
Chapter 32

Estimators

The term estimator is a fancy way of talking about functions com-
puted from samples. It’s basically probability theory applied to the
specific task of making inferences about populations using sample
data. This chapter will form the foundation for other topics we’ll
cover in this book: hypothesis testing (Chapter X), parametric mod-
els (Chapter Y), as well as linear models (Chapter Z). The math you’ll
need is no more advanced than what you already know. Indeed, all
the estimator calculations and formulas were already introduced in
the PROB chapters. How hard could this be?

32.1 Definitions
Let’s start with some definitions.

32.1.1 General estimators concepts
We’ll first review the general concepts that we presented in the intro-
duction. The starting point is some population tx1, x2, x3, x4, x5, . . . , xNu

that represents every item, person, animal, or event in a group of
interest. Depending on the characteristics of the population, we’ll
build a population model X „ modelpqq, which is a probability distri-
bution of a random variable that describes the population. The model

parameters q represent the unknown values of the “control knobs” of
the probability distribution that describe this specific population.

For the probability calculations to make sense in this chapter (and
most parts of the subsequent chapters), samples must be collected
from the population using a method called simple random sampling.
Random sampling is an unbiased technique of collecting a sample in
such a way that every member of the population has an equal chance
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of being included. A particular sample of size n from the population
is denoted x ” tx1, x2, . . . , xnu. The sample size n is usually much
smaller than the population size N. We estimate properties of the
population by computing the estimator value f pxq from a particular
sample x.

We can think about estimators in two ways: practically and the-
oretically. Consider the set of functions f that take samples of size n

as inputs,
f : X ˆ X ˆ ¨ ¨ ¨ ˆ Xlooooooooomooooooooon

n copies

Ñ R,

where X denotes the type of values that you can encounter in the
population, f pxq denotes the value of the estimator computed on a
particular sample x ” tx1, x2, . . . , xnu, and f pXq the value of the esti-
mators computed on a random sample of the form X ” tX1, X2, . . . , Xnu,
where each Xi is randomly selected value from the population.

In the practical context, the output value of the estimator is a
number f pxq that depends on a particular sample x. However, be-
cause the sample is random, so too is the output value of the estima-
tor. We can’t predict the exact values that will end up in the sample,
so we can’t predict the exact value that’s outputted by the estimator.
The output value of the estimator f pXq is therefore a random vari-
able. It depends on the sample size n and the population. The value
of the estimator computed from a random sample f pXq allows us to
characterize the variability of the estimates we are likely to observe.

32.1.2 Estimating a population parameter using a sam-
ple

Consider a particular sample x ” tx1, x2, . . . , xnu collected from the
population using random sampling. Figure 32.1 shows the flow di-
agram for the general process of obtaining samples and computing
estimator values f pxq from the sample.

Figure 32.1: Using estimators in the context of statistical analysis of particu-
lar sample. The sample x is drawn from the population using the process of
random selection. The estimator value f pxq is a real number computed from
the sample x.
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Let’s look at the different types of estimates (estimator values)
that we can compute from a particular sample.

• Statistic: any quantity computed from a sample. A statistic is a
number that describes some characteristic of a sample.

• Estimator value: A statistic computed for the purpose of making
an inference about a population. We can further subdivide the
estimator values as follows:

ô Parameter estimate q̂: a particular type of estimator used
to compute estimates of population parameters, q̂ ” f pxq.
For example, the sample mean estimator x “ gpxq “

1
n

∞
n

i“1 xi “

Meanpxq is an estimator of the population mean µ.
ô Test Statistic t, z, c2, . . .: a particular type of statistic used

as part of a hypothesis testing procedure. The value of the
test statistic computed from a particular sample is used as
input to a “decision rule” for reaching a conclusions about
one of two competing statistical hypotheses.

ô Confidence interval CI1´a: A confidence interval is calcu-
lated from sample data and is used to estimate a parame-
ter. The confidence interval will will contain the true pop-
ulation parameter in a% of cases if the process of collect-
ing sample data and calculating the confidence interval is
repeated a number of times.

ô Estimated standard error of the estimator q̂ (ŝeq̂): describes
the variability of the estimates q̂ we are likely to obtain for
different random samples. For example estimated stan-
dard error of the sample mean is given by the formula
sex ”

s?
n

, where s is the standard deviation of the sample

x (the square root of the sample variance s
2

“ hpxq. The
estimated standard error value ŝeq̂ is an approximation for
the true standard error value seq̂ , which will be defined in
the next section.

Examples The following list shows some common estimates that
we can compute on a particular sample of size n:

• Sample mean: x ” gpxq ”
1
n

∞
n

i“1 xi

• Sample variance: s
2

” hpxq ”
1

n´1
∞

n

i“1 pxi ´ xq
2

• z-statistic of the sample mean: z ” zpxq “
x´µ
sex

• t-statistic of the sample mean: t ” tpxq “
x´µ
ŝex

You’ve already seen the function g for computing the sample mean,
which is identical to the Mean operation we learned about in the
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chapter on descriptive statistics gpxq ” x ” Meanpxq. When we cal-
culate the variance s

2 of sample data instead of just any old data, the
formula we use is a little different. In descriptive statistics, we used
the formula (Varpxq “

1
n

∞
n

i“1 pxi ´ xq
2), but in inferential statistics,

we change the n to n ´ 1. We’ll explain why the formula is different
in Section ???. For now, just remember that when calculating either
the variance or the standard deviation using sample data, use the
formula with n ´ 1 instead of n. The z-statistic and the t-statistic are
functions computed from the sample mean x with the purpose of
“normalizing” the values obtained from different distributions and
comparing them on the same scale. The values of these statistics are
used as part of the z-test and the t-test, which are two common hy-
pothesis testing procedures. The quantity sex ”

s?
n

is called the
standard error of the estimator x ” gpxq. The quantity ŝex ”

s?
n

is
an approximation for the standard error that is computed using the
sample variance s

2 instead of the true population variance s2.

32.1.3 The theory behind estimation
Instead of a particular sample x “ tx1, x2, . . . , xnu, let’s now consider
a random sample X “ tX1, X2, . . . , Xnu, where each Xi represents a
random draw from the population. The value of the estimator com-
puted from a random sample f pXq is a random variable. Figure 32.2
illustrates the diagram for the theoretical analysis of random sam-
ples.

