
NO BULLSHIT GUIDE TO STATISTICS

Ivan Savov

November 8, 2022

Ivan Savov
Preview of Chapter 02 PROB

Ivan Savov
 from the

Contents

2 Probability 1
2.1 Discrete random variables 7

2.1.1 Definitions . 7
2.1.2 Cumulative distribution functions 15
2.1.3 Expected value calculations 18
2.1.4 Computer models for random variables 24
2.1.5 Hard disks example 25
2.1.6 Discussion . 31

2.2 Multiple random variables 37
2.2.1 Definitions . 37
2.2.2 Joint probability distributions 39
2.2.3 Conditional probability distributions 44
2.2.4 Probability formulas and rules 50
2.2.5 Independent random variables 56
2.2.6 Discussion . 59

2.3 Inventory of discrete distributions 62
2.3.1 Math prerequisites 63
2.3.2 Review of definitions and formulas 73
2.3.3 Review of computer models 74
2.3.4 Discrete distributions reference 76
2.3.5 Modelling real-world data 96
2.3.6 Discussion . 97

2.4 Calculus prerequisites 102
2.4.1 Definitions . 102
2.4.2 Sets and intervals 103
2.4.3 Functions . 106
2.4.4 Integrals as area calculations 110
2.4.5 Integrals as functions 113
2.4.6 Computing integrals numerically using SciPy . 115
2.4.7 Computing integrals symbolically with SymPy . 118
2.4.8 Other calculus topics 121

2.5 Continuous random variables 129

i

ii

2.5.1 Definitions . 129
2.5.2 Cumulative distribution function 132
2.5.3 Calculating expectations 135
2.5.4 Computer models for random variables 141
2.5.5 Kombucha volume example 142
2.5.6 Multiple continuous random variables 148
2.5.7 Discussion . 159

2.6 Inventory of continuous distributions 163
2.6.1 Math prerequisites 163
2.6.2 Continuous distributions reference 165
2.6.3 Modelling real-world data 193
2.6.4 Discussion . 194
2.6.5 Exercises . 196

2.7 Random variable generation 197
2.7.1 Definitions . 197
2.7.2 Why simulate? 197
2.7.3 Random variable generation using a computer . 199
2.7.4 Empirical distribution of a data sample 204
2.7.5 Measuring data–model fit 206
2.7.6 Bootstrap sample generation 215
2.7.7 Discussion . 219

2.8 Probability models for random samples 222
2.8.1 Definitions . 222
2.8.2 Sample statistics 223
2.8.3 Sampling distributions of statistics 226
2.8.4 Central limit theorem 235
2.8.5 Discussion . 239

2.9 Probability problems . 241
2.9.1 Simple probability problems 241
2.9.2 Discrete distributions problems 242
2.9.3 Continuous distributions problems 243

A Answers and solutions 244

C Python tutorial 245

Chapter 2

Probability

Probability theory is a language for describing uncertainty, variabil-
ity, and randomness. Understanding the machinery of probability
theory is essential for doing statistics, because probability models
allow us to describe the variability that exists in populations and
samples. In order to apply statistical analysis procedures correctly,
you need to understand the basics of probability theory, and learn
about the various probability models that are used as building blocks
in statistical analyses. This is what this chapter is all about.

What are probability models? Probability models are mathemati-
cal constructions for describing different types of variability we can
observe in real-world quantities. Suppose we are interested in the
quantity X, which could be the outcome of a coin toss, rolling a die,
or some measurement in industrial process. We refer to this kind of
quantities as random variables, and use capital letters to denote them.
Unlike a regular variable x that is a placeholder for a single value,
the random variable X can have different outcomes every time it is
observed. The possible outcomes of a coin toss are heads and tails.
The possible outcomes of rolling a die are the numbers in the set
t1, 2, 3, 4, 5, 6u. The outcomes of the industrial process are obtained
by measuring the quantity of interest like the weight of loaf of bread.

A probability model is a way to characterize and quantify the
variability of a random variable. We’ll use the math notation
X „ MpθXq to describe a random variable X that is distributed
according to the probability model MpθXq. The math symbol “„” is
a shorthand for the phrase “distributed according to.” Whenever we
talk about probability models in general, we’ll use the calligraphic
letters like M to denote the model family and Greek letters like θ, α, µ,
etc. to denote the model parameters.

1

2

Examples of probability model families include the discrete
uniform family Ud, the continuous uniform family U , the normal
family N , etc. Each of these model families can be used to describe
random variables whose distribution has a particular “shape.” Fig-
ure 2.1 shows six examples of random variables generated from six
different probability models.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
R

0.00

0.02

0.04

0.06

0.08

0.10
d(1, 20)

0 5 10 15 20
U

0.00

0.02

0.04

0.06

0.08

0.10
(0, 20)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
B

0.00

0.05

0.10

0.15
Bin(20, 0.5)

0 5 10 15 20
N

0.000

0.025

0.050

0.075

0.100

0.125 (10, 3)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
P

0.00

0.05

0.10

0.15

0.20
Pois(4)

0 5 10 15 20
X2

0.000

0.025

0.050

0.075

0.100

0.125 2(6)

Figure 2.1: Six examples of probability models that describe the variability
of six different random variables: R, U, B, N, P, and X2. The three examples
on the left side are discrete random variables, which can take on integer
values. The three examples on the right are continuous random variables,
which describe smoothly varying quantities.

Without going into too much details, here is a short description
of the six random variables shown in Figure 2.1:

• R „ Udp1, 20q is a discrete uniform random variable whose
outcomes are random integers in the range t1, 2, 3, . . . , 20u. All
outcome have an equal probability of occurrence. You can
think of the random variable R as rolling a 20-sided die.

• U „ Up0, 20q is a continuous uniform random variable that
assigns equal probability over the interval r0, 20s. The flatness
of the curve tells us all values between 0 and 20 are equally
likely to occur.

• B „ Binpn “ 20, p “ 0.5q is a binomial random variable, which
describes the counts of heads observed in n “ 20 coin tosses of

3

a coin with probability of heads p “ 0.5. We see the most likely
outcome is to observe 10 heads, but the outcomes 8, 9, 11, and
12 also can occur with high probability.

• N „ N pµ “ 10, σ “ 3q is a normal random variable with
parameters mean µ “ 10 and standard deviation σ “ 3. The
normal model is one of the most useful probability models that
describes many real-world quantities.

• P „ Poispλ “ 4q is a Poisson random variable, which describes
the number of occurrences of some event over a time period.
For example, P could represent the number of phone calls
you’ll receive in one day. The parameter λ “ 4 tells us that
we can expect to receive four calls on average.

• X2 „ χ2pν “ 5q is a chi-squared random variable, which is used
in statistics to describe sums of squared deviations of list of
values from their expected values. The parameter ν describes
the degrees of freedom and is related to the number of things
summed together.

Later in this chapter, we’ll describe each of these random variables
in more details, and learn about their properties and applications
for modelling real-world quantities (see sections 2.3 and 2.5). For
the purpose of this introduction, our goal is to show some examples
of the probability models. You can think of probability models as
LEGOs that you can play with.

Example: kombucha bottling process Imagine that you work at
a kombucha brewery and you’re in charge of the bottling process.
Your goal is to put exactly 1 litre (1000 ml) of kombucha in each
bottle, but because of the bubbles in the kombucha, there is a natural
variability in the total volume of kombucha that goes into each
bottle. Figure 2.2 shows a scatter plot of the kombucha volume
measurements from the last 500 bottles produced by your brewery.

700 800 900 1000 1100 1200 1300
Kombucha volume

Figure 2.2: Observed values of the volume of Kombucha from 500 bottles.
The average volume is 1000 ml with a standard deviation of 100 ml.

You choose to model the volume in each bottle as a normally
distributed random variable X „ N pµ “ 1000, σ “ 100q. The
parameter µ “ 1000 determines the centre of the distribution. The

4

parameter σ “ 100 describes the variability of the values around the
centre. Figure 2.3 shows the model (a mathematical construct) for the
random variable X, that models the variability of kombucha volume.

700 800 900 1000 1100 1200 1300
X

0.000

0.001

0.002

0.003

0.004

pr
ob

ab
ili

ty

(= 1000, = 100)

Figure 2.3: The random variable X distributed according to N p1000, 100q.
The probability of observing a value of X is proportional to the probability
density (the height of the curve) that the model assigns to each value of X.

By choosing the appropriate parameters µ “ 1000 and σ “
100 for the normal model, you obtain a random variable X that
approximates the variability observed in the kombucha volume.
Note the math model assigns high probability to values in the
interval r800, 1200s, and very low probability to values X ă 800 and
X ą 1200. Compare the probability graph in Figure 2.3 with the
observations in Figure 2.2 to convince yourself the normal model is
a good fit.

It’s important to understand the connection between the math-
ematical model shown in Figure 2.3 and the real-world kombucha
values observations shown in Figure 2.2. The diagram in Figure 2.4
illustrates this “is a model of” relationship that exists between the
real-world quantity (the volume of kombucha) and the math-world
random variable X „ N p1000, 100q.

Figure 2.4: Modelling the volume of kombucha that goes into each bottle
using the random variable X „ N p1000, 100q.

Using the math model X „ N p1000, 100q, you can do all kinds
of probability calculations and predictions related to the kombucha
bottling process. The options available to you when using the
random variable X include: doing calculations based on math for-
mulas, generating graphs and visualizations, and running computer

5

simulations. For example, you could estimate the probability of
observing kombucha volumes X ă 800, which is a outcome with
business importance: distributors label all bottles containing less
than 800 ml as defective and refuse to pay for them.

The goal of this example was to illustrate that probability models
are not just abstract math constructs, but also very practical, since
they help us model real-world quantities. We’ll continue the discus-
sion on this kombucha scenario in Section 2.5 (see page 142).

How are we going to do this? The goal of this chapter is to bring
you to a deep understanding of probability theory concepts. We’ll
learn about probability models from various perspectives:

• Math equations. We’ll give precise definitions of probability
concepts expressed as math equations and formulas. Don’t
worry if your math skills are a little rusty: each piece of math
notation will be translated into words, and each formula will
be explained. Mathematical prerequisites will be presented in a
just-in-time manner throughout the chapter, including calculus
concepts (see Section 2.4).

• Visualizations. We can use graphical representations of prob-
abilities to visualize random variables and probability models.
Behind every equation, there is some “picture” you can draw to
visualize what the equation is saying. You’re already familiar
with the tools we’ll use for generating plots from the previous
chapter (Matplotlib and Seaborn), so you’ll find this easy.

• Simulations. Computer simulations allow us to generate
observations from random variables, which is super use-
ful for understanding their properties. The Python module
scipy.stats contains pre-defined probability models for all
the random variables we’ll use in this chapter. Using a few
lines of Python code you can simulate any random variable or
process.

Each of these perspectives on probability theory will show you new
ways to think about probabilities, and give you tools for working
with random variables. Important concepts will be explained redun-
dantly, using math, visually, and in computer code.

By the end of this chapter, you’ll have gained valuable experience
and intuition about probability theory, which will make your study
of statistics in chapters ?? and ?? much easier and more interesting.
Basically, in the next 200 pages you’ll get to know the properties of
probability models (the LEGOs for the XXIst century), so that we can
play with them in the next two chapters.

Are you ready for this? Let’s go.

6

The learning objectives for this chapter are:

• Understand the notion of a random variable X
• Recall key probability terminology and notation for random variables

(pdf/pmf fX , CDF FX , expectation perator EX , etc.)
• Use computer models for random variables defined in the Python module

scipy.stats for calculations.
• Calculate probabilities of events in discrete sample spaces using counting and

combinatorics (permutations and combinations).
• Compute expectations of quantities that depend on random variables
• Compute the mean and the variance of probability distributions
• Calculate probabilities of events in continuous sample spaces using integration
• Determining CDF from the pdf of a continuous random variable
• Understand and compute integrals using multiple approaches: geometrically

as areas under the graph of a function, using symbolic math (pen and paper or
SymPy), and numerically (using functions in the module scipy.integrate)

• Calculate conditional probabilities and determine independence of events
• Describe the Gaussian distribution (properties, parameters, and intuition)
• Know the 10 most important probability distributions for statistics
• Generate samples of observations px1, x2, . . . , xnq from any random variable X
• Compute expectations on random samples pX1, X2, ..., Xnq to obtain sampling

distributions

2.1 DISCRETE RANDOM VARIABLES 7

2.1 Discrete random variables

Probability theory started when a bunch of mathematicians went to
the casino and tried to use their math skills to compute what they can
expect to win from different games of chance. Over time, probability
theory was applied to many other situations where uncertainty plays
a role, including biological processes, engineering, manufacturing,
business, machine learning, and many other domains. Probability
theory is the foundation of statistics.

In this section, we’ll start our discussion about probability theory
with the analysis of simple random variables like the outcomes of
a coin toss and a die roll. We’ll define some new concepts and
terminology for describing random variables, give lots of examples,
then talk about the calculations we can perform using random
variables. We’ll also show how to create computer models for
random variables (Python functions and classes), and to use these
computer models for probability calculations.

2.1.1 Definitions

Probabilities are real numbers between 0 and 1 that we assign to
different events to describe how likely they are to occur. We denote
the probability of event A as PrpAq. If an event has zero probability,
PrpAq “ 0, this means the event A never happens. At the other
extreme, if PrpAq “ 1, this means the event A is certain to occur.
Probability values between 0 and 1 describe events that occur some
of the time.

Random variables

A random variable is a mathematical model for describing unknown
or uncertain quantities and assigning probabilities to their possible
outcomes.

• random variable X: a quantity that takes on different values. We
denote random variables by uppercase letters like X, Y, and Z.

• sample space X : the calligraphic-X describes the set of all
possible outcomes of the random variable X.

• outcome: the result of observing a random variable. We denote
outcomes using lowercase letters like x, y, and z. A simple
outcome describes one particular element of the sample space,
like X “ c, which can also be written as the set tX “ cu. A
composite outcome is a set of simple outcomes, like the set of
numbers between a and b: ta ď X ď bu, or any other subset of
the sample space.

