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Chapter 1

Data

Data is the fuel for statistics. The successful application of statistical
analysis procedures depends on the data collection and processing
steps that precede them. Our ability to answer scientific and business
questions from data is conditional on the way the data collection
process was planned and executed, which determines whether we
have the necessary type of data to answer the questions we’re
interested in.

Understanding data is a an essential prerequisite for applying
statistics in real-world scenarios. This chapter aims to beef-up your
knowledge about data collection (Section 1.1), data processing and
visualization (Section 1.2), and data summarization (Section 1.3).

In this chapter, I’m going to show you how to . . .

• classify the different types of data (numerical vs. categorical)
• recognize the importance of random sampling and random assignment
• load datasets stored in Comma-Separated Values (CSV) formatted files
• compute numerical data summaries (descriptive statistics)
• generate strip plots, histograms, box plots and other data visualizations

1
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1.1 Introduction to data
In order to do statistical analysis, we need to have data to analyze.
This is why we’ll start our journey into statistics by introducing
the core concepts of data collection. The more you know about
data collection strategies, the better you’ll be equipped to apply the
statistical analysis techniques that we’ll learn in later chapters.

We use statistics to answer questions about real-world phenom-
ena we’re interested in. We assume it is possible to collect relevant
data through observations and measurements of the quantities of
interest. Broadly speaking, the purpose of statistical analysis is to
detect and measure the existence of some “pattern” in the data.
Statistical analysis can be used to confirm that a predicted pattern
exists, to estimate an unknown quantity, or to detect when an
unexpected pattern occurs.

In this section, we’ll talk about the central importance of data
for all of statistical practice. We’ll start by introducing the basic
definitions and terminology used to describe datasets. We’ll then
discuss the random sampling and random assignment techniques used
as part of the data collection process.

1.1.1 Definitions
Let’s look at the technical terms we use when talking about data.

Datasets

We refer to the data used in a statistical analysis as a dataset. In this
book, we’ll focus on tabular data, which is the most widely used kind
of data in statistics. We use the following terminology to describe
tabular datasets.

• data table or data frame: describes data stored in tabular format,
like a spreadsheet with rows and columns. A dataset consists of
one or more data tables.

• variable: a characteristic of the individual, item, or event that
is measured in the data. Variables are also sometimes called
features or attributes. For example, in a health study, the height
and weight of individuals would be two variables that are
measured.

• observation: the measurements for a single individual, item,
or event. Observations are also sometimes called cases or
observational units. For example, the measurements collected
for one individual in a health study (name, age, height, weight,
treatment, outcome, etc.) correspond to one observation.
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Table 1.1 shows an example data table that contains 12 observations
of seven variables.

Table 1.1: A data table that contains observations of seven variables for 12
players of a computer game. Each row in this table corresponds to one
player. Each column corresponds to one characteristic that was measured
for all the players.

In addition to the data, a dataset contains metadata (data about the
data), which provides additional “context” information, including
when, how, and why the data was collected. Metadata usually
includes a codebook that describes each of the variables, and specifies
the units of measurement. Detailed and complete metadata is
essential for correct interpretation of the data.

Example: the players dataset Let’s illustrate the new terminology
by looking at an example dataset of player profiles from a computer
game. The players dataset is shown in Table 1.1. This dataset was
collected as part of a statistical experiment whose goal was to test if
making the first level of the computer game easier will increase the
time players spend in the game. Half the players were presented a
special version of the game with an easy first level (ezlvl=1), while
the other half played the normal version of the game (ezlvl=0). We
want to know if the easy level made players spend more time in the
game.

The players dataset contains observations of seven variables for
12 different players. The leftmost column is called the index and is
equivalent to the row numbers in a spreadsheet. The first row of the
table is called the header and contains the variable names.

Each row of the dataset shown in Table 1.1 corresponds to
one observation (the data for one player). We have recorded the
following characteristics for each player: username, country, age,
ezlvl, time, points, and finished. For example, the player with
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username sanjay, is a 27-year-old Canadian (ca), who spent 585.88
minutes playing the game, earned 2344 points, and finished the
game (finished=1). The value 1 for the ezlvl variable tells us that
Sanjay played the game version with the easy first level.

Each column of the data table contains the values of one of the
variables that we measured for all players. You can also think of
each variable as a list of 12 values. For example, the variable age is a
list of 12 values r38, 21, 52, 50, 26, 45, 27, 23, 24, 59, 18, 22s, where each
value corresponds to the age of one of the players. We can analyze
each of the variables on their own (e.g., compute the average age of
the players), or look for relations between variables (e.g., how does
the ezlvl variable influence the time variable).

Variable types

We make a distinction between numerical and categorical variables:

• numerical variables correspond to quantitative measurements
recorded as numbers. Numerical variables can be integers (e.g.
age) or decimal numbers (e.g. time).

• categorical variables are labels that take on one of a discrete set
of possible values, like the answers to true or false questions,
the presence or absence of some characteristic (1 or 0), blood
group types (A, B, AB, O), or a person’s country of residence.
The variables username, country, ezlvl, and finished in the
players dataset are all categorical variables.

The statistical operations we can perform on numerical and categor-
ical variables are completely different. Numerical variables can be
manipulated using arithmetic operations like sums, differences, and
products, while categorical variables can only be used for grouping
and counting observations.

Note that categorical variables are sometimes represented using
numbers, such as the values 1 and 0. For example, the variable
finished in the players dataset (see Table 1.1) contains 1 for players
who finished the game, and 0 for players who didn’t finish the game.

Populations and samples

The population is the group of interest for the statistical analysis. This
term can refer to people (players, students, patients, clients, website
visitors, etc.) but also to groups of animals, insects, objects, or events.

• population: all the items or individuals in the group of interest.
We’ll denote the population size (the number of individuals
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in the population) using uppercase N, which can be in the
tens, hundreds, thousands, millions, or billions. Often the
population size is unknown.

• census: the process of collecting data for the entire population.
This kind of exhaustive data collection is usually very costly to
perform, so instead, most statistical analyses are performed on
a subset of the population called a sample.

• sample: a subset of the population that has been measured for
statistical analysis. We’ll denote the sample size as lowercase n.
Usually, n is much smaller than the population size N.

• representative sample: a sample is representative if it has the
same characteristics as the population. See Figure 1.1 (a). For
example, if the population contains a mix of people in different
age groups, the people included in a representative sample
must contain a similar mix of different age groups.

• biased sample: samples that are not representative of the pop-
ulation are called biased. See Figure 1.1 (b). For example, a
sample that contains only young people is not representative
of the general population.

• random sample: a sample selected from the population in such a
way that each individual has an equal chance of being included
in the sample. Using random sampling is one way to obtain
representative samples.

Figure 1.1: A sample is a subset of the population selected for performing
statistical analysis. If the sample is representative of the population as in (a),
the results of the statistical analysis performed on the sample will also apply
to the population as a whole. If the sample is biased as in (b), the results of
the statistical analysis will not generalize to the population as a whole.

Variables names used in statistical analyses

The purpose of statistical analysis is to find patterns in the data, to
extract scientific knowledge, and reach justified conclusions. Typ-
ically, we want to answer a question about how the values of one
variable depend on the values of another variable.
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In the context of the players dataset, an example of a statistical
question we might want to answer is whether young players and
old players spend different amounts of time in the game. What is
the influence of the age variable on the time variable in the players
dataset?

Statisticians use the following terms when referring to variables,
depending on the role they play in the statistical analysis:

• explanatory variable: the variable that causes or predicts the
different outcomes. Explanatory variables are also called
independent variables, predictor variables, or treatment variables.

• response variable: the variable of interest that we suspect is
influenced by the explanatory variable. Response variables are
also called dependent variables or outcome variables.

In the study of the players dataset, we want to know whether
younger or older players spend more time on the game. The
explanatory variable is the player’s age, and the response variable
is time (the total time they spent playing the game).

In addition to the variables we include in the statistical analysis,
there is another category of variables that you need to know about:

• confounding variable: a variable that influences both the ex-
planatory and response variables, but is not considered in the
study. Another term for this kind of variable is lurking variable,
since it is hidden from our analysis.

Statisticians generally want to avoid confounding variables, so they
carefully consider all factors that could potentially influence the
response variable and try to measure them and include them in the
statistical analysis.

An example of a confounding variable in the gaming scenario
is a player’s job status: whether they are currently unemployed or
have a full-time job. We can expect that people who are unemployed
will have more free time to play the game than people who have a
full-time job. Young people tend to be unemployed more often, so
they are more likely to have time to play the game. Since the job
status variable is not measured, a statistical analysis of the influence
of the age variable on the time variable might lead us to erroneously
conclude that the game is more engaging for a younger audience.
This conclusion is wrong because of the confounding effect of the job
status variable on the relationship between age and time variables.
Young people spend more time in the game not because they like it
more, but because of their job status.

If we were to perform the same statistical analysis separately for
groups of players with full-time jobs and unemployed players, we
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would no longer see a relationship between the age variable and the
time variable. In statistics jargon, we say that the influence of age on
time disappears when we control for job status.

Observational studies and statistical experiments

We can broadly subdivide statistical studies into two kinds, depend-
ing on the control researchers have over the explanatory variable.

• In a statistical experiment, researchers control the explanatory
variable and observe its effects on the response variable.

• In an observational study, researchers observe the explanatory
variable, but can’t influence it or manipulate it.

An example of a statistical experiment is the question about the effect
of the ezlvl variable on the time variable. The game developer
controls whether the players are shown the regular game (ezlvl=0)
or the alternative version with an easy first level (ezlvl=1).

An example of an observational study is the question about the
effect of the age variable on the time variable. The game developer
doesn’t select the age variable, but only observes it.

Different types of data

Let’s say a few more words about the characteristics of the data for
different types of studies.

Data for experimental studies The key characteristic of an exper-
imental study is that we control or choose the explanatory variable.
We can subdivide the participants into two groups, depending on the
value of the explanatory variable. We use the following terminology
to refer to the different subsets of the participants in a statistical
experiment:

• intervention group: a subset of the participants that received the
new treatment or intervention.

• control group: a subset of the participants that didn’t receive
the new treatment or intervention. Ideally, the control group
should be similar to the intervention group along all character-
istics except for the value of the explanatory variable.

For example, introducing an easy first level of the game is a type
of intervention. The subset of the players who were shown the
game with an easy first level (ezlvl=1) are in the intervention group.
The players who played the regular version of the game are in the
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control group (ezlvl=0). We can assign the participants randomly
to the intervention group and the control group, in order to create
two groups with roughly identical characteristics. In the players
dataset, half the players were randomly assigned to the easy first
level version (ezlvl=1), and the other half to the normal version of
the game (ezlvl=0). By comparing the average time variable for
these two groups, we can determine if the easy level feature increases
user retention (the time players spend in the game).

Another example of an intervention is showing website visitors
two different versions of a web design to determine which version
leads to more conversions (sales or sign-ups). This is sometimes
called an A/B test, since the intervention group consists of visitors
who are shown an alternative version A of the website, and a control
group consisting of visitors who are shown the baseline version B.

In both the game scenario and the website conversion scenario,
we assume that the intervention group and the control group are
approximately identical, except for the choice of the explanatory
variable. The Latin phrase to describe this assumption is ceteris
paribus, which means “all other things being equal.” If we were
to observe some difference in the response variable between the
two groups, then we can attribute this difference to the effect of
the intervention. In other words, we can make a claim that a
causal relationship exists between the explanatory variable and the
response variable.

Unfortunately, data suitable for a statistical experiment where we
actively control the explanatory variable is a luxury—we only have
access to this type of data when we collect it for that specific purpose
as part of an organized effort. Collecting data for an experimental
study where the explanatory variable is randomly assigned is often
not possible because of logistics, ethics, insufficient funding, lack of
time, or other constraints.

Data for observational studies We often have to content ourselves
with observational studies, where we only observe the explanatory
variable, but can’t control it. Observational studies can be done using
data that was originally collected for a different purpose or data that
is already being collected as part of normal operations. The term
“found data” is sometimes used to describe observational data.

For example, the players dataset was collected to study the effect
of the ezlvl variable on the time variable, but the same data can
also be used for an observational study of the relation between the
age variable and the time variable.

Observational data can be used to discover correlations or asso-
ciations between observed variables. Observational studies can’t be

https://en.wikipedia.org/wiki/Ceteris_paribus
https://en.wikipedia.org/wiki/Ceteris_paribus
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used to make conclusions about causation, because of the possible
presence of confounding variables. The maxim “correlation does not
imply causation” is often cited to describe this fundamental reality.

Case reports A case report is a dataset with a single observation.
We can’t do statistics on case reports, since we only have the
measurements for a single individual. Nevertheless, case reports
can have scientific value, since they document unexpected outcomes,
like the miraculous recovery of a patient suffering from a rare illness,
after a particular treatment. We can’t conclude that the treatment is
responsible for the patient’s recovery, but it’s still worth recording
this observation for posterity. This will enable the data from this
case report to be included in later studies of this rare illness.

Data for meta-analyses A meta-analysis is a statistical analysis
that combines the results of multiple previous studies of the same
phenomenon of interest. Each of the prior studies is based on a
different dataset of independent measurements. The purpose of
a meta-analysis is to compare and combine the results of all these
studies to look for a general trend, or provide a more accurate
estimate of some quantity of interest. The results of each study have
some degree of error that is independent of the other studies, so by
“pooling” the results together, we can obtain a more accurate picture
of the phenomenon.

Doing meta-analysis is only possible for certain phenomena that
are widely studied, leading to an accumulation of data from multi-
ple statistical experiments and observational studies, performed by
different researchers, and in different conditions. This cumulative
evidence from multiple studies is the strongest type of statistical
result we can hope for.

1.1.2 Study design and randomization strategies
The data collection strategy of your study determines the conclu-
sions that you can make as a result of your statistical analysis. In
particular, these are two important aspects you need to think about:

• sampling: the process by which a sample of individuals is
selected from the population. We want to select samples that
are representative of the wider population.

• assignment: the process by which participants are assigned to
intervention and control groups in a statistical experiment. We
want the two groups to be as similar as possible so that we can
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attribute any observed differences between the groups to the
effect of the intervention.

The use of randomness is an essential tool that you have at your
disposal for both of these aspects. Indeed, random sampling and
random assignment are the two main “weapons” that statisticians use
to obtain meaningful results, despite the pervasive presence of noise
and variability in real-world data.

Random sampling

A random sample is a sample selected from the population in such a
way that each individual has an equal chance of being selected. The
hope is that by choosing individuals at random, we’ll end up with a
sample that is representative of the population.

Using representative samples from the population is essential if
we want to draw conclusions about the whole population based on
observations from a single sample. The technical term for this is
generalization, which means that the statistical results we obtain from
the sample apply more generally to the wider population from which
the sample was selected.

The opposite of a representative sample is a biased sample. There
are many sources of bias that you need to watch out for. We’ll now
briefly mention some of them. Exclusion bias exists when certain
participants are excluded from the study for one reason or another.
For example, a dishonest researcher could select only participants
whose data tend to support a desired conclusion. The selective
inclusion of certain observations is sometimes called cherry-picking.
We use the general term selection bias to describe any preference for
selecting certain participants over others. There is also the danger of
self-selection bias, which happens when participants choose to enrol
in the study due to a vested interest. Self-selection bias is also called
volunteer bias. The opposite is called non-response bias. Attrition bias
occurs when participants with negative or adverse effects drop out
of the study over time, and their data is not included in the analysis.
This is also called survivorship bias in the context of medical studies.

An example of a biased sample selection process is the common
use of undergraduate psychology students for experiments in psy-
chology. University students tend to fall in a very narrow age range
and have similar socioeconomic backgrounds. The results obtained
from studies involving student volunteers often do not generalize to
the wider population.

A good way to avoid bias is to use a random sampling process:
build a list of all the possible candidates for inclusion, and select the
sample randomly from this list.
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Random assignment

In experimental studies, we seek to establish a causal relationship
between the explanatory variable and the response variable. In other
words, we want to show that a given intervention causes certain
outcomes to occur. For example, the players dataset is part of an
experiment that tests if the easy first level intervention (ezlvl=1)
causes players to spend more time in the game.

In an ideal world, to show a causal effect of an intervention on an
outcome variable, we would be able to “clone” every participant in
the study to obtain two identical individuals. We can then perform
the intervention on one of the clones, while using the other clone
as a baseline for comparison. If we observe a difference in the
outcome variable between the two clones, then we can be sure this
difference is due to the intervention, since, by definition, the two
clones are identical on all other aspects and characteristics, except
for the intervention variable.

In the real world, since cloning is not a thing yet, we’re forced
to replace the “identical individuals” requirement with the approxi-
mation “identical groups of individuals.” Suppose we can partition
the participants into two groups that are “roughly” identical along
all their aspects and characteristics (age, location, socio-economical
background, lifestyle, etc.). We then apply the intervention to one
of these groups (the intervention group) and not on the other (the
control group). The fancy Latin phrase ceteris paribus, which means
“all other things being equal,” is sometimes used to describe the
concept of two groups that are similar in all aspects except for the
intervention variable. If we observe a group-level difference between
the intervention group and the control group, then we can attribute
this difference to the intervention we performed.

The process of random assignment is one way to obtain two
roughly identical groups: the intervention group and the control
group. We can perform the random assignment by tossing a coin
for each participant. If the outcome of the coin toss comes out heads,
we assign the participant to the intervention group. If the coin toss
comes out tails, we assign them to the control group. Assuming the
coin is fair, we’ll end up with a roughly 50-50 split of the participants
into the two groups, as illustrated in Figure 1.2.

We hope that the random assignment process results in two
groups that are balanced along all characteristics that might in-
fluence the response variable (ceteris paribus). We don’t have any
guarantee that the two groups will be identical, but, on average, the
two groups are unlikely to have any systematic differences.
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Figure 1.2: The process of random assignment of participants to the inter-
vention and control groups allows us to study causal relationships.

Blinding An additional consideration when assigning participants
to the intervention and control groups is the use of blinding to prevent
knowledge of the treatment from affecting the outcome.

• single-blinding aims to ensure that participants don’t know
which group they are assigned to. In an experiment that tests
the effectiveness of a new drug, patients in both intervention
and control groups are given a pill, so that they can’t tell which
group they are part of. Patients in the intervention group
receive the drug, while patients in the control group receive
a placebo, which is a fake pill with no medical effects.

• double-blinding aims to ensure that even the researchers ad-
ministering the study do not know which group the partici-
pants are part of. Double blinding aims to avoid researchers
consciously or unconsciously biasing the results by treating
participants in the two groups differently.

The gold standard for medical research is a randomized control trial
(RCT), which is based on random assignment of patients to groups
and uses double-blinding.

Summary of study design strategies

We can summarize the combined effect of random sampling and
random assignment using a two-by-two table, as shown in Table 1.2.
The most powerful kind of study is in the top-left corner: a study
in which participants are selected using random sampling from
the population, and randomly assigned to intervention and control
groups. The fact we have selected participants at random allows us
to make conclusions that generalize to the population as a whole,
while the random assignment procedure allows us to make causal
claims.