Figure 32.2: Using estimators in the context of statistical analysis of random
samples. We start by building a probabilistic model for the distribution of
values in the population. Using this model, we can perform the theoreti-
cal analysis of random samples X drawn from the population. In particular,
we’re interested in describing the variability of the random variable f pXq,
which is output of an estimator computed on random samples X. The prob-
ability distribution of this random variable f pXq is called the sampling distri-

bution of the estimator.

We use the following concepts as part of the hypothetical analysis
of random samples from a population model.
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• Random sample of size n: a theoretical concept that describes n

independent, random draws from the population model: X ”

tX1, X2, . . . , Xnu, where each Xi „ modelpqq.
• Estimator: a function computed on random samples Q̂ ” f pXq.

For example, the mean of a random sample: X ”
1
n

∞
n

i“1 Xi “

MeanpXq. Note X is a random variable since it is computed
from the random sample X “ tX1, X2, . . . , Xnu. The probabil-
ity distribution of the random variable X is called the sampling

distribution of the sample mean.
• Sampling distribution of an estimator. The probability distribu-

tion that describes the random variable Q̂.
• Standard error (seq̂) of the estimator is the standard deviation

of the sampling distribution for the estimator Q̂. It’s formula
is seq̂ ”

s?
n

. However, we almost never know the true pop-
ulation variance s — to calculate it’s value we would need to
measure every member of the population. Instead we use the
standard deviation of the sample s as an estimate for the stan-
dard deviation of the population s. Replacing s with s in the
formula for standard error, we get ŝeq̂ ”

s?
n

— an estimate of
the standard error.

Let’s look at the same estimators that we described in the previous
section, but this time applied to random samples of size n:

• Random sample mean: X ” gpXq ”
1
n

∞
n

i“1 Xi

• Random sample variance: S
2

” hpXq ”
1

n´1
∞

n

i“1
`
Xi ´ X

˘2

• Sampling distribution of the z-statistic: Z ” zpXq “
X´µ
sex

• Sampling distribution of the t-statistic: T ” tpXq “
X´µ
ŝex

The sampling distribution of an estimator describes the probability dis-
tribution of the estimator values computed on random samples of
size n. By making assumptions about the probability distribution of
the population and applying the basic laws of probability theory, we
know the sample mean is going to be a normally distributed random
variable X ” gpXq “ N pµ, se2

x
q, where sex “

s?
n

. We can simi-

larly describe the variability of the sample variance S
2

” hpXq. The
sampling distributions of the z-statistic is the standard normal dis-
tribution Z „ N p0, 1q. The sampling distribution of the t-statistic is
described by Student’s t-distribution which saw in Section 24.3.5.

Estimators are often used in conjunction with the expectation op-
erator. The expected value the random sample mean X ” gpXq is
equal to the population mean: E

“
X

‰
“ µ, and the expected value
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of the random sample variance S
2

” hpXq is equal to the popula-
tion variance: E

“
S

2‰
“ s2. This where the name “estimators” comes

from—the functions g and h are represent the computations we use
to compute estimates for the population parameters µ and s2.

32.2 Formulas

32.2.1 Sample mean estimator
Given the sample x ” tx1, x2, . . . , xnu, the sample mean is computed
using the formula:

x ” gpxq “
1
n

nÿ

i“1
xi “ Meanpxq.

You’ve seen this formula several times earlier in the book. The only
new thing here is the interpretation—in this chapter we are using the
quantity x to make an inference about the population mean µ.

32.2.2 Sample variance estimator
Sample variance is computed using the formula:

s
2

“
1

n´1

nÿ

i“1
pxi ´ xq

2
“

n

n ´ 1
Varpxq.

The quantity s
2 serves as an estimate of the population variance s2.

The square root of the sample variance is called the sample standard

deviation s “

b
1

n´1
∞

n

i“1 pxi ´ xq
2.

Remember, the formula for the sample variance is different from
the variance formula Varpxq that we saw in Chapter 13. The denomi-
nator in the formula is n ´ 1 and not n. We’ll learn the reason for this
in Section ??.

32.2.3 Sampling distribution of the sample mean
The mean of a random sample X ” tX1, X2, . . . , Xnu is defined as

X ” gpXq “
1
n

nÿ

i“1
Xi.

The probability distribution that describes the random variable X is
called the sampling distribution of the estimator x. The sampling dis-
tribution of the sample mean is normally distributed with mean µx
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and variance se2
x
: X „ N pµ, se2

x
q. The law of large numbers tells us

mean (expected value) of the random variable X is equal to the pop-
ulation mean µ. The standard deviation of X is called the standard

error of the estimator x and computed using the formula

sex “
s

?
n

.

Note the formula for the standard error depends on the population
standard deviation s and the square root of the sample size

?
n. The

notation “se” stands for standard error and the subscript indicates the
estimator whose standard error we’re computing. For example, the
standard error of the estimator q̂ is denoted seq̂ .

Remember, the formula for the standard error sex assumes that
the population standard deviation s is known, which is not a very
common case—usually the population standard deviation is an un-
known quantity. We can compute an estimate for the standard error
based on the sample standard deviation s instead of the population
standard deviation s:

ŝex “
s

?
n

.

This is the quantity that we’ll use most often in calculations going
forward. The hat indicates the quantity ŝex is estimated from a par-
ticular sample.

It’s important to distinguish between standard error quantities
ŝex and sex from the population standard deviation s and the sample
standard deviation s. The population standard deviation s measures
the variability of the population, while the sample standard devia-
tion s estimates s by measuring the variability of the sample. The
ŝex and sex measure the variability of the estimator X. The quanti-
ties are related (see formulas for sex and ŝex above), and they are all
a measure of variability, but they measure the variability of differ-
ent things. The sample standard deviation s measures the variability
within a sample. The ŝex measures variability between samples.

32.2.4 Test statistics
Consider the population parameter q and the estimator Q̂ ” f pXq

that has standard error seq̂ . Given a value of the estimator computed
from a particular sample q̂ “ f pxq, we calculate z-statistic using the
following formula:

z ” zpxq “
q̂ ´ q

seq̂

.

The z-statistic measures the difference between the estimator value
q̂ computed from a particular sample and the true population pa-
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rameter q. Intuitively, you can think of the units of the z-statistic
(sometimes called the z-score) as providing the “how many standard
errors away from the mean” information. The z-statistic can be com-
puted for all estimators whose sampling distribution is normally dis-
tributed.