2.1 DISCRETE RANDOM VARIABLES 8

• fX : the probability distribution function is a function that assigns
probabilities to the different outcomes in the sample space of
the random variable X.

There are two kinds of random variables: discrete and continuous:

• A discrete random variable has a sample space X that consists
of discrete values, like the integers t0, 1, 2, 3, . . .u. See the left
side of Figure 2.1 (page 2) for examples of discrete random
variables.

• A continuous random variable has a continuous sample space
X , like the real numbers t0.1, 1.2, 3.14,´2.5, . . .u. Revisit the
right side of Figure 2.1 to see examples of continuous random
variables.

We use different kinds of “math machinery” to compute probabilities
for these two types of random variables. In this section, we’ll
focus on the definitions and formulas for discrete random variables,
and defer the discussion on continuous random variables until
Section 2.5.

Discrete random variables

Examples of discrete sample spaces include the outcomes of a coin
toss theads, tailsu, the roll of a die t1, 2, 3, 4, 5, 6u, or a countably
infinite set like the natural numbers N def“ t0, 1, 2, 3, . . .u.

A discrete random variable X is described by a probability mass
function fX , which tells us how much probability “weight” is as-
signed to each of the possible outcomes:

PrptX “ xuq “ fXpxq, for all x in X .

The abbreviation pmf is often used to refer to the probability mass
function.

An example of a probability mass function is shown in Figure 2.5.

Calculating probabilities We often need to compute the probabil-
ities of composite outcomes, which we’ll describe as sets ta ď X ď
bu “ ta, a` 1, a` 2, . . . , bu. The probability of the composite outcome
ta ď X ď bu is obtained by computing the sum of the probability
mass function for all values in the set:

Prpta ď X ď buq “ fXpaq ` fXpa` 1q ` fXpa` 2q ` ¨ ¨ ¨ ` fXpbq

“
x“b
ÿ

x“a
fXpxq.

2.1 DISCRETE RANDOM VARIABLES 9

Figure 2.5: Illustration of the probability mass function fX for the random
variable X defined on the sample space X “ t1, 2, 3, 4, 5, 6u. The height of
each line in the step plot tells us the probability of this outcome occurring.

Recall the symbol
ř

(the capital Greek letter sigma) is the math
notation for describing summations. The subscript of the summation
x “ a tell us where to start the summation, and superscript x “ b tells
when to end it. In words, we calculate the probability of a composite
outcome by adding up the total probability of the outcomes it
includes.

Figure 2.6: Illustration of the probability of the outcome t3 ď X ď 4u. The
combined length of the two lines in the highlighted region correspond to the
probability Prpt3 ď X ď 4uq “ řx“4

x“3 fXpxq.

The Figure 2.6 illustrates the calculation of the probability that
the discrete random variable X will have outcome 3 or 4, which is the
sum of the probability mass function values for these two outcomes:
Prpt3 ď X ď 4uq “ fXp3q ` fXp4q “

řx“4
x“3 fXpxq.

Properties of probability mass functions Every probability mass
function fX satisfies the following math axioms:

• Nonnegativity: fXpxq ě 0 for all x in X .
• Unit total:

ř

xPX fXpxq “ 1.

These two conditions are known as Kolmogorov’s axioms of probability,
in honour of the mathematician Andrey Kolmogorov who first
introduced them. The first axiom states that probability functions

2.1 DISCRETE RANDOM VARIABLES 10

cannot take on negative values. The second axiom states that the
total amount of probability over the whole sample space is 1. The
symbol “P” is math shorthand for “element of,” so the expression
ř

xPX fXpxq describes the summation of the function fXpxq over all
values of x in the set X .

We can derive some other properties of probability mass func-
tions from the axioms. Define the outcome A to be an arbitrary
subset of the sample space X . The numerical bound tells us the
probability of this outcome is less than or equal to one:

PrpAq ď 1.

This follows from the unit-total axiom, which states PrpX q “ 1. Since
A is a subset of the sample space X , the probability of A can be at
most 1.

For every outcome A, we can define its complement Ac, which
consists of all outcomes of the sample space that are not in A. The
complement rule tells us the probability of the complement Ac is equal
to one minus the probability of the outcome A:

PrpAcq “ 1´ PrpAq.
This rule follows from the definition of the complement Ac: together
A and Ac make up the entire sample space X . Using the unit
total axiom, we therefore have PrpAq ` PrpAcq “ 1, which we can
rearrange to obtain the complement rule.

Example 1: coin toss Consider the random variable C that de-
scribes the outcome of a coin toss for a balanced coin. The sam-
ple space for the random variable C has two possible outcomes:
theads, tailsu. Since we assume the coin is balanced, the two
outcomes have equal chance of occurring. The probability mass
function that describes this random variable is

fCpheadsq “ 0.5 and fCptailsq “ 0.5.

The values of the function fC are shown in Figure 2.7.

Example 2: rolling a six-sided die The random result of rolling
a six-sided die can be described as a random variable D over the
sample space t1, 2, 3, 4, 5, 6u. If we assume the die is fair, then each
of the outcomes will have an equal probability of occurring, so the
probability mass function fD has the following values:

fDp1q“ 1
6 , fDp2q“ 1

6 , fDp3q“ 1
6 , fDp4q“ 1

6 , fDp5q“ 1
6 , fDp6q“ 1

6 .

2.1 DISCRETE RANDOM VARIABLES 11

Figure 2.7: The probability mass function of the random variable C, which
describes a coin toss. The two possible outcomes are theads, tailsu, and fC
assigns equal probability 1

2 to each outcome.

Figure 2.8: The probability mass function of the random variable D, which
describes a die roll with six possible outcomes t1, 2, 3, 4, 5, 6u. Note the
probability mass function is defined only for a discrete set of inputs that
correspond to the possible outcomes in the sample space.

A plot of the probability mass function for the random variable D is
shown in Figure 2.8.

It can be very useful to encode the mathematical definition of
the probability mass function fD as a Python function fD. This
will allow us to do probability calculations involving the random
variable D very quickly. The Python function that corresponds to
the probability mass function fD is defined below.

code
2.1.1

>>> def fD(d):
if d in {1,2,3,4,5,6}:

return 1/6
else:

return 0

This function returns the value 1
6 “ 0.16666 . . . whenever the input d

is one of the numbers is the sample space t1, 2, 3, 4, 5, 6u, and returns
zero otherwise.

If this is the first time you’re seeing the definition of a Python
function, you might pause your reading here and jump to the Python
tutorial in Appendix C, where you can learn about the Python syntax
of def statements, which we use to define Python functions.

In order to call the function fD we just defined, we use the

2.1 DISCRETE RANDOM VARIABLES 12

function name followed by the arguments specified in parentheses:

code
2.1.2

>>> fD(3)
0.16666666666666666

Note the Python syntax for calling functions is the same as the math
notation for evaluating the function fD for the input d “ 3, fDp3q.

Example 3: hard disk failures We can model the number of
hard disk failures expected to occur in a given data centre as a
random variable H. The sample space for the random variable H
is t0, 1, 2, 3, . . .u, since the number of hard disk failures can be a
nonnegative integer (a count). We’ll denote tH “ hu the outcome “h
hard disks failed this month.” Based on the hard disk manufacturer’s
data sheets and the specifics of the data centre, we decide to model
the number of hard disk failures using a Poisson distribution with
parameter λ “ 20:

H „ Poispλ “ 20q.
Recall the symbol “„” is shorthand for the phrase “is distributed
according to,” so the above definition tells us H is distributed
according to the Poisson model with parameter λ “ 20. The
probability mass function that corresponds to the Poisson model
with parameter λ is given by the following equation:

fHphq “ λhe´λ

h!
, for h P t0, 1, 2, 3, . . .u,

where ex is the exponential function and n! is the factorial function.
The Poisson model corresponds to a whole family of different distri-
butions that depend on the choice of parameter λ. We created the
specific model for our situation by choosing the parameter λ “ 20.
Figure 2.9 illustrates the possible outcomes we can expect to occur for
a Poisson model with parameter λ “ 20 (twenty hard disk failures
on average).

Using the formula for the probability mass function fH , we can
calculate the probability of any outcome, like PrptH “ 23uq “
2023e´20

23! “ 0.06688, or intervals of outcomes Prpt18 ď H ď 22uq “
fHp18q` fHp19q` fHp20q` fHp21q` fHp22q “ řh“22

h“18 fHphq “ 0.4236.
It’s possible to do these probability calculations using pen and paper,
but it is much easier to do them using the computer, as we’ll now see.

First, we need to define a Python function fH for computing the
probability mass function fH . We can call the functions np.exp and
np.math.factorial from the NumPy module to do the ex and n!
calculations for us.

code
2.1.3

2.1 DISCRETE RANDOM VARIABLES 13

0 5 10 15 20 25 30 35 40
h

0.00

0.02

0.04

0.06

0.08

f H

Figure 2.9: Graphical representation of the random variable H distributed
according to the Poisson model with parameter λ “ 20. We see the most
likely values of h are around 20, but all outcomes from 15 to 25 have
significant probability of occurring. Even extreme outcomes like 10 and 30
can occur, with small probability.

>>> import numpy as np
>>> def fH(h):

lam = 20
return lam**h * np.exp(-lam) / np.math.factorial(h)

Note the complicated-looking code inside the Python function fH
matches exactly the complicated-looking math expression for the
function fH that we saw above. We’ll use this pattern repeatedly
in the remainder of the book, converting math expressions into code
expressions so that we do computations with them quickly.

We can use the function fH to compute the probability of simple
outcomes like tH “ 23u:

code
2.1.4

>>> fH(23)
0.06688147366240181

The probability of a composite outcome is the sum of the probabil-
ities of the individual elements. To compute the probability of the
composite outcome t18 ď H ď 22u, we use the following Python
expression:

code
2.1.5

>>> sum([fH(h) for h in range (18 ,22+1)])
0.42358294520135187

The Python function range(a,b) is equivalent to the list of values
[a,a+1,a+2,...,b-1], which does not include the upper limit b. If
we want a list of values that includes b we must call range(a,b+1),
which produces the list [a,a+1,a+2,...,b-1,b]. You’ll see this +1
added in numerous code examples below, whenever we want to
create a list up-to-and-including some upper limit.

2.1 DISCRETE RANDOM VARIABLES 14

Recall Kolmogorov’s second axiom, which requires that the sum
of fH over the entire sample space must be one:

řh“8
h“0 fHphq “ 1.

The code below shows how we can verify that the Python function
fH satisfies Kolmogorov’s axiom:

code
2.1.6

>>> sum([fH(h) for h in range (0 ,100+1)])
1.0

Note we calculated the summation only until h “ 100 and not until
h “ 8. In general, it’s not possible to do summation until infinity on
computers. Stopping the summation at h “ 100 is okay in this case,
because the probability values fHp101q, fHp102q, etc. are very small
numbers, which are negligible when compared to the answer 1.0.

Note the probability distributions fC and fD from the earlier
examples also satisfy Kolmogorov’s second axiom (unit total prob-
ability): fCpheadsq ` fCptailsq “ 1 and fDp1q ` fDp2q ` fDp3q `
fDp4q ` fDp5q ` fDp6q “ 1.

Exercises

E2.1 Compute the probability of the outcome t2 ď D ď 5u for the
random variable D defined in Example 2.

E2.2 Consider the random variable D4 that describes the outcome of
rolling a tetraheral (four-sided) die. The sample space is t1, 2, 3, 4u.
Assuming the die is fair, what is the probability mass function for the
random variable D4?

E2.3 The random variable Y is defined over the sample space
t1, 2, 3u. A colleague published a graph of the probability mass
function fY, but forgot to label the vertical axis. Can you find a way
to compute the probability value fYp3q from the graph?

1 2 3
y

0

f Y

Hint: Use a ruler to measure the lengths of the stems.

E2.4 Use the complement rule to calculate the probability Prpt5, 6uq for
the die roll random variable D, given that Prpt1, 2, 3, 4uq “ 4

6 .

2.1 DISCRETE RANDOM VARIABLES 15

2.1.2 Cumulative distribution functions

The cumulative distribution function FX of the random variable X
describes the probability of outcomes that are smaller than or equal
to some value b:

FXpbq def“ PrptX ď buq.
The cumulative distribution function of the random variable X is
computed by adding up all the values of the probability mass
function fXpxq until x “ b. See Figure 2.10 for an illustration.

For example, we can define a Python function FH that computes
the cumulative distribution function FH for the random variable
H „ Poispλ “ 20q from Example 3. Recall we previously defined
a Python function fH that computes the probability mass function fH
in code 2.1.3. Following the definition above, we can therefore define
FHpbq as the sum of the values of fH until h “ b, as shown below.

code
2.1.7

>>> def FH(b):
return sum([fH(h) for h in range(0,b+1)])

0 5 10 15 20 25 30 35 40
h

0.0

0.2

0.4

0.6

0.8

1.0

F H

Figure 2.10: Graph of the CDF function FHphq for the random variable H
from Example 3. Note the graph of FH increases in jumps at each value of h,
and the height of each jump at h is equal to the value of the probability mass
function fHphq.

Intuitively speaking, the cumulative distribution function corre-
sponds to a pre-computed summation of the values of the probability
mass function fX . Knowing the cumulative distribution function FX
for the random variable X gives us an alternative way to compute
probabilities. We can find the probability of outcomes between a
and b by computing the difference in the value of the cumulative
distribution function:

Prpta ď X ď buq “ FXpbq ´ FXpa´ 1q.

2.1 DISCRETE RANDOM VARIABLES 16

The value FXpbq contains the pre-computed sum of fX from x “ 0
until x “ b, so if we want to know the sum of the values of fX from
x “ a to x “ b, we can start with FXpbq and subtract FXpa´ 1q, which
is the sum of fX until x “ a´ 1.

For example, if we wanted to compute the probability of a
composite outcome t18 ď H ď 22u, we can simply compute
the change in the value of the Python function FH we defined in
code 2.1.7.

code
2.1.8

>>> FH(22) - FH(18-1)
0.42358294520135187

The value we obtain is the same as the probability we calculated
using the summation in code 2.1.5.