If a study uses samples that were not randomly selected from
the population (bottom row of the table), it is not possible to make
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conclusions that apply to the whole population. Basically, if partici-
pants in the study are self-selected (volunteers), or chosen based on
convenience sampling (friends and family), the sample simply won’t
contain the same diversity and variability as the whole population.
In these cases, we can still look for interesting correlations in the data
(bottom-right corner), or even uncover cause-and-effect relations
(bottom-left corner), but we can’t extend our conclusions from the
sample to the whole population.

group assignment

sample selection Random assignment Observational data

Random sampling Causal relationships
that generalize to the
whole population.

Correlations that general-
ize to the population, but
the strength of conclu-
sions may depend on con-
founding variables.

Other sampling Causal relationships
that may not
generalize to the
whole population.

Correlations that may not
generalize to the popula-
tion.

Table 1.2: The type of conclusions we can draw from a study depend on the
sample selection process and the way we assign individuals to intervention
and control groups. Random sampling allows us to make generalizations
about the population. Random assignment allows us to make causal claims.

In observational studies (the right column in Table 1.2), we don’t
control the value of the explanatory variable, so we can’t make
cause-and-effect conclusions. We are limited to finding correlations
and associations in the data. Let’s see why this is so. Suppose
we observe a strong correlation between the explanatory variable x
and a response variable y. Perhaps we would like to believe this
xy-correlation is the result of a causal relationship between x and
y, where the dependence y on x is described by some function:
y “ f pxq. However, the same observed correlation could equally
well be explained by a causal-relationship in the opposite direction:
a dependence of x on y described by some other function: x “ gpyq.
Since we only observed x and y and didn’t control them, we can’t
distinguish these two scenarios. Furthermore, perhaps there exists
a confounding variable z (either observed or lurking), that is the
common cause of both x and y, so the true underlying relations are
x “ gzpzq and y “ fzpzq. In observational studies we can’t make
any cause-and-effect conclusions like the existence of the functions
f , g, gz, and fz, since our observations are consistent with all these
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possibilities. This is an inherent limitation of “found data” and
something to be aware of.

Thinking about the assignment and selection procedures is also
important when reviewing other people’s findings. Whenever
you’re reading about some statistical result in a research paper, you
should ask yourself “Is the sample representative of the popula-
tion?” and “Was random assignment used?” and mentally place the
study in the appropriate row and column of Table 1.2. This will tell
you the kind of inferences that are “supported” by this kind of study.
Don’t expect the authors of the report to tell you! Their knowledge
of the logic of statistical analysis may be more limited than yours!

1.1.3 Discussion
Data collection is a broad topic that we can’t cover exhaustively. The
above sections introduced the core ideas that you must know. There
are some additional topics that are worth mentioning, so at least
you’ll have heard about them.

Levels of measurement

Statisticians sometimes further subdivide numerical and categorical
variables into four subtypes to capture more precisely the measure-
ment that each variable represents. These subtypes are called levels
of measurement and can be ordered from least precise to most precise,
as in the following list.

• Categorical variables subtypes:

ô nominal: discrete variables that can’t be ordered. Each
nominal value describes a name, a label, or a category.
Examples: city of residence, sex, group membership.

ô ordinal: discrete variables that have a natural order. Exam-
ples: Likert scale responses (strongly disagree, disagree,
neither agree nor disagree, agree, strongly agree), and star
ratings in reviews. Ordinal values can be ranked and
compared, but the differences are not quantifiable. For
example, we know that a three-star rating is better than
a two-star rating, but we don’t know that the difference
between a three-star rating and a two-star rating is the
same as between a two-star rating and a one-star rating.

• Numerical variable subtypes:

ô interval: variables that can be compared numerically us-
ing differences, but do not have a natural zero value.
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Examples: temperature in Celsius or Fahrenheit. The
temperature difference between 10˝C and 11˝C is the
same as the difference between 100˝C and 101˝C, but the
meaning of 0˝C is an arbitrary choice.

ô ratio: values can be compared using differences and ratios.
Ratio variables have all the characteristics of interval
variables, but also have natural zero that corresponds
to the absence of the quantity. Examples: points, time,
height, weight, temperature in Kelvin. In each of these
examples, the value 0 is a useful reference point. It is also
meaningful to say than player one scored 30% more points
that player two.

Figure 1.3: Levels of measurement for statistical variables.

The levels of measurement of variables determine the type of statis-
tical analysis we can perform with them.

Statistical analysis in broader context

Let’s take a moment to look at the broader context in which statistical
analysis fits. The use of statistics is just a tool in the wider “scientific
method” framework. Below you’ll find a bird’s eye overview of the
steps required to run a scientific study.

1. Identify the population of interest and the scientific question
you want to answer. Think about the data you’ll need to study
this question.

2. Plan the study. Will it be an observational study or an exper-
imental study? How will participants be selected? How will
data be collected? Is existing data already available? How large
should your sample be? Consider the ethics of your study, and
solicit input from the people who may be impacted by the data
collection and statistical results.
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3. Run the study. Make sure data is being collected while the
study is running.

4. Process the data to prepare it for analysis. This is a crucial step
that involves extracting data from various sources and trans-
forming it into a form suitable for statistical analysis. We’ll talk
about data loading and data manipulation in Section 1.2, and
discuss data transformation and data cleaning in Appendix D.

5. Analyze the data. This is when you finally get to apply the
statistical analysis techniques that you’ll learn in chapters 3,
4, and 5. It’s a good idea to have a colleague or other peer
look over the steps of your statistical analysis to make sure
they are sound. If your study requires using some particularly
tricky statistical analysis technique, it’s best to consult with
a statistician to confirm that you’re applying the technique
correctly, and all assumptions are met.

6. Communicate your results. This step usually involves writing
a report or making a presentation of some sort. Communicat-
ing statistical results to non-experts requires using a simplified
language, but it’s important your simplifications not to be
misleading. In an academic research context, this step involves
publishing a paper in a scientific journal, which may involve a
peer review process. Don’t assume the peer review process will
correct any mistakes you may have committed, all the “scien-
tific due diligence” should have been done in the previous step.
Whether the study is in a business or academic context, it’s
also your job to amplify its reach, including announcing it on
social media, writing blog posts, recording 2 minute explainer
videos, or giving 2 hour long lectures.

7. Preserve and share the data, metadata, code, publications, and
other study outputs. Being a good citizen of the scientific
community requires thinking about others who will come after
you. You need to record detailed information about how you
collected the data for this study, how you processed it, and how
you analyzed it, so that other researchers will be able to find
your data, reproduce your analysis, and potentially reuse the
data you’ve collected.

8. Repeat the process starting back at step 1! A scientific dis-
covery is rarely achieved through a single study. More often,
it takes multiple studies and independent replications of the
results in order to establish a new scientific theory.
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Observe that the actual statistical analysis part (Step 5) is a small
component of a whole process. In contrast, data plays a much more
central role in all the steps. This is why this book begins with a
whole chapter on data, including definitions (this section), hands-
on data management practice (Section 1.2), and descriptive statistics
(Section 1.3). Your ability to reach interesting statistical conclusions
depends on both the “quality” and “quantity” of the data available
for your analysis. The more you know about data, the better you’ll
be equipped to tackle the later chapters.

Data as a singular noun

I’d like to make a final note on terminology. The Latin word data
is the plural of datum. Many people treat data as a plural noun in
English, using it in sentences like “data are collected” with a plural
verb accord. In this book, we’ll use data as a mass noun and use
singular verbs like “data is collected.” This would be “incorrect”
usage in Latin, but I believe singular verbs make the text easier to
read in English, so I’ve adopted this modern usage.

I’ll refer to individual data elements as observations, data items,
data points, or data values. The word “datum” will not be used at all,
because it sounds too fancy to me.

* * *

I hope this introduction to the terminology of data and datasets made
sense, and you now understand the importance of random sampling
and random assignment for statistical analysis. In the next section,
we’re staying on the topic of data, but we’ll switch gears to talk about
practical, hands-on data loading and data processing tasks.

1.1.4 Exercises
E1.1 TODO: Recognize and classify different types of variables /
data

E1.2 TODO: Identify potential sources of bias in a given data
collection scenario (word problems)

Links
[ List of different types of statistical bias ]
https://en.wikipedia.org/wiki/Bias_(statistics)#Types

https://en.wikipedia.org/wiki/Bias_(statistics)#Types
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[ More info about randomized controlled trials ]
https://en.wikipedia.org/wiki/Randomized_controlled_trial

[ Info about the singular and plural usage of the word “data” ]
https://theguardian.com/news/datablog/2010/jul/16/data-plural-singular

[ More info about study design used in the medical domain ]
https://guides.himmelfarb.gwu.edu/studydesign101/

https://en.wikipedia.org/wiki/Randomized_controlled_trial
https://www.theguardian.com/news/datablog/2010/jul/16/data-plural-singular
https://guides.himmelfarb.gwu.edu/studydesign101/


1.2 DATA IN PRACTICE 19

1.2 Data in practice
We’re blessed to be living in the XXIst century when computational
tools for data analysis are easily accessible. We don’t have to mem-
orize complicated formulas or perform tedious calculations using
pen-and-paper, since we can use computational tools like Python,
Pandas, and Seaborn to do statistical calculations. By learning a
thing or two about the Pandas and Seaborn libraries (which is the
goal of this section), you’ll know about the best-in-class toolset for
data management currently used by data scientists, statisticians,
business analysts, and machine learning researchers.

A common misconception about statistics is that it’s someone
else’s job to collect data, and offer it to you in a well organized,
clean format ready for statistical analysis. This is far from the truth!
In reality, statisticians and other data professionals spend a large
proportion of their time collecting, pre-processing, and informally
exploring datasets in preparation for doing actual statistical anal-
yses. The topic of practical data management is usually omitted
from introductory statistics courses, because teachers think it would
be too complicated for beginners to learn. I don’t think so, and
I plan to teach you the essential skills you need to work with
realistic datasets. Specifically, I’m going to show you how to use
the JupyterLab computational environment, the Pandas library for
data manipulation, and the Seaborn library for generating statistical
visualizations.

This is going to be a hands-on, try-things-for-yourself section
and not a passive reading section. The main goal of this section is
to ensure you have a working computational environment on your
computer (JupyterLab Desktop), and know how to use the Pandas
and Seaborn libraries for basic data analysis tasks. The secondary
goal of this section is to introduce the datasets that we’ll use in the
remainder of the book. The two goals combine synergetically, since
we need examples of datasets to showcase the power of the Pandas
and Seaborn functionality.

1.2.1 Getting started with JupyterLab
We’ll start by setting up a statistical computing environment
(JupyterLab Desktop) on your computer, which will allow you to
run computational notebooks. You can think of a computational
notebook as a fancy calculator—you input Python commands (sim-
ilar to the buttons on a calculator), then run the commands to
see the result (similar to what happens when you press the =
button on a calculator). Unlike calculators that have a limited
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number of operations (buttons), computational notebooks give you
access to the entire Python programming language, and numerous
powerful Python libraries for data management, data visualization,
and statistical analysis.

Download and install JupyterLab

JupyterLab Desktop is a convenient all-in-one application that you
can install on your computer to take advantage of everything Python
has to offer for data analysis and statistics. Follow the instructions in
Appendix C (see page TODO) to download and install JupyterLab
Desktop. If you’re new to Python, I strongly recommend that you go
through the entire Python tutorial in Appendix C before continuing
with the rest of this section. I’m not expecting you to be a Python
expert, but I want you to be comfortable with the basic Python
commands used for calculating expressions, manipulating lists, and
calling functions.

Download the notebooks and datasets for the book

I have prepared a collection of notebooks and datasets to accompany
this book. You can view and download these notebooks and datasets
from the book’s website https://noBSstats.com or from this
GitHub page: https://github.com/minireference/noBSstats. In-
stead of downloading notebooks and datasets one by one, I rec-
ommend that you download the entire repository as a ZIP archive
using the steps illustrated in Figure 1.4. After downloading the ZIP
archive, double-click on the file to extract its contents, and move the
resulting folder noBSstats to a location on your computer where you
normally keep your documents.

Figure 1.4: Illustration of the steps to download the contents of the entire
noBSstats repository as a single ZIP archive. Use the Code dropdown (1)
then select the Download ZIP option (2).

https://noBSstats.com
https://github.com/minireference/noBSstats
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The ZIP archive includes all the datasets and computational
notebooks for the book. Use the File browser pane in the JupyterLab
to navigate to the location where you saved the noBSstats folder.
Inside you should see subfolders called datasets, notebooks,
exercises, tutorials, etc. Look around to get an idea of the files
available in each subfolder.

Datasets for the book

You can find all the datasets inside the datasets subfolder of the
noBSstats folder. Use the JupyterLab file browser pane to view the
contents of the datasets subfolder. For example, the players dataset
is stored in the file datasets/players.csv.

Alternatively, you can download individual datasets directly
from the book’s website, under the datasets directory. For exam-
ple, the data file players.csv can be downloaded from the URL
https://noBSstats.com/datasets/players.csv, and similarly for
the other datasets.

Later in this section, we’ll provide more information about all the
datasets in this folder and discuss the statistical questions we want
to answer from each of them. Look ahead to Table 1.3 on page 38 if
you’re feeling impatient.

Interactive notebooks for each section

Each section of this book has a notebook companion that includes
the code examples from the text. I expect you to play with these
notebooks in parallel with reading the text, so that you’ll get some
hands-on experience of doing data calculations and generating data
visualizations. The notebooks are located in the notebooks sub-
folder. For example, the notebook companion for this section is
notebooks/12_data_in_practice.ipynb. I recommend that you
open this notebook now in JupyterLab, so that you’ll be ready to
run the code examples you’ll encounter later in this section.

Exercises notebooks

I’ve also prepared starter notebooks for the exercises in each section.
The exercises notebooks contain partially-filled code cells for each
exercise question. You can find the exercises notebooks in the
exercises subfolder. For example, to try the exercises for this
section, open the notebook exercises_12_practical_data.ipynb
in the exercises folder and start filling in the missing parts in the
code cells.

https://github.com/minireference/noBSstats/blob/main/datasets/players.csv
https://noBSstats.com/datasets/players.csv
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* * *

From here on, I’ll assume you have JupyterLab Desktop installed on
your computer and have downloaded all the datasets and notebooks
for the book, so that you can follow the code examples interactively.
Here are a few quick exercises you can try, to make sure you’ve got
the basic setup working correctly.

E1.3 Create a new notebook called MyCalculations.ipynb and use
code cell to compute the sum of 3456 and 789.

E1.4 Open the notebook exercises_12_practical_data.ipynb lo-
cated in the exercises folder and repeat the calculation 3456+789 in
the code cell labelled E1.4.

1.2.2 Data management with Pandas
Pandas is a versatile toolbox for data management in Python. You
can think of Pandas as a Swiss Army knife for working with
data, since it includes a lot of functions for working with various
types of data, performing data manipulations, and doing statistical
calculations. Learning a bit of Pandas will allow you to work with
real-world datasets of all shapes and sizes, so it is a generally useful
skill to have if you plan to do anything data-related in the future.

The good news is that you don’t need to learn all this func-
tionality at once. Knowing just a few basic Pandas concepts and
commands is enough to get you started. This subsection is a
Pandas crash course that will introduce you to the two main data
structures that the Pandas library provides: data frame objects for
storing tabular data, and series objects for storing lists of values.
We’ll focus on the specific data manipulation tasks that you need to
know to understand the examples in the book. For a more in-depth
coverage of Pandas functionality, I’ll refer you to the Pandas tutorial
in Appendix D.

Okay, enough talk, let’s get started! Open the notebook
12_data_in_practice.ipynb in JupyterLab Desktop so you can run
the commands in parallel and follow the explanations interactively.
The first step is to import the pandas module, which is usually done
in the beginning of the notebook. There is a widespread convention
to import the pandas module under the short alias pd.

code
1.2.1

>>> import pandas as pd

This import statement makes all the Pandas functionality available
under the name pd.
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Loading datasets

The first step to any data analysis is to load the data we want to work
on into a Pandas data frame. We’ll illustrate the process by loading the
data file players.csv located in the datasets directory, which is a
sibling the notebooks directory.

The file extension .csv tells us the file contains text data format-
ted as Comma-Separated Values (CSV). We can view the contents
of the file players.csv using a text editor like Notepad.exe on
Windows or TextEdit on macOS. The file contents are shown below.

code
1.2.2

username ,country ,age ,ezlvl ,time ,points ,finished
mary ,us ,38 ,0 ,124.94 ,418 ,0
jane ,ca ,21 ,0 ,331.64 ,1149 ,1
emil ,fr ,52 ,1 ,324.61 ,1321 ,1
ivan ,ca ,50 ,1 ,39.51 ,226 ,0
hasan ,tr ,26 ,1 ,253.19 ,815 ,0
jordan ,us ,45 ,0 ,28.49 ,206 ,0
sanjay ,ca ,27 ,1 ,350.0 ,1401 ,1
lena ,uk ,23 ,0 ,408.76 ,1745 ,1
shuo ,cn ,24 ,1 ,194.77 ,1043 ,0
r0byn ,us ,59 ,0 ,255.55 ,1102 ,0
anna ,pl ,18 ,0 ,303.66 ,1209 ,1
joro ,bg ,22 ,1 ,381.97 ,1491 ,1

We see the data file players.csv consists of 13 lines of text, and
each line contains—as promised by the .csv file extension—values
separated by commas. The first line in the data file is called the
“header” and contains the names of the variable names.

The Pandas function for loading CSV files is pd.read_csv(<path>),
where <path> describes the location of the data file. The current
notebook is located in the notebooks directory, which is a sibling
to the datasets directory, so the relative path to the players dataset
is "../datasets/players.csv". In words, this path means “go up
to the parent directory (the two dots), then go inside the datasets
directory, and look for the file named players.csv.”

The code below shows how to use the function pd.read_csv to
load the players.csv data into a Pandas data frame object called
players. We intentionally choose a name for the data frame that
matches the dataset name to remind us where the data came from.
We then print the contents of the variable players by entering its
name on a second line.

code
1.2.3

>>> players = pd.read_csv("../ datasets/players.csv")
>>> players

username country age ezlvl time points finished
0 mary us 38 0 124.94 418 0
1 jane ca 21 0 331.64 1149 1
2 emil fr 52 1 324.61 1321 1
3 ivan ca 50 1 39.51 226 0
4 hasan tr 26 1 253.19 815 0
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5 jordan us 45 0 28.49 206 0
6 sanjay ca 27 1 585.88 2344 1
7 lena uk 23 0 408.76 1745 1
8 shuo cn 24 1 194.77 1043 0
9 r0byn us 59 0 255.55 1102 0
10 anna pl 18 0 303.66 1209 1
11 joro bg 22 1 381.97 1491 1

Note we didn’t have to use the command print(players) to display
the contents of the players data frame, but instead relied on the
default behaviour of the notebook environment, which is to print
the value of the last expression in a code cell.