The t-statistic is defined by the formula

t ” tpxq “
q̂ ´ q

ŝeq̂

,

which is similar to the formula for the z-statistic, but uses the es-

timated standard error ŝeq̂ in the denominator instead of seq̂ . The
t-statistic also describes “how many estimated standard errors away
from the mean” information.

These two test statistics are used in many statistical testing pro-
cedures that require computing standardized values in “number of
standard deviations from the mean” units. Suppose we compute the
estimator value q̂ “ f pxq from the particular sample x obtained from
a population with parameter q. The values of the the z-statistic and
the t-statistic tell us how likely or unlikely it is to observe the value
q̂. We’ll discuss statistical testing procedures in Chapter 33.

32.2.5 Confidence intervals
The confidence interval CIp1´aq is a range of numbers that may contain
the true value of some parameter of interest. A confidence interval is
usually computed by taking the estimate for the parameter of inter-
est, plus or minus some margin of error:

estimate ˘ (constant)a ¨ (standard error of the estimator)loooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooon
margin of error

,

where the constant describes “how many standard errors away from
the mean” parameter that depends on the required confidence level
a.

Confidence intervals are usually written using interval notation
with upper and lower limits. For example, the p1 ´ aq-confidence in-
terval for the population sample mean of a normal distribution with
known variance s is given by

CIp1´aq “

”
x ´ |za{2| ¨ sex , x ` |za{2| ¨ sex

ı
.

where za{2 denotes the value of the inverse CDF of the normal distri-
bution F

´1
Z

pa{2q.
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Figure 32.3: Illustration of a 95% confidence interval for the population
mean computed from the estimate x. We know the estimator X is normally
distributed with mean µ and standard deviation sex. Using these facts and
the formula for the confidence interval provided above, we can find the re-
gion that contains 95% of the probability density function.

For cases where the population variance is not known, the con-
fidence interval will be computed based on Student’s T distribution
and the estimated standard error:

CIp1´aq “

”
x ´ |ta{2,n| ¨ ŝex , x ` |ta{2,n| ¨ ŝex

ı
.

The constant ta{2,n denotes the value of the inverse CDF of the T

distribution with n degrees of freedom, ta{2,n ” F
´1
Tn

pa{2q. Note the
structure of the confidence interval is the same (x plus or minus some
multiple of the standard error), but we use the distribution Tn in-
stead of the normal distribution. Student’s T distribution is similar
in shape to the normal distribution but includes a “correction factor”
to account for the fact we’re using an estimate of the standard error
ŝex instead of the true value sex. We’ll define the T distribution and
explain the concept of degrees of freedom in Section ??.

32.2.6 Example
Consider the population of values that are normally distributed with
mean µ “ 70 and standard deviation s “ 10. The probability model
for random samples from the population is Xi „ modelpqq, where
model is the normal distribution, and the model parameters are q “

pµ, s2
q “ p70, 100q.

Let’s place ourselves in the shoes of a scientists with a very lim-
ited budget who wants to estimate the population parameters by tak-
ing a sample of three values from the population. How much infor-
mation about the population mean µ and standard deviation s can
the scientist learn from a sample of size n “ 3? We’ll investigate this
question first theoretically by studying random samples, then show
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the practical steps that the scientist could perform on a specific sam-
ple.

Random sample analysis We denote the a random sample of size
n “ 3 as follows X ” tX1, X2, X3u, where each Xi is randomly se-
lected from the population model. Since the population is normally
distributed with mean µ “ 70 and variance s2

“ 100, the random
values Xi have the distribution Xi „ N p70, 100q.

The sample mean estimator computed from a random sample of
size n “ 3 is

X ” gpXq “
1
3 pX1 ` X2 ` X3q ,

and the sample variance estimator for the random sample is

S
2

” hpXq “
1
2

”`
X1 ´ X

˘2
`

`
X2 ´ X

˘2
`

`
X3 ´ X

˘2
ı

.

The random variable X is an estimate of the population mean µ “ 70.
Similarly, the value of S

2 is an estimator for the population variance
s2

“ 100.
Note X is a random variable because it is computed from the ran-

dom values X1, X2, and X3. The central limit theorem tells us the
distribution of the random variable X is a normal distribution with
mean equal to the population mean µ and variance equal to 1

3 as
large as the population variance:

X „ N
´

µ, s2

3

¯
.

The random variable X describes the variability of the sample-mean
estimates x computed from different samples of size n “ 3 taken
from the population. Using the formula for the standard error of this
estimator (the standard deviation of the sampling distribution), we
find sex “ 10{

?

3 “ 5.77.
Note the calculations apply to all possible samples taken from

the population. We were able to predict the variability of the sample
mean estimates is going to be sex “

s?
n

“ 5.77 before collecting any
samples!

Particular sample analysis Now suppose the scientist obtains a
particular sample x ” t64, 82, 73u from the population. Let’s look
at some estimator values she can compute from this sample. We’ve
intentionally chosen a very small sample size n “ 3 to make the cal-
culations easy to follow.

The first step for the scientist is to to computes the sample mean

x ” gpxq “
1
3 p64 ` 82 ` 73q “ 73,
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and the sample variance s
2

” hpXq “ 81. The estimator values x “

gpxq (sample mean) and s
2

“ hpxq (sample variance) can be com-
bined to form the parameters estimate q̂ “ px, s

2
q “ p73, 81q, which

describe the scientist’s “best guess” about the true population pa-
rameters. This is the whole point of estimators—they are functions
computed from the sample that allow us to find estimates for the
population parameters.

But wait, there is more! Since we know the sampling distribu-
tion of the sample mean estimator X ” gpXq, we can also report an
estimate of our uncertainty about the value of x “ 73 we computed
from the sample. The standard error for the sample mean estimator
is sex “

s?
n

, which describes the variability of the estimates we are
likely to obtain when computing samples of size n “ 3. The popula-
tion variance s2 is an unknown quantity, so we have to use the sam-
ple variance s

2 as an approximation for s2. Using the formula for the
approximate standard error, we find ŝex “

s?
n

“

?

81{

?