The cumulative distribution function has the following proper-
ties:

• If b1 ă b2 then FXpb1q ď FXpb2q, which means the function FX
is nondecreasing.

• FXpbq ď 1 for all b
• PrptX ą buq “ 1´ Fpbq for all b

The first property follows from the nonnegativity property of the
probability mass function fXpxq ě 0 for all x P X . The second prop-
erty follows from the unit total property of the probability density
function

ř

xPX fXpxq “ 1. The third property is a consequence of the
complement rule PrpAcq “ 1´ PrpAq, since the outcome tX ą bu is
the complement of the outcome tX ď bu.

The functions FX and fX contain the same information. The
values of FX are simply the cumulative sums of fX , and we can obtain
fX from FX by looking at the lengths of the jumps in the graph of FX ,
for each of the values x P X .

Inverse of the cumulative distribution function

The inverse function of the cumulative distribution function is de-
noted F´1

X pqq. The inverse-CDF is also sometimes called the percentile
point function or quantile function, since it tells us the positions of the
quantiles of the random variable X. The value F´1

X pqq “ xq tells how
far you need to go in the sample space so that the outcome tX ď xqu
contains at least a proportion q of the total probability: FXpxqq ě q.
For example, the first quartile (25% percentile or q “ 0.25 quantile) is
the value of x0.25 when the cumulative distribution reaches the value
0.25, FXpx0.25q ě 0.25.

We use the point percentile function to compute confidence in-
tervals that contain a certain percentage of the probability mass. For

2.1 DISCRETE RANDOM VARIABLES 17

0.0 0.2 0.4 0.6 0.8 1.0
q

0

5

10

15

20

25

30

35

F
1

H

Figure 2.11: Graph of the inverse-CDF function F´1
H pqq for the random

variable H, which contains the same information as the CDF function FX .

example, the interval between F´1
X p0.025q and F´1

X p0.975q contains
95% of the probability density of the random variable X.

Note that the functions FX and F´1
X contain the same informa-

tion, but we have two functions because we need to “query” this
information in both directions. In the forward direction, we specify
some value b P X and the function FXpbq tells you the value PrptX ď
buq. In the inverse direction, we’re starting from some proportion
q P r0, 1s of the total probability, and we want to know the smallest
value xq such that PrptX ď xquq ě q.

Exercises

E2.5 Calculate Prpt10 ď H ď 30uq using the Python function FH,
which computes cumulative distribution function FH for the random
variable H introduced in Example 3.

E2.6 Consider the random variable D, which describes the roll of
a fair die we saw in Example 2. Compute the following six values
of the cumulative distribution function: FDp1q, FDp2q, FDp3q, FDp4q,
FDp5q, FDp6q.
E2.7 Draw the graph of the cumulative distribution function FD by
hand using the values obtained in the previous exercise.

E2.8 Compute the median of the random variable H which corre-
sponds to the value F´1

H p 1
2 q.

Hint: The answer is the smallest value of b such that FHpbq ě 0.5.

Hint: Evaluate the Python function FH for the inputs h “ 18, h “ 19,
h “ 20, h “ 21, h “ 22 to find the first value of h such that FH(h) is

2.1 DISCRETE RANDOM VARIABLES 18

greater than 0.5.

E2.9 Compute the position of the first quartile F´1
H p0.25q for the

random variable H.

Hint: Use the same strategy as in the previous exercise.

2.1.3 Expected value calculations

Suppose we’re interested in calculating some value wpXq, which
depends on the random variable X. The function w : X Ñ R

assigns different “winning” amounts to the different outcomes of
the random variable X. Since the input to the function w is a
random variable, the output value wpXq is also a random variable.
The expected value of wpXq is obtained by computing the average
over all the possible outcomes x of the random variable X, which
corresponds to the following summation:

EXrwpXqs def“
ÿ

xPX
wpxq fXpxq.

The expected value “weighs” each value of wpxq by the probability
of the outcome tX “ xu, summed over all possible outcomes for the
random variable X. The math shorthand symbol EX describes the
expected value of a quantity that depends on the random variable
X.

The name expected value is appropriate for this calculation: the
value of wpXqwill take on different values depending on the random
variable X, but EXrwpXqs tells us the expected value of w on average,
under the randomness of X.

Example 4 Suppose someone offers you to play a game of chance
with a six-sided die. It costs $1 to play one round of this game. You
win $5 if you roll a 6 and you win nothing if you roll any other
number. In other words, the winnings function w for this game is

wp1q “ wp2q “ wp3q “ wp4q “ wp5q “ $0 and wp6q “ $5.

Is it worth playing this game?
We assume the die is fair, and it is described by the random

variable D with distribution fDpdq “ 1
6 , for all d in the sample space

t1, 2, 3, 4, 5, 6u. We then calculate the expected winning from this

2.1 DISCRETE RANDOM VARIABLES 19

game like so:

EDrwpDqs “
řd“6

d“1 wpdq fDpdq
“ wp1q 1

6 `wp2q 1
6 `wp3q 1

6 `wp4q 1
6 `wp5q 1

6 `wp6q 1
6

“ p$0q 1
6 ` p$0q 1

6 ` p$0q 1
6 ` p$0q 1

6 ` p$0q 1
6 ` p$5q 1

6

“ $5
6 « 83 cents.

Since the expected winning from this game is smaller than the cost
of playing, we conclude that this game is not worth playing. We’re
losing 17 cents on average in each round the game! We might as well
throw our money down the drain—it would be just as efficient.

Let’s now see how to compute the expected value EDrwpDqs
using computer code. First we define the winning function w(d) that
returns the dollar amount we obtain depending on the outcome d of
the die roll.

code
2.1.9

>>> def w(d):
if d == 6:

return 5
else:

return 0

We previously defined the Python function fD in code 2.1.3 above.
We can now compute the expected value by summing the expression
w(d)*fD(d) for values of d ranging from 1 to 6.

code
2.1.10

>>> sum([w(d)*fD(d) for d in range (1 ,6+1)])
0.8333333333333333

The answer we obtain from the Python calculation is the same as the
answer we obtained for EDrwpDqs using the math calculations.

Computing expectations is crucial for many probability applica-
tions. Indeed, we could say that computing expected values is one of
the main tools we have for dealing with uncertainty. We can’t predict
the value of wpXq since X is a random variable, but we can average
over all the possible outcomes of X to calculate the expected value
EXrwpXqs, which takes into account the probability of all possible
outcomes.

Expectations are also used to define two important “quantities of
interest” for any random variable: its mean and its variance, which
we’ll discuss next.

Measures of centre and dispersion

The mean µX and the variance σ2
X are two properties of any random

variable X that capture important aspects of its behaviour. The mean
and the variance are defined as expectation calculations.

2.1 DISCRETE RANDOM VARIABLES 20

The mean of the discrete random variable X with probability
mass function fX is defined as:

µX
def“ EXrXs “

ÿ

xPX
x ¨ fXpxq.

The mean is a single number that tells us what value we can expect
to obtain on average from the random variable X. The mean is also
called the average or the expected value of the random variable X.

The variance of a discrete random variable is defined as follows:

σ2
X

def“ EXrpX´ µXq2s “
ÿ

xPX
pX´ µXq2 ¨ fXpxq.

The variance formula calculates the average squared deviation of
the random variable X from its mean µX , which is a measure of
the dispersion of the distribution. A small variance indicates the
outcomes of X are tightly clustered near the mean µX , while a large
variance indicates the outcomes of X are widely spread. The square

root of the variance is the standard deviation σX “
b

σ2
X .

We’ve seen these concepts of mean, variance, and standard
deviation previously in Section ?? when we computed the mean,
variance, and standard deviation descriptive statistics of different
variables in a dataset. The purpose of the calculations is the same—to
find the average value and the dispersion of the values—but instead
of working with data values observed in a particular dataset, we’re
making a theoretical calculation over all possible outcomes of the
probability distribution.

Let’s see how to calculate the mean and variance of the random
variables D and H we introduced earlier in examples 2 and 3.

Example 5 Recall the random variable D that describes the out-
come of rolling a six-sided die, which has a probability mass function
fDpdq “ 1

6 , for d P t1, 2, 3, 4, 5, 6u. The mean of this distribution is
computed as follows:

µD
def“ EDrDs “

d“6
ÿ

d“1

d ¨ fDpdq

“ 1 ¨ 1
6 ` 2 ¨ 1

6 ` 3 ¨ 1
6 ` 4 ¨ 1

6 ` 5 ¨ 1
6 ` 6 ¨ 1

6

“ 21
6 “ 3.5.

This means the average value of rolling a six sided die is 3.5.
The code example below shows how to perform the same com-

putation using Python, based on the probability mass function fD
defined in code 2.1.1.

code
2.1.11

2.1 DISCRETE RANDOM VARIABLES 21

>>> sum([d*fD(d) for d in range (1 ,6+1)])
3.5

The formula for the variance of D is

σ2
D “ ED

”

pD´ µDq2
ı

“
6
ÿ

d“1

pd´ 3.5q2 ¨ fDpdq.

We can easily carry out this calculation in Python as follows:

code
2.1.12

>>> sum([(d -3.5)**2 * fD(d) for d in range (1 ,6+1)])
2.9166666666666665

Example 6 Let’s now compute the mean and the variance of the
random variable H „ Poispλ “ 20q, which describes the number of
hard disk failures. The formula for the mean is

µH
def“ EHrHs “

8
ÿ

h“0

d ¨ fDpdq.

Note the summation goes all the way to infinity, but the probability
mass function fDphq is negligibly small when h is large, so the
summation until h “ 100 gives the same result as the summation
until infinity. We already defined the probability mass function fD in
code 2.1.3, so we can jump straight to the EHrHs calculation:

code
2.1.13

>>> sum([h*fH(h) for h in range (0 ,100+1)])
20.0

If you ever had doubts about the usefulness of computers for doing
probability calculations, you’ll surely agree this is a good occasion to
use a computer, since otherwise you’d have to compute a summation
with 101 terms using pen and paper!

The formula for the variance of H is

σ2
H “ EH

”

pH ´ µHq2
ı

“
8
ÿ

h“0

ph´ 20q2 ¨ fHphq,

and the Python code for computing the variance is shown below.

code
2.1.14

>>> sum([(h -20)**2 * fH(h) for h in range (0 ,100+1)])
20.0

Recall that the standard deviation σH is defined as the square root of
the variance σ2

H . We can use the square-root function from the numpy
package to compute the standard deviation:

code
2.1.15

>>> import numpy as np
>>> np.sqrt (20)
4.47213595499958

2.1 DISCRETE RANDOM VARIABLES 22

Intuitively speaking, this result tells us the “width” of the distribu-
tion fH is approximately 5, and the most likely outcomes will be in
the interval rµH ´ σH , µH ` σHs “ r15, 25s. As the operator of the
data centre, this is really useful to know when planning.

Expectation formulas

To get a better feeling of the properties of the expectation operator,
consider the following general rules that apply for all expectation
calculations:

• The expected value of a constant is the constant itself:

EXrcs “ c.

• The expected value of mX is m times the expected value of X:

EXrmXs “ mEXrXs.
• Linearity of expectation:

EXrαgpXq ` βhpXqs “ αEXrgpXqs ` βEXrhpXqs.

These formulas will come in handy when evaluating expectations
of random variables that are defined in terms of other random
variables.

Variance formulas

Let’s now define a function varpXq that computes the variance of the
random variable X:

varpXq def“ EX

”

pX´ µXq2
ı

.

This will allow us to understand the properties of variance.

• The variance of a constant is zero:

varpcq “ 0.

• The variance of the variable X ` b is the same as the variance
of the variable X:

varpX` bq “ varpXq.
• The variance of the expression mX is m2 times the variance of

the variable X:
varpmXq “ m2 varpXq.

2.1 DISCRETE RANDOM VARIABLES 23

There is another useful formula for computing the variance of a
random variable in terms of the expectation of EXrX2s and EXrXs:

EX

”

pX´ µXq2
ı

“ EX

”

X2
ı

´ µ2
X

“
ÿ

xPX

x2 fXpxq ´ µ2
X .

This is known as the “parallel axis theorem” in physics, but doesn’t
have a name in probability theory. People just call it the “simple”
formula for the variance, since it is easier to compute compared to
EX

“pX´ µXq2
‰

. I’ll ask you to derive this formula in problem P2.7.

Example 7 Consider the random variable Y “ mX ` b, which is
defined as a function of the random variable X. The random variable
Y describes the same underlying random events as the random
variable X, but assign different values to the outcomes.

Let’s use the expectation formulas we showed above to see how
the mean of the random variable Y is related to the mean of the
random variable X:

µY “ EXrmX` bs “ mµX ` b,

which follows from the linearity of the expectation operator. The
mean is transformed exactly like the values of the random variable.

Now let’s compute the variance of Y “ mX` b:

varpYq “ varpmX` bq “ varpmXq “ m2varpXq.
The second equation is true because the variance calculation “ig-
nores” the additive constant b. The third equation holds because
the multiplicative scaling constant m has a squared effect when
computing the variance.

Exercises

E2.10 Consider the gambling game involving a coin toss random
variable C with winning function wpcq defined as wpheadsq “ $1.90
and wpheadsq “ $0. Calculate the expected value ECrwpCqs.
E2.11 Compute EDrupdqswhere up5q “ $3, up6q “ $4, and updq “ $0
for d P t1, 2, 3, 4u.
E2.12 Consider the random variable Y “ mX ` b. Show that σ2

Y “
m2σ2

X by starting from the definition σ2
Y “ EXrpY´ µYq2s.

E2.13 Compute the expected value of the random variable D20,
which describes the outcome of rolling a 20-sided die with distri-
bution fD20pdq “ 1

20 for all d in t1, 2, 3, . . . , 20u.

2.1 DISCRETE RANDOM VARIABLES 24

2.1.4 Computer models for random variables

Computers are very useful for doing probability calculations. We
saw in the above code examples how to define Python functions fC,
fD, fH, which correspond to the probability mass functions fC, fD, fH
of the random variables C, D, H. But we don’t have to create all our
computer models by ourselves! The Python module scipy.stats
contains pre-defined code for all the probability distributions that
we’ll use in this book. See the table on page ?? in Appendix ?? for a
complete list of the distributions.