Recall we’ve already seen the players dataset in the previous
section (see Table 1.1 on page 3). The players dataset consists
of n “ 12 observations of players’ activity in a computer game.
The variable username is a unique identifier for each player. The
variables country and age provide some basic player demographics.
The variable ezlvl indicates whether the player was part of the
“easy level” experiment. The time, points, and finished variables
describe the player’s total time in the game, the total points they
scored, and whether they finished the game or not.

In the remainder of this section, we’ll use the players data frame
to illustrate the various Pandas functions for extracting specific
rows and columns from the data frame and performing arbitrary
calculations on them.

Data frame properties

A Pandas data frame is a container for tabular data organized into
rows and columns. Figure 1.5 shows the players data frame, and
includes extra annotations for the different parts of its “anatomy.”

• The rows of a data frame contain the individual observations.
• The index (players.index) contains unique labels that we use

to refer to the rows of the data frame.
• The columns of the data frame correspond to the different

variables. Each column of the data frame is a Pandas series
object, which is a list-like container for values.

• The header (players.columns) contains the variable names.

A Pandas data frame is similar to a spreadsheet—it’s a way
to store data organized into rows and columns. The attribute
players.columns contains the names of the variables in the data
frame, which is analogous to the letters we use when referring to
the different columns in a spreadsheet. The data frame’s index,
players.index, tells us the labels we can use to refer to different
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Figure 1.5: The players data frame contains 12 observations (rows), and
each observation consists of seven variables. Each column of the data frame
is a Pandas series object that contains the measurements of one variable for
all players.

rows within the data frame, which is similar to the numbers we use
when referring to rows in a spreadsheet.

Let’s use the Python function type to confirm that players is
indeed a data frame object.

code
1.2.4

>>> type(players)
pandas.core.frame.DataFrame

The above message tells us that players is a Pandas DataFrame
object. Specifically, the players object is an instance of the DataFrame
class that is defined in the module pandas.core.frame.

The players data frame object has a bunch of useful properties
(attributes) and functions (methods) “attached” to it, which we can
access using the dot syntax. For example, the .shape attribute
contains information about the shape of the data frame:

code
1.2.5

>>> players.shape
(12, 7)

This tells us the players data frame has 12 rows and 7 columns.
Let’s explore the other attributes and methods of the players

object. The .index attribute of the players data frame tells us the
labels we use to refer to the rows in the data frame.

code
1.2.6

>>> len(players.index)
12
>>> players.index
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]

The data frame players uses the “default index” consisting of a
range of integers from 0 to 11. The first row corresponds to index
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0 and the last row corresponds to index 11, which is the standard
0-based indexing convention used to access the elements of a Python
list. Note this is different from the convention used in spreadsheet
software, where the first row has label 1. Data frame objects are more
flexible than spreadsheets, since they allow us to use arbitrary labels
to refer to the rows in the data frame. Instead of using generic row
numbers, it’s possible to use other labels that uniquely identify the
rows in the data frame. In some scenarios, it might be convenient to
use one of the columns in the data table as the index. For example,
the player’s names could be used as the index.

The columns-index attribute .columns tells us the names of the
columns (variables) of the data frame.

code
1.2.7

>>> len(players.columns)
7
>>> players.columns
['username ', 'country ', 'age', 'ezlvl ', 'time', 'points ',
'finished ']

This result tells us that the players data frame has seven columns
named username, country, age, ezlvl, time, points, and finished.
The names of the columns were automatically determined based
on the “header” line in the CSV file (see code block 1.2.2). Unlike
spreadsheets that force us to use the labels A, B, C, etc. for the column
names, data frame objects allow us to refer to the different columns
using more descriptive labels.

Column names usually consist of short textual identifiers. Spaces
and special characters are allowed in column names, which means
you can use column names like "player points" and "finished
(0 or 1)". However, using complicated column names makes
data manipulation code more difficult to read, so I would generally
discourage you from using them. Instead, stick to short, single-word,
descriptive labels.

Refer back to the players.index and players.columns high-
lights in Figure 1.5 for an illustration of the row-index and the
columns-index of the players data frame. Note the visual sim-
ilarity to the way data is represented in a spreadsheet. Essen-
tially, a data frame is just a fancy spreadsheet that allows us to
use custom row-labels (players.index) and custom column-labels
(players.columns) when referring to the data values.

Exploring data frame objects

When working with datasets with hundreds or thousands of rows,
it’s not practical to display the entire data frame as we did above.
In those situations, we can still “look around” in the data frame by



1.2 DATA IN PRACTICE 27

printing the first few rows to inspect what they look like. The data
frame method .head(k) prints the first k rows of a data frame.

code
1.2.8

>>> players.head (3)
username country age ezlvl time points finished

0 mary us 38 0 124.94 418 0
1 jane ca 21 0 331.64 1149 1
2 emil fr 52 1 324.61 1321 1

We can also use the method .tail(k) to print the last k rows of the
data frame. The method .sample(k) selects a random sample of k
rows from the data frame.

Data types

The .dtypes (data types) attribute contains information about the
types of the values stored in each column of the data frame.

code
1.2.9

>>> players.dtypes
username object
country object
age int64
ezlvl int64
time float64
points int64
finished int64

The function pd.read_csv automatically determined the data types
of the columns when we loaded the CSV file in code block 1.2.3.
Pandas looked at the values in each column and chose an appro-
priate variable type that can accurately represent all the values in
that column. The three most common data types that Pandas uses
are integers, floating point numbers, and strings. The information in
players.dtypes tells us that the columns age, ezlvl, points, and
finished are stored as integers. Pandas chose the default integer
type int64, which uses 64 bits of memory. The column time contains
decimals, so Panda uses the default floating point number type
float64 to store this variable. The columns username and country
contain text, so Pandas stores them as generic Python objects (in this
case string objects).

For the most part, you don’t have to worry about data types, but
it’s sometimes useful to look “under the hood” and see how Pandas
actually stores the values in the data frame. For example, if you see
that a numerical variable is stored as object, this is a hint that there
might be formatting issues in the data file that prevented Pandas
from using a numeric data type. Another reason why you might
care about data types is if you’re working with large datasets with
thousands or millions of rows. Calculations on columns that contain
integer or floating point numbers will be very fast, since they will
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be performed by optimized number-crunching code (NumPy), while
calculations containing objects will be much slower.

Note the Python type of the variable is not the same as the
statistical type of the variable: numerical or categorical. Numerical
variables can be stored as integers (int64 like age) or floating point
numbers (float64 like time). Categorical variables can be stored as
integers (e.g. ezlvl and finished) or strings (e.g. country).

Accessing and selecting data

We use the .loc[] selection attribute to access the values at different
“locations” within a data frame. To obtain the value of the points
variable for the third row (index 2) in the players data frame, we
use the expression:

code
1.2.10

>>> players.loc[2,"points"]
1321

The general syntax is players.loc[<row>,<col>], where <row> is
the index label and <col> is the column label of the value we want
to obtain.

Selecting entire rows To select rows from a data frame, we use the
syntax players.loc[<row>,:], where <row> is a index label and the
special symbol “:” refers to “all columns.”

code
1.2.11

>>> players.loc[6,:] # == players.loc [6]
username sanjay
country ca
age 27
ezlvl 1
time 585.88
points 2344
finished 1

The alternative syntax players.loc[<row>] (without the “,:” part)
produces the same result as players.loc[<row>,:]. Note the <row>
label we use to refer to a given row in the data frame is its index label
(one of the labels in players.index).

Selecting entire columns We use the square-brackets syntax
players["<col>"] to select the variable <col> from the players
data frame. For example, we can extract the values of the age vari-
able from the players data frame using the following expression:

code
1.2.12

>>> players["age"]
0 38
1 21
2 52
3 50
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4 26
5 45
6 27
7 23
8 24
9 59
10 18
11 22
Name: age , dtype: int64

The syntax players["<col>"] is equivalent to the .loc[] selection
expression players.loc[:,"<col>"], which selects all rows (“:”) in
the "<col>" column.

Statistical calculations using Pandas

Let’s now focus on the age variable in the players data frame. The
code example below shows how to use the square brackets syntax to
extract the age variable from the players dataset, and store it in the
new Python variable called ages.

code
1.2.13

>>> ages = players["age"]
>>> ages
0 38
1 21
2 52
3 50
4 26
5 45
6 27
7 23
8 24
9 59
10 18
11 22
Name: age , dtype: int64

Using the name ages to describe the values of the "age" column is
an example of the general naming convention we’ll use in this book:
using the plural of the column name for the name of the Python
variable that contains the values extracted from this column.

Let’s use the type function to check what kind of object is the
variable ages.

code
1.2.14

>>> type(ages)
pandas.core.series.Series

The variable ages is a Pandas series object. Pandas series are list-like
containers of values. The Pandas series ages has the same index as
the players data frame, and it “remembers” the name of the column
from which it was extracted.

code
1.2.15

>>> ages.index
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[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
>>> ages.name
'age'

Pandas series objects have many methods for doing statistical calcu-
lations. For example, the method .count() tells us the length of the
series:

code
1.2.16

>>> ages.count()
12

The method .count() is analogous to the function COUNT(...) in a
spreadsheet, where the ... refers to a spreadsheet range expression.

The method .sum() computes the sum of the players’ ages.
code
1.2.17

>>> ages.sum()
405

The Python expression ages.sum() is equivalent to calling the
spreadsheet function SUM(...) on the range of cells that contain the
age values.

We can combine the results of the above two expressions to
calculate the average value (the arithmetic mean) of the players’ ages.
The average value of a list of n values x “ rx1, x2, . . . , xns is computed
using the formula x “ 1

n px1 ` x2 ` ¨ ¨ ¨ ` xnq. This formula says
that the average is computed by summing together all the values
in the list x and dividing by the length of the list n. The average is
denoted with a bar on top of the variable name x. The expression for
computing the average age using Pandas methods is as follows:

code
1.2.18

>>> ages.sum() / ages.count ()
33.75

This Python expression is equivalent to the spreadsheet formula
SUM(...)/COUNT(...), where ... is the range that contains the ages.

An equivalent, more direct, way to compute the arithmetic mean
of the values in the series ages is to call its .mean() method.

code
1.2.19

>>> ages.mean()
33.75

Calling the method .mean() is equivalent to using the function
AVERAGE(...) in a spreadsheet.

The standard deviation (dispersion from the mean) is another
common statistic that we might want to calculate for a variable in
a dataset. To find the sample standard deviation of the values in the
series ages, we call its .std() method:

code
1.2.20

>>> ages.std()
14.28365244861157

The calculation ages.std() is equivalent to using the function
STDEV(...) in a spreadsheet.
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Pandas series and data frames objects have numerous other
methods for computing numerical data summaries including:
.min(), .max(), .median(), .var(), .quantile(), etc. We refer to
these collectively as the descriptive statistics of a variable. We defer
the detailed discussion on descriptive statistics until the next section
(Section 1.3). See Table 1.4 on page 58 for a complete list of the
Pandas methods available for computing descriptive statistics.

Selecting only certain rows (filtering)

A common task when working with Pandas data frames is to select
the rows that fit one or more criteria, which is equivalent to “filtering
out” rows that don’t satisfy these criteria. We usually select rows
using a two-step procedure:

Step 1: Build a “selection mask” series that consists of boolean values
(True or False). The mask series contains the value True for
the rows we want to keep, and the value False for the rows we
want to filter out.

Step 2: Select the subset of rows from the data frame using the mask.
The result is a new data frame that contains only the rows that
correspond to the True values in the selection mask.

For example, let’s say that we want to select the rows from the
players data frame where ezlvl is 1. The first step is to create the
selection mask (Step 1):

code
1.2.21

>>> mask = players["ezlvl"] == 1
>>> mask
0 False
1 False
2 True
3 True
4 True
5 False
6 True
7 False
8 True
9 False
10 False
11 True

The double equal sign is equivalent to asking the question “Which
rows of the players data frame have the value 1 in the "ezlvl"
column?” The rows that match the criterion “ezlvl equal to 1”
correspond to the True values in the mask, while the other values
are False.

The actual selection (Step 2) is done by using the mask inside the
square brackets.

code
1.2.22
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>>> players[mask]
username country age ezlvl time points finished

2 emil fr 52 1 324.61 1321 1
3 ivan ca 50 1 39.51 226 0
4 hasan tr 26 1 253.19 815 0
6 sanjay ca 27 1 585.88 2344 1
8 shuo cn 24 1 194.77 1043 0
11 joro bg 22 1 381.97 1491 1

The result is a new data frame that contains only rows where the
ezlvl variable has the value 1.

We often combine the two steps of the selection procedure into
a single Python expression players[players["ezlvl"]==1], which
produces exactly the same result, but avoids the need for creating an
intermediate mask variable.

code
1.2.23

>>> players[players["ezlvl"]==1]
username country age ezlvl time points finished

2 emil fr 52 1 324.61 1321 1
3 ivan ca 50 1 39.51 226 0
4 hasan tr 26 1 253.19 815 0
6 sanjay ca 27 1 585.88 2344 1
8 shuo cn 24 1 194.77 1043 0
11 joro bg 22 1 381.97 1491 1

Note the data frame name appears twice in the combined selection
expression: the inner players variable creates the mask, while the
outer players variable is where we extract the data from. We’ll use
this type of expression often in the remainder of the text, whenever
we want to select the rows that match some criterion.

Sorting

We can sort the rows of the data frame based on the values of the
variable <var> by calling the method .sort_values("<var>"). For
example, to sort the players data frame by the time variable in
descending order, we use the following command.

code
1.2.24

>>> players.sort_values("time", ascending=False)
username country age ezlvl time points finished

7 lena uk 23 0 408.76 1745 1
11 joro bg 22 1 381.97 1491 1
6 sanjay ca 27 1 350.00 1401 1
1 jane ca 21 0 331.64 1149 1
2 emil fr 52 1 324.61 1321 1
10 anna pl 18 0 303.66 1209 1
9 r0byn us 59 0 255.55 1102 0
4 hasan tr 26 1 253.19 815 0
8 shuo cn 24 1 194.77 1043 0
0 mary us 38 0 124.94 418 0
3 ivan ca 50 1 39.51 226 0
5 jordan us 45 0 28.49 206 0
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We specified the option ascending=False because the default be-
haviour of .sort_values is to sort in increasing order. Note the
index in the sorted data frame is no longer in order, since the rows
are now sorted by time. The sorted-by-time ordering allows us to
see that lena is the player with the most points, and jordan has the
least points.

* * *

In this section, we illustrated the most common Pandas data ma-
nipulation commands, but the Pandas library provides a lot more
functionality. For a more in-depth reference of the Pandas functions,
you can read the Pandas tutorial in Appendix D. You don’t need to
become a Pandas expert to understand the code examples in this
book, but if you invest an hour or two going through the Pandas
tutorial, you’ll learn lots of cool data management techniques that
will come in handy when working on real-world projects.

Pandas exercises

I highly recommend you try these exercises, because the hands-on
approach is the best way to learn to use Pandas.
E1.5 Open the file players.csv using LibreOffice or another spread-
sheet program. Compute the mean and the standard deviation of the
age variable using spreadsheet functions.

Hint: Create new cells containing formulas based on the spreadsheet
functions AVERAGE(...) and STDEV(...).

E1.6 Compute the mean of the points variable in the players dataset.

E1.7 Try loading a few of the other datasets into a data frame using
the function pd.read_csv(), then use the .head() method to print
the first few rows of each dataset, and .shape to display the number
of rows and columns.

E1.8 Load dataset students.csv and compute the mean of the
variable score.

E1.9 Create a new notebook cell and use the command ?ages.sum to
display the Pandas help menu for the .sum method, which describes
all the options you can use when calling the method, and often
includes usage examples. Using the question mark prefix ?ages.sum
is a is shortcut for calling help(ages.sum). Try using the ?-prefix to
view the help menus of the other methods we used in this section:
ages.count, ages.mean, ages.std, etc.
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1.2.3 Data visualizations with Seaborn
Seaborn is a popular Python library for statistical data visualization.
Seaborn provides functions for generating strip plots, scatter plots, box
plots, histograms, and other statistical plots for data stored in Pandas
series and data frames. In this section, we’ll look at some examples
of statistical visualizations of the players dataset to give you a taste
of the type of plots we can generate using the Seaborn library.

To use Seaborn, the first step is to import the seaborn module in
the current notebook.

code
1.2.25

>>> import seaborn as sns

Importing seaborn under the alias sns is a widespread convention,
similar to the convention of importing pandas under the alias pd.

Strip plot of the time variable

A strip plot is a statistical visualization for numerical variables where
each observation is represented as a point. The Seaborn function
for drawing strip plots is stripplot. We’ll now use this function to
generate a strip plot of the time variable in the players data frame.

To generate a strip plot, we pass the data frame players as the
data argument to the Seaborn function sns.stripplot, and specify
the column name "time" (in quotes) as the x argument.

code
1.2.26

>>> sns.stripplot(data=players , x="time")
The result is shown in Figure E.2.

Figure 1.6: Strip plot of the time variable from the players dataset.

The first argument, data=players, tells Seaborn to take the data from
the players data frame. The second argument, x="time", indicates
we want to represent the time variable on the x-axis. This is the
general pattern for calling all Seaborn plot functions: we describe
where the data lives and the properties of the plot we want to see,
and the Seaborn plot function takes care of all the rest. In this case,
the function stripplot extracted the data from the "time" column of



1.2 DATA IN PRACTICE 35

the players data frame, automatically chose the limits of the x-axis
so the data will fit, and set the x-axis title based on the variable name.

Seaborn makes it easy to map multiple variables to different
visual properties (aesthetics) of the plot. For example, we can
enhance the strip plot by mapping the ezlvl variable to the colour
(hue) of the points in the plot.

code
1.2.27

>>> sns.stripplot(data=players , x="time", hue="ezlvl")
Result is shown in Figure 1.7.

Figure 1.7: Strip plot of the time variable, where the colour of each point is
determined by the ezlvl variable in the players dataset.

The addition of the argument hue="ezlvl" tells Seaborn to choose
the colour of the points based on the ezlvl categorical variable.

Studying the effect of ezlvl on time

Recall the players dataset was collected as part of an experiment
designed to answer the question “Does the easy first level lead to
improved user retention?” We want to compare the time variable
(total time players spent in the game) of players who were shown
the “easy level” version of the game (ezlvl=1) to the control group
of players who played the regular version of the game (ezlvl=0).

Figure 1.8 shows a strip plot that can help us visualize the time
variable for the two groups of players. The code we used to generate
this figure is as follows.

code
1.2.28

>>> sns.stripplot(data=players , x="time", y="ezlvl",
hue="ezlvl", orient="h", legend=None)

Result is shown in Figure 1.8.

Note we were able to customize the plot by passing different argu-
ments and options to the function sns.stripplot. The arguments
data=players and x="time" are the same as what we saw earlier.
Next we tell Seaborn to use the ezlvl variable for the y-position and
the hue of the points in the plot. The options orient="h" (horizontal
layout) and legend=None (remove legend) perform additional visual
customizations of the plot.
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Figure 1.8: Comparison of the time variable in the players data grouped by
ezlvl. The diamond shapes represent the means of the two groups.