3 “ 5.12.
The standard error ŝex is useful to compute so that we can quantify
the uncertainty in our estimate for x. In this case, our estimate for the
population mean is 73 and the standard error of the sample mean is
5.12. This is much better: The standard error is an indication of the
extent to which an estimate might vary with different samples. For
that reason, when you report an estimate, you should always include
its corresponding standard error.

The best way to express the uncertainty in our estimate of the
population mean is to provide a confidence interval for our esti-
mate. We can can compute a p1 ´ aq%-confidence interval for the
population mean using the formula CIp1´aq “ rx ´ |ta{2,n“2|ŝex, x `

ta{2,n“2ŝexs, where ta{2,n“2 denotes the value of the inverse CDF of
the T distribution with n “ n ´ 1 “ 2 degrees of freedom F

´1
Tn“2

pa{2q.
Note we’re using the values of the T distribution to compute the con-
fidence interval because we’re using the estimate standard error ŝex

(computed from s
2) and not the true standard error sex (computed

from s2
q.

To find the 95%-confidence interval we choose a “ 1 ´ 0.95 “

0.05, and compute the value of the constant t0.025,2 “ ´4.3 (mean-
ing FT2p´4.3q “ 0.025). When computing confidence intervals, we’re
only interested in the “how for from the mean” information, so we
take the absolute value of the t-statistic |t0.025,2| “ 4.3. In words, this
number tells us that the true population mean can be anywhere up
to 4.3 standard errors smaller or larger than our estimate 73. The
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95%-confidence for the population mean is

CI0.95 “ rx ´ 4.3ŝex, x ` 4.3ŝexs

“ r73 ´ 4.3 ¨ 5.12, 73 ` 4.3 ¨ 5.12s

“ r50.64, 95.36s.

Computing the confidence interval for our estimate provides use-
ful information about our uncertainty of the population mean. The
very wide confidence interval tells us not to trust our estimate for the
population mean x “ 73 too much—the true population mean could
be anywhere in the range r50.64, 95.36s, which is very broad. That’s
what you get when you try to do statistics with very small sample
sizes.

32.3 Understanding why estimators work
Many of the formulas and probability calculations that we use in
statistics are computed based on estimates and the analysis of the
estimator’s sampling distribution. It’s easy to grasp the notion of the
estimator value q̂ “ f pxq computed from a particular sample x. It’s
much more difficult to think about and the sampling distribution of
estimator q̂, which is a theoretical construct that describes the ran-
dom variable Q̂ “ f pXq computed from random samples X taken
from the population. What does the sampling distribution of an es-
timator describe exactly? What does it look like? As with all things
mathematical, it’s always useful to look at a picture before looking at
the math formulas.

Figure 32.5 shows multiple repetitions of the random sampling
procedure for three different sample sizes. The first row corresponds
to samples of size n “ 3 taken from the population. The values of
the sample mean estimator x “ gpxq computed from each sample
oscillate around the centreline which represents the true population
mean µ. In the second row we see the same situation repeated with
samples of size n “ 15, and the third row shows samples of size
n “ 200. Note how the variability of the sample mean estimates
decreases when we take larger samples.
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Figure 32.4: The data from multiple independent random samples taken
from the population are shown horizontally. The grey circles in each sam-
ple correspond to the data points txk1, xk2, . . . , xkNu “ xk, while the hollow
diamond shapes indicate the sample mean x “

1
n

∞
i
xi within each sample.

Three cases are shown: a) sample size n “ 3, b) sample size n “ 15, and c)
n “ 200. What is the trend you see about the diamond shapes when you go
from a), to b), and c)?

The sample mean values computed in each sample in the above fig-
ure (diamond shapes) are instances of the random variable X. The
sampling distribution is an abstract theoretical construct that describes
the variability of the estimator X. We can visualize the sampling
distribution by plotting a histogram for the different values of x ob-
tained from repeated sampling, as illustrated in Figure 32.5.

Figure 32.5: Visualization of the sampling distribution for the sampling dis-
tribution of the sample mean x computed from 50 different random sam-
ples of size n “ 3, n “ 15, and n “ 200. The solid indicate the interval
rx ´ sex, x ` sexs, where sex is the standard error of the estimator x.

Note the shape of the histogram always looks roughly like a normal
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distribution, and the larger the samples get the narrow the distribu-
tion of estimates becomes. This approximately-normal behaviour is
predicted by the central limit theorem, which states that the sam-
pling distribution of any estimator will “approach” the normal dis-
tribution for large enough samples, In other words, the central limit
theorem tells us

X „ N
´

µ, se2
x

¯
,

where sex is the standard error of sample mean estimator.
The standard error sex is a useful way to quantify the variability

of the estimator values. Looking at the right side of Figure 32.5 we
can observe that the standard error of the sample mean estimator for
samples of size n “ 3 is sex “ 5.77. When using samples of size
n “ 15 the standard error decreases to sex “ 2.58, and using samples
of size n “ 200 the standard error is sex “ 0.71.

The central limit theorem provides us with a formula for standard
error of the sampling distribution:

sex “
s

?
n

,

where s is the population standard deviation. This means the stan-
dard error of our estimates decreases when we collect larger samples.
Specifically, the standard error decreases as 1?

n
as n increases.

Note this behaviour applies to all probability distributions: the
standard error of any estimator decreases as the sample size gets
larger, regardless of the shape of the population’s distribution. This
is called the asymptotic normality property of estimators. We’ll talk
more about that in Section 32.4.5.

32.4 Estimator properties
In this section we’ll introduce some new terminology for describing
the properties of estimators.

Consider the estimator f : X n
Ñ R that is used to compute esti-

mator values q̂ ” f pxq. The sampling distribution of this estimator is
defined as a random variable obtained by applying the function f to
a random sample X:

Q̂ “ f pXq.

The random variable Q̂ describes the variability of the different esti-
mator values q̂ that we are likely to observe if we were to repeatedly
draw new samples of size n from the population. The probability
distribution that describes Q̂ is called “the sampling distribution of
the estimator q̂.” In it customary in statistics to refer to the random
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variable Q̂ as “the estimator Q̂” instead of “the values of the estima-
tor f computed from random sample X,” which would be the more
precise terminology.

32.4.1 Estimator bias
An estimator is unbiased if the mean of its sampling distribution is
equal to the value of the population parameter being estimated. The
estimator Q̂ is an unbiased estimator if ErQ̂s “ q. If the estimator is
not unbiased then the difference ErQ̂s ´ q is called the bias.