This means, if you need to use a probability model for the
Poisson distribution in some calculations, you just need to import the
poisson model using a command like from scipy.stats import
poisson, then create a Poisson random variable object rvX by ini-
tializing the poisson model with your choice of parameters. (we’ll
explain how exactly to create rvX in the code examples below). You
can then use the methods rvX.pmf(x) to obtain the value of the
probability mass function fXpxq, or rvX.cdf(b) to obtain the values
of the CDF FXpbq.

In this section, we’ll discuss the affordances of the computer
models defined in scipy.stats. What calculations are possible?
We’ll start by listing the most important methods available on the
object rvX, relying on the code defined in the module scipy.stats.

• rvX.pmf(x) def“ fXpxq: the probability mass function fX . We can
use this method to calculate the probability of any composite
outcome as the sum over a range of inputs: Prpta ď X ď buq “
sum([rvX.pdf(x) for x in range(a, b+1)]).

• rvX.cdf(b) def“ FXpbq: the cumulative distribution function
corresponds to the probability PrptX ď buq. We can compute
the probability of the outcome ta ď X ď bu by calculating
FXpbq ´ FXpa´ 1q “ rvX.cdf(b) - rvX.cdf(a-1).

• rvX.ppf(q) def“ F´1
X pqq: the percent point function is the inverse

of the CDF function. We specify the lower tail probability q as
the input, and the output of rvX.ppf(q) tells us the smallest
value xq such that PrptX ď xquq contains at least q of the total
probability.

• The object rvX has numerous methods for obtaining the prop-
erties of the random variable like its mean, median, mode,
variance, standard deviation, and others:

Ź rvX.meanpq def“ µX : the mean of the distribution
Ź rvX.varpq def“ σ2

X : the variance of the distribution

2.1 DISCRETE RANDOM VARIABLES 25

Ź rvX.stdpq def“ σX : the standard deviation of the distribu-
tion. Recall that the standard deviation is the square root

of the variance: σX
def“

b

σ2
X .

Ź rvX.median() def“ F´1
X p 1

2 q: the median of the distribution
Ź rvX.support() def“ X : the sample space of the random

variable

• rvX.intervalpαq def“ rF´1
X p α

2 q, F´1
X p1 ´ α

2 qs: the interval
method computes a two-sided confidence interval (CI) that con-
tains p1´ αq of the total probability of the random variable X.

• rvX.rvspsize=nq: generate a sequence of n observations from
the random variable X, which we denote px1, x2, . . . , xnq. Such
computer-generated observations are useful for visualizing the
variability we can expect to observe when we generate random
samples from a distribution, which is useful if you want to
model the variability of random samples collected from a
population.

• rvX.expect(w) def“ EXrwpXqs: computes the expected value of
the function w with respect to the distribution of the random
variable X. Recall that EXrwpXqs “

ř

xPX wpxq ¨ fXpxq, so the
method rvX.expect(w) is equivalent to calculating

sum([w(x)*rvX.pmf(x) for x in range(xmin,xmax+1)]),

where xmin is the smallest value in X and xmax is the largest
value in X .

To summarize, what I’m saying is that anything you might want
to know about the random variable X is available at the tip of
your fingers once you create the computer model rvX. The module
scipy.stats has predefined computer models for all the important
distributions in statistics: poisson, randint, bernoulli, binom,
uniform, norm, t, beta, etc. You’ll learn all about these distribu-
tions later in this chapter (Section 2.3 for discrete distributions and
Section 2.6 for continuous distributions). You can think of these
probability models as different kinds of LEGO blocks available for
you to play with.

In the next section, we’ll show how to create the computer model
rvH for the hard-disks failures random variable H.

2.1.5 Hard disks example

Suppose you’re the operator of a data centre, and you want to
estimate the number of hard disk failures that will occur this month.

2.1 DISCRETE RANDOM VARIABLES 26

Based on the specifics of your data centre, you know that 20 hard
disk failures occur on average each month, but knowing the average
is not sufficient for the types of questions you need to answer.
What is the probability of observing 21 hard disk failures? What
is the probability of having 25 hard disk failures or less? Can you
give a range of outcomes that will occur 95% of the time? This
is the types of questions your colleagues are interested in. The
software engineering department needs to know the probabilities
of different outcomes to design the redundant storage system. The
legal department wants to know “worst case” scenarios to write the
Service Level Agreement documents. The finance people are interested
in estimating costs of replacement disks.

All these requests for estimates are piling up in your inbox,
but despite your interest in data science topics, you never seem to
find the time to do the probabilistic modelling exercise needed to
answer these questions. One day during a high-level meeting, your
colleagues decide to gang up on you and complain loudly about the
lack of estimates, and put you on the spot in front of everyone.

You decide to get this done right then and there, and tell people:

“Relax everyone, we can do these estimates right now using Python.”

Everyone seems immediately reassured.
You know the Poisson family of probability models is well suited

for describing the random number of hard disk failures in general.
To obtain a random variable rvH that has the desired distribution,
you can initialize the Poisson model with the parameter λ “ 20.

You proceed to share your screen so everyone can see, open a
Python shell, and start typing

code
2.1.16

>>> from scipy.stats import poisson
>>> rvH = poisson (20)

The code above imports the poisson model from the SciPy package
scipy.stats and creates an instance of it called rvH initialized with
parameter λ “ 20. Now that you have the computer model rvH, you
can use all the methods like rvH.pmf(h), rvH.cdf(b), rvH.ppf(q),
rvH.rvs(n), etc. to do calculations with the random variable H.
Feeling reassured by the plethora of methods available to you, you
explain what you want from your colleagues during the meeting: “I
want you to give me any probability question related to hard disk
failure rates now, and I’ll use the probability model to answer your
question to the best of my ability. Live.”

There is a moment of silence in the room as people are processing
your directives. You decide to use the time to compute the probabil-
ity of some outcomes:

code
2.1.17

2.1 DISCRETE RANDOM VARIABLES 27

>>> rvH.pmf (20)
0.0888353173920848
>>> rvH.pmf (21)
0.08460506418293791
>>> rvH.pmf (22)
0.07691369471176195

You explain to your colleagues this means the probability of observ-
ing 20 failures next month is 8.88%, the probability of observing 21
failures is 8.46%, and the probability of 22 failures is 7.69%.

Alice from accounting interrupts with a question. “Wait, I
thought you said the expected value is 20. Now you’re telling us
there is just 8% chance of that happening?”

“Yes, the average is µH “ 20, but we could have 21, 22, 23, or any
other number of failures next month.”

“So we can’t know for sure how many failures will occur?”
“No, we can’t know for sure since failures are random, but we can

think about the different possible outcomes and plan accordingly.
For example, we could run simulations to—.” You stop yourself mid-
sentence because you sense this meeting can go on forever if you
start explaining each concept in detail. Better show than tell.

In order to better describe the range of values for the random
variable H, you compute the two important statistics of the proba-
bility distribution:

code
2.1.18

>>> rvH.mean()
20.0
>>> rvH.std()
4.47213595499958

You interpret these numbers for your colleagues by saying: “This
means that we can expect roughly 20 plus or minus 5 failures on
average.”

“What do you mean ‘plus or minus 5’?” asks Bob from sales.
“I mean that the number of failures will likely be between 20´

5 “ 15 and 20` 5 “ 25.” You then proceed to compute the exact
probability by summing the probabilities of the individual outcomes
in that range.

code
2.1.19

>>> sum([rvH.pmf(h) for h in range (15 ,25+1)])
0.782950746174042 # = Pr({ 15 <= X <= 25 })

In other words, 78.2% of data centres like ours will experience
between 15 and 25 failures.

You then say “Here is a plot that shows the probabilities of all the
outcomes,” while typing in the commands:

code
2.1.20

>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> hs = np.arange(0, 40)
>>> fHs = rvH.pmf(hs)

2.1 DISCRETE RANDOM VARIABLES 28

>>> plt.stem(fHs)

0 5 10 15 20 25 30 35 40
h

0.00

0.02

0.04

0.06

0.08

f H

pmf of H

Figure 2.12: Plot of the probability mass function of the Poisson model with
parameter λ “ 20. The possible outcomes are clustered around h “ 20 with
most of the probability mass falling in the interval r15, 25s.

Desiring to keep the conversation going, you ask “Other ques-
tions?”

“I have one.” says Charlotte from software engineering. “I want
to know, what is the maximum number of failures that I should plan
for.”

“I can’t answer that question because, theoretically speaking, any
number of failures can occur. What I can do is give you a 95%
confidence interval,” you explain as you’re typing this in:

code
2.1.21

>>> rvH.ppf (0.95)
28

To explain what this number means, you say “95% of the data centres
like ours will not observe more than 28 failures.” If you plan for
28 failures as the worst-case scenario, you know there is only a 5%
chance that what happens next month will not be covered. Charlotte
seems satisfied with the estimate.

David from the marketing department has a question. “Is this
thing that you just did AI?,” he asks, thinking about how he can use
this in the webcopy for the new company website.

“I suppose you could say that, since we’re using probability
distributions and probability distributions are also used in AI,” you
explain, stretching the definitions.

“What about blockchain? Are we using a blockchain for this?”
“No blockchain,” you interject briskly. “Listen David, let’s

proceed one buzzword at a time. You can have ‘AI’ for now. Show
me you can sign $1M worth of new clients using the ‘AI’ buzzword,
then come back to me, and I’ll find another buzzword for you.”

“Okay, deal! I can work with that. AI is hot these days.”
Looking around the room, you sense the meeting is coming to

a close. Everyone is feeling good about their first data science

2.1 DISCRETE RANDOM VARIABLES 29

experience. You decide to wrap things up with some random
number generation. “To close the meeting, let me show you some
examples of the possible numbers of failures we can expect to see
during the next year,“ you say while running the command needed
to generate 12 random samples from the random variable rvH:

code
2.1.22

>>> rvH.rvs (12)
[20, 26, 18, 23, 13, 23, 22, 15, 26, 21, 19, 11]

You hear several low-level “wows” in the room as the concept of
random variable finally sinks in. Simulations of real-world data
always work! Finally people get it—the average is 20, but the
number of failures can vary a lot around that average.

Later that day, you receive a followup email from Emily from
the purchasing department. She wants an estimate of the total cost
she should budget for replacement hard disks. The base price is
$200/disk, but it is reduced to $150/disk if you buy 20 or more disks.
In other words, Emily is asking you to compute EHrcostpHqs, where
the function costphq describes the cost of purchasing h replacement
disks. To compute the answer, you first define a Python function for
the cost:

code
2.1.23

>>> def cost(h):
if h >= 20:

return 150*h
else:

return 200*h

You can then find the expected value of the function cost by
computing the sum over all the possible outcomes, weighing the cost
in each case by the probability of this outcome to occur.

code
2.1.24

>>> sum([cost(h)*rvH.pmf(h) for h in range (0 ,100+1)])
3381.42

Note we truncated the summation up to h “ 100 because the
probabilities fHp101q, fHp102q, etc. are negligibly small.

I hope reading about this real-world scenario convinced you of the
general usefulness of the computer models defined in scipy.stats
for doing probability calculations. The methods available on the
random variable object rvX provide us with ways to compute all
the quantities we introduced in this section using math equations.
This means you don’t have to worry about memorizing all the math
formulas, you just need to learn how to import one of the pre-
defined probability models in scipy.stats, initialize the model with
the correct parameters, then use its methods for the probability
calculations you need. In the above example, we didn’t have to
manually input the complicated-looking math formula fHphq “

2.1 DISCRETE RANDOM VARIABLES 30

λhe´λ

h! for the Poisson distribution, because the method rvH.pmf(h)
already contains this formula!

To create a computer model for a random variable based on
one of the models defined in scipy.stats, use the code rvX =
<model>(<params>), where <model> is the name of the model you
imported from scipy.stats, and <params> is a comma-separated
list of model parameters. The parameters will depend on the
model. You’ll learn about the most important discrete distribution
in Section 2.3. See also the Appendix ?? for a complete list of
distributions and their parameters.

Exercises

In these exercises, we’ll explore the methods of random variable
objects created from scipy.stats models. Exercises E2.14 and E2.15
will use the randint(alpha, beta+1) model, which corresponds to
the discrete probability distribution Udpα, βq. In exercise E2.16, we’ll
use the Poisson model poisson(lam) = Poispλq.

You’ll need to use a Jupyter notebook and run appropriate
commands to import models from scipy.stats, create random
variable objects, then call the methods on these objects to answer the
questions.
E2.14 Let’s reproduce the calculations related to the die-roll random
variable D, which we introduced in Example 2.

a) In a Jupyter notebook, import the randint (discrete uniform
distribution) model from scipy.stats.

b) Create the computer model for the random variable rvD by
initializing using rvD = randint(alpha,beta+1) for an appro-
priate choice of start and stop parameters alpha and beta.

c) Evaluate the probability mass function of the random variable
D (rvD.pmf) for all inputs d in the range from 1 to 6. Do the
values sum to one?

d) Find value of the cumulative distribution function FDp4q by
computing the sum of rvD.pmf values over the appropriate
range of inputs.

e) Compute FDp4q using the method rvD.cdf, and confirm it is the
same as your previous answer.

f) Compute the mean µD and the variance σ2
D of the random

variable D by calling the appropriate methods on rvD.
g) Compute the expected value EDpwq of a game described in

Example 4, with the winnings function is w : t1, 2, 3, 4, 5, 6u Ñ R

defined in code 2.1.9.

E2.15 Consider the random variable D20 which describes the out-

2.1 DISCRETE RANDOM VARIABLES 31

come of rolling a 20-sided die. The random variable D20 follows
the discrete uniform distribution Udp1, 20q, which assigns equal
probability to all values in the sample space t1, 2, 3, . . . , 20u.

a) Create the computer model for the random variable rvD20 using
the code rvD20 = randint(alpha,beta+1), for an appropriate
choice of start and stop parameters alpha and beta.

b) Evaluate the probability mass function of the random variable
D20 (rvD20.pmf) for the input d “ 7.

c) Compute FD20p4q using the sum of rvD20.pmf values over the
appropriate range of inputs.

d) Compute FD20p4q using the method rvD20.cdf.
e) Compute the mean µD20 , the variance σ2

D20
, and the standard

deviation σD20 of the random variable D20 by calling the appro-
priate methods on rvD20.