The strip plot in Figure 1.8 includes additional diamond anno-
tations that correspond to the means of the two groups, which we
computed using the following Pandas expressions:

code
1.2.29

>>> players[players["ezlvl"]==0]["time"].mean()
242.17333333333332
>>> players[players["ezlvl"]==1]["time"].mean()
257.34166666666664

We see there is a difference in the average time spent in the game
between the two groups, but this difference is very small compared
to the variability in the time variable. The strip plot in Figure 1.8
makes this clear. In summary, this means that our experiment is
inconclusive: we can’t say if the easy level version leads to improved
engagement, given how small the observed difference is.

Studying the relationship between age and time

The secondary research question for the players dataset is to look
for an association between the age variable and the time variable.
Do young players spend more time in the game?

We can use a scatter plot (sns.scatterplot) to visualize the
relationship between two numerical variables. To use the function
sns.scatterplot, we have to specify the variables we want to use
as the x and y coordinates of the points:

code
1.2.30

>>> sns.scatterplot(data=players , x="age", y="time")
See Figure 1.9 (a).

The scatter plot in Figure 1.9 (a) seems to suggest there is an overall
trend of the time variable to decrease as the age variable increases.

When studying the relationship between two numerical vari-
ables, we can use a linear regression model to describe how one
variable depends on the other. In this context, the linear regression
model corresponds to the line of best fit that passes through the
points in the scatter plot, and we obtain this line using the Seaborn
function sns.regplot.

code
1.2.31
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Figure 1.9: Visualizations of the relationship between the age variable and
the time variable. The right panel shows the best fit linear model for the
relationship between the two variables.

>>> sns.regplot(data=players , x="age", y="time", ci=None)
See Figure 1.9 (b).

The slope of the best fit line confirms our initial observation about
an overall trend of time decreasing with age. Note however that the
variability of the observations around the linear model is very large,
so we shouldn’t put too much trust in this model. We’ll learn more
about linear models in Chapter 4.

To be continued...

We’ll be using Seaborn plot functions to visualize data, probability
distributions, and statistical models throughout the rest of the book,
so you’ll have plenty of time to get to know the Seaborn functions.
See Table E.1 on page 688 in Appendix E for a complete list of the
Seaborn plot functions.

For now, the only thing you need to remember is the general
syntax that Seaborn plot functions expect:

sns.<plotname>(data=players, x="var1", y="var2", hue="var3"),

where the first argument, data=players, tells Seaborn to look for the
data stored in a data frame players, and the arguments x, y, hue
determine which variables (columns of the data frame players) will
be represented on the x-axis, the y-axis, and the colour of the plot.

Seaborn exercises

E1.10 Create a strip plot of the variable age from the players dataset.
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1.2.4 Real-world datasets
Imagine you’re a data scientist consulting with various clients.
Clients come to you with datasets and real-world questions they
want to answer using statistical analysis. Table 1.3 shows the com-
plete list of the datasets that we’ll use in examples and explanations
in the rest of the book. The last column of the table tells us the
sections of the book where each dataset will be discussed.

index client name filename shape sections

players.csv 12x7 1.1, 1.2
1 Alice apples.csv 30x1 3.1, 3.2
2 Bob eprices.csv 18x2 3.1, 3.5
3 Charlotte students.csv 15x5 1.3, 3.1, 3.5, 4.1
4 Khalid kombucha.csv 347x2 3.1, 3.2, 3.3, 3.4
5 Dan doctors.csv 224x4 3.1, 3.2, 3.5, 4.1
6 Vanessa visitors.csv 2000x3 3.6

minimal.csv 5x4 Appendix D

Table 1.3: List of the real-world datasets we’ll use throughout the book.

Because we’ll be spending a considerable amount of time with
these datasets, it’s worth knowing the context around each dataset,
and trying to understand the statistical question that each client is
interested in answering.

Dataset 1: Apple weights

Alice runs an apple orchard. She collected a sample from the apples
harvested this year (the population) and sent you the data in a CSV
file called apples.csv. You start by loading the data into Pandas
and looking at its characteristics.

code
1.2.32

>>> apples = pd.read_csv("../ datasets/apples.csv")
>>> apples.shape
(30, 1)
>>> apples.head (3)

weight
0 205.0
1 182.0
2 192.0

The apples dataset contains n “ 30 observations of the weight
variable. The weights are measured in grams.

You decide to generate a strip plot in order to visualize the
distribution of the apple weights.

code
1.2.33

>>> sns.stripplot(data=apples , x="weight")
Result is shown in Figure 1.10.
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Figure 1.10: Strip plot of the weight variable from the apples dataset.

You also compute the average weight of the apples in this sample.
code
1.2.34

>>> apples['weight '].mean()
202.6

The mean of the apple weights from this sample is 202.6 grams.

Alice’s estimation question Alice wants to know the average
apple weight in the population. The sample mean 202.6 g is an
approximation to the population mean, so that is a good place to
start. But how good is this approximation? Alice is asking you to
quantify the accuracy of this estimate by constructing a confidence
interval for the population mean, which is a range of numbers that
includes the plausible values.

To answer Alice’s question, we’ll learn how to model the sampling
distribution of the mean (Section 3.1) and construct a confidence
interval for the population mean (Section 3.2).

Dataset 2: Electricity prices

Bob recently bought an electric car. He doesn’t have a charging
station for his car at home, so he goes to public charging stations to
recharge the car’s batteries. Bob lives downtown, so he can go either
to the East End or West End of the city for charging. He wants to
know which side of the city has cheaper prices. Are electricity prices
cheaper in the East End or the West End of the city?

To study this question, Bob collected electricity prices of East
End and West End charging stations from a local price comparison
website and provided you the prices in the dataset eprices.csv.

code
1.2.35

>>> eprices = pd.read_csv("../ datasets/eprices.csv")
>>> eprices.shape
(18, 2)
>>> eprices

loc price
0 East 7.7
1 East 5.9
2 East 7.0
. .... ... # six more rows
10 West 10.0
11 West 11.0
12 West 8.6
. .... ... # six more rows
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Bob’s dataset contains 18 observations of the variables loc (location,
East or West) and price (electricity price in ¢/kWh).

You start by generating a strip plot of the price variable, using
the loc variable to control the y-position and colour of the points.

code
1.2.36

>>> sns.stripplot(data=eprices ,x="price",y="loc",hue="loc")
Result is shown in Figure 1.11.

Figure 1.11: Strip plot of the prices in the East End and the West End.

Figure 1.11 seems to show that prices in the West End are higher than
the East End. You next calculate the average price for each location.

code
1.2.37

>>> eprices[eprices["loc"]=="West"]["price"].mean()
9.155555555555557
>>> eprices[eprices["loc"]=="East"]["price"].mean()
6.155555555555556

The average price in the East is 6.156 ¢/kWh, while the average in
the West is 9.156 ¢/kWh. Based on a comparison of these averages,
it seems East End electricity prices are lower, but could the observed
difference be due to chance?

Bob’s question Bob is asking for your help with “running the stats”
needed to determine if the observed difference in prices is statistically
significant, which is one of the possible conclusions we can reach
when using the hypothesis testing procedure.

We’ll learn about hypothesis testing in Chapter 3 and discuss the
specific hypothesis testing procedures for comparing two groups in
Section 3.5.

Dataset 3: Students effort and scores

Charlotte is a science teacher who wants to test the effectiveness of
a new teaching method in which material is presented in the form
of a “scientific debate.” Student actors initially express “wrong”
opinions, which are then corrected by presenting the “correct” way

https://www.youtube.com/watch?v=eVtCO84MDj8
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to think about science concepts. This type of teaching is in contrast
to the usual lecture method, in which the teacher presents only the
correct facts.

To compare the effectiveness of the two teaching methods, she
has prepared two variants of her course:

• In the lecture variant, the video lessons present the material
in the usual lecture format that includes only correct facts and
explanations.

• In the debate variant, the same material is covered through
video lessons in which student actors express multiple points
of view, including common misconceptions.

Except for the different video lessons, the two variants of the course
are identical: they cover the same topics, use the same total lecture
time, and test students’ knowledge using the same assessment items.

The students dataset consists of activity obtained from the online
learning platform that Charlotte used for the course. You load the
data file students.csv into Pandas, and print the first few rows to
see what the data looks like.

code
1.2.38

>>> students = pd.read_csv("../ datasets/students.csv")
>>> students.shape
(15, 5)
>>> students.head()

student_ID background curriculum effort score
0 1 arts debate 10.96 75.0
1 2 science lecture 8.69 75.0
2 3 arts debate 8.60 67.0
3 4 arts lecture 7.92 70.3
4 5 science debate 9.90 76.1

The dataset contains information for 15 students enrolled in the
course. Charlotte has provided you with the following codebook of
information about the five variables recorded for each student:

• student_ID: a unique identifier for each student
• background: describes the student’s academic background
• curriculum: which version of the course they took
• effort: the total time spent on the online learning platform
• score: the final grade for the course

We can generate a strip plot of the score variable for the two versions
of the curriculum variable using the following Seaborn command.

code
1.2.39

>>> sns.stripplot(data=students , x="score", y="curriculum",
hue="curriculum")

Result is shown in Figure 1.12.

We can also compute the means for two versions of the curriculum.
code
1.2.40
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Figure 1.12: Strip plot of the score variable for the two versions of the
curriculum variable.

>>> lscores = students[students["curriculum"]=="lecture"]
>>> lscores["score"].mean()
68.14285714285714
>>> dscores = students[students["curriculum"]=="debate"]
>>> dscores["score"].mean()
76.4625

We see the average score of students who took the course with
the debate-style video lessons is higher than the average score of
students in the usual lecture-style video lessons.

Charlotte’s research questions Similar to Bob’s question about the
electricity prices, Charlotte wants to know if the observed difference
in scores between the lecture and debate curriculum variants is
statistically significant. In Section 3.5, we’ll use the hypothesis
testing procedure for comparing two groups to answer this question.

Charlotte also has a secondary research question about the rela-
tionship between the effort and score variables. Do students who
spent more time on the learning platform get better final scores? In
Chapter 4, we’ll learn about linear regression models and try to find
the best fit line for this relationship.

Dataset 4: Kombucha volumes

Khalid is responsible for the production line at a kombucha brewing
company. He needs to make sure the volume of kombucha that goes
into each bottle is exactly 1 litre (1000 ml), but because of day-to-
day variations in the fermentation process, production batches may
end up with under-filled or over-filled bottles. Sending such irregular
batches to clients will cause problems for the company, so Khalid
wants to find a way to detect when the brewing and bottling process
is not working as expected.

Khalid compiled the dataset kombucha.csv, which contains the
volume measurements from samples taken from 10 different produc-
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tion batches, and sent it to you for analysis. You load the dataset into
Pandas and start poking around, to see the data it contains.

code
1.2.41

>>> kombucha = pd.read_csv("../ datasets/kombucha.csv")
>>> kombucha.shape
(347, 2)
>>> kombucha.columns
['batch ', 'volume ']
>>> kombucha.head (3)

batch volume
0 1 1016.24
1 1 993.88
2 1 994.72

Each observation in the kombucha dataset tells you the volume of
kombucha measured in one bottle and which batch it came from.

Let’s generate a combined strip plot of the observations from the
different batches so that we can visually inspect the data.

code
1.2.42

>>> sns.stripplot(data=kombucha , x="batch", y="volume")
Result is shown in Figure 1.13.

Figure 1.13: Strip plots of the volume variable for the ten batches in the
kombucha dataset. The volume in each bottle is supposed to be 1000 ml,
but we see the data contains a lot of variability around this value.

Looking at Figure 1.13, you can already see several interesting facts
about the different batches. The sample from Batch 3 seems to have
fewer observations than the other batches. Many of the observations
from Batch 4 are above the 1000 ml line, so this batch could be one
of the irregular batches (over-filled bottles). Batch 10 contains an
outlier observation, that is waaaay above any of the other volume
measurements. Could this be a measurement mistake? Can you even
fit 1060 ml in the bottle? You make a mental note to ask Khalid about
this outlier, so you’ll know what to do with it when you start the
statistical analysis.

Next you decide to extract the data from Batch 1 and compute the
mean volume of that sample.

code
1.2.43

>>> batch01 = kombucha[kombucha["batch"]==1]
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>>> ksample01 = batch01["volume"]
>>> ksample01.mean()
999.10375

The value 999.10 is pretty close to the expected value 1000 ml, but
how can we tell if this is a regular batch or an irregular batch?

Khalid’s quality control question Khalid is asking you to figure
out a way to detect irregular batches based on samples of volume
measurements. Recall, a batch is deemed “irregular” if the average
volume in each bottle is too low or too high. The statistical machin-
ery of hypothesis testing is exactly the tool we need for this quality
control scenario. In Section 3.3, we’ll learn how to analyze the data
from the different batches and determine which batches are regular
and which are irregular.

Dataset 5: Doctors’ sleep study

Dan is a data analyst working at the Ministry of Health. His
current assignment is to look for ways to improve the health of
family doctors. He collected the doctors dataset (doctors.csv),
which contains data about the demographics, life habits, and health
metrics of 224 family doctors that Dan randomly selected from the
populations of family doctors in the country.

code
1.2.44

>>> doctors = pd.read_csv("../ datasets/doctors.csv")
>>> doctors.shape
(224, 4)
>>> doctors.head (3)

permit name location score
0 93636 Yesenia Smith urban 82.0
1 79288 Andrew Stanley rural 85.0
2 94980 Jessica Castro rural 97.0

The columns contain the following information for each doctor:

• permit: a unique identifier.
• name: the doctor’s name.
• location: the location of doctor’s practice (rural or urban).
• score: the sleep score (out of 100)

TODO: add other columns (as needed for Chapter 4): age,
experience (years), exercise, EtOH consumption (standard
drink/week), cigs, pot, pills (meds), bmi, ?

Dan is interested in comparing the sleep scores of doctors in rural
and urban locations, so he starts by generating a strip plot of the
score variable for the two values of the location variable.

code
1.2.45
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>>> sns.stripplot(data=doctors , x="score", y="location",
hue="location")

Result is shown in Figure 1.14.

Figure 1.14: Strip plot of the sleep score variable for doctors in urban and
rural locations.

You also compute the average sleep score for two groups of doctors.
code
1.2.46

>>> udoctors = doctors[doctors["location"]=="urban"]
>>> udoctors["score"].mean()
79.57051282051282
>>> rdoctors = doctors[doctors["location"]=="rural"]
>>> rdoctors["score"].mean()
81.79411764705883

Dan’s research questions Dan’s main question is whether doctors
working in a rural setting have better sleep. Similar to Bob’s
question about the electricity prices and Charlotte’s study of the
student scores, the goal of his statistical analysis is to determine
if the observed difference between the two groups is statistically
significant, that is, to rule-out the possibility that it occurred by
chance.

Dan also has a secondary research question, about the influence
of alcohol consumption (EtOH variable) on the sleep score variable.
We’ll approach this secondary question in Chapter 4 by fitting a
multiple linear regression model that captures the effect of several
variables on the sleep scores.

Dataset 6: Website visitors conversion rates

Vanessa runs an e-commerce website and is about to launch a new
design for the homepage. She wants to know if the new design
is better or worse than the current design. Vanessa has access to
the server logs from her website and is able to collect data about
which visitors clicked the BUY NOW button and bought something.
The term conversion is used when a visitor buys something, meaning
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they are “converted” from visitor to client. The conversion rate is the
proportion of website visitors that become clients.

Vanessa performed an experiment to check if the new website
design is better than the current design when it comes to getting
visitors to click the BUY NOW button. For the 2000 new visitors
that the site received during the previous month, Vanessa randomly
sent half of them to the new design (A for alternative), and the other
half to the old design (B for baseline). She also recorded if a visitor
bought a product during their visit to the website.

The data consists of 2000 observations from visitors to the website
from unique IP addresses. For each visitor, the column version
contains which design they were presented with, and the column
bought records whether the visitor purchased something or not. You
use the usual Pandas commands to load the dataset visitors.csv,
to inspect its properties, and print the first few rows.

code
1.2.47

>>> visitors = pd.read_csv("../ datasets/visitors.csv")
>>> visitors.shape
(2000, 3)
>>> visitors.head (5)

IP address version bought
0 135.185.92.4 A 0
1 14.75.235.1 A 1
2 50.132.244.139 B 0
3 144.181.130.234 A 0
4 90.92.5.100 B 0

We can also compute the average (mean) conversion rate for the two
versions of the website.

code
1.2.48

>>> visitors[visitors["version"]=="A"]["bought"].mean()
0.06482465462274177
>>> visitors[visitors["version"]=="B"]["bought"].mean()
0.03777148253068933

The old design has a conversion rate of 0.0377 or 3.8%. The new
design’s conversion rate is 0.0648 or 6.5%. The difference between
the conversion rates is 6.5 ´ 3.8 “ 2.7%. We can also represent the
same information by generating a bar plot.

code
1.2.49

>>> sns.barplot(data=visitors , x="bought", y="version")
Result is shown in Figure 1.15.

Vanessa’s question Vanessa wants to know if the new design for
the landing page will generate more sales. It seems the new design
has increased the conversion rate by 2.7%, but could this observed
difference have occurred by chance? Vanessa wants you to perform
the necessary statistical analysis to make sure that the observed
difference is not due to chance. In Section 3.7, we’ll learn about
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Figure 1.15: Bar plot of the conversion rates of the two versions of the
website. The black lines represent the uncertainty of the two estimates.

hypothesis tests for the comparison of two proportions, which will
help us answer Vanessa’s question.

Statistical analysis types

We’ll now classify the different questions that the clients are looking
to answer according to the type of statistical analysis task they
represent. This will also give a chance to review some of the key data
concepts like random assignment and random sampling and that we
introduced in the previous section (Section 1.1).

Alice’s question about the apples dataset is an estimation task. She
collected a sample of 30 apples from the population (all apples in
this year’s harvest) and she wants to estimate the average weight in
the population, based on the weights of the apples in the sample.
We already calculated the sample mean 202.6 g, which is an estimate
for the population mean. We can also compute a confidence interval
which quantifies the uncertainty in our estimate of the population
mean. We’ll learn more about estimates in Section 3.1, and discuss
procedures for constructing confidence intervals in Section 3.2.

Now let’s think about Khalid’s question and the kombucha
dataset. He obtained samples from different production batches, and
he wants to implement a quality control process to detect “irregular”
production batches. The statistical analysis technique we’ll use
to help Khalid is called the one-sample hypothesis test, which we’ll
discuss in Section 3.3.

Observational studies and statistical experiments The other
client’s questions involve the relationship between two variables.
We want to study the effect of an explanatory variable on the response
variable. Recall the distinction between observational studies and
statistical experiments that we made in the previous section. Which of
the datasets are observational in nature, and which are experiments?
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Bob’s electricity prices comparison is an observational study. He
observed the values of the loc variable (East or West) and the price
variable for the charging stations, but didn’t control or choose the
values of the loc variable.