Suppose that X is a random variable with mean µ and variance
s2. Taking random samples X1, X2, . . . , Xn from the population, we
will now show that the sample mean X is an unbiased estimators of
µ:

ErXs “ E

«
1
n

nÿ

i“1
Xi

�
“

1
n

nÿ

i“1
ErXis “

1
n

nÿ

i“1
µ “

n

n
µ “ µ.

The expected value of each random variable Xi is µ, hence the sum
of n independent copies of Xi divided by n equals the population
mean µ. We can therefore say “X is an unbiased estimator for the
population mean µ.”

We can perform a similar calculation for the sample variance, and
after some calculations we obtain:

ErS
2
s “

1
n´1 E

«
nÿ

i“1
pXi ´ Xq

2

�
“ s2,

which tells us S
2 is an unbiased estimator of the population variance

s2.
Note the formula for the sample variance estimator is S

2
“

∞
n

i“1pXi ´

Xq
2 with normalization factor 1

n´1 in front of the summation instead
of 1

n
. As you can see from the above calculation, this is not some

arbitrary choice we make but a consequence of probability calcula-
tions. A sample variance formula with normalization factor 1

n
would

systematically underestimate the population variance.

32.4.2 Estimator variance
The variance of an estimator Q̂ for the population parameter q is
defined by the following formula

VrQ̂s ” E

”`
Q̂ ´ ErQ̂s

˘2
ı

.
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This formula computes the expectation of the squared difference be-
tween the estimator Q̂ and its expected value ErQ̂s. You will rec-
ognize this expression as an instance of the usual variance formula
applied to the random variable Q̂. The meaning of this quantity de-
scribes the the variability of the random estimates q̂ “ f pxq that we
are likely to compute from different samples of size n from the pop-
ulation.

Two unbiased estimators Q̂1 and Q̂2 have distributions centred
in the same spot, but could still have a different variance. Given the
choice between the two estimators, we will prefer the estimator with
smaller variance.

TODO: example of two unbiased estimators with difference vari-
ance

32.4.3 Standard error of an estimator
The standard error of an estimator Q̂ is the square root of the esti-

mator variance seq̂ “

b
VrQ̂s. All self-respecting statisticians will

report estimates of the uncertainty associated with each of value q̂
they report. For example, if the statistician computes the estimate
q̂ for the model parameter q, it is their obligation to also report an
estimate of the standard error ŝeq̂ .

In the formulas section above (Section 32.2), we showed two for-
mulas for computing the standard error of the sample mean estima-
tor X for samples of size n. If the population variance s2 is known,
we can compute the exact standard error of the estimator using the
formula seq̂ “

s?
n

. If the population variance is unknown, we can in-
stead compute the estimated standard error using the formula ŝeq̂ “

s?
n

, where the sample standard deviation s is used as a substitute
for the population standard deviation s. The estimated standard er-
ror ŝeq̂ is used in calculating test statistics, confidence intervals, and
other quantities used in statistical analysis procedures.

32.4.4 Mean squared error of an estimator
The mean squared error (MSE) of an estimator is a useful metric that
combines the notions of bias (ErQ̂s ´ q) and variance (VrQ̂s). The
mean squared error of an estimator Q̂ is the expected value of the
squared difference between Q̂ and the population parameter q:

MSEpQ̂q “ ErpQ̂ ´ qq
2
s.

By rewriting this expression pQ̂ ´ qq as pErQ̂s ´ qq ` pQ̂ ´ ErQ̂sq and
doing some algebra calculations we can arrive at the following equiv-
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alent formula:

MSEpQ̂q ” ErpQ̂ ´ qq
2
s

“

´
ErQ̂s ´ q

¯2

loooooomoooooon
bias term

` E

”`
Q̂ ´ ErQ̂s

˘2
ı

looooooooomooooooooon
variance term

“ pbiasq
2

` VrQ̂s.

Note how mean squared error of the estimator decomposes into a
bias term and a variance term. The bias term measure how much the
estimator is “consistently off” from the true value q on average. The
variance term describes the variability of the estimates q̂ we are likely
to observe when selecting samples of size n from the population.
Bias and variance are two central concepts of statistics: we generally
prefer to use unbiased estimators and aim to quantify the variance
of each estimator by computing its standard error.

In some cases, a biased estimator may be preferred over an unbi-
ased one because its mean squared error is smaller. In particular, the
“best” choice of estimator to use might depend on the sample size.
For example it might be better to use a biased estimator with small
variance rather an unbiased estimator with large variance. An esti-
mator is said to be more efficient than another if it has smaller mean
squared error. An estimator having mean squared error less than any
other is called an optimal estimator.

TODO: example of biased estimator with smaller MSE overall
Decomposing the estimator “error” into a bias term and a vari-

ance term is a very useful way to characterize the “overall quality”
of any probabilistic model. We’ll see these concepts again in the ma-
chine learning chapters, where we’ll talk about the bias-variance trade-

off that we must make when choosing a machine learning model for
a given ML task.

32.4.5 Asymptotic normality
Provided the sample size is large enough, the sampling distribution
of any estimator that computes the sum of independent random vari-
ables will be a normal distribution. We have used this result several
times in this chapter already, but it’s worth going over it one more
time.

Consider first a normally distributed population X „ N pµx, s2
xq

with mean µx and variance s2
x , and a random sample X “ tX1, X2, . . . , Xnu

that consists of n independent draws from the population model.
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The sample mean estimator Xn “
1
n

∞
n

i“1 Xi is normally distributed:

X „ N
ˆ

µx,
s2

x

n

˙
,

with mean equal to the population mean and variance equal to s2
x

n
.

Note this is an exact formula that can be derived from the properties
of a sum of normally distributed random variables and not an ap-
proximation. The formula is true for all n, including the case n “ 1.
The standard error of the estimator X decreases as the sample size n

get larger: sex ” VrXs “
s?
n

. This is the behaviour we observed in
Figure 32.5 (see page 13).

Now consider another population model Y „ modelpqq, where
model is some probability distribution (not necessarily normal) and
q describes the model parameters. The population mean for this
model is defined as µy “ ErYs and the population variance is s2

y “

E
“
pY ´ ErYsq

2‰
. The central limit theorem (Theorem ?? on page ??)

tell us that, under some general conditions about the model distri-
bution model, the sample mean estimator Y “

1
n

∞
n

i“1 Yi will be
approximately normally distributed for large enough n:

lim
nÑ8 Y „ N

ˆ
µy,

s2
y

n

˙
.