E2.16 Computer memory errors can be modelled using a Poisson
distribution. Consider the random variable M that describes the
number of memory errors that will occur during a given time
period. You know from past observations that the average number
of memory errors is 40.

a) In a Jupyter notebook, import the poisson model from
scipy.stats.

b) Create the random variable rvM from the poisson model to
describe the number of memory errors by choosing the appro-
priate parameter λ when initializing the model.

c) Compute the mean µM, the variance σ2
M, and the standard de-

viation σM of the random variable M by calling the appropriate
methods on rvM.

d) Compute Prpt33 ď M ď 44uq using the sum of rvM.pmf values
over the appropriate range of inputs.

e) Compute Prpt33 ď M ď 44uq using the method rvM.cdf.
f) Find the smallest value m0.95 such that PrptM ď m0.95uq ě 0.95.
g) Generate 10 observations from the random variable rvM.

2.1.6 Discussion

The focus of this section was to define the basic notions of probability
theory, like random variables and probability distributions. These
are the bread-and-butter concepts of probabilistic reasoning. We’ll
now discuss some extra other topics that are not essential for under-
standing the basics of probability theory, but are still worth a brief
mention.

2.1 DISCRETE RANDOM VARIABLES 32

Bulk of a distribution

We’re often interested in calculating an interval that contains “the
bulk” of the distribution fX . We want to find an interval (a subset
of the sample space) that contains most of the observations of the
random variable X. If we want to compute the interval that contains
95% of the probability mass, we can use the values F´1

X p0.025q and
F´1

X p0.975q.
For example, the interval that contains 95% of the probability

mass for the hard disk failures distribution fH , is given by I0.95 “
r12, 29s “ t12 ď H ď 29u. We can verify this, by computing the
probability of the outcome H P r12, 29s, which gives us

PrptH P I0.95uq “ fHp12q ` fHp13q ` ¨ ¨ ¨ ` fHp29q “ 0.9568.

If we make a prediction that H P I0.95, we’ll be correct 95.68% of
the time. See Figure 2.13 for an illustration of the probability mass
contained in that interval.

0 1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930313233343536373839
h

0.00

0.02

0.04

0.06

0.08

0.10

f H

Bulk of the pmf fH

Figure 2.13: The probability mass of the function fH over the interval
I0.95 “ r12, 29s is 0.9568. Informally, we say this is “bulk” of the weight
of the distribution of the random variable H lies. These are the most likely
outcomes.

The technical term for the interval I0.95 is a 95% confidence interval,
meaning we’re 95% confident that future outcomes of the random
variable H will fall in this interval. This means, if we generate
millions of observations from the random variable H, in the long run,
95% of these observations will be contained in the interval r12, 29s.
Confidence intervals play an important role in statistics: we can
provide a confidence interval whenever we estimate some quantity.
We’ll learn more about confidence intervals in Chapter ??.

2.1 DISCRETE RANDOM VARIABLES 33

Tails of a distribution

Conversely, the “tails” of the distribution contain the unlikely out-
comes for the random variable. Figure 2.14 shows the tails of the
distribution fH , which are defined as the outcomes that are unlikely
to occur. The probability of observing an outcome that is outside the
interval I0.95 is less than five percent:

PrpH R I0.95q “ PrptH ă 12uq ` PrptH ą 29uq “ 0.0432,

or 4.32%, which is a very unlikely event. The probability mass of
the tails is shown in Figure 2.14. The probability in the tails is the
complement of the probability mass shown in Figure 2.13.

0 1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930313233343536373839
h

0.00

0.02

0.04

0.06

0.08

0.10

f H

Tails of the pmf fH

Figure 2.14: Illustration of the tails of the distribution fH for the random
variable H. The probability mass shown corresponds to the outcomes that
are outside the interval I0.95 “ r12, 29s. The total probability mass in the tails
is 0.0432, or 4.32%, which we qualify as “very unlikely.”

Observations in the tails of the distribution are deemed “sur-
prising” and “unexpected.” The notion of “unexpected outcome”
plays a central role in the statistical concept of hypothesis testing
(Section 3.X), which is another of one of the main ideas we’ll study
in Chapter ??.

Interpretations of probability theory

We talked a lot about probability calculations, but we never ex-
plained what probabilities mean. It turns out there are two very
distinct schools of thought on this matter: the frequentist and the
Bayesian interpretations of probability theory.

Frequentist interpretation One conceptual interpretation of prob-
ability theory is to define probabilities as relative frequencies of oc-
currence. In the frequentist paradigm, the probability mass function

2.1 DISCRETE RANDOM VARIABLES 34

fC of the coin toss random variable C describes how likely we are
to observe heads and tails if we were to toss the coin thousands
or millions of times: pc1, c2, . . . , cnq, where n is 1 000, 1 000 000,
or more. The probability of the outcome heads is defined as the
relative frequency of heads outcomes, if we were to draw an infinite
sequence of observations:

fCpheadsq def“ count of ci “ heads
n

as n goes to infinity.

The probability of fCptailsq is analogously defined as the relative
frequency of the outcome ci “ tails, as n goes to infinity.

The frequentist interpretation of probability theory is well suited
for describing random outcomes governed by a well-defined rule or
theory. For example, if we assume a coin is fair, then the probabilities
of heads and tails are equal: fCpheadsq “ fCptailsq “ 1

2 .

Bayesian interpretation Another conceptual interpretation of
probability theory is to consider probability distributions as rep-
resentations of our state of knowledge or beliefs about a given phe-
nomenon. According to the Bayesian point of view, the probability
distribution fC describes our “best guess” about the distribution of
the random variable C, based on our current knowledge.

This approach to probability theory is named after Thomas
Bayes, an 18th century mathematician who came up with a general
principle for updating our beliefs about fC based on data observa-
tions. For example, we start out with some initial belief about the
possible distributions of the coin before we observe any coin tosses.
We then toss the coin n times to obtain the sequence of observations
pc1, c2, . . . , cnq, each ci being either heads or tails. Bayes’ rule tells
us how to update our beliefs about the possible distributions after
observing the data. We’ll describe Bayes’ rule in Section 2.2.4, after
we introduce the notions of conditional and marginal probability
distributions. In Chapter ??, we’ll learn more about the applications
of Bayes’ rule in statistics (see Section ??).

The choice of interpretation for probability doesn’t make a big
difference for practical probability calculations—both interpretations
use the same tools, probability distributions, random variables, and
their observations. Later on in the statistics chapter, we’ll see that
frequentist and Bayesian interpretation lead to different types of
guarantees that we can give when we report statistics results.

2.1 DISCRETE RANDOM VARIABLES 35

Next steps

Okay we’re done. Congratulations on getting through all the defini-
tions, formulas, and calculations introduced in this section. I know it
was a lot of stuff, but the good news is that you’ve now seen all the
key building blocks. If you made it this far, you can probably handle
all the rest of the chapter too!

Let me give you a little preview of what is coming up. In
the next section, we’ll talk about situations that involve multiple
random variables. Instead of a single random variable X described
by a probability distribution function fX , we’ll talk about pairs of
random variables pX, Yqwith a joint probability distribution function
fXY. The analysis of multiple random variables is very important in
statistics, so we’ll make sure to set up a solid foundation for it in
Section 2.2, and again in Section 2.8 when we’ll study the properties
of sequences of n random variables pX1, X2, . . . , Xnq that come from
the same distribution.

In the second half of the chapter, we’ll study continuous random
variables, which are used for describing smoothly varying quantities
like lengths, weights, time intervals, etc. Doing probability calcula-
tions using continuous random variables requires integration, which
is a calculus procedure for calculating the total amount of quantities
that change over time. Don’t worry if you haven’t studied calcu-
lus before: we’ll present a self-contained introduction to calculus
concepts in Section 2.4. We’ll then give the precise definitions and
formulas for continuous random variables in Section 2.5.

Throughout the chapter, we’ll show numerous examples of com-
putations based on the computer models defined in scipy.stats. By
the end of the chapter you’ll have gained experience with all impor-
tant discrete probability models like randint, poisson, bernoulli,
binom, etc. and all the continuous models like uniform, norm, expon,
t, chi2, etc. See Appendix ?? for a complete list of probability
distributions and their parameters.

Knowing these essential building blocks of probability theory
will prepare you for the study of statistics chapters ?? and ??.

Links

[Beautiful visualizations of probability theory topics]
https://seeing-theory.brown.edu/basic-probability/

[Some relevant pages from Wikipedia]
https://en.wikipedia.org/wiki/Probability_theory
https://en.wikipedia.org/wiki/Probability_distribution

https://seeing-theory.brown.edu/basic-probability/
https://en.wikipedia.org/wiki/Probability_theory
https://en.wikipedia.org/wiki/Probability_distribution

2.1 DISCRETE RANDOM VARIABLES 36

[Comprehensive list of hundreds of probability distributions]
https://en.wikipedia.org/wiki/List_of_probability_distributions

[Probability theory chapter from Simon Hubbert’s book]
https://bookdown.org/S_hubbert/mathematics_of_financial_derivatives/Prob-Th.html

[Excellent tutorial and examples of probability mass functions]
https://www.probabilitycourse.com/chapter3/313pmf.php

https://en.wikipedia.org/wiki/List_of_probability_distributions
https://bookdown.org/S_hubbert/mathematics_of_financial_derivatives/Prob-Th.html
https://www.probabilitycourse.com/chapter3/3_1_3_pmf.php

2.2 MULTIPLE RANDOM VARIABLES 37

2.2 Multiple random variables

We’re often interested in analyzing the relationship between two
random variables, like X and Y. Instead of describing the unknown
quantities X and Y separately, we can describe the joint variability of
the pair pX, Yq using the joint probability distribution fXY. Different
types of joint probability distributions fXY can be used to model
different types of relationships between the two random variables.

In this section, we’ll go over some basic definitions and formulas
used for calculations with multiple random variables. We’ll also
introduce some new math concepts like the conditional probability
distribution fY|X , read “probability of Y given X,” which describes
the uncertainty about Y that remains once we observe the value of X.
The joint probability distribution fXY and the conditionals fY|X and
fX|Y, and useful “tools” for modelling the relations between random
variables, as you’ll see through the examples in this section.

Unlike the previous section which was very dense in new con-
cepts, math formulas, and code examples, this section is compara-
tively light on new material and won’t demand too much cognitive
effort. You deserve a break after all the math formulas we went
through in the previous section. The formulas and calculations in
this section are simple extensions of what we learned about random
variables in the previous section. Since we’re dealing with multiple
variables, the graphical representation of probability distributions
will look different, but apart from that, there won’t be any new ideas.

2.2.1 Definitions

Consider the pair of random variables pX, Yq defined over the
sample space X ˆY , which is the product of the sample spaces for the
two random variables X and Y . We call X ˆ Y the joint sample space
of the random variables pX, Yq. A particular outcome in the joint
sample space looks like a pair of numbers px, yq, where x is the value
observed for the random variable X, and y is the value observed
for the random variable Y. Geometrically speaking, the joint sample
space is a two-dimensional region.

At this point, it might be worth clarifying again that a “joint
sample space” is not some kind of establishment that you visit to
try different types of marijuana smokables. Rest assured, learning
about multi-variable probability distributions will lead you to some
all-natural experiences of knowledge buzz, as you learn about some of
the most important probability ideas, which form the foundation of
statistics.

• X, Y: a pair of random variables

2.2 MULTIPLE RANDOM VARIABLES 38

• X ˆY : the joint sample space of the random variables X and Y
• fXYpx, yq the joint probability mass function of the random vari-

ables X and Y. The function fXY has the form fXY : X ˆ Y Ñ
r0, 1s, and it tells us the probability of each of the possible
outcomes:

fXYpx, yq def“ PrptX “ x, Y “ yuq,
for all x P X and y P Y .

The math machinery for working with multiple random variables
is similar to what we saw in the previous section for the single-
variable case, but we’ll be working with functions like fXYpx, yq that
depend on two or more inputs, instead of single-variable functions
like fXpxq.

The outcomes in the joint sample space consists of subsets of the
sample space. For example, the outcome where X takes on a value
between x “ a and x “ b, and Y takes on a value between y “
c and y “ d is written as A “ ta ď X ď b, c ď Y ď du in set
notation, or alternatively as A “ tpX, Yq P NˆN | X P ra, bs, Y P
rc, dsu. Another, more compact, representation of this outcome is as a
product of intervals A “ ra, bs ˆ rc, ds. Geometrically speaking, this
outcome describes a rectangular region with width b´ a and height
d ´ c. The probability of this outcome A is obtained by calculating
the sum of the probability mass function fXY over all the values in
the subset A:

PrpAq “
ÿ

px,yqPA

fXYpx, yq “
x“b
ÿ

x“a

y“d
ÿ

y“c
fXYpx, yq.

Up until here there is nothing new going on. The concept of a joint
probability mass function fXY is directly analogous to the probability
mass functions we saw in the previous section, but with more
dimensions. You have to trust me on this one—double summations
formulas might look intimidating, but there is nothing fancy going
on. It’s still the same idea of calculating the “total” amount of fXY
over a set of outcomes.

Marginal and conditional distributions

Starting from the joint probability mass function fXYpx, yq, we can
define the marginal and conditional probability distributions.

The process of marginalization describes the uncertainty in one
random variable when we don’t know the other random variable:

• fXpxq def“ ř

yPY fXYpx, yqdy is the marginal distribution for the
random variable X. The marginal distribution fX describes

2.2 MULTIPLE RANDOM VARIABLES 39

the uncertainty in the random variable X when the random
variable Y is unknown.

• fYpyq def“ ř

xPX fXYpx, yqdx is the marginal distribution for the
random variable Y.

When a random variable is unknown, we model our ignorance of its
value by summing over all the possible values it can take.