In contrast, Charlotte’s study of the influence of the curriculum
variable on the score variable is a statistical experiment. She
chose the value of the predictor variable (curriculum) when she
randomly assigned students to the debate and lecture versions of
the course. If we see the average score of students who took the
debate curriculum is higher than the average score of students who
took the lecture curriculum, then we can reasonably conclude that
the debate curriculum is better. Note the strength of this conclusion
depends on the ceteris paribus assumption (all other things being
equal). The reason why Charlotte randomly assigned students to the
two versions of the curriculum (lecture or debate) was in order to
create two groups that are “roughly identical” except for the choice
of the curriculum variable.

Charlotte’s secondary question about the influence of the effort
variable on the score variable is observational in nature, since she
had no control over the effort variable. If we observe that higher
effort is correlated to higher scores, we can’t conclude that effort
caused the higher scores, we can only say that there is a positive
association between these two variables.

Dan’s doctors dataset is also observational in nature. He didn’t
take identical groups of doctors and send them to work in rural and
urban settings, but just observed their location and their sleep scores.

Vanessa’s A/B test is an experiment. She used random assignment
to decide which version of the homepage design each visitor saw,
so if we observe an improvement in the conversion rate of the new
design, we can attribute this improvement to the new design.

The classification into observational and experimental studies deter-
mines the type of conclusion we can make as a result of the statistical
analysis. Assuming the random assignment procedure they used
resulted in roughly identical groups (ceteris paribus), Charlotte and
Vanessa can conclude there is a causal link between the predictor
variable and the response variable. The statistical conclusions that
Bob and Dan can make based on their datasets are only about
associations.

Generalization To what extent do the results we obtain from the
samples generalize to the population as a whole? We know that
the observations in Alice, Khalid, and Dan’s datasets were randomly
selected from their respective populations, so there is a good chance
they are representative of the population as a whole. This means that
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estimates and conclusions we make based on the samples are likely
to generalize to the wider population.

The case for Bob’s electricity prices data is less clear, since we
don’t know if the prices listed on the price comparison website are
a random sample from all charging stations, or a biased sample.
Therefore, we have no guarantee the results we obtain will gener-
alize to the whole city.

Charlotte’s students dataset consists of observations from a par-
ticular group of students, so we can’t automatically assume that her
findings will apply to all students. That being said, it is fair to assume
that students who took the class this semester are similar to students
who will take her class in future semesters, and in this sense, her
findings will likely generalize in the future.

The situation is similar for Vanessa’s dataset, which measures
the behaviour of visitors to her website during the past month. The
generalizability of her results is based on the assumption the visitors
during future months will be similar, which may or may not be true.
For example, seasonal events like holidays and the back-to-school
rush might attract different demographics of website visitors, for
which the results might not apply.

Note we haven’t done any statistical analysis on the datasets
yet, but we can already tell what kind of conclusions we’ll be able
to draw based on the data provided by each client! This is super
important to understand, and one of the main takeaway messages
from this chapter: the data you start with determines the statistical
conclusions you can make.

1.2.5 Discussion
Before we move on from the topic of data management, I want to
mention some important data pre-processing tasks that you need to
know about.

Data extraction

The first step of any statistical analysis is to get your hands on the
data. This step usually involves loading data stored in local files,
downloading data from the web, or extracting data from a database
(most common in a business context). You can also collect the data
yourself (e.g. through scientific measurements or surveys).

In Appendix D, we’ll discuss the different possible data sources
(local files, internet files, databases, etc.) and the data formats
(CSV, TSV, spreadsheets, HTML, JSON, SQL, etc.). Each data source
scenario requires a different set of commands for loading the data,
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so it doesn’t make sense to learn all these commands in advance. In-
stead, I recommend that you learn about the specific data extraction
procedures as needed, on a case-by-case basis.

Data transformations

The “raw” data extracted from a data source often needs to undergo
several data transformation steps before it is ready for statistical
analysis. Data transformation steps include relabelling (changing
index labels or column names), renaming of values, data merg-
ing (combining multiple data files into a single data frame), and
data reshaping (changing the way data is organized into rows and
columns). The Pandas library provides functions for doing such data
transformation steps.

Data pre-processing steps are sometimes called data wrangling or
data munging, and are often the most time-consuming part in the life
of data professionals (data scientists, statisticians, analysts, machine
learning practitioners). You can think of data pre-processing as the
“manual labour” steps you need to do before you can use the data
for statistics. You can learn more about these pre-processing and data
transformations steps in Appendix D.

Tidy data

The concept of tidy data is a convention for organizing datasets that
makes statistical calculations and visualizations easy to perform. A
data frame is organized according to the tidy data format[Wic14] if it
has the following characteristics:

• Each column contains the values for one variable.
• Each row contains the values for one observation.
• Each data cell contains a single value.

This specific organization of data into rows and columns makes it
easy to perform statistical calculations on arbitrary subsets of the
data, and allows us to create Seaborn plots by simply specifying
column names, as we saw in the examples earlier in this section.

The structure of the players dataset displayed in Figure 1.5 fol-
lows the tidy data format, since each column contains measurements
of a different variable, each row contains the data for a different
player, and each value is a single measurement.

Let’s now look at an example dataset that is not tidy. Bob
initially provided you the electricity prices dataset as the data file
epriceswide.csv, which is organized in a two-columns format:

code
1.2.50
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>>> epriceswide= pd.read_csv("../ datasets/epriceswide.csv")
>>> epriceswide.shape
(9, 2)
>>> epriceswide

East West
0 7.7 11.8
1 5.9 10.0
2 7.0 11.0
3 4.8 8.6
4 6.3 8.3
5 6.3 9.4
6 5.5 8.0
7 5.4 6.8
8 6.5 8.5

The data frame epriceswide doesn’t follow the tidy data convention,
since each row contains multiple observations—one value from the
East End and one value from the West End. Datasets obtained
through manual data entry are often in this “wide” format, since
it’s convenient for humans to record values for different groups in
different columns.

When you received this data, your first step was to reshape the
data to transform it into tidy format. You used the Pandas method
.melt to convert the epriceswide data frame from “wide” format
into “long” format, with one observation per row. The method .melt
takes the argument var_name to specify the name of the variable that
is encoded in the column positions, and the argument value_name to
specify the name of the variable stored in the individual cells.

code
1.2.51

>>> epriceswide= pd.read_csv("../ datasets/epriceswide.csv")
>>> epriceswide.melt(var_name="loc", value_name="price")

loc price
0 East 7.7
1 East 5.9
2 East 7.0
.. 12 more rows ..
15 West 8.0
16 West 6.8
17 West 8.5

The .melt operation transformed the implicit “which column is the
data in” information into an explicit loc variable stored in a separate
column. Each row in the transformed data frame contains only a
single observation, so it is in tidy data format. Indeed, it is by
saving the result of this melt command that we obtained the data
file eprices.csv, which we used in the code examples earlier on.

See the section “Reshaping data frames” (Section D.0.5) in the
Pandas tutorial (Appendix D) to learn more about the .melt opera-
tion.
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Data cleaning

It would be a mistake to assume that each value in the dataset is
ready for statistical analysis. More often, a data cleaning step is re-
quired, which aims to correct the following two common problems:

• missing values occur when no data has been observed for a
given variable. Missing values are a fact of life, since data
collection is not a perfect process. For example, a survey
responder could have skipped a question, which means we
have no answer for that question in the data. Missing values
are often recorded as NaN (not a number), which is a special
float object that represents the absence of a numerical value.
Missing values can also be denoted as the Pandas symbol <NA>
(not available), as empty strings "", or as special values like
"No answer" in different contexts.

• outliers are particular values of a variable that are inconsistent
with other observed values. Human errors during the data
entry process are a frequent cause of outliers. For example,
if a researcher records a patient’s weight in pounds instead
of kilograms, the value of the weight variable for that patient
would need to be corrected. Outliers values can also occur as a
result of equipment malfunction.

It’s on you to decide how to handle missing values and outliers
in the datasets you plan to analyze. Appendix D contains useful
practical advice for dealing with missing values and outliers using
Pandas functions. We’ll also discuss missing values and outliers
several more times in the remainder of the book. In the next section
(Section 1.3), we’ll describe some methods for outlier detection based
on descriptive statistics, and later on in the book (Chapter 2) we’ll
also learn how to use probability models to detect outliers.

Learning on the job

Data management and data visualizations are essential skills that
will come in handy for all kinds of data analysis tasks. In this section,
we saw the basic operations we can perform using the Pandas and
Seaborn libraries, but there is a lot more! We could spend hundreds
of pages describing the numerous Pandas and Seaborn functions,
and we would still only be scratching the surface of what we can
do with these libraries. If you want to dig deeper, read the Pandas
tutorial in Appendix D and the Seaborn tutorial in Appendix E.

I placed the in-depth discussion of Pandas and Seaborn func-
tions in appendix, because this is a book about statistics, and we
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have lots of statistics topics waiting for us! I highly recommend
that you read Appendix D and Appendix E and play with the
notebooks pandas_tutorial.ipynb and seaborn_tutorial.ipynb
at some point, but you don’t need to learn all the details right now.

Instead, you can just keep reading the book and learn about
Pandas and Seaborn functions “on the job” through the just-in-
time explanations that we provide for all the code examples in the
remainder of the book.

1.2.6 Exercises
It’s now your time to play with the Pandas and Seaborn libraries by
solving the following exercises. It’s important for you to try running
the commands for yourself, so you’ll get some experience with the
various pd. and sns. functions. Remember that you can use the
notebook exercises_12_practical_data.ipynb as a starting point
for your answers.

E1.11 Load each of the following datasets and compute the mean
of the specified variable. a) effort in students.csv; b) score in
doctors.csv; c) ... .

E1.12 Select subsets of rows for different groups and compute the
mean in each group. a) effort in students.csv for students in the two
curriculum variants; b) score in doctors.csv for doctors in rural and
urban locations; c) ... .

Links
TODO: import from Appendix D and E: 1. best one or two tutorials
on pandas and seaborn 2. one article about tidy data

[ More info about data cleaning in the Pandas tutorial ]
https://nobsstats.com/tutorials/pandas_tutorial.html#data-cleaning

[ Detailed info about the datasets used in this book ]
https://nobsstats.com/datasets/

https://nobsstats.com/tutorials/pandas_tutorial.html#data-cleaning
https://nobsstats.com/datasets/
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1.3 Descriptive statistics
The goal of descriptive statistics is to characterize the essential
properties of a dataset. We use numerical and graphical summaries
to describe important aspects of datasets. Computing descriptive
statistics is an essential first step in any data analysis, and a funda-
mental skill that you’ll need throughout the book.

We can obtain a condensed summary of data by calculating
certain representative values called summary statistics. A summary
statistic is a numerical value computed from the data that succinctly
describes a particular characteristic of the data, like the minimum,
maximum, or the average. We’ll use the methods of the Pandas
library to compute summary statistics for data stored in Pandas
series and data frames.

We can also get an overall impression of any dataset by making a
visual summary: a plot that shows the characteristics of the data. We
briefly introduced strip plots and scatter plots in the previous sec-
tion. In this section we’ll revisit these types of plots, and show other
statistical visualizations that we can create using the Seaborn library,
like bar plots and box plots . By mapping characteristics of
data onto visual elements of a graph, we can get a quick overview
of the dataset. The human visual cortex is surprisingly efficient at
spotting patterns and trends in data presented graphically, so it’s
worth learning how to create visual summaries to take advantage
of your innate pattern-spotting abilities.

In this section, we’ll introduce the fundamentals of descriptive
statistics, including definitions and general principles, showing
relevant formulas, and providing illustrative examples based on
the Pandas and Seaborn libraries. The descriptive statistics and
data visualizations for numerical and categorical variables are very
different, so we’ll discuss them separately, starting with numerical
variables first.

1.3.1 Numerical variables
Numerical variables describe quantities like weight, length, temper-
ature, and time. The values of numerical variables can be compared,
sorted, added together, subtracted, and included in other math
operations.

Definitions and formulas

Let’s start by defining the new terms and showing the formulas for
calculating summary statistics. We’ll state the definitions in terms
of a generic sample of size n, denoted x “ rx1, x2, x3, . . . , xns. You
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can think of x as the measurements of the variable x collected from
n individuals. Note the convention to use the boldface symbol x to
denote the sample as a whole.

Measures of central tendency One way to summarize the values
x “ rx1, x2, x3, . . . , xns is to find a single number that represents the
“centre” of the distribution of the values. There are several different
ways to describe the “centre” of a list of numerical values:

• Mean: the arithmetic mean is the average value of the data. The
mean is computed by taking the sum of all the values divided
by the sample size:

x “ Meanpxq “ 1
n px1 ` x2 ` x3 ` ¨ ¨ ¨ ` xnq “ 1

n

nÿ

i“1
xi.

Note the shorthand notation for the mean uses a bar on top of
the variable name. The symbol

∞
(capital Greek letter sigma)

stands for summation, and the math expression
∞n

i“1 xi means
“sum of all the values xi from x1 until xn.”

• Med: the median is the middle value in the dataset, when the
values are sorted. Half the values xi in the dataset are smaller
than the median Medpxq, and half the values are larger than
Medpxq, as shown in Figure 1.16.

Figure 1.16: Illustration of the median value, Medpxq, which splits the
dataset into two equal parts. Half the values in the dataset x are smaller
than the median, and the other half are larger than the median.

• Mode: the mode is the most frequently observed value in the
data. A variable can have no mode when no single value
appears more often than any other, or it can have more than
one mode when there is a “tie” for the most common value.

Consider, for example, the sample x “ r1, 1, 2, 3, 93s of size n “ 5.
The mean of x is x “ Meanpxq “ 1

5 p1 ` 1 ` 2 ` 3 ` 93q “ 100
5 “ 20,

the median is Medpxq “ 2, and the mode is Modepxq “ 1.
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Measures of position We often want to describe the position of
particular values within the dataset x, when it appears in sorted
order. The median Medpxq is the value in the middle of the dataset.
In addition to the median, there are several other useful statistics for
describing values at specific positions within the dataset.

• Min: the minimum is the smallest value in the data.
• Max: the maximum is the largest value in the data.
• Q1, Q2, Q3: the three quartiles divide the data into four equal

parts, which is similar to how the median Medpxq divides the
data into two equal parts. You can think of Q1pxq, Q2pxq, and
Q3pxq as “fence posts” that divide the data into four quarters,
as illustrated in Figure 1.17. Note Q2pxq is the same as Medpxq.

Figure 1.17: Illustration of the four quartiles Q1pxq, Q2pxq, and Q3pxq that
split the sorted data into four equal parts. Note Q2pxq “ Medpxq.

• Percentiles: the percentiles are similar to the quartiles, but
divide the data into 100 equal parts instead of four parts. For
example, the 95th percentile is denoted P95pxq and describes a
value that is greater than 95% of the values in x.

• Quantiles: the qth quantile splits the data into two parts: a
fraction q of the data is smaller, and the remaining fraction
1 ´ q of the data is larger. Quantiles are similar to percentiles,
but are defined in terms of a fraction q between 0 and 1, while
percentiles use a percentage value between 0 and 100.

The three measures of position, quartiles, percentiles, and quantiles,
all provide the same information but use different units. Quartiles
describe the data split into four chunks, percentiles use 100 chunks,
while quantiles use a continuous quantity between 0 and 1. For
example, the first quartile Q1pxq, is the same as the 25th percentile,
which is the same as the q “ 0.25 quantile. The second quartile
Q2pxq “ Medpxq is equivalent to the 50th percentile and the q “ 0.5
quantile. The third quartile Q3pxq is equal to the 75th percentile and
the 0.75th quantile.

Taken together, the five numbers Minpxq, Q1pxq, Q2pxq, Q3pxq,
and Maxpxq are called the five-number summary of the data, which
tells us the boundaries of four regions that each contain 25% of the
data when it appears in sorted order.
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Measures of dispersion Another important characteristic of any
dataset is how “spread out” it is, which we call the dispersion of
the data. There are several common measures for quantifying the
dispersion of a dataset.

• Range: the range of a data is the difference between the
maximum and minimum: Rangepxq “ Maxpxq ´ Minpxq.

• IQR: the interquartile range is defined as the distance between
the first and third quartiles, IQRpxq “ Q3pxq ´ Q1pxq, and tells
us the width of the middle fifty percent of the data.

• Var: the sample variance is computed from the sum of the
squared differences from the mean divided by n ´ 1:

Varpxq “ 1
n´1

nÿ

i“1
pxi ´ xq2.

We use the shorthand notation s2
x to describe the variance.

Note the formula contains a division by pn ´ 1q instead of n,
which is called Bessel’s correction. We’ll explain the reason for
using Bessel’s correction in Section 3.1 where we’ll learn how
to use the sample variance to estimate the variance of the wider
population from which the sample was taken.

• Std: the standard deviation is the square root of the variance:

Stdpxq “
a

Varpxq “

gffe 1
n´1

nÿ

i“1
pxi ´ xq2.

We use the shorthand notation sx for the standard deviation.

The variance and the standard deviation are used often in statistics
formulas and procedures, this is why statisticians use the shorthand
notation s2

x and sx for these quantities. The variance is the square of
the standard deviation, so they essentially measure the same thing.
We usually show standard deviation when reporting results because
standard deviation is measured in the same units as the data, unlike
the variance, which is measured in squared units.

Knowing the mean x and the standard deviation sx of the data x
is a very good way to summarize its distribution. The mean tells us
where the centre of the distribution is, while the standard deviation
tells us how tightly or loosely dispersed the data is around the
mean. Many values will fall within the interval rx ´ sx, x ` sxs, which
describes one standard deviation around the mean. We sometimes
write this interval as x ˘ sx. See Figure 1.20 for an illustration.



1.3 DESCRIPTIVE STATISTICS 58

Pandas methods When the data x is stored in a Pandas series object
or a column in a Pandas data frame, we can compute all descriptive
statistics by calling the appropriate method on the Pandas object. Ta-
ble 1.4 shows the Pandas methods for computing all the descriptive
statistics for numerical variables that we defined in this section. For
example, if the data x is stored as a Pandas series xs, we can compute
its mean by calling xs.mean().

Statistic Name Pandas method

n sample size .count()

x “ Meanpxq mean .mean()

Medpxq median .median()

s2
x “ Varpxq variance .var()

sx “ Stdpxq standard deviation .std()

Minpxq minimum .min()

Q1pxq first quartile .quantile(0.25)

Q2pxq “ Medpxq second quartile .quantile(0.50)

Q3pxq third quartile .quantile(0.75)

P90pxq 90th percentile .quantile(0.90)

Maxpxq maximum .max()

Table 1.4: Summary of descriptive statistics for numerical variables and
the Pandas methods for computing them. The same Pandas methods are
available on both series and data frame objects.

The Pandas method .quantile(q) computes the qth quantile, where
q takes on values between 0 and 1. We use the quantile method
to compute quartiles and percentiles, as shown in Table 1.4. In fact,
the minimum and maximum values can also be computed using the
quantile method: the minimum corresponds to .quantile(q=0),
while the maximum is .quantile(q=1).