The above formula is telling us three important things we need to
know about the sampling distribution of the estimator Y. First it tells
us the sampling distribution is basically a normal distribution, which
simplifies all kinds of probability calculations that we might want to
perform as part of a statistical analysis, since normal distributions
are some of the easiest models to work with. The population distri-
bution model could be any complicated function, but we only need
to do probability calculations using the normal distribution to per-
form the statistical analysis procedures that involves sample mean y

estimates. Second it tells us the expected value of the random vari-
able Y is equal to the population mean µy, which is to be expected
since we want to use Y as an estimator for the population mean. The
third piece of information that the central limit theorem provides us
with, is the formula for that the variance of the estimator Y, which we
usually express as a formula for the standard error of the estimator
sex ”

sy?
n

. The sampling distribution of the sample mean Y from any

distribution is normally distributed with standard error decreasing
as the sample size increases.

The notion of “large enough” sample size depends on the partic-
ular statistical analysis procedure you want to compute. This is why
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all statistical analysis procedures include an “assumptions checklist”
that clearly states the sample size required to use the procedure for a
given type of population model. In Chapter 33 we’ll talk more about
how to choose appropriate sample size n for a given experiment. For
now, all you can need to remember is that when n is large enough
(think n • 30), we can treat the “approximately normal” distribution
of the estimator Y as it were exactly normal:

Y „ N
´

µy, se2
x

¯
,

with standard error given by sex ”
sy?

n
.

In summary, statistics is made possible thanks to the central limit
theorem.

Exercises

32.5 Sampling distributions reference
In this section we’ll discuss three of the most important probability
distributions. You’ve already seen the mathematical definitions and
computational procedures for computing the values of these func-
tions in Section 24.3, but it’s worth reviewing the the properties of
these distributions using the new terminology of estimators (random
variables) and estimator values (numbers).

For each of these distributions, you need to become fluent at com-
puting values of their CDF and their inverse CDF functions. Assum-
ing the distribution of the random variable X with probability den-
sity function fX and cumulative density function FX , the two most
common type of calculations you’ll need to perform are the follow-
ing:

• Given a particular value of the random variable x, you need
to know how to calculate the probability of the event tX §

xu. This corresponds to the value of the cumulative density
function FXpxq ” PrptX § xuq “

≥
x

´8 fXpx
1
q dx

1.
• Alternatively, if you’re given some probability value q, you

need to be able to find the value of the inverse cumulative
density function for that probability xq “ F

´1
X

pqq. This cor-
responds to solving the equation q “ FXpxqq “ PrptX § xquq “≥xq

´8 fXpx
1
q dx

1 for the unknown xq.

The tables in Appendix YY contain values of inverse CDF F
´1
X

for the standard normal, Student’s t, and c2 distributions. You can
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use these tables to lookup both the values F
´1
X

pqq and FXpxq in cases
when you don’t have access to a computer, for example when solv-
ing exercises and problems in the end of this chapter using pen and
paper, sitting in a park with a coffee and your phone switched into
airplane mode to avoid distractions. The lookup-values-in-a-table
approach is also the one you’re expected to use on statistics exams.

We’ll also provide the names of the Excel, Python, and R func-
tions you can use to obtain these values of F

´1
X

pqq and FXpxq in cases
when you have access to a computer. It’s up to you to choose you
favourite method for computing probabilities, but it’s a good idea
to get really comfortable with at least one of these three options, be-
cause computing values of the standard normal, Student’s t, and c2

distributions will be used a lot in the upcoming statistics chapters.

32.5.1 The standard normal distribution
The sampling distribution of any estimator q̂ that computes the sum
of independent random variables is a normal distribution. Since the
formula for the sample mean estimator x fits this criterion, we’ll see
the normal distribution come up again and again every time we com-
pute the sampling distribution of the sample mean.

Recall that any normal random variable X can be transformed
to the standard normal distribution Z „ N p0, 1q using the transfor-
mation z “

x´µx

sx
. This means any probability computation that we

might want to perform on the random variable X, there is an equiva-
lent calculation we can perform using the transformed value Z. This
all-normal-distributions-are-the-same property is a great computa-
tion simplification since we only need to know how to compute val-
ues of one normal distribution—the standard normal.

Consider now a normally distributed estimator Q̂ „ N pµq , se2
q̂
q,

with mean µq and standard error seq̂ The value of the z-statistic (z-
score) for a given estimator value q̂ “ f pxq is obtained using the
transformation

z “
q̂ ´ q

seq̂

,

where q is the population value q.

Probability calculations TODO: explain given z calculate p

TODO EXAMPLE: CDF calculation

TODO: explain given q calculate zq

You can compute it by looking up the value in Table XX, or using
the formula zq =NORM.INV(q,0,1) in spreadsheet software, or calling
zq =?? in R or zq =norm.ppf(q,0,1) in Python.
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The z statistic is used whenever the sampling distribution of the
estimator q̂ is normally distributed with standard error seq̂ . The
normal distribution is used in conjunction with the values of the z-
statistic in order to perform statistical analysis for all normally dis-
tributed estimators.

TODO EXAMPLE: inverse CDF calculation (confidence interval)

32.5.2 Student’s t distribution
When the population variance s2 is an unknown quantity, we use
the sample variance s

2 as an estimate for it.
TODO: mention it’s a family of distr. and define df

t “
q̂ ´ q

ŝeq̂

,

Student’s t distribution is used in conjunction with the t-statistic to
perform statistical analysis in case where the population variance is
estimated from a sample.

The sampling distribution of the estimator is normally distributed,
but we don’t know the true value of the standard error sex “

s2?
n

and

instead use the estimated standard error ŝex “
s

2?
n

.
Student’s t-distribution has an interesting history...

TODO: say it comes from "industry"
JOKE: the employer (Guinness brewing company) did not let him
use his name for fear that the news of a "bad batch" of Guiness that is
thrown out — Irish ppl would be outraged :) and storm the factory
being like "give me the bad batches...."
TODO: mention general concept of Studentization https://en.wikipedia.
org/wiki/Studentization.

TODO EXAMPLE: calculate the probability of observing the test
statistic t “ 5 for the sample mean x computed from samples of size
n “ 9 taken from a population with mean µ and variance s2.