Conditional distributions

The process of conditioning describes what happens when we know
one of the random variables, and we want to quantify the uncer-
tainty that remains in the other random variable:

• fX|Ypx|yq def“ PrptX “ xu|tY “ yuq is the conditional distribution
of X given Y. The vertical bar “|” is read “given.” Suppose
we know the outcome tY “ yu has occurred. What is the
distribution of the random variable X given that tY “ yu has
been observed? The conditional distribution function fX|Ypx|yq
tells us the answer to this question.

• fY|Xpy|xq def“ PrptY “ yu|tX “ xuq is the conditional distribution
of Y given X.

Conditional distributions fX|Y and fY|X are the main tools we use to
model relations between random variables, as you see in the rest of
this section.

2.2.2 Joint probability distributions

The joint probability distribution fXY is our main tool for modelling
relationships between two random variables X and Y. By choosing
the appropriate function fXY, we can describe and model various
relationships between random variables. Since the probability mass
function fXYpx, yq has two inputs, we can plot the distribution as a
two-dimensional contour plot, with darker shaded regions indicating
higher values, as shown in Figure 2.15. The exact formula for
the probability mass function fXYpx, yq shown in Figure 2.15 is not
important; we’re just using this probability mass function as an
example.

Like all probability distributions, the joint probability distribu-
tion has nonnegative values, fXYpx, yq ě 0 for all px, yq P X ˆY , and
the total amount of probability is one

ř

px,yqPXˆY fXYpx, yq “ 1.

2.2 MULTIPLE RANDOM VARIABLES 40

Figure 2.15: Graphical representation of a joint probability distribution fXY :
X ˆ Y Ñ r0, 1s, where |X | “ 14 and |Y | “ 8. The darkness of each square
px, yq represents is proportional to its mass.

Example 1: two coin tosses Consider the random experiment in
which we toss a fair coin two times. We’ll model the outcome of each
coin toss as a random variable C P theads, tailsu, with probability
mass function fC defined as fCpheadsq “ 1

2 and fCptailsq “ 1
2 .

The joint sample space for the two coin tosses contains four
possible outcomes:

theads, tailsu ˆ theads, tailsu “ tpheads, headsq, pheads, tailsq,
ptails, headsq, ptails, tailsqu.

The joint probability mass function fC1C2pc1, c2q that describes the
two coin toss experiment is

fC1C2pc1, c2q “ fCpc1q ¨ fCpc2q “ 1
2 ¨ 1

2 “ 1
4 .

Note the joint probability mass function fC1C2 is the product of the
probability mass functions for the individual coins fC. Figure 2.16
shows a stem plot of the joint probability mass function fC1C2 . The
height of each stem corresponds to the probability of this outcome.

Figure 2.17 shows a graphical representation of fC1C2 as a tree
diagram, which describes the sequence of coin tosses. Reading the
diagram from left to right, we coin toss C1 causes a “split” in the
world of possibilities into two branches, then the second coin C2
causes another split, so in the end there are four possible outcomes.
To compute the probability of each outcome, we work our way
backward and multiply together the probabilities observed along
each branch.

The total probability over all possible outcomes satisfies Kol-
mogorov’s second axiom:

ÿ

c1Ptheads,tailsu

ÿ

c2Ptheads,tailsu
fC1C2pc1, c2q “ 1.

2.2 MULTIPLE RANDOM VARIABLES 41

c1

heads

tails

c 2

heads

tails

f C
1C

2

0.00
0.05
0.10
0.15
0.20
0.25

0.30

Figure 2.16: Graph of the joint probability mass function fC1C2 for the two
coin tosses.

First
coin C1

Second
coin C2

fC1C2ptails, tailsq “ 1
2 ¨ 1

2

tails
1

2

fC1C2ptails, headsq “ 1
2 ¨ 1

2hea
ds

1
2

tails
1

2

Second
coin C2

fC1C2pheads, tailsq “ 1
2 ¨ 1

2

tails
1

2

fC1C2pheads, headsq “ 1
2 ¨ 1

2hea
ds

1
2

he
ad
s

1
2

Figure 2.17: Tree diagram of the joint probability mass function fC1C2 for two
coin tosses.

If we want to compute the probability of “one heads,” we need to
sum together all the possible outcomes that contain one heads, of
which there are two:

Prptone headsuq “ fC1C2pheads, tailsq ` fC1C2ptails, headsq
“ 1

4 ` 1
4 “ 1

2 .

Example 2: rolling a pair of dice Consider the pair of random
variables pD1, D2q that represent the outcome of rolling two balanced
dies. The random variables D1 and D2 are both described by
probability mass function fDpdq “ 1

6 , for all d in the sample space
t1, 2, 3, 4, 5, 6u. Their joint probability mass function fD1D2 is the
product of the two copies of the distribution fD:

fD1D2pd1, d2q “ fDpd1q ¨ fDpd2q “ 1
6 ¨ 1

6 “ 1
36 .

2.2 MULTIPLE RANDOM VARIABLES 42

d1

1
2

3
4

5
6

d 2

1

2

3
4

5
6

f D
1D

2

0.00

0.01

0.02

0.03

0.04

0.05

Figure 2.18: Graph of the joint probability mass function fD1D2 for the two
die rolls.

Suppose we want to calculate the probability of “rolling a seven,”
which is described by the equation D1 `D2 “ 7, which corresponds
to the set of outcomes tp1, 6q, p2, 5q, p3, 4q, p4, 3q, p5, 2q, p6, 1qu. The
probability of this outcome is the sum of fD1D2 over this set of
outcomes:

PrptD1 `D2 “ 7uq “ Prptp1, 6q, p2, 5q, p3, 4q, p4, 3q, p5, 2q, p6, 1quq
“ fD1D2p1, 6q ` fD1D2p2, 5q ` fD1D2p3, 4q

` fD1D2p4, 3q ` fD1D2p5, 2q ` fD1D2p6, 1q
“ 6

` 1
6 ` 1

6 ` 1
6 ` 1

6 ` 1
6 ` 1

6

˘ “ 1
6 “ 0.16.

Geometrically speaking, this summation corresponds to adding up
the total length of stems on the diagonal line that goes from p1, 6q
until p6, 1q, as shown in Figure 2.19.

Marginal distribution functions

The marginal probability mass function fX is obtained from the joint
distribution fXY by summing over all possible outcomes of the
variable Y:

fXpxq def“
ÿ

yPY
fXYpx, yq.

The idea for a marginal distribution fX is to get rid of the Y
randomness, which corresponds to a description of the random
variable X when the random variable Y is unknown. The name
marginal distribution comes from the procedure we use to compute
it, by summing all y values for a given x and writing the total in the
margin. See Figure 2.20 for an illustration, and also recall Table ??

2.2 MULTIPLE RANDOM VARIABLES 43

d1

1
2

3
4

5
6

d 2

1

2

3
4

5
6

f D
1D

2

0.00

0.01

0.02

0.03

0.04

0.05

Figure 2.19: Subset of the weights of the joint probability mass function
fD1D2 that corresponds to the outcome D1 `D2 “ 7.

on page ??, where we used a similar procedure for computing the
marginal frequencies in a dataset using a two-way table.

Figure 2.20: Marginal distribution fX is obtained by summing all the values
of fXY in each column. Marginal distribution fY is obtained by summing all
the values of fXY in each row.

The marginal distributions fY is obtained from the joint distribution
fXY similarly by summing over all possible values of the variable X:

fYpyq “
ÿ

xPX
fXYpx, yq.

The marginal distribution fY describes the randomness of Y when
we don’t know the value of X.

The marginal distributions of the first coin toss fC1 is equal to
the probability of a single coin toss fC, as shown in the following

2.2 MULTIPLE RANDOM VARIABLES 44

calculation:

fC1pc1q “
ÿ

c2Ptheads,tailsu
fC1C2pc1, c2q

“
ÿ

c2Ptheads,tailsu
fCpc1q fCpc2q

“ fCpc1q
���

���
���

�:1ÿ

c2Ptheads,tailsu
fCpc2q

“ fCpc1q.
Similarly, the marginal of C2 is fC2 “ fC.

The marginal distributions fD1 and fD2 of the two-die rolls joint
distribution fD1D2 correspond to the probabilities of a single die roll:

fD1 “ fD and fD2 “ fD.

Indeed, whenever the joint probability distribution for two random
variables is the product of two distributions fXY “ fX ¨ fY, the
marginals of this joint distribution will be fX and fY. The technical
term for this “product structure” of joint probability mass functions
is independence, meaning the probabilities of the X outcomes are
independent (not related to) the outcomes of the random variable
Y.

The opposite of independent random variables, are “dependent”
random variables, meaning the outcome of one variable depends
on the outcome of another. In the next section, we’ll learn how to
describe the dependence between random variables using conditional
probability distributions.

2.2.3 Conditional probability distributions

The conditional probability mass functions fX|Y and fY|X are defined as
follows:

fX|Ypx|yq def“ fXYpx, yq
fYpyq and fY|Xpy|xq def“ fXYpx, yq

fXpxq .

Intuitively, the conditional distribution fX|Ypx|yq has the effect of
“focussing” the sample space on the subset of outcomes where tY “
yu. We divide by the normalization factor fYpyq is order to make
fX|Y a valid distribution (sums to one) over the sample space X . See
Figure 2.21 for an illustration.

The vertical bar is pronounced “given” and describes situations
where the realization of some random variables is known. For exam-
ple, the conditional distribution fY|Xpy|xaq describes the probabilities

2.2 MULTIPLE RANDOM VARIABLES 45

of the random variable Y, given we know the value of the random
variable X is xa. The distribution fY|Xpy|xbq describes the separate
case when X “ xb, and in general, there is a different distribution for
each of the possible x P X .

Figure 2.21: Conditional distributions fY|Xpy|xq represent different vertical
slices through the joint distribution. Similarly, conditional distributions
fX|Ypx|yq are horizontal slices of the joint distribution.

If you know fY|X and fX , then you can reconstruct the joint
distribution fXY by computing:

fXYpx, yq “ fY|Xpy|xq ¨ fXpxq.
This is called the chain rule of probability theory. Convince yourself
that the sequential description of outcomes shown on the right side
of the equation is a valid description of the randomness in the
random variables pX, Yq.

We can use a tree diagram to provide a visual explanation of the
chain rule fXYpx, yq “ fY|Xpy|xq ¨ fXpxq. Suppose X “ ta, bu and Y “
t1, 2u, which means the joint sample space is four possible outcomes
ta, bu ˆ t1, 2u “ tpa, 1q, pa, 2q, pb, 1q, pb, 2qu. The tree diagram in
Figure 2.22 illustrates the sequence of steps “observe X then observe
Y.”

Let’s look at the outcome pX, Yq “ pb, 1q in particular. The
probability of this outcome can be obtained by multiplying together
the probability of the outcomes tX “ bu and the outcome tY “
1|X “ bu: fXYpb, 1q “ fXpbq fY|Xp1|bq, where fXpbq and fY|Xp1|bq
are the two probability weights on the “path” to this outcome. The
probabilities of all outcomes are obtained similarly, by multiplying
the probabilities along the paths that lead to them.

The chain rule can also be applied in the opposite order, by
imagining the “observe Y then observe X” scenario. If we know the
distributions fY and fX|Y, we can write the joint distribution fXY as
fXYpx, yq “ fX|Ypx|yq ¨ fYpyq.

2.2 MULTIPLE RANDOM VARIABLES 46

X

Y|X“b

fXYpb, 2q “ fXpbq fY|Xp2|bq
2

pY|X p2|bq

fXYpb, 1q “ fXpbq fY|Xp1|bq1

pY|Xp1|b
q

b
fX pbq

Y|X“a

fXYpa, 2q “ fXpaq fY|Xp2|aq
2

pY|X p2|aq

fXYpa, 1q “ fXpaq fY|Xp1|aq1

pY|Xp1|a
q

a

f Xpaq

Figure 2.22: Tree diagram of the sequential computations of the probabilities
fXY based on the chain rule.

The following examples illustrate joint probability mass func-
tions fXY defined in terms of a marginal distribution fX and the
conditional distributions fY|X .

Example 3: coin toss followed by a conditional die roll Suppose
you’re playing a game that involves a coin toss followed by rolling
one of two dice. Let C denote the outcome of the coin toss and D
denote the outcome of the die roll. First you toss a fair coin, described
the random variable C P theads, tailsu. The outcome of the coin
toss determines which die to roll. If the coin comes out heads you’ll
throw the six sided die, else if the coin comes out tails you’ll throw
the tetrahedral die.

The probability distribution of the coin is pXpheadsq “
pXptailsq “ 1

2 . The probability mass function of the six-sided
die is pY|Xpy|headsq “ 1

6 , for y P t1, 2, 3, 4, 5, 6u. The probability
distribution for the tetrahedral (four sides) die is pY|Xpy|tailsq “ 1

4 ,
for y P t1, 2, 3, 4u.

Since the sample space Y has only six possible outcomes, we can
express the conditional probability mass functions by writing them
as lists of six values:

pY|Xpy|headsq “ r 1
6 , 1

6 , 1
6 , 1

6 , 1
6 , 1

6 s, pY|Xpy|tailsq “ r 1
4 , 1

4 , 1
4 , 1

4 , 0, 0s.

The marginal probability distribution pYpyq can then be written as

2.2 MULTIPLE RANDOM VARIABLES 47

c

heads

tails

d

1
2

3
4

5
6

f C
D

0.000
0.025
0.050
0.075
0.100
0.125
0.150
0.175
0.200

Figure 2.23: Graph of the joint probability mass function fCD for a game
involving a coin toss, and rolling a six-sided die D or a tetrahedral die D4.

the weighted sum of the two conditional distributions:

pYpyq “ pY|Xpy|headsqpXpheadsq ` pY|Xpy|tailsqpXptailsq
“ r 1

6 , 1
6 , 1

6 , 1
6 , 1

6 , 1
6 s ¨ 1

2 ` r 1
4 , 1

4 , 1
4 , 1

4 , 0, 0s ¨ 1
2

“ r 1
12 , 1

12 , 1
12 , 1

12 , 1
12 , 1

12 s ` r 1
8 , 1

8 , 1
8 , 1

8 , 0, 0s
“ r 5

24 , 5
24 , 5

24 , 5
24 , 1

12 , 1
12 s.