Descriptive statistics of the students dataset

Enough with the definitions and formulas! Let’s look at a hands-
on example that illustrates how to compute summary statistics and
visualize numerical variables using Pandas and Seaborn. Recall
Charlotte’s students dataset, which we first introduced in Section 1.2
(see page 40 for the backstory). Table 1.5 shows a complete listing of
the students dataset.

We start by importing the pandas module under the alias pd, then
use the function pd.read_csv to load the students dataset from the
file datasets/students.csv into a data frame called students.

code
1.3.1

>>> import pandas as pd
>>> students = pd.read_csv("../ datasets/students.csv")
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student_ID background curriculum effort score

1 arts debate 10.96 75.0
2 science lecture 8.69 75.0
3 arts debate 8.60 67.0
4 arts lecture 7.92 70.3
5 science debate 9.90 76.1
6 business debate 10.80 79.8
7 science lecture 7.81 72.7
8 business lecture 9.13 75.4
9 business lecture 5.21 57.0

10 science lecture 7.71 69.0
11 business debate 9.82 70.4
12 arts debate 11.53 96.2
13 science debate 7.10 62.9
14 science lecture 6.39 57.6
15 arts debate 12.00 84.3

Table 1.5: The students dataset contains 15 observations of five variables.

The students dataset contains both numerical and categorical vari-
ables, which makes it suitable for use in all the examples in this
section. The small number of observations (n “ 15) makes it possible
to show the details of the math calculations.

In this subsection, we’ll focus on the numerical variable score
in the players dataset, which corresponds to the students’ final
scores. We’ll use a combination of Pandas methods and Seaborn plot
functions to describe the distribution of students’ scores. Let’s start
by extracting the score variable from the students data frame and
storing the data as a new variable called scores (a Pandas series):

code
1.3.2

>>> scores = students["score"]
>>> scores
[75.0, 75.0, 67.0, 70.3, 76.1, 79.8, 72.7, 75.4,
57.0, 69.0, 70.4, 96.2, 62.9, 57.6, 84.3]

In the above code, students is a data frame object, and the syntax
students["score"] selects the "score" column from the students
data frame. Note we’re following the naming convention for series
extracted from a data frame to use the plural of the variable name.
We’ll refer to the scores variable using the shorthand s in math
equations, and denote individual student scores as si.

The number of observations, n, is the most basic summary
statistic. In this case, n “ 15. We can call the .count() method
on the scores series to find the number of observations it contains.

code
1.3.3

>>> scores.count ()
15

Let’s sort the score values in increasing order.
code
1.3.4
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>>> scores.sort_values ()
[57.0, 57.6, 62.9, 67.0, 69.0, 70.3, 70.4, 72.7,
75.0, 75.0, 75.4, 76.1, 79.8, 84.3, 96.2]

Looking at the sorted list of scores allows us to identify some
important summary statistics.

57.0

Minpsq

, 57.6, 62.9, 67.0, 69.0, 70.3, 70.4, 72.7

Medpsq

, 75.0, 75.0, 75.4, 76.1, 79.8, 84.3, 96.2

Maxpsq

Rangepsq

Figure 1.18: Illustration of the minimum, median, and maximum values in
the scores series. The range is the distance between Minpsq and Maxpsq.

The smallest value is Minpsq “ 57.0 (the minimum), the middle
value is Medpsq “ 72.7 (median), the largest value is Maxpsq “ 96.2
(the maximum), and the difference between the max and the min
values is Rangepsq “ 96.2 ´ 57.0 “ 39.2, as illustrated in Figure 1.18.

We can obtain the same information by calling the appropriate
methods on scores series.

code
1.3.5

>>> scores.min()
57.0
>>> scores.median ()
72.7
>>> scores.max()
96.2
>>> scores.max() - scores.min() # range
39.2

The simplest statistical visualization is the strip plot. Strip plots have
an x-axis in the units of the variable and no y-axis. Each observation
is represented by a point located at its numerical value.

57.0, 57.6, 62.9, 67.0, 69.0, 70.3, 70.4, 72.7, 75.0, 75.0, 75.4, 76.1, 79.8, 84.3, 96.2

60 70 80 90

score
Figure 1.19: Strip plot showing the score variable in the students data
frame. A strip plot is a one-dimensional plot where each observation is
mapped to a point at the location that corresponds its value.

The Seaborn function for drawing a strip plot is called stripplot,
and it is used as follows.

code
1.3.6
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>>> import seaborn as sns
>>> sns.stripplot(data=students , x="score", jitter =0)
See Figure 1.19.

Recall the syntax for Seaborn plot functions: the argument
data=students tells the stripplot function to take the data from the
students data frame, and x="score" indicates we want to represent
the score variable on the x-axis. The option jitter=0 was used to
disable the Seaborn default behaviour of adding a small amount of
random vertical displacement to each data point, which we don’t
need for this plot.

The visual display of the scores data allows us to see some
patterns that might not be visible when we’re looking at the list of
numbers. Strip plots are great for showing small datasets, since we
can see the individual data points.

Mean, variance, and standard deviation

The mean is the sum of all values divided by the number of values.
Using the formula for the mean, we see the mean of s is

s “ Meanpsq “ 1
n

∞n
i si “ 1

15
`
57.0 ` 57.6 ` ¨ ¨ ¨ ` 96.2

˘
“ 72.6.

The mean tells us what a “typical” observation in the dataset would
be. It tells us that an average student in this class would score 72.6
on their assessment. We can obtain the mean by calling the .mean()
method on the scores series.

code
1.3.7

>>> scores.mean()
72.6

To judge the variability of the values in the dataset, we can calculate
the variance and the standard deviation. The variance computed using
the complicated-looking formula that sums the squared deviations
from the mean:

Varpsq “ 1
n´1

∞n
i“1psi ´ sq2

“ 1
14 pp57.0´72.6q2 ` p57.6´72.6q2 ` ¨¨¨ ` p96.2´72.6q2q

“ 99.6.

Note the variance formula uses the denominator n ´ 1 “ 14. To
calculate the variance of the scores series, we simply call its .var()
method.

code
1.3.8

>>> scores.var()
99.6
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The standard deviation Stdpsq is the square root of the variance:
Stdpsq “

a
Varpsq “

?
99.6 “ 9.98. We compute the standard

deviation by calling the .std() method.
code
1.3.9

>>> scores.std()
9.98

Figure 1.20: A strip plot of the score data with additional annotations for
the mean and the standard deviation. The mean is shown as a solid line at
Meanpsq “ 72.6. The two dashed lines are located at Meanpsq ´ Stdpsq “
72.6 ´ 9.98 “ 62.6 and Meanpsq ` Stdpsq “ 72.6 ` 9.98 “ 82.58.

Note many of the scores are contained between the two dashed lines
in Figure 1.20. Indeed, 11 out of the 15 values fall in the interval
rMeanpsq ´ Stdpsq, Meanpsq ` Stdpsqs “ r62.6, 82.58s.

Histograms

Strip plots are excellent for displaying individual observations, but
it can be difficult to see how many observations occur at each value,
especially when there are many observations (large n) or when
points overlap. We’ll now learn about the histogram, which is a
plot that shows the number of observations that fall within different
ranges of possible values.

To make a histogram, we first divide the entire range of values
into a series of consecutive, non-overlapping intervals called bins.
For the student score data, we choose to use bins that are 10 units
wide and count the number of observations that fall within each
bin. Figure 1.21 shows the process of grouping the data points into
bins, then counting the total number of observations in each bin. We
refer to the count of how many observations fall in each bin as the
frequency. We can display the frequencies for each bin in a table called
a one-way table or a frequency table.

The final step of creating a histogram is to draw a rectangle whose
height is proportional to the frequency (count) in each bin, as shown
in Figure 1.22.

The Seaborn function for producing the histogram in Figure 1.22
is histplot, and its use is shown below.

code
1.3.10

>>> bins = [50, 60, 70, 80, 90, 100]
>>> sns.histplot(data=students , x="score", bins=bins)
See Figure 1.22.
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bin values frequency

r50, 60q 57.0, 57.6 2
r60, 70q 67.0, 69.0, 62.9 3
r70, 80q 75.0, 75.0, 70.3, 76.1, 79.8, 72.7, 75.4, 70.4 8
r80, 90q 84.3 1
r90, 100s 96.2 1

Table 1.6: One-way table of the scores data grouped into bins of width 10.

[50, 60) [60, 70) [70, 80) [80, 90) [90, 100]

2 values 3 values 8 values 1 value 1 value

50 60 70 80 90 100
score

bins

frequencies

Figure 1.21: Visual representation of the histogram binning process.

In the above code, we call the function histplot specifying the data
to use for the histogram is in the students data frame, and the
argument x="score" indicates the name of the variable that we’re
interested in. We manually created a list of values that we want to
use as the bin’s boundaries in the histogram, then passed this list as
the bins option when calling the histplot function.

The histogram in Figure 1.22 gives us a convenient summary of
the students’ scores data. We can quickly see how much data points
fall within each bin. The bin with the highest frequency is called the
mode of the histogram.

Quartiles

To draw the histogram, we divided the data into five bins. Each bin
had the same width and could contain any number of observations.
We’ll now learn about another type of summary plot that divides
the data into intervals of varying width, each containing the same
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Figure 1.22: Histogram of the score variable from the students data frame.
The width of each bar covers an interval of values called a bin. The heights of
the bars are proportional to the number of observations within each bin. Bins
are usually (but not always) of equal width, with no gaps between them.

number of observations.
The quartiles Q1psq, Q2psq, and Q3psq are three “fence posts”

that separate the data into four intervals with an equal number of
observations in each, as illustrated in Figure 1.23.

57.0, 57.6, 62.9, 67.0,

Q1psq

69.0, 70.3, 70.4, 72.7

Q2psq

, 75.0, 75.0, 75.4,

Q3psq

76.1, 79.8, 84.3, 96.2

IQRpsq

Figure 1.23: The three quartiles and the interquartile range of the scores

data.

We compute the quartiles using the method .quantile(q), for
appropriate choice of the argument q.

code
1.3.11

>>> Q1 = scores.quantile(q=0.25)
>>> Q1
68.0
>>> Q2 = scores.quantile(q=0.5)
>>> Q2
72.7
>>> Q3 = scores.quantile(q=0.75)
>>> Q3
75.75

Note the values of the first and third quartiles correspond to
numbers that don’t appear in the scores data. Indeed, quartiles
correspond to boundaries between data points, and will often fall
in between observations.

Recall the interquartile range is the distance between the first and
the third quartiles. The interquartile range of the scores data s is
given by IQRpsq “ Q3psq ´ Q1psq.

code
1.3.12
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>>> IQR = Q3 - Q1
>>> IQR
7.75

This result tells us that an interval of width 7.75 contains the middle
50% of the student scores.

When the variable we are describing is obvious from the context,
we can simply write Q1 instead of Q1psq to lighten the notation. We’ll
use this approach in the equations and figures for the next few pages.

Box plots

We can represent the quartiles graphically using a box plot, as shown
in Figure 1.24. The rectangular “box” goes from Q1 to Q3, so its
width corresponds to the IQR. A vertical line is placed at Q2 (the
median). The whiskers in the box plot indicate the lowers and
highest observations within the interval rQ1 ´ 1.5 ¨ IQR, Q3 ` 1.5 ¨
IQRs. Points outside this interval are called outliers and are drawn
as separate dots.

60 70 80 90
score

Min largest
non-outlier

outlier
Q1 Q2 Q3

IQR

rQ1 ´ 1.5 ¨ IQR, Q3 ` 1.5 ¨ IQRs

Figure 1.24: Box plot for the scores data with additional labels for quantities
represented in the plot. The left and right boundaries of the box represent the
first and third quartiles. The vertical line in the middle of the box indicates
the median. The point on the far-right is called an outlier. The lines extending
from the box are called whiskers and represent the range of the data excluding
outliers. The whiskers reach from the smallest and largest values within the
interval rQ1 ´ 1.5 ¨ IQR, Q3 ` 1.5 ¨ IQRs. Any observations that fall outside
the whiskers are considered outliers and are presented with a dot.

The box plot shown in Figure 1.24 is called a Spear–Tukey box plot
in reference to Mary Eleanor Spear and John Tukey, who popularized
this type of data visualization. Spear–Tukey box plots give special at-
tention to the display of outliers, which are values that are extremely
high or low compared to the other data points. A common criterion
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to determine if x is an outlier is to check if it satisfies one of the two
inequalities x † Q1 ´ 1.5 ¨ IQR or x ° Q3 ` 1.5 ¨ IQR. In words,
x is an outlier if it is further than 1.5 times the interquartile range
away from the outer quartiles. There are several other ways to define
outliers, but this is the most common definition used for box plots.

Outliers are important because they can have disproportionate
influence on some summary statistics and statistical analyses. In the
scores data, one student’s score is an outlier (the value 96.2). It is
much higher than the other student scores. This student performed
unexpectedly better than the rest of the students. The score 96.2 is
greater than Q3 ` 1.5 ¨ IQR “ 87.4, so we classify it as an outlier and
display it as an independent point, as shown in Figure 1.24.

The whiskers span from the smallest observation that’s larger
than Q1 ´ 1.5 ¨ IQR, and the largest observation that’s still smaller
than Q3 ` 1.5 ¨ IQR. The purpose of the whiskers is to provide an
“honest” representation of the range of the data. By splitting off the
outliers as independent points, the whiskers show us the non-outlier
range of the data.

We can use the Seaborn function boxplot to produce a box plot.
code
1.3.13

>>> sns.boxplot(data=students , x="score")
The result is shown in Figure 1.24

Box plots are among the most common visual summaries for numer-
ical data. In a box plot, we can’t see the individual data points, but
we see the position of the quartiles Q1, Q2, and Q3, which provides
an excellent overview of the data. We can tell at once glance where
the middle 50% of the data values fall, and the whiskers tell us the
range of all the non-outlier values.

Summary of descriptive statistics for numerical variables

Let’s review all the descriptive statistics we calculated from the
score variable in the students dataset. Table 1.7 lists all the numeri-
cal statistics we computed and the relevant Pandas methods we used
to compute each statistic from the scores series.

We can compute the most important summary statistics in a
single step by calling the .describe() method on the scores series.

code
1.3.14

>>> scores.describe ()
count 15
mean 72.58
std 9.98
min 57.00
25% 68.00 # = Q1
50% 72.70 # = Q2
75% 75.75 # = Q3
max 96.20



1.3 DESCRIPTIVE STATISTICS 67

Statistic Pandas method Value Measurement of

n scores.count() 15 Sample size
Meanpsq scores.mean() 72.6 Central tendency
Medpsq scores.median() 72.7 Central tendency
Varpsq scores.var() 99.6 Dispersion
Stdpsq scores.std() 9.98 Dispersion
Rangepsq 39.2 Dispersion
IQRpsq 7.75 Dispersion
Minpsq scores.min() 57.0 Position
Q1psq scores.quantile(q=0.25) 68.0 Position
Q2psq scores.quantile(q=0.5) 72.7 Position
Q3psq scores.quantile(q=0.75) 75.75 Position
Maxpsq scores.max() 96.2 Position

Table 1.7: Table of numerical summary statistics for the scores data.

The expression students["score"].describe() produces the same
result. It is also possible to obtain summary statistics for multiple
variables at once by calling the .describe() method on the data
frame. See code block 1.3.15 for an example of this.

Tables of summary statistics like Table 1.7 are a succinct way to
report the most important characteristics of numerical variables, so
we often see them in research papers and reports. Basically, it’s not
practical to show all the data in a science report, but reporting the
mean, the variance, the standard deviation, and the five-number
summary (Min, Q1, Q2, Q3, Max) gives an overall idea of the
characteristics of the data.

It’s important to keep in mind that numerical summaries offer
only a limited view of the data, and you should always plot the
data to get a better understanding. The strip plot (Figure 1.19), the
histogram (Figure 1.22), and the box plot (Figure 1.24) all capture
important aspects of the data and are worth looking at.

Exercises

E1.13 Compute the Mean, Min, Max, and Range of the effort
variable in the students dataset.

Hint: Use students["effort"] to select the "effort" column.

E1.14 Find Q1, Med, and Q3 of the effort variable in the students
dataset.

E1.15 Make a one-way frequency table for the effort variable. Use
p5, 7s, p7, 9s, p9, 11s, p11, 13s as the boundaries of the bins.

Hint: Use the .value_counts and pass in the bins argument.
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TODO: add some data viz interpretation questions? especially
for box plots

1.3.2 Relations between numerical variables
We’re often interested in studying the relations between variables in
a dataset. Consider the effort and score variables in the students
dataset, which we’ll denote e and s in math formulas. We can
calculate the descriptive statistics for these two variables by selecting
them from the data frame, then calling the .describe() method.

code
1.3.15

>>> students[ ["effort","score"] ]. describe ()
effort score

count 15.00 15.00
mean 8.90 72.58
std 1.95 9.98
min 5.21 57.00
25% 7.76 68.00
50% 8.69 72.70
75% 10.35 75.75
max 12.00 96.20

Looking at the descriptive statistics of the two variables separately
doesn’t tell us anything about the relationship between them.

The scatter plot is a common visualization for two numerical
variables. Since we’re interested in the relationship between the
effort and score variables, we can generate a scatter plot of score
versus effort, as shown in Figure 1.25.

effort (e) score (s)

11.53 96.2
12 84.3
10.8 79.8
9.9 76.1
9.13 75.4
10.96 75.0
8.69 75.0
7.81 72.7
9.82 70.4
7.92 70.3
7.71 69.0
8.6 67.0
7.1 62.9
6.39 57.6
5.21 57.0

Figure 1.25: Scatter plot of the score variable versus the effort variable.
Each point in the scatter plot has its x-position determined by the value of
the effort variable and its y-position determined by the score variable.
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In a scatter plot, two numerical variables are mapped to the x
and y coordinates of points. If there is an association between the
two variables, the points on the scatter plot will show a pattern. The
pattern in Figure 1.25 seems to indicate that higher effort values
are associated with higher score values. The code for producing
this scatter plot is as follows.

code
1.3.16

>>> sns.scatterplot(data=students , x="effort", y="score")
The result is shown in Figure 1.25.

The arguments x="effort" and y="score" tell the scatterplot
function to use the effort values as the x-coordinates and the score
variable as the y-coordinates of the points.

Measures of association

Consider two numerical variables x “ rx1, x2, . . . , xns and y “
ry1, y2, . . . , yns. Rather than thinking of xi and yi as separate measure-
ments, we want to think of them as joint measurements pxi, yiq, and
use the notation rx, ys “ rpx1, y1q, px2, y2q, . . . , pxn, ynqs to describe the
pair of variables. You can also think about rx, ys as two columns of a
data frame. A positive linear association between the variables x and y
means that large x-values tend to be associated with large y-values,
and small x-values are associated with small y-values. A negative
linear association describes the opposite phenomenon, where large x-
values are associated with small y-values, and vice versa.

We can measure the strength of the association between two
variables using the concepts of covariance and correlation.

Covariance The covariance of x and y is a measure of the joint
variability of the two variables:

Covpx, yq “ 1
n´1

nÿ

i“1
pxi ´ xqpyi ´ yq.