TODO EXAMPLE inv: remind readers of the CI1´a calculation in
the Example

32.5.3 The c2 distribution
The sampling distribution of any estimator that computes the sum of
squares independent random variables is a c2 distribution. The su-
perscript 2 gives us a hint that the quantity has something to do with
squares. The Greek letter c is spelled “chi” (rhymes with “bye”), so
“c2” is read “chi squared.”

https://en.wikipedia.org/wiki/Studentization
https://en.wikipedia.org/wiki/Studentization


32.5 SAMPLING DISTRIBUTIONS REFERENCE 22

There is a whole family of c2-distributions defined by the differ-
ent values of the parameter n, which represents the number of degrees

of freedom of the distribution. The degrees of freedom parameter is
sometimes denoted “df.” We’ll use the symbol “n” in math equa-
tions and “df” in code examples.

Figure 24.4 (page 107) shows several chi-square distributions for
different values of the degrees of freedom parameter n.

Used in conjunction with the sample variance estimator S
2

TODO EXAMPLE: calculate the probability of variance ... greater
than assuming ...

32.5.4 More estimators
In addition to the essential, must-know estimator formulas we gave
in Section 32.2 above, there are a number of “secondary” estimator
formulas you should be aware of, as they will come up in certain
calculations.

32.5.5 Functions of other estimator
Since estimators are random variables, all the algebra rules that
apply for random variables also apply for estimators. For exam-
ple, we can combine two existing estimators Q̂1 „ N pµ1, se2

q̂1
q and

Q̂2 „ N pµ2, se2
q̂2

q to form a new estimator that computes difference
of their values

D̂ ” Q̂1 ´ Q̂2.

Using the general rule of probability for sums and differences of nor-
mally distributed random variables, we know the sampling distribu-
tion of the estimator D̂ is a normal distribution: D̂ „ N pµ1 ´ µ2, se

d̂
q.

The expected value of D̂ is equal to the difference between the pop-
ulation means ErD̂s “ µ1 ´ µ2, and standard error of this estimator
is

se
d̂

“

b
se2

q̂1
` se2

q̂2
.

The difference-between-two-quantities estimator D̂ is used in many
statistical analysis procedures where we want to compare two groups.

32.5.6 Difference of means estimator
Consider a sample x “ tx1, x2, . . . , xnu of size n taken from one group
or population, and the sample y “ ty1, y2, . . . , ymu of size m that is
taken from a different group or population. The value of the differ-
ence of sample means estimator computed from these two samples
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is
d̂ ” x ´ y,

where x “
1
n

∞
n

i“1 xi and y “
1
n

∞
n

i“1 yi are the sample means com-
puted from each group. The estimator value d̂ is an estimate for the
difference between the group means µx and µy. The sampling distri-
bution of the estimator D̂ is

D̂ „ N pµx ´ µy, se2
d̂
q,

where standard error is given by the formula

se
d̂

“

b
se2

x
` se2

y
“

d
s2

x

n
`

s2
y

m
.

In cases when the populations variances are known and equal sx “

sy “ s, the standard error formula simplifies to se
d̂

“ s
a

1{n ` 1{m.
Computing the true value of the standard error se

d̂
requires knowl-

edge of the population variances s2
x and s2

y , which is rarely the case.
More often we’ll use the values of the sample variances s

2
x and s

2
y to

obtain the estimated standard error:

ŝe
d̂

“

b
ŝe2

x
` ŝe2

y
“

d
s2

x

n
`

s2
y

m
.

Note the formula for ŝe
d̂

is the same as the formula for se
d̂
, but we

have “plugged in” sx instead of sx and sy instead of sy. This is an
instance of the general “plug in principle,” which is used a lot in
statistics.

32.5.7 Proportion estimator
Suppose we’re studying a population variable with two possible val-
ues like 1/0, YES/NO, hard disk works/hard disk failed, etc. We
could model the population using X „ Bernoullippq where p the
population parameter that describes the proportion of individuals
that have the characteristic of interest.

Given the sample x “ tx1, x2, . . . , xnu of size n taken from this
population, the proportion estimator is defined as

p̂ “
1
n

nÿ

i“1
xi “ Countpxq,

where
∞

xi represents the count of individuals within the sample
that have the characteristic. The estimator value p̂ is an approxima-
tion for the true population parameter p.
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Applying the central limit theorem to the random variable P̂ “

1
n

∞
n

i“1 Xi (proportion estimator for a random sample X), tells us the
sampling distribution of the proportion is approximately normally
distributed with mean p and variance pp1 ´ pq. In other words,

P̂ „ N pp, pp1 ´ pqq ,

which tells us the proportion estimator P̂ is approximately normally
distributed with mean equal to the population parameter p and stan-
dard error given by

se p̂ “
pp1 ´ pq

?
n

.

The estimated standard error is given by

ŝe p̂ “
s

?
n

,

where s
2

“ p̂p1 ´ p̂q is the sample variance.
Normal approximation valid when np • 10 and np1 ´ pq • 10

(back reference to prob theory: Discussion where show normal ap-
prox to binomial)

We’ll use this result to when making inferences about population
proportion parameters.

TODO: CI for proportion estimator

32.5.8 Sampling distribution of the sample variance
If S

2 is the variance of a random sample of size n from a normal pop-
ulation having variance s2, then the sampling distribution of pn´1qS

2

s2

is c2 with n ´ 1 degrees of freedom.
We use this result for inferences concerning the population stan-

dard deviation s.
TODO EXAMPLE: repeat example calculation of S

2 example above?
new one? cut?

32.5.9 Linear correlation
The population quantity r measures... The estimator r̂ (sometimes
denoted r)

r̂ ”
1

n ´ 1

nÿ

i“1

ˆ
xi ´ x

sx

˙ ˆ
yi ´ y

sy

˙

is an estimator for the population linear correlation r “
1
N

∞
N

i“1

´
Xi´µX

sX

¯ ´
Yi´µY

sY

¯
.
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32.6 Discussion

32.6.1 Random sampling
All the results and formulas presented in this chapter rely on funda-
mental assumption that the samples collected from the population
are obtained through the process of random selection. Basically, ran-

dom selection means you’re using a procedure that makes sure every
member of the population has an equal chance of being chosen. The
random selection includes the following aspects:

• Independent samples: the value of value in the sample doesn’t
influence the value of another member.