Note the outcomes t1, 2, 3, 4u for the random variable Y in the
marginal distribution fY are more likely, since they can be observed
either from the six-sided die or from the four-sided die.

We can verify that the sum of the marginal’s weights satisfies
Kolmogorov’s second axiom:

řy“6
y“1 pYpyq “ 4 ¨ 5

24 ` 2 ¨ 1
12 “ 1.

Example 4: medical diagnostic test Consider a doctor interpreting
the results of a diagnostic test that is meant to detect if a patent has a
given virus. We can describe the “has virus” unknown as a random
variable V P t0, 1u, and the outcome of the test as a random variable
T P t1, 0u (either positive or negative).

The doctor knows the current prevalence of the virus in the pop-
ulation is 3%, meaning PrpV “ 1q “ 0.03 for individuals randomly
selected from the local population.

The sensitivity of the test is 90%, meaning if the probability of
correctly detecting the virus in a patient who has the virus is 0.9.
Expressed as a conditional distribution, this tells us, when V “ 1,
the conditional probability of the random variable T is

fT|VpT “ 1|V “ 1q “ 0.9 and fT|VpT “ 0|V “ 1q “ 0.1.

2.2 MULTIPLE RANDOM VARIABLES 48

Coin toss C

Tetrahedral
die D4

fCDptails, 4q “ 1
2 ¨ 1

4

4
1

4

fCDptails, 3q “ 1
2 ¨ 1

4

3
1
4

fCDptails, 2q “ 1
2 ¨ 1

4
2
1
4

fCDptails, 1q “ 1
2 ¨ 1

41
1
4

tails1
2

Six-sided
die D

fCDpheads, 6q “ 1
2 ¨ 1

6

6
1

6

fCDpheads, 5q “ 1
2 ¨ 1

6

5
1

6

fCDpheads, 4q “ 1
2 ¨ 1

6

4
1
6

fCDpheads, 3q “ 1
2 ¨ 1

6
3
1
6

fCDpheads, 2q “ 1
2 ¨ 1

62
1
6

fCDpheads, 1q “ 1
2 ¨ 1

61
1

6

he
ad
s

1
2

Figure 2.24: Tree diagram of the joint probability mass function fCD for the
game.

Note sensitivity of 90% means this test will fail to detect the virus in
10% of patients that have it. Another way to describe this situation
is to say the test has a false negative rate of 10%.

The doctor also knows that the specificity of the test is 80%,
meaning it correctly predicts the absence of the virus for patients
that don’t have it with probability 0.8:

fT|VpT “ 0|V “ 0q “ 0.8.

Equivalently, we can say specificity of 80% corresponds to a false
positive rate of 20%, which is the probability of obtaining a positive
test for a patient that doesn’t have the virus:

fT|VpT “ 1|V “ 0q “ 0.2.

By combining the information for the general virus prevalence
PrpV “ 1q “ 0.03, PrpV “ 0q “ 0.97, and properties of the test
(sensitivity fT|V“1 and specificity fT|V“0), the doctor can obtain a
complete view of the joint probability mass function fVT for this
population:

fVTpv, tq “ fT|Vpt|vq fVpvq.

2.2 MULTIPLE RANDOM VARIABLES 49

The values of the probability mass function are

fVTp0, 0q “ fT|Vp0|0q fVp0q “ 0.8 ¨ 0.97 “ 0.776,

fVTp0, 1q “ fT|Vp1|0q fVp0q “ 0.2 ¨ 0.97 “ 0.194,

fVTp1, 0q “ fT|Vp0|1q fVp1q “ 0.1 ¨ 0.03 “ 0.003,

fVTp1, 1q “ fT|Vp1|1q fVp1q “ 0.9 ¨ 0.03 “ 0.027.

Figure 2.25 shows a graph of the joint probability mass function fVT .

v

0

1

t

0

1

f V
T

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Figure 2.25: Graph of the joint probability mass function fVT .

We can also represent the joint distribution fVT by constructing a
tree diagram, as shown in Figure 2.26.

V

T|V“1

fVTp1, 1q “ 0.03 ¨ 0.9 “ 0.027

T “ 1
0.9

fVTp1, 0q “ 0.03 ¨ 0.1 “ 0.003
T “ 0

0.1

V “ 10.03

T|V“0

fVTp0, 1q “ 0.97 ¨ 0.2 “ 0.194

T “ 1
0.2

fVTp0, 0q “ 0.97 ¨ 0.8 “ 0.776
T “ 0

0.8

V “
0

0.97

Figure 2.26: Tree diagram of the joint probability mass function fVT .

The marginal distribution of the test outcomes is given by

fTptq “
v“1
ÿ

v“0

fVTpv, tq “ fVTp0, tq ` fVTp1, tq,

2.2 MULTIPLE RANDOM VARIABLES 50

The probability of observing a positive test is given by

fTp1q “ fVTp0, 1q ` fVTp1, 1q
“ fT|Vp1|0qpVp0q ` fT|Vp1|1qpVp1q
“ 0.2 ¨ 0.97` 0.9 ¨ 0.03 “ 0.221.

Note there are two contributions to this probability, either the
patient has the virus and we correctly detected it (the second term
fT|Vp1|1qpVp1q), or the patent doesn’t have the virus and the test
result is a false positive (the first term fT|Vp1|0qpVp0q).

The probability of observing a negative test is given by

fTp0q “ fVTp0, 0q ` fVTp1, 0q
“ fT|Vp0|0qpVp0q ` fT|Vp0|1qpVp1q
“ 0.8 ¨ 0.97` 0.1 ¨ 0.03 “ 0.779.

Again, the probability has two contributions: a contribution from the
correct false test outcome for patients that don’t have the virus, and
a contribution from the false negative rate of the test for patients that
have the virus.

Knowing the joint distribution fVT and the marginal distribution
fT will allow the doctor to make accurate probability statements
when interpreting the test result. In particular, the doctor can
quantify the probability of having the virus if the result of the test
is positive, fV|Tpv|T “ 1q. We’ll complete this calculation later in this
section, after learning about the “math tool” we need to obtain the
answer (Bayes’ rule).

2.2.4 Probability formulas and rules

Based on the above definitions, we can derive several useful formu-
las that will help us when doing calculations with multiple random
variables.

Chain rule

The chain rule states that we can decompose the joint distribution
fXY as the product of the conditional distribution fY|X and marginal
distribution fX :

fXYpx, yq “ fY|Xpy|xq ¨ fXpxq.

In words, this means the joint-uncertainty in pX, Yq can be broken
down into X-uncertainty, and Y-given-X-uncertainty. Note this

2.2 MULTIPLE RANDOM VARIABLES 51

formula is just a consequence of the way we defined conditional
probability distribution fY|Xpy|xq def“ fXYpx,yq

fXpxq .
We can extend the chain rule to three random variables X, Y, Z,

to obtain the following decomposition:

fXYZpx, y, zq “ fZ|XYpz|x, yq ¨ fY|Xpy|xq ¨ fXpxq.
This randomness in the joint distribution fXYZ can be understood
composed of three parts: X randomness, Y given X randomness,
and Z given X and Y randomness. This is where the name “chain
rule” comes from: it allows us to write the joint distribution fXYZ as
a chain of conditional distributions.

Law of total probability

Consider the random variables X and Y with sample spaces X
and Y . The marginal distribution fX is defined as the following
summation:

fXpxq “
ÿ

yPY
fXYpx, yq

In words, this means the probability of the event tX “ xu can be
obtained as the sum of joint probabilities over all possible outcomes
of the random variable Y. If we define Y “ ty1, y2, . . . , ynu, we can
write the formula explicitly as

fXpxq “ fXYpx, y1q ` fXYpx, y2q ` ¨ ¨ ¨ ` fXYpx, ynq.
The name total probability comes from the idea that we’re comput-
ing fXpxq by adding up the total of fXpx, yq for all possible outcomes
of the random variable Y.

Bayes’ rule

Bayes’ rule is a simple observation that combines the chain rule and
the law of total probability to obtain an extremely useful formula:

fY|Xpy|xq “
fXYpx, yq

fXpxq “ fX|Ypx|yq fYpyq
fXpxq “ fX|Ypx|yq fYpyq

ř

y1PY fX|Ypx|y1q fYpy1q .

The first equality is follows from the definition of conditional proba-
bility distribution fY|Xpy|xq def“ fXYpx,yq

fXpxq . The second equality follows
from the chain rule fXYpx, yq “ fY|Xpy|xq fXpxq. Finally, the third
equality is obtained by rewriting the denominator using the law of
total probability: fXpxq “

ř

y1PY fXYpx, y1q, but using the different

2.2 MULTIPLE RANDOM VARIABLES 52

summation variable y1 to avoid confusion with the variable y used
in the numerator.

Bayes’ rule is a recipe for “inverting” the conditioning relation
between two random variables: it allows us to write fY|X in terms
of an expression that involves fX|Y and fY only. This turns out to
be a very useful procedure, since many real-world situations can be
described by conditional distributions fX|Y, but the questions we’re
interested in answering are related to fY|X .

In Section ?? we’ll learn Bayesian statistics, which is an approach
to statistical modelling and inference that is based on Bayes rule. For
now, we’ll just look at a simple example to illustrate the “inverting”
conditional probabilities.

Example 4 continued The doctor wants to calculate the probability
fV|Tpv|t “ 1q, which describes the probability of a patient having
the virus if the diagnostic test result is positive. The doctor knows
the specificity and the specificity of the test, which describe the
conditional distribution fT|V , but we’re interested in the distribution
fV|T . This seems like the perfect moment to apply Bayes’ rule.

Let’s start by writing the general formula for Bayes’ rule, as it
applies to the random variables V and T:

fV|Tpv|tq “
fT|Vpt|vq fVpvq

ř

v1Pt0,1u fT|Vpt|v1q fVpv1q “
fT|Vpt|vq fVpvq

fT|Vpt|0q fVp0q ` fT|Vpt|1q fVp1q .

The second equation was obtained by expanding the summation,
over the sample space for the random variable V, which consists of
only two elements.

We’re interested in the case when the patient has tested positive
t “ 1, so we can rewrite the general formula for this specific case:

fV|Tpv|t “ 1q “ fT|Vp1|vq fVpvq
fT|Vp1|0q fVp0q ` fT|Vp1|1q fVp1q “

fT|Vp1|vq fVpvq
fTp1q .

Note we simplified the denominator, identifying the sum
fT|Vp1|0q fVp0q ` fT|Vp1|1q fVp1q as the value of the marginal fTp1q.

We can now compute the probability the patient has a virus
fV|Tpv “ 1|t “ 1q, by substituting the relevant quantities:

fV|Tp1|t “ 1q “ fT|Vp1|1q fVp1q
fTp1q “ 0.9 ¨ 0.03

0.221
“ 0.122,

where we used the value fTp1q “ 0.221 we computed earlier (see
Example 4).

2.2 MULTIPLE RANDOM VARIABLES 53

Bayes’ rule tells us the probability a patient has the virus, given
they tested positive, is only fV|Tpv “ 1|t “ 1q “ 12.2%, which is very
surprising. This low percentage can mostly be attributed to the low
specificity of the test, which leads to many false positive results.

In exercise EE you’ll asked to compute the probability a patient
has the virus given the result of the diagnostic test is negative,
fV|Tpv|t “ 0q, using Bayes’ rule. In problem PP you’ll be asked to
analyze a different diagnostic test S with much higher specificity
(98%), and observe how the probability fV|Spv “ 1|s “ 1q is affected.

Multivariable expectations

Recall the notion of expected value EXrwpXqs def“ ř

xPX wpxq ¨ fXpxq,
which evaluates the weighted average of the function wpXq over all
possible outcomes of the random variable X.

The multivariable expectation formula is similarly defined.
Given any function wpX, Yqwhich depends on the random variables
X and Y, the expected value of wpX, Yq under the probability mass
function fXY is defined as the summation:

EXYrwpX, Yqs def“
ÿ

px,yqPXˆY
wpx, yq ¨ fXYpx, yq.

The sample space of fXY is two-dimensional, so we must sum over
all possible pairs of values px, yq from the sample space X ˆY .

Multivariable expectation has the following properties, which are
similar to the properties of single-variable expectations:

• EXYrcs “ c
• EXYrα ¨ gpX, Yqs “ α ¨EXYrgpX, Yqs
• EXYrgpX, Yq ` hpX, Yqs “ EXYrgpX, Yqs `EXYrhpX, Yqs

The latter two properties can be combined, to show the expectation
operator EXY obeys the linear property:

EXYrαgpX, Yq ` βhpX, Yqs “ αEXYrgpX, Yqs ` βEXYrhpX, Yqs.
Additionally, we have the following simplification formulas when
computing expectations of functions that depend on only one of the
two variables:

• EXYrgpXqs “ EXrgpXqs
• EXYrhpYqs “ EYrhpYqs

The first formula holds because the randomness in gpXq doesn’t
depend on Y, so EXY is equivalent to EX . Similarly, EXY “ EY when
computing the expectation of hpYq, which doesn’t depend on X.

2.2 MULTIPLE RANDOM VARIABLES 54

The expected value of a sum of random variables X ` Y is the
sum of their expectations:

EXYrX`Ys “ EXYrXs `EXYrYs “ EXrXs `EYrYs.
The first equality follows from the linear property of the expectation
operator. The second equality follows from the simplification for-
mulas EXYrgpXqs “ EXrgpXqs, and EXYrhpYqs “ EYrhpYqs, which
we just learned about.

The main reason we’re learning about the expectation operator is
because it is used to define the covariance operation, which we’ll see
in the next section.