Note the formula for covariance is similar to the formula for the
variance Var (see page 57), but is computed from the joint difference
of the values xi and yi from their means x “ Meanpxq and y “
Meanpyq. The Pandas method .cov() computes the covariance
between all the numerical variables in a data frame. We can use the
following code to compute the covariance between the effort and
score variables.

code
1.3.17

>>> students [["effort", "score"]].cov()
effort score

effort 3.8 17.10
score 17.1 99.59
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The expression students[["effort", "score"]] selects the two
columns we’re interested in from the data frame students, then
we call the method .cov() to compute the covariance between all
pairs of variables. The results are presented as a 2 ˆ 2 table called
the covariance matrix. The entries on the diagonal correspond to the
covariance of a variable with itself, which is equal to the variance.
For example, the bottom-right entry of the covariance matrix is
Corrps, sq “ Varpsq, which we calculated earlier in this section.

The covariance between two variables takes on values between
´8 and `8. Covariance isn’t a good measure of relationship
strength, since its value depends on the magnitude of the two
variables. If either x or y have high variance, then the value of
Covpx, yq will also be high, regardless of whether the association
between the two variables is strong or weak. This is why we prefer
the correlation coefficient to measure the strength of the association
between variables.

Correlation The correlation coefficient Corrpx, yq is a measure of the
linear relatedness between the variables x and y. Correlation is the
normalized version of covariance, which we compute by dividing
the covariance by the standard deviations of individual variables:

Corrpx, yq “ Covpx, yq
Stdpxq Stdpyq .

The value Corrpx, yq is called the Pearson correlation coefficient, and
sometimes denoted rx,y, where r is the Greek letter rho. We use the
method .corr() on data frames to compute correlation coefficients.

The correlation coefficient is a dimensionless quantity that takes
on values between ´1 to `1. A correlation coefficient close to `1
indicates a strong positive association, while a value close to ´1
indicates a strong negative association.

Correlation between effort and score

Let’s use the concept of correlation to quantify the strength of the
associations between the effort “ e and score “ s variables in
the students dataset. We can compute the correlation coefficient
Corrpe, sq by selecting the effort and score columns from the
students data frame, then calling the .corr() method.

code
1.3.18

>>> students [["effort", "score"]]. corr()
effort score

effort 1.00 0.88
score 0.88 1.00
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The result of the .corr() method is called the correlation matrix. Note
the correlation of any variable with itself is 1, as we can see from the
values on the diagonal. Note also that correlation is a symmetric
quantity, meaning Corrpe, sq “ Corrps, eq.

The correlation coefficient Corrpe, sq is the top-right entry of the
correlation matrix: Corrpe, sq “ 0.88. A correlation coefficient of
0.88 indicates a strong positive correlation, meaning that the effort
variable is closely associated with the score variable. Because
Corrpe, sq is a positive number, we say that there is a positive
association between the effort and score variables: students who
put in more hours on the learning platform also got a better score.
This confirms what we observed in the scatter plot in Figure 1.25,
where we see the points seem scattered around an invisible line that
points diagonally upward.

A negative correlation coefficient indicates an inverse association,
meaning that students who put in more effort tended to have lower
scores. A zero correlation value would suggest that there is no
relationship between the two variables, or at least no simple linear
relationship.

The correlation coefficient is a very limited tool for describing
the relationship between two variables, because it only measures
simple linear association, which might not be a good model for the
data. Even if we find a high association between two variables, this
doesn’t necessarily mean that the variables follow a linear pattern.
See example F in Figure 1.26.

A. corr “ 0.99 B. corr “ 0.8 C. corr “ 0 D. corr “ ´0.8 E. corr “ ´0.99

F. corr “ ´0.86 G. corr “ ´0.07 H. corr “ ´0.07 I. corr “ ´0.07 J. corr “ ´0.01

Figure 1.26: A correlation value close to 1 or ´1 indicates that two variables
have a linear association, as shown in plots A and E. Plots B and D
also indicate a linear association between the variables, but it is a noisy
relationship. Variables may have a correlation close to 1 or ´1 and not follow
a linear relationship, as shown in plot F. A zero correlation indicates that
there may be no relationship, as shown in plot C. However, we can also
calculate a correlation close to zero for cases when the data shows a strong,
non-linear pattern, like plots G, H, I, and J.
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In observational studies, we can’t say that one variable causes the
other, even in cases when we find a strong linear association. Two
variables can occur at higher values together without one having
a direct influence on the other. The maxim “correlation does not
imply causation” is a fundamental idea in statistics. In this case,
we cannot conclude that more effort lead to higher scores. It’s
equally plausible, for example, that an unobserved confounding
leads some students to both put in more effort and perform better
on the assessment. Maybe some students were more interested in
the subject matter to begin with, which motivated them to get high
scores, and to invest more hours of effort. To make conclusions
about causation, we need a carefully designed experiment and
more involved statistical analysis. We’ll learn how to model linear
relationships between numerical variables in Chapter 4.

Exercises

E1.16 Draw a scatter plot for the following dataset of px, yq pairs:
(2,2), (3,3), (4,3), (5,5), (6,4), (5,4), (7,6), (8,5).

1.3.3 Comparing two groups of numerical variables
We often want to compare the descriptive statistics of two groups. To
do this, we can use all the data visualizations we saw for numerical
variables (strip plots, histograms, box plots) to generate plots for
each group. We can also generate combined plots for both groups,
where the group variable is represented as a different dimension or
colour.

Charlotte wants to see how student scores compare between the
two curriculum variants. Recall that each student was randomly
assigned to either the debate or the lecture curriculum variants,
and this information is recorded in the curriculum variable of the
students dataset (see Table 1.5 on page 59).

Let’s calculate the summary statistics for each group. We can do
this by selecting the rows of the students data frame that correspond
to each group, then calling the .describe() method.

code
1.3.19

>>> dstudents = students[students["curriculum"]=="debate"]
>>> dstudents["score"]. describe ()
count 8.00
mean 76.46
std 10.52
...
>>> lstudents = students[students["curriculum"]=="lecture"]
>>> lstudents["score"]. describe ()
count 7.00
mean 68.14



1.3 DESCRIPTIVE STATISTICS 73

std 7.76
...

In the above code, the data frame dstudents contains the
subset of the rows from the students data frame where the
curriculum variable has the value debate. Similarly, the expres-
sion students["curriculum"]=="lecture" is a selection mask that
chooses only rows where the curriculum variable is lecture. Flip
back to the explanations on page 31 if you need a refresher of the
syntax we use to select subsets of the rows in a data frame.

Looking at the numerical summaries of the score variable for
students in the debate and lecture curriculum groups, we see the
scores were higher, on average, for students in the debate group.

We can visualize the data distribution of score variable within
the two groups using two strip plots, two histograms, or two box
plots, as shown in Figure 1.27. The plots are drawn side-by-side (on
the same x-axis) in order to make the comparison between the two
groups easier.

Figure 1.27: Strip plots, histograms, and box plots can be used to visually
compare students’ scores in the debate and lecture groups.
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The code used to produce the strip plot and the box plot in
Figure 1.27 is very similar to the single-variable plots we saw above,
with the addition of y="curriculum" argument that adds another
“dimension” to the plots. The Seaborn library recognizes that
curriculum is a categorical variable, and automatically performs the
appropriate data selection for the two groups.

code
1.3.20

>>> sns.stripplot(data=students , x="score", y="curriculum")
See first plot of Figure 1.27.
>>> sns.boxplot(data=students , x="score", y="curriculum")
See last plot of Figure 1.27.

It’s also possible to draw a combined histogram for the data by using
colours to distinguish the two groups, but the results are not very
legible for such a small dataset (I tried it!). Instead, we’ll generate
separate histograms for the two groups, as shown below.

code
1.3.21

>>> bins = [50, 60, 70, 80, 90, 100]
>>> sns.histplot(data=dstudents , x="score", bins=bins)
>>> sns.histplot(data=lstudents , x="score", bins=bins)
The results are shown in the middle plots of Figure 1.27.

Visual inspection of the plots in Figure 1.27 seems to suggest that
students who took the debate curriculum did better than students
who took the lecture curriculum. The numerical summaries we
calculated in code block 1.3.19 also support this observation: the
difference between group means is 76.46 ´ 68.14 “ 8.32. However,
we need to interpret the magnitude of this observed difference in
relation to the variability in the data, which can be seen in the scatter
plots in Figure 1.27 and measured by the standard deviations of the
two groups (10.52 and 7.76, respectively). Given the variability in
the observed scores, it is not immediately clear if we should count
the observed difference between group means as evidence that the
debate curriculum is better than the lecture curriculum, or if the
observed differences could have occurred by chance.

We’ll continue the exploration of Charlotte’s research question
about the relative effectiveness of the debate and lecture curricu-
lum variants in Section 3.5, where we’ll introduce the hypothesis
testing procedure for comparing two groups.

Exercises

E1.17 TODO: add simple exercise

1.3.4 Categorical variables
Categorical variables take on one of a discrete set of possible values
like the answers to true or false questions, the presence or absence of
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some characteristic (1 or 0), a person’s country of residence, or group
membership of an individual (intervention or control group).

It doesn’t make sense to compute numerical statistics like the
mean and the variance for categorical data, so we use descriptive
statistics and visualizations based on frequencies (counts) and pro-
portions. Recall the frequency of a given value is the number of
occurrences of this value within the data.

Let’s show some examples of descriptive statistics for categorical
data by looking at the background variable in the student dataset,
which is a categorical variable that takes on one of three possible
values: arts, science, or business. See the column "background"
in Table 1.5 on page 59. The background variable contains the
following data:

b “ rarts, science, arts, arts, science, business, science, business,
business, science, business, arts, science, science, artss.

We’ll use the notation b for the background variable in math equa-
tions and examples in the remainder of this section.

We can define the following summary statistics for categorical
data:

• Freqvpxq: the frequency (count) of the value v is the number of
times the value v occurs in the data x:

Freqvpxq def“ number of v in x.

For example, Freqartspbq “ 5 since the value arts appears five
times in the background variable.

• RelFreqvpxq: the relative frequency or proportion of the value v
in the data x. The relative frequency is the number of times v
occurs in x divided by the sample size:

RelFreqvpxq def“ Freqvpxq
n

“ number of v in x
total number of observations

.

For example, the relative frequency of the arts background is
RelFreqartspbq “ 5

15 “ 0.333. This tells us that 33.3% of the
students come from an arts background.

• Mode: the mode is the category with the most observations.
The mode of the background variable is science, since science
was the most common background among the students that
participated.

We can display frequencies and relative frequencies in a one-way
table, as shown in Table 1.8.
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background frequency relative frequency

arts 5 0.33
business 4 0.27
science 6 0.40

Table 1.8: Summary statistics for the background variable in the students
dataset. Relative frequencies are obtained by dividing the frequency of each
value by the total number of observations (n “ 15 in this case).

Note the sum of the frequencies is equal to the total number of
observations: Freqartspbq + Freqsciencepbq + Freqbusinesspbq “ 15.
The sum of the relative frequencies for the three categories is equal to
one: RelFreqartspbq + RelFreqsciencepbq + RelFreqbusinesspbq “ 1.

We can use the Pandas methods .value_counts() to compute
the frequencies of any series or data frame.

code
1.3.22

>>> backgrounds = students["background"]
>>> backgrounds.value_counts ()
arts 5
business 4
science 6

Adding the option normalize=True to the .value_counts() method
computes the relative frequencies, as shown below.

code
1.3.23

>>> backgrounds.value_counts(normalize=True)
science 0.40
arts 0.33
business 0.27

We can plot categorical data using a bar plot, as shown in Figure 1.28.
In a bar plot, each rectangle (or “bar”) describes one category. The
height of the bar represents a numerical measurement within the
given category, such as a frequency or a relative frequency. Unlike
a histogram, the width of the bars has no meaning. The Seaborn
function countplot can be used to generate a bar plot.

code
1.3.24

>>> sns.countplot(data=students , x="background")
The result is shown in Figure 1.28.

Exercises

E1.18 Make a bar plot displaying the frequencies of the curriculum
variable in the students dataset.

Hint: Use the Seaborn function countplot.
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Figure 1.28: Bar plot of the frequencies (counts) of the students’ background.
The heights of the bars represent the number of students in each category.

E1.19 Compute the frequencies and the relative frequencies of the
curriculum variable in the students dataset. Display the results in
a one-way table.

E1.20 What is the mode for curriculum?

Comparing two categorical variables

Let’s now look at the descriptive statistics for pairs of categorical
variables. We’ll use the background “ b and curriculum “ c
variables from the students data frame, which we have reproduced
in full below:

rb, cs “ “parts, debateq, pscience, lectureq, parts, debateq,
parts, lectureq, pscience, debateq, pbusiness, debateq,
pscience, lectureq, pbusiness, lectureq, pbusiness, lectureq,
pscience, lectureq, pbusiness, debateq, parts, debateq,
pscience, debateq, pscience, lectureq, parts, debateq‰

.

Each observation consists of a pair of values: the academic back-
ground of the student and which variation of the curriculum they
are enrolled in.

The tools for describing multivariable categorical data are similar
to what we saw above: we count the number of occurrence and
draw bar plots that visually represent quantities. The analysis of two
variables requires some new concepts like joint frequencies, marginal
frequencies, and conditional frequencies, which we’ll now introduce.

The joint frequency of the pair of values pv, wq in the data rx, ys is
defined as:

Freqv,wpx, yq def“ number of pairs pv, wq in the data rx, ys.

For example, Freqarts,debatepb, cq “ 4, since the pair (arts,debate)
occurs four times in the data rb, cs. The term “joint” tells us we’re
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counting the joint occurrence of two variables in the data, rather than
studying the two variables separately. In case you were wondering,
no, the term “joint frequency” is not related to how often students
were smoking cannabis. This data was not collected.

The concept of a marginal frequency corresponds to counting the
occurrences of one variable, while ignoring the value of the other.
We already computed the marginal frequencies for the background
variable in the previous section:

Freqartspbq “ 5, Freqbusinesspbq “ 4, Freqsciencepbq “ 6.

The marginal frequencies for the curriculum variable are

Freqdebatepcq “ 8 and Freqlecturepcq “ 7.

These numbers were obtained by counting the number of occur-
rences of debate and lecture in the data. The reason for the name
“marginal” will become apparent shortly.

background

curriculum arts business science TOTAL

lecture 1 2 4 7
debate 4 2 2 8
TOTAL 5 4 6 15

1

2

3

Table 1.9: Two-way table of the joint frequencies for the variables
background and curriculum from the students dataset. The totals for each
curriculum type are indicated in the rightmost column. The totals for each
background are indicated in the last row.

We can display the joint frequencies and marginal frequencies for
a pair of categorical variables in a two-way table, as shown in Table 1.9.
A two-way table shows the observed frequency of each combination
of the two variables. The label 1 refers to the joint frequency
Freqscience,lecturepb, cq “ 4, which is the number of students with
a science background who are enrolled in the lecture curriculum.

The row sum 2 is the marginal frequency Freqlecturepcq “ 7,
which is the total number of students in the lecture curriculum,
1 ` 2 ` 4 “ 7. The column sum labelled 3 refers to the marginal
frequency Freqsciencepbq “ 6, which is the total number of students
that have a science background, 4 ` 2 “ 6. The reason for calling the
row and column sums marginal frequencies should be clear now: we
call them marginal because they appear in the margins of the table.
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We can create a two-way table using the Pandas function
crosstab, by passing the values of the row variable to the argument
index, and the values of the column variable to the argument
columns.

code
1.3.25

>>> pd.crosstab(index=students["curriculum"],
columns=students["background"],
margins=True , margins_name="TOTAL")

The result is shown Table 1.9.

The option margins=True tells the crosstab function to compute
the marginal frequencies, and margins_name sets the name for the
marginal columns.

* * *

We can use a grouped bar plot or a stacked bar plot to visualize the
joint frequencies of the two variables, as shown in Figure 1.29.

Figure 1.29: Bar plots showing the frequencies of the curriculum variable
for each background. On the left we see a grouped bar plot in which values
for each curriculum are shown side by side. On the right we see a stacked
bar plot where the values are stacked on top of each other.

A grouped bar plot displays a numeric value for a set of groups and
subgroups. The group variable is represented using a label, while
the subgroups are represented using different colours. The numeric
values are represented by the height of the bar. See the left side of
Figure 1.29. The Seaborn code to produce this figure is based on the
countplot function, which we’ve already seen, but we specify that
the hue (colour) of the bars should be controlled by the grouping
variable.

code
1.3.26

>>> sns.countplot(data=students , x="background",
hue="curriculum", alpha =0.8)

See Figure 1.29 (left).
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In a stacked bar plot, a rectangle for each category in one variable is
made up of smaller blocks that represent a second variable. The right
side of Figure 1.29 is a stacked bar plot that shows the frequencies of
each of the two curriculum types within each of the three academic
backgrounds. The Seaborn code to produce this figure is based on
the histplot function.

code
1.3.27

>>> sns.histplot(data=students , x="background",
hue="curriculum", multiple="stack", shrink =.7)

See Figure 1.29 (right).

The bar plots in Figure 1.29 display the same frequency information
as in Table 1.9, but help us visually identify the relative sizes of
the groups. We see that more arts students were assigned to the
debate curriculum, while science students ended up in the lecture
curriculum. The business students are evenly split between the two
types of curriculum.

Joint relative frequencies The joint relative frequency for the pair of
values pv, wq is denoted RelFreqv,wpx, yq and is obtained by dividing
the joint frequency by the total size of the dataset:

RelFreqv,wpx, yq def“ Freqv,wpx, yq
n

.

For example, the relative frequency RelFreqarts,debatepb, cq “ 4
15 is

obtained by dividing the frequency Freqarts,debatepb, cq “ 4 by the
number of observations, n “ 15.

We can display the joint relative frequencies using a two-way ta-
ble, as shown in Table 1.10. The two-way table of relative frequencies
is obtained by taking the values from the table of joint frequencies
(Table 1.9) and dividing them by n “ 15.

background

curriculum arts business science TOTAL

lecture 0.07 0.13 0.27 0.47
debate 0.27 0.13 0.13 0.53
TOTAL 0.33 0.27 0.40 1.00

4

5

6

Table 1.10: Two-way table of the joint relative frequencies for the variables
background and curriculum from the students dataset.

The label 4 refers to the joint relative frequency of students with a
science background taking the lecture curriculum, which is given
by RelFreqscience,lecturepb, cq “ 4

15 “ 0.27.
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The row and column sums in Table 1.10 are called marginal
relative frequencies. Label 5 refers to the marginal relative frequency
RelFreqlecturepcq, and it is obtained by dividing marginal frequency
Freqlecturepcq by n. This is the sum of all the values in the lecture
curriculum: 0.07 ` 0.13 ` 0.27 “ 0.47. The label 6 refers to the
column sum for the science background, 0.27 ` 0.13 “ 0.40.

The code to produce a two-way table of joint relative frequencies
is nearly identical to the crosstab invocation we saw in code 1.3.25,
with the addition of the option normalize=True.

code
1.3.28

>>> pd.crosstab(index=students["curriculum"],
columns=students["background"],
margins=True , margins_name="TOTAL",
normalize=True)

The result is shown in Table 1.10.