• Representative samples: we’re sampling uniformly from the en-
tire distribution and not disproportionately preferring one sub-
group

• No selection bias: all members of the population must have a
chance.

• Small measurement error: the quantity you’re measuring must
be accurate. This is often a problem with questionnaires.

You must watch out for these assumptions when collecting data for
real-world statistical experiments, because mathematical machinery
used might no longer be valid if any the assumptions are violated.
We’ll talk more about experimental design and practical considera-
tions in Chapter ??.

32.6.2 Applications
Many statistical inference procedures that will be discussed in the
next chapter boil down to the calculation of an estimator value q̂
from a particular sample x, and measuring the likelihood of such
value to occur by chance under a given sampling distribution, Q̂ „

N
´

µq , se2
q̂

¯
.

We’ll now describe some calculation based on estimators to il-
lustrate the concepts involved, but reserve the detailed explanations
for the next chapter. In all of these applications, estimators are the
computational building block and the only difference is the interpre-
tation we give to the different estimator values obtained.

Test statistics A test statistics is a particular type of estimator that is
used as part of a hypothesis testing procedure. The general structure
of test statistic is to normalize an estimator value by subtracting the
expected population parameter and dividing but the standard error:
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The z-statistic (z ”
q̂´µq
se

q̂
) and the t-statistic (t “

q̂´µq
ŝe

q̂
) are two of the

most commonly used test statistics.

p-values The p-value associated with the value of a test statistic is
a probability calculation that tells us how likely it is to observe this
value of the test statistic, under some assumptions about the popu-
lation.

Suppose we’ve obtained the estimator value q̂ computed from
some sample x. We can “normalize” the estimator value q̂ by trans-
forming it to the standard test statistic z ”

q̂´µq
se

q̂
. The p-value is the

probability of observing a value of the test statistic equally or more
extreme than the value z:

p “

ª 8

z

fZpxq dx “ 1 ´ FZpzq.

This p-value can be extrapolated by looking at Table ?? or computed
using ...

The general idea behind the p values is to measure how likely
or unlikely it is to observe a given value of the test statistic. If the
observed value of the estimator q̂ is very unlikely to occur by chance
under the sampling distribution this will give us reason to doubt the
initial hypothesis...

Critical values A critical value is a value of the test statistic that can
be determined ahead of time in order to form a decision rule. For ex-
ample, we can choose a rejection level a and find the corresponding
CVq̂ “ F

´1
paq. Later on after we collect data and compute the value

of the estimator q̂ we just have to compare it to the critical value CVq̂
to decide whether to reject a hypothesis.

Confidence intervals The confidence interval for any estimate is
a range of numbers that includes plausible values for a parameter
we’re estimating. The confidence level 95% (a “ 0.05) gives the over-
all success rate of the method for calculating the confidence inter-
val. The confidence interval for estimating a population parameter q
based on the estimate value q̂ has the form

CIp1´aq “

”
q̂ ´ F

´1
pa{2q ¨ seq̂ , q̂ ` F

´1
pa{2q ¨ seq̂

ı
.

where F
´1 is the inverse CDF of the sampling distribution for the

estimator q̂.
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Effect size estimates An effect size estimate is an estimate for a par-
ticular real-world quantity that we’re interested in. For example,
consider an educational experiment that wants to compare the av-
erage grade between two groups of students. Suppose we collect
samples of size n from the two groups, x “ tx1, x2, . . . , xnu and y “

ty1, y2, . . . , ynu, and calculate the sample mean within each sample x

an y. The estimator d̂ “ x ´ y measures the difference of between
sample means, and it serves as an estimate of the difference between
population means µx and µy.

The value of the estimator d̂ can be used to evaluate if there is
a difference between the population means. If the observed value
of d̂ is significantly different from zero, we can claim that there is a
difference between the groups. More importantly, the value of the
estimate d̂ can be reported as a measure of how much grades differ
between the groups, which is much better than the basic statement
“grades have improved.” We can also compute a confidence interval
of the effect size.

We’ll talk more about p-values, critical values, confidence intervals,
and effect size estimators in the next chapter when we’ll learn about
null hypothesis significance testing procedure.

˚ ˚ ˚

Let’s summarize what we learned in this chapter. We introduced
the notion of estimator q̂ ” f pxq computed on a sample x, and its
sampling distribution Q̂ ” f pXq, which is obtained through the sta-
tistical analysis of random sample from the population. In practice,
all the estimator knowledge you’ll need is to remember is the for-
mula for the standard error of each estimator seq̂ (or ŝeq̂) and know
how to compute probabilities, test statistics, and confidence interval.
Most of the statistical analysis techniques you’ll perform in the com-
ing chapters will require identifying the appropriate estimator to use
in each situation and applying the appropriate formulas. This is the
beauty of statistics—we do a lot of theoretical analysis up front in
order to make the practical analysis as simple as plugging numbers
into formulas.

TODO: Forward reference to NHST and PARAMETRIC chapters
"stat test subtype" concept, where each subtype comes with pre-packaged
formulas
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32.7 Links
https://en.wikipedia.org/wiki/Bessel%27s_correction

32.8 Estimators problems
General feedback from Robyn in no particular order:

• General impression: good! All the content is here, but I think
some parts are way more in depth than needed, and other parts
need more detail. I’ve tried to indicate these in the rtodo com-
ments.

• Do you think it would be possible to just talk about estimating
population parameters without bringing up modelling (yet)? I
think it would simplify things a lot.

• I think we should focus more on making sure that by the time
the reader finishes this chapter, they are able to use sample to
make a best guess about a population.

• Readers should be familiar with the normal distribution BE-
FORE this chapter.

• Maybe we’d like to introduce the “68–95–99.7 rule” here or be-
fore this chapter. I think this concept would help readers un-
derstand why standard error and the normal distributions are
so useful.

• Somewhere here we should introduce how to plot uncertainty
(e.g. confidence intervals)

• Suggest that we avoid using the general “statistics” or “statisti-
cal analysis” when we mean something more specific (e.g. “in-
ference”, “estimation”?).

• If we keep CLT and LLN in a section called “extra topics”, then
readers might skip it before they get to this chapter. Maybe we
should review those two concepts more thoroughly here.

https://en.wikipedia.org/wiki/Bessel%27s_correction

