject H0,
as illustrated in Figure 33.7. The values of the test statistic that fall
somewhere within the tails of the distribution tell us that H0 a very
unlikely explanation for the data observed.

Figure 33.7: Illustration of the three types of “tails” that describe the prob-
ability weights of the false-positive conclusions. In each figure, the shaded
region under the curve has total area a and corresponds to the Type I error
for the test. When we observe a value of the test that falls within this range
by change, we’ll erroneously reject the null hypothesis even when H0 is true.

The parts of the sampling distribution under the null hypothesis that
fall in the rejection region of the statistical test correspond to the Type I
error, as illustrated in Figure 33.7. You need to keep this picture in
mind when choosing the critical value for a given test. For example,
assuming we’ve chosen a “ 0.05, the critical value for an upper-
tailed test will be z1´a “ z0.95 “ 1.645, while the critical value for
an lower-tailed test is za “ z0.05 “ ´1.645. For a two-tailed test, the
critical values will be at za{2 “ z0.025 “ ´1.96 and z1´a{2 “ z0.975 “

1.96.
The type of test also affect the calculation of the p-value. Recall

that the p-value is the probability of observing a value of the test
statistic at least as extreme as the one you calculated from your sample
purely by chance, assuming that H0 is true. For an upper-tailed z-
test, the p-value is given by p “ Prp Z • z | H0q. For a lower-tailed
z test the p-values is calculated using Prp Z § z | H0q, and for two-
tailed tests the p-values is Prp |Z| • z | H0q.

On being a self-respecting scientist
You need to know about NHST if you want to publish science papers
or make better business decisions. It’s possible to follow the NHST
procedure by blindly carrying out rote calculations without intuition
or understanding. This approach often leads to misleading interpre-
tations, wrong statements, and false scientific conclusions. If you
choose this approach, you’ll have to memorize all kinds of formulas
and “rules” to follow on a case-by-case basis. Dear readers, you’ll
have to trust me on this one, you can do better than that. Having
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proven yourself by surviving all the prerequisites topics we covered
in the data and probability chapters, you have no excuses for skip-
ping the under-the-hood story for the NHST procedure, which is one
of the core pillars of the modern scientific establishment. It would be
a shame if you were to miss out on the beautiful mathematics con-
struct that builds on top of thousands of years of analytical thought.
Think about it, what other math topics do you know that requires us-
ing Greek symbols like a and b, Roman numerals for the type errors,
the best of seventeenth century math theory, and modern computer-
aided calculations.

In particular, you need to know probability theory to correctly in-
terpret p-values. The p-value is the probability of observing a value
of the test statistic equally or more extreme than the value of the test
statistic obtained form the data. Without this under-the-hood under-
standing of probabilistic modelling assumptions, it’s easy to make a
wrong decision in Step 5 and give a incorrect interpretation of the p-
value in Step 6. A significant proportion of scientists currently pub-
lishing papers, including scientists with prestigious awards and dis-
tinctions, commit statistical errors when using the NHST procedure
mechanically without thinking much about the probability assump-
tions they’re making, which means some significant portion (think
20%+) of published papers are wrong. I’m counting on you to do
better than that in your research.

In the next chapter we’ll learn about the various other statistical
tests that can be used with the NHST procedure. The formulas and
calculation procedures will differ in each case, but we’ll always fol-
low the six-step NHST procedure as described in this chapter. If you
ever start to get confused about what is going on in later chapters,
you can always come back to this chapter to review and re-acquaint
yourself with the meaning of a, b, critical values, p-values, effect
sizes, and confidence intervals.

In this chapter we looked in detail at one example based on the
z-test, but the z-test applies for many other scenarios (see Exercises).
Indeed z-test is the go-to tool whenever we perform statistical anal-
ysis on a populations with known variance. But what about cases
where variance is not known? And what about other scenarios when
we’re not comparing means but proportions, or two sided tests, or
any of the myriad other data analysis scenarios that can come up.
In the next chapter we’ll discuss a number of other tests that can be
used as part of the NHST procedure. The steps of the NHST proce-
dure are the same as in this chapter, but have to use different formu-
las depending on the assumptions and the probability models for the
sampling distributions that arise in each case.
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33.5 Exercises
You should be able to solve all the exercises in this chapter with-
out the need for a computer, by looking up probability values in
Table ZZ. If you do have access to a computer, you can skip the
lookup table and instead compute zq ” F

´1
Z

pqq using the formula
zq =NORM.INV(q,0,1) in Excel, by calling zq =qnorm(q,0,1) in R, or
zq =norm.ppf(q,0,1) in Python.
E33.1 Repeat the numerical analysis techniques for the beer example
using R. ..

E33.2 Suppose you receive two new samples for beer prices for which
xW “ 10 and xE “ 9.3. Assuming n “ 9 and we continue with the
assumption of a known population variance s2

E
“ s2

W
“ 5, what con-

clusion will you reach? Is Kayla’s claim that beer prices are cheaper
in the East End supported by the second sample? Fail to reject H0.

E33.3 Another question but this time ask to do a two-tailed z-test. ??

33.6 Links
[ An interactive visualization about statistical power and significance
testing]
https://rpsychologist.com/d3/NHST

[ Historical context about the foundations of statistics ]
https://en.wikipedia.org/wiki/Foundations_of_statistics

[ The Wikipedia bios of the inventors of NHST ]
https://en.wikipedia.org/wiki/Ronald_Fisher
https://en.wikipedia.org/wiki/Jerzy_Neyman
https://en.wikipedia.org/wiki/Egon_Pearson

https://rpsychologist.com/d3/NHST
https://en.wikipedia.org/wiki/Foundations_of_statistics#Fisher's_%22significance_testing%22_vs_Neyman%E2%80%93Pearson_%22hypothesis_testing%22
https://en.wikipedia.org/wiki/Ronald_Fisher
https://en.wikipedia.org/wiki/Jerzy_Neyman
https://en.wikipedia.org/wiki/Egon_Pearson