Conditional relative frequencies There is one last type of relative
frequency calculation that you need to know about. Last one, I
promise!

The conditional relative frequency of the value v given the value
w is denoted RelFreqv|wpx, yq, and it is computed by dividing
the number of observations of the pair pv, wq by the number of
observations that contain the value w.

RelFreqv|wpx, yq def“ Freqv,wpx, yq
Freqwpyq “ number of pairs pv, wq in rx, ys

number of w in y
.

The vertical bar symbol “|” is pronounced “given” or “conditioned
on” in this context, and it indicates we’re performing the counting
within a subset of the data.

Suppose we’re interested in knowing the proportion of students
enrolled in the lecture curriculum within the subset of students
that have an arts background. Looking back at Table 1.9 (page 78)
that has the joint frequencies, we see there is a total of five students
with an arts background and only one of these students is enrolled
in the lecture curriculum, so the conditional relative frequency is
RelFreqlecture|artspc, bq “ 1

5 “ 0.2.
Table 1.11 contains all the relative frequencies of the curriculum

variable conditioned within the background variable. Instead of
dividing the frequencies by the total number of observations, we
divide it by the number of observations within each column. Note
the sum of the values in each column is equal to one.
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background

curriculum arts business science TOTAL

lecture 0.20 0.50 0.67 0.47
debate 0.80 0.50 0.33 0.53
TOTAL 1.00 1.00 1.00 1.00

Table 1.11: Table of relative frequencies of the curriculum variable condi-
tioned on the background variable.

The code for producing Table 1.11 is based on the crosstab
function with the addition of the option normalize="columns",
which performs the normalization required to obtain the relative fre-
quencies of the curriculum variable conditioned on the background
variable.

code
1.3.29

>>> pd.crosstab(index=students["curriculum"],
columns=students["background"],
margins=True , margins_name="TOTAL",
normalize="columns")

Figure 1.30: Relative frequencies of curriculum conditional on background.

Figure 1.30 shows the values from Table 1.11 represented as a stacked
bar graph. Conditional relative frequencies allow us to compare the
different proportions of the curriculum variable within groups of
students with different backgrounds.

We can also calculate the relative frequencies conditional on
curriculum, which are obtained by dividing each frequency by the
total observation per row, as shown in Table 1.12.

The code for producing a two-way table with row normalization
requires passing the option normalize="index" to the crosstab
function, as shown below.

code
1.3.30

>>> pd.crosstab(index=students["curriculum"],
columns=students["background"],
margins=True , margins_name="TOTAL",
normalize="index")
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background

curriculum arts business science TOTAL

lecture 0.14 0.29 0.57 1.00
debate 0.50 0.25 0.25 1.00
TOTAL 0.33 0.27 0.40 1.00

Table 1.12: Relative frequencies of the background variable conditioned on
the curriculum variable.

See Table 1.12.

Table 1.12 shows the relative composition of student backgrounds
per curriculum. For example, the second row shows that students
taking the debate curriculum comprised of 50% arts students, 25%
business students, and 25% science students. The proportions
are different for the lecture variant. Figure 1.31 shows a visual
representation of these proportions as a stacked bar plot.

Figure 1.31: Relative frequencies of background conditional on curriculum.

Conditional relative frequencies are useful when we want to
compare proportions (relative frequencies) between groups. In par-
ticular, conditional relative frequencies allow us to compare groups
of different sizes, since the calculations are normalized based on the
groups sizes.

Exercises
E1.21 given the following data, make a frequency, relative frequency,
and two conditional relative frequency tables.

E1.22 TODO: question testing the concept of correlation != causation
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1.3.5 Explanations
We’ll now provide some additional details and explanations about
descriptive statistics, which we skipped in the previous pages.

Measures of shape

The concepts of skewness and modality are used to describe the
“shape” of a data distribution, when looking at its histogram.

Skewness Many data distributions have the bulk of their values
concentrated in one central region, and the frequency of values gets
smaller and smaller as we move away from the central region. The
values extending to the left and the right of the main region are called
the tails of the distribution. When the distribution has a long left tail,
we say it is left-skewed, and conversely, when the distribution has
a long right tail, we say it is right-skewed. Distributions that have
similar left and right tails are called symmetrical. Figure 1.32 shows
examples of histograms with different skews.

left-skewed right-skewed symmetrical

Figure 1.32: Histograms displaying distributions with three different skews.
When the tail of the distribution extends further to the left, the data is left-
skewed. When the values extend further to the right, the data is right-skewed.

The terms left-skewed and right-skewed are more qualitative than
quantitative, but there are also numerical measures of skewness we
can use (more on that in Section 2.6).

Modality The modality of a distribution describes how many
“peaks” it has. Figure 1.33 shows examples of three distributions
with different modalities.

The number of modes in a histogram of the data is an important
characteristic describing any dataset. You must be aware if you’re
dealing with multimodal distribution in order to choose appropriate
statistical analysis procedures in later chapters.
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unimodal bimodal multimodal

Figure 1.33: Histograms displaying datasets with three different modalities.
Distributions with only one peak in are called unimodal. If we see two peaks
in the histogram, we say the distribution is bimodal. Distributions with more
than two peaks are called multimodal.

Intuitive interpretations of the mean

There is a useful physical analogy for understanding the mean x that
I want you to know about. Imagine that each data point has some
weight to it, let’s say one gram per data point. The location of the
mean corresponds to the centre of mass of this distribution of weights.
If all the weights were placed on a long ruler and lifted into the air,
then you would be able to balance the ruler using a single finger by
supporting the ruler at the location of the arithmetic mean (the centre
of mass), as shown in Figure 1.34. Values smaller than the mean tend
to tilt the ruler to the left of your finger, but values larger than the
mean counterbalance them, so the ruler will stay balanced.

Figure 1.34: The mean x is the centre of mass of a distribution of weights.

Another way to think of the mean is as a representative value for
the data sample x “ rx1, x2, . . . , xns. Suppose we had to replace
the values xi with a single, common value repeated n times, while
keeping the total sum of the values the same. We can accomplish
this by repeating the mean n times rx, x, . . . , xs. Figure 1.35 illustrates
this process using the score variable s “ rs1, s2, . . . , s15s. Part (a)
of the figure shows the observed 15 student scores si, represented as
vertical bars. Part (b) shows how we can replace the data with 15
copies of a single representative value rs, s, . . . , ss.

Linear interpolation for the median

When computing the median of a list that contains an even number
of values, there is no value that splits the list into two equal parts.
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Figure 1.35: If we want to replace the 15 student scores by a single number
repeated 15 times, we choose the mean score s. The total area of the bars in
both plots is the same.

The convention in this situation is to create a new number that
consists of a 50-50 mix of the two middle numbers, a process known
as linear interpolation. For example, Medpr1, 2, 3, 4sq “ 2.5 where
the median 2.5 was computed by taking the average of the two
middle numbers 2 and 3. Linear interpolation is also used when
computing quantiles, quartiles, and percentiles. If you’re interested
to learn more about this, see the code examples and explanations in
the notebook 13_descriptive_statistics.ipynb.

Histogram binning

When we created the histogram of the score variable in Figure 1.22
(see page 64), we divided the data into bins of width 10. Choosing
a different bin width results in differently shaped histograms, as we
can see in Figure 1.36.

Figure 1.36: Histograms of the score with different bin widths.

The width of the bins changes the appearance of the histogram. If
we choose wider bins, the histogram will show fewer details. In
contrast, narrower bins show more details, but are less useful as a
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summarization tool. Bins that are too narrow show too much detail
and distract from the overall shape of the data. Generally, we choose
narrower bins when for bigger datasets (large n). In terms of the
number of bins, there are formulas and heuristics for choosing the
number of bins, such as

?
n, which work in most cases.

The starting point of each bin also impacts the overall shape of the
histogram, even when the width of each bin is the same. Figure 1.37
shows histograms of the score data that all have bin width of 10, but
have a different starting points.

Figure 1.37: The score variable displayed as histograms with bin width 10
and bin boundaries starting at different locations. Note we obtain very
different histogram shapes even though the data is the same in each plot.

The Seaborn function histplot will choose the bin width and
starting point automatically if you don’t specify the bins option. In
certain situations, you might want to manually select the bin bound-
aries by specifying the bins option, as we did in code block 1.3.10.
Using round numbers for the bin boundaries makes histograms
easier to interpret.

Kernel density plots

One way to avoid the arbitrary bin width and bin start location
choices of histograms is to draw a continuous density plot of the data.
We can use the Seaborn function kdeplot to generate a kernel density
estimation (KDE) plot of the data.

code
1.3.31

>>> sns.kdeplot(data=students , x="score", bw_adjust =0.2)
See Figure 1.38 (a).
>>> sns.kdeplot(data=students , x="score", bw_adjust =0.5)
See Figure 1.38 (b).

We won’t discuss the details of the math behind kernel density plots,
but I’ll give you the general picture that you need to have in mind.
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(a) KDE plot with bw_adjust=0.2 (b) KDE plot with bw_adjust=0.5

Figure 1.38: Kernel density plot of the score variable.

The word kernel is a translation of the French noyeau, which refers
to the pit of a fruit. Look back at Figure 1.19 which shows a strip
plot of the student scores, and think about each point as the pit of
some fruit, say a peach. The flesh of each fruit is concentrated in a
narrow region around the pit. You can think of each data point as a
local region with a high density of peach flavour. The kernel density
plot shows the combined distribution of “peach flavour” produced
by all the data points. Regions where lots of values appear will have
higher density.

The kernel density plots in Figure 1.38 are a continuous version
of the histogram plots of the score variable. Instead of computing
the frequencies of observations that fall within a discrete set of
bins, we’re treating each value as a smooth blob of data density
centred at that point. The option bw_adjust controls the width
of the density blobs around each point—how tightly concentrated
the peach flavour is around each pit. The kernel density plot in
Figure 1.38 (a) uses a small value for the bw_adjust option, so we
can see the bumps around the individual data points, while the plot
in part (b) of the figure uses more smoothing.

1.3.6 Discussion
Summary of different descriptive statistics

We’ll now summarize the descriptive statistics we learned in this
section, and mention the role these concepts will play in the rest of
the book as we learn to model the properties of data distributions.

Measures of central tendency The mean and the median both
describe the notion of “centre” of the data using a single number.
The mean (x “ Meanpxq) computes the average value, while the
median (Medpxq) computes the middle value (in a sorted list).

The mean is the most common measure of central tendency, and
faithfully describes the “middle” of the distribution when the data is
mostly symmetrical (see Figure 1.32), unimodal (see Figure 1.33), and
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contains no outliers. However, the mean is affected by the presence
of skewness or outliers, which tend to “unbalance” the distribution
to one side, and shifts the mean (centre of mass) in the direction
of the imbalance. In extreme cases (heavily skewed data or many
outliers), the mean can be far from the region where most of the data
is situated.

In contrast, the median is not affected by the presence of outliers
in the dataset. For example, if the largest value in the data is 100
or 10000, it will make no difference to the median. The median is
the preferred measure of central tendency whenever data contains
outliers, or is heavily skewed. The median is useful for describing
distributions of any shape, and also works for ordinal data.

Measures of position The Min, the Max, the quartiles (Q1, Q2,
Q3), and the percentiles give us the locations of specific values in
the sorted data, which tells us a lot of useful information about the
distribution of the data.

The percentiles allow us to know where a particular value fits in
the distribution. For example, if your grade on a standardized test is
at the 95th percentile of all the grades on this test, this means 95% of
other people got a grade lower than you, and only 5% of people got
a higher grade.

Measures of dispersion The sample variance (s2
x “ Varpxq) and

the sample standard deviation (sx “ Stdpxq) are both measures of
dispersion calculated relative to the mean x “ Meanpxq. These are
the most common measures of dispersion, and are widely used for
their practical and theoretical properties. The interquartile range
(IQRpxq “ Q3pxq ´ Q1pxq) also tells us about the dispersion of the
data, since it gives the width of the interval that contains the middle
50% of the data points. The range (Rangepxq “ Maxpxq ´ Minpxq)
quantifies the dispersion by telling us the width of the overall
interval where the data falls. The range is very sensitive to the
presence of outliers. The span of the whiskers in a Spear-Tukey box
plot (see Figure 1.24) is a better measure of overall dispersion, since
they exclude the outliers.

Always plot your data!

Numerical summaries are useful for describing the properties of data
samples, yet you shouldn’t depend solely on them. Wildly different
datasets can have identical summary statistics, as illustrated by the
twelve data samples shown in Figure 1.39. Let these examples serve
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as a cautionary tale about the hidden structure in data, that you
might miss if you rely only on numerical summaries.
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Figure 1.39: All the plots shown have the same descriptive statistics
Meanpxq “ 54.3, Meanpyq “ 47.8, Stdpxq “ 16.8, Stdpyq “ 26.9, and
Corrpx, yq “ ´0.1, but clearly show a very different relationship between
the x and y variables. See the paper [MF17] for more details.

Which plot to use?

The plot we choose for visualizing a dataset depends on the specific
characteristics we’re interested in, and the purpose of the analysis.
Here are some general comments about the strengths and weak-
nesses of the statistical plots we that discussed in this section:

• Strip plots (sns.stripplot) are the best choice for small
datasets since they show the raw data, without any aggrega-
tion or use of abstract representations. Strip plots are not a
good choice for large datasets since data points will tend to
overlap. For medium-sized datasets, we can avoid overlapping
points using the option jitter, which introduces a random
vertical displacement for each data point. We can also use the
option alpha=0.5 to make the points half-transparent.

• Histograms (sns.histplot) are a good choice for medium and
large datasets. The binning process creates a useful summary
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of the data, and we can achieve different level of summariza-
tion by varying the bin widths. Histograms are particularly
good at showing the shape of the data (skew and modality).

• Kernel density plots (sns.kdeplot) are similar to histograms,
but without the discrete binning process.

• Box plots (sns.boxplot) show the exact position of the quar-
tiles of the distribution, and provide a special treatment for
the outliers, which can be very helpful to discover issues with
the data. Box plots are better than histograms when used
for comparing different distributions. One drawback of box
plots is their high-level of abstraction—we cannot see the data
distribution or the number of observations from a box plot, but
only the information from the five-number summary.

• Scatter plots (sns.scatterplot) are the standard way to plot
the relationship between numerical variables. Scatter plots are
basically two-dimensional strip plots, so they have the same
problem with overlapping data points. We can visualize large
datasets using two-dimensional histograms (sns.histplot) or
two-dimensional kernel density plots (sns.kdeplot).

• Bar plots (sns.countplot) are the usual way we visualize
categorical data, although a one-way table numerical sum-
mary generated using the .value_counts() method often
provides enough information. For bivariate categorical data,
the grouped and stacked bar plots are two standard visuals for
comparing two variables. Two-way tables generated using the
Pandas function pd.crosstab are also very useful.

We usually need to generate multiple types of plots to get a compre-
hensive understanding of the data.

More plots

In this section, we introduced the most common statistical plots, but
there are many more types of data visualizations out there! Graphi-
cal representations of data is a rapidly evolving field, especially with
the use of interactive elements, animations, and 3D capabilities. It’s
not possible to cover the entire rich ecosystem of data visualizations
in one section, so I encourage you to explore other ways to visualize
data on your own. As inspiration, Figure 1.40 shows a few other
ways we could have visualized the students dataset.

The importance of descriptive statistics

In this section, we learned how to summarize data using easily
interpretable numerical descriptions and plots. These data summa-
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Figure 1.40: Examples of the multitude of data visualization options.

rization techniques will be used throughout the rest of the book,
whenever we’ll be working with data, which is all the time!

One thing I want you to remember is to always plot your data!
Never start doing any statistical analysis before getting to know the
data. I promise this will make your life easier and potentially save
you lots of future headaches. You’re welcome.

In the next chapter, we’ll learn about probability theory, which
is a framework for describing data variability through the use of
mathematical models. Concepts like the mean and the standard
deviation that we learned in this section will also be useful for
describing the properties of probability models. Probability theory
is the main tool we use to formulate statistical questions.

Later on in the statistics chapters, we’ll learn how numerical
summaries like the mean x “ Meanpxq and the standard deviation
sx “ Stdpxq are used as part of the statistical inference process, and
help us answer statistics questions. Indeed, the descriptive statistics
calculations we learned in this section are the foundation for under-
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standing the statistical inference topics we’ll learn in Chapter 3.

Links
[ Gallery of data visualizations produced using Seaborn ]
https://seaborn.pydata.org/examples/index.html

[ Seaborn tutorials featuring lots of useful plot examples ]
https://seaborn.pydata.org/tutorial.html

[ A collection of dataviz caveats to avoid ]
https://www.data-to-viz.com/caveats.html

[ Info about different methods for computing quantiles ]
https://en.wikipedia.org/wiki/Quantile

[ Lots of details about creating histograms ]
https://tinlizzie.org/histograms/

[ 40 years of boxplots by H. Wickham and L. Stryjewski ]
https://vita.had.co.nz/papers/boxplots.pdf

[ A visual vocabulary for select the optimal data visualizations ]
https://ft.com/vocabulary

[ A gallery of interesting data visualizations ]
https://xeno.graphics

https://seaborn.pydata.org/examples/index.html
https://seaborn.pydata.org/tutorial.html
https://www.data-to-viz.com/caveats.html
https://en.wikipedia.org/wiki/Quantile#Estimating_quantiles_from_a_sample
https://tinlizzie.org/histograms/
https://vita.had.co.nz/papers/boxplots.pdf
https://ft.com/vocabulary
https://xeno.graphics
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1.4 Data problems
Given the central role that data plays in all of statistics, it’s important
that you get some hands-on experience with data manipulation and
data visualization tasks. This is why I’ve prepared this set of prob-
lems for you to practice your knowledge of the concept definitions,
Pandas and Seaborn functions, and calculating descriptive statistics.
Working on the problems will also help you become familiar with
the datasets that we’ll use throughout the book.
P1.1 Create a bar plot to compare the mean scores for the debate and
lecture groups.

TODO FINISH THIS

Hint: Use sns.barplot.

P1.2 To give an idea about dispersion within each group, we show error
bars that extend from Mean ´ Std to Mean ` Std.

TODO FINISH THIS

Hint: Use the option errorbar on the sns.barplot function.

Problem ideas:

• numerical summary stats calculations (using df.describe()
and from scratch)

• data plotting and visualizations
• guided pandas+seaborn problems asking to reproduce cal-

culations on datasets similar to Circled6 visitors, 2 eprices,
and 3 students (practice computing descriptive statistics and
visualizations)

• outliers pathologies (example calculations where non-robust
statistics like the mean are heavily influenced by outliers)

• dangers of biased sampling simulation (compute descriptive
statistics from biased samples, and show discrepancy with true
population parameters)

• tidification: convert wide data to tall data (melt)
• data cleaning of Howell Excel file (rename columns, dropnan,

etc) to produce howell.csv

https://tspace.library.utoronto.ca/handle/1807/17996
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