Covariance and correlation

Recall the formula varpXq “ EX
“pX´ µXq2

‰

, which computes the
variance of a single random variable X. The covariance is a general-
ization of the variance formula defined for two random variables:

covpX, Yq “ EXYrpX´ µXqpY´ µYqs
“

ÿ

xPX

ÿ

yPY
px´ µXqpy´ µYq fXYpx, yq,

where µX “ EXrXs and µY “ EYrYs are the means of the marginal
distributions fX and fY. In words, the covariance covpX, Yqmeasures
the joint variability of two random variables X and Y. The covariance
formula obeys the following properties:

• covpX, Xq “ varpXq
• covpX, Yq “ covpY, Xq
• varpX`Yq “ varpXq ` varpYq ` 2covpX, Yq
• covpX, aq “ 0
• covpX` c, Y` dq “ covpX, Yq
• covpaX, bYq “ ab covpX, Yq
• ´µXµY ď covpX, Yq ď µXµY

Using the properties of expectations, we can rewrite the covariance
formula as follows:

covpX, Yq “ EXYrpX´ µXqpY´ µYqs
“ EXYrXY´ XµY ´YµX ` µXµYs
“ EXYrXYs ´EXYrXsµY ´EXYrYsµX ` µXµY

“ EXYrXYs ´ µXµY ´ µYµX ` µXµY

“ EXYrXYs ´ µXµY.

2.2 MULTIPLE RANDOM VARIABLES 55

In words, this calculation tells us the covariance covpX, Yq can be
computed as the expectation of the product XY minus the product
of the means of the marginals.

Thus we have an alternative formula for calculating the covari-
ance:

covpX, Yq “ EXYrXYs ´ µXµY,

which is can be easier to compute, since it requires only computing
the single expectation.

The correlation between the random variables X and Y is denoted
corrpX, Yq or ρXY. The correlation between X and Y is defined as
the ratio of the covariance covpX, Yq to the product of the variables’
standard deviations:

corrpX, Yq “ covpX, Yq
σX σY

.

Dividing the covariance by the product of the standard deviations
σXσY has a normalizing effect, constraining the correlation corrpX, Yq
to always be between ´1 and 1.

Recall we’ve already seen the concepts of covariance and correla-
tion earlier in Section ??, when we learned about descriptive statis-
tics. We measured association between two variables x and y in a
dataset tpx1, y1q, px2, y2q, . . . , pxn, ynqu, by computing the Covpx, yq “

1
n´1

řn
i“1pxi ´Meanxqpyi ´Meanyq and Corrpx, yq “ Covpx,yq

sxsy
. The

difference is that we’re now computing covariance and correla-
tion based on probability distributions that represent all possible
observations from the probability distribution fXY, instead of one
particular dataset of observations.

The correlation corrpX, Yq measures the strength of the associa-
tion between the variables X and Y, under the assumption that the
underlying dependence is a linear relationship. We’ll learn more
about modelling linear relationships between random variables in
Chapter ??.

* * *

The formulas and equations we showed in this section apply to all
joint probability distribution of multiple random variables. In the
next section, we’ll discuss an important special case of independent
random variables, and see how many of the formulas and equations
become simpler when random variables are independent.

2.2 MULTIPLE RANDOM VARIABLES 56

2.2.5 Independent random variables

Two random variables X and Y are called independent if their joint
probability distribution can be written as the product of two inde-
pendent distributions:

fXYpx, yq “ fXpxq fYpyq.
Intuitively, the randomness of X does not depend on the randomness
of Y, and vice versa. This means all probability calculations with the
pair of random variables pX, Yq can be simplified by analyzing X and
Y separately.

When X and Y are independent random variables, the condi-
tional distribution function fY|X is equal to the marginal distribution
fY. In other words, knowing the value of X doesn’t change anything
about our uncertainty of Y. Similarly, the conditional distribution
fX|Y is equal to the marginal fX .

Formulas for independent random variables

Let’s revisit the expectations and covariance formulas for two ran-
dom variables X and Y, in the special case when X and Y are
independent.

The expected value of the product XY is the product of their
expectations:

EXYrXYs “ EXrXs ¨EYrYs. (when X and Y independent)

This follows because the X-randomness is independent of the Y-
randomness, so we can split the two expectations.

If we substitute this result into the general formula for covariance
covpX, Yq, we obtain

covpX, Yq “ EXYrXYs ´ µXµY

“ EXrXs ¨EYrYs ´ µXµY (when X and Y independent)
“ µXµY ´ µXµY “ 0,

which tells us the covariance of two independent random variables
is zero. The third equation follows from the definitions of the means:
µX

def“ EXrXs and µY
def“ EYrYs.

Since the correlation coefficient corrpX, Yq is proportional to the
covariance covpX, Yq, the correlation coefficient is also zero:

corrpX, Yq “ 0. (when X and Y independent)

2.2 MULTIPLE RANDOM VARIABLES 57

Another useful formula we can obtain states that the variance of the
sum of two independent variables is the sum of their variances:

varpX`Yq “ varpXq ` varpYq. (when X and Y independent)

This follows from the general formula for varpX ` Yq that we saw

earlier, varpX ` Yq “ varpXq ` varpYq ` 2���
��: 0

covpX, Yq, where the last
term is zero because covpX, Yq “ 0 when X and Y are independent.

Multiple independent, identically distributed variables

Let’s generalize what we learned about two independent random
variables X and Y, to the case of n independent random variables
X1, X2, . . ., Xn. We’ll assume that each of the random variables Xi is
an instance of the same probability distribution fX .

The analysis of sequences of random variables pX1, X2, . . . , Xnq,
where each Xi „ fX , is very important for statistics, so it’s worth
taking a closer look at the formulas we can derive for describing
sequences of n independent copies of the random variable X.

Since all the Xis are independent, the joint probability distribu-
tion for the sequence pX1, X2, . . . , Xnq can be written as the product
of n copies of the probability distribution of the random variable X:

fX1X2¨¨¨Xnpx1, x2, ¨ ¨ ¨ , xnq “ fXpx1q fXpx2q ¨ ¨ ¨ fXpxnq.
We call this the independent, identically distributed setting, or i.i.d. for
short. This product structure of the joint distribution fX1X2¨¨¨Xn tells us
the random variables are independent, and each Xi is an identical copy
of the random variable X „ fX , so the name i.i.d. is suitable.

Let’s now talk about one particular observation of the se-
quence of random variables pX1, X2, . . . , Xnq, which we’ll denote
px1, x2, . . . , xnq. Each xi is a particular observation from the random
variable X, and we have a sequence of n such observations. We’ll
sometimes refer to the sequence px1, x2, . . . , xnq as a sample, so we
don’t have to say “sequence of n independent observations from the
random variable X.”

Another way to describe the sample px1, x2, . . . , xnq is a draw
from the joint probability distribution fX1X2¨¨¨Xn . To generate such
a sample, we make n observations from the random variable X.

Example 5: tossing a coin n times Recall the random variable C
that describes the outcome of a coin toss. We’ll identify the outcomes
of the coin toss as 0 for tails and 1 for heads. The sample space
the random variable C is therefore C “ t0, 1u. If the coin is fair, the
probability mass function of the random variable C will have the

2.2 MULTIPLE RANDOM VARIABLES 58

values fCp1q “ 1
2 and fCp0q “ 1

2 . See Figure 2.7 for an illustration of
the probability mass function of the random variable C.

We can describe the process of tossing the coin n times as a
sequence of n copies of the random variable C: pC1, C2, . . . , Cnq. Each
copy Ci describes the outcome of one coin toss, that can be either 0
or 1 with probability 1

2 .
We denote a particular outcome of the process using lowercase

letters pc1, c2, . . . , cnq, where each of the outcomes ci is either 0 or
1. Note the difference between the two concepts: pC1, C2, . . . , Cnq
is a mathematical model that describes all possible outcomes of the
experiment, while pc1, c2, . . . , cnq describes the particular outcomes
observed for one experiment.

Suppose we now define a new variable S that describes the sum
of the random variables in the sequence pC1, C2, . . . , Cnq:

S “
n
ÿ

i“1

Ci “ C1 ` C2 ` ¨ ¨ ¨ ` Cn.

In words, S represents the count of number of heads after n coin
tosses. The sample space of the random variable S is t0, 1, 2, . . . , nu,
since we can observe anywhere from 0 to n heads outcomes in n coin
tosses.

If we’re interested in knowing the mean of the random variable
S, we need to compute µS “ ESrSs. We know the random variable
S is defined as the sum of an i.i.d. sequence of the random variable
C, so we can use the properties of expectations we learned above to
obtain µS:

µS “ ESrSs “ EC1C2¨¨¨Cn rC1 ` C2 ` ¨ ¨ ¨ ` Cns
“ EC rC1s `EC rC2s ` ¨ ¨ ¨ `EC rCns
“ nEC rCs
“ n p1 ¨ fCp1q ` 0 ¨ fCp0qq
“ n

´

1 ¨ 1
2 ` 0 ¨ 1

2

¯

“ n
2

The second equality follows from the independence assumption,
while the third equality follows from the identical assumption.

We can also compute the variance σ2
S “ varpSq relying on the i.i.d.

assumption. See Exercise E2.17.

Example 6: rolling a die n times Consider the sequence n rolls of
a fair die pD1, D2, . . . , Dnq, where each Di is an independent copy of
the die roll random variable D that we saw earlier in Example 2. See
Figure 2.8 for an illustration of the probability mass function of the
random variable D.

2.2 MULTIPLE RANDOM VARIABLES 59

Define the random variable A which computes the average value
of the sequence pD1, D2, . . . , Dnq:

A “ 1
n

n
ÿ

i“1

Di “ 1
n rD1 `D2 ` ¨ ¨ ¨ `Dns .

We can use the i.i.d. properties of A to obtain its mean µA and its
variance σ2

A. See exercise E2.18 and E2.19.

* * *

The analysis of the properties of sequences of n independent ob-
servations from a random variable pX1, X2, . . . , Xnq as shown in
the above examples serve as “foreshadowing” for the ideas we’ll
discuss in the rest of the chapter. In Section 2.8 we’ll study the
properties of i.i.d. scenario in more details, and state the central limit
theorem, which is an important, foundational result that describes
the properties of random samples, and serves as a foundation for
statistics.

2.2.6 Discussion

In this section, we learned how to model multiple random variables
X, Y using a joint probability distribution fXY. We can subdivide the
multivariable probability modelling task into two categories:

• Modelling independent random variables, like the coin tosses
in Example 1 and Example 5, the die rolls in Example 2 and
Example 6.

• Modelling dependent random variables, like the outcomes of the
coin-die game in Example 3, and the medical diagnostic test in
Example 4.

It’s important for you to keep in mind that these two categories
describe fundamentally different scenarios, and different formula
apply in each case.

Let’s summarize the facts that we know about the probability
distributions and formulas for the two categories:

Independent random variables Scenarios with independent ran-
dom variables X and Y are in some sense the “easy case,” because
the joint probability distribution has the form of the product of the
marginals. There is no need to use conditional distributions fY|X ,
since the randomness in Y doesn’t depend on the randomness in X.

2.2 MULTIPLE RANDOM VARIABLES 60

Using the linear property of expectations and the linearity of
variance allows us to do calculations with sums or random variables,
like the random variables S from Example 5 and A from Example 6.

The covariance covpX, Yq of two independent random variables
is zero, and by extension their correlations is also zero corrpX, Yq “ 0.

Dependent random variables When two random variables X and
Y are not independent, we call them dependent or correlated random
variables. This describes the “general case” when the joint prob-
ability distribution fXY cannot be written as the product of two
independent distributions for each random variable.

It’s important to keep in mind that none of the formulas we
derived for independent random can be used in the general case
when X and Y are not independent. To avoid any possible confusion,
equation in this section that apply only for independent random
variables are clearly marked with the phrase “when X and Y are
independent.”

The chain rule allows us to write the joint probability distribution
fXY in terms of the marginal fX and the conditional distribution fY|X ,
or in terms of the marginal fY and the conditional distribution fX|Y.

The covariance and correlation formulas can be used as a crude
measure of the strength of the dependence between two random
variables.

Exercises

E2.17 Compute the variance of S “ ř

Ci

E2.18 Compute the mean of A “ ř

Di

E2.19 Compute the variance of A “ ř

Di

TODO: add example of uncorrelated but not independent
RVs https://stats.stackexchange.com/questions/85363/
simple-examples-of-uncorrelated-but-not-independent-x-and-y

Links

[Relevant pages from Wikipedia]
https://en.wikipedia.org/wiki/Joint_probability_distribution
https://en.wikipedia.org/wiki/Marginal_distribution
https://en.wikipedia.org/wiki/Conditional_probability_distribution

[Discussion on the Bayesian way of thinking about probabilities]
https://en.wikipedia.org/wiki/Bayesian_probability

https://stats.stackexchange.com/questions/85363/simple-examples-of-uncorrelated-but-not-independent-x-and-y
https://stats.stackexchange.com/questions/85363/simple-examples-of-uncorrelated-but-not-independent-x-and-y
https://en.wikipedia.org/wiki/Joint_probability_distribution
https://en.wikipedia.org/wiki/Marginal_distribution
https://en.wikipedia.org/wiki/Conditional_probability_distribution
https://en.wikipedia.org/wiki/Bayesian_probability

2.2 MULTIPLE RANDOM VARIABLES 61

[Condensed review of all of probability theory]
https://ermongroup.github.io/cs228-notes/preliminaries/probabilityreview/

[The Gambler’s fallacy explained by Joe Bertolami]
http://bertolami.com/index.php?engine=blog&content=posts&detail=probability

[Bayes’ Theorem explained with LEGO]
http://www.countbayesie.com/blog/2015/2/18/bayes-theorem-with-lego

[The geometry Bayes theorem explained by 3Blue1Brown]
https://www.youtube.com/watch?v=HZGCoVF3YvM

[An article about the sensitivity and specificity of diagnostic tests]
https://www.ncbi.nlm.nih.gov/books/NBK557491/

[Chain rule of probability theory]
https://en.wikipedia.org/wiki/Chain_rule_(probability)

https://ermongroup.github.io/cs228-notes/preliminaries/probabilityreview/
http://bertolami.com/index.php?engine=blog&content=posts&detail=probability
http://www.countbayesie.com/blog/2015/2/18/bayes-theorem-with-lego
https://www.youtube.com/watch?v=HZGCoVF3YvM
https://www.ncbi.nlm.nih.gov/books/NBK557491/
https://en.wikipedia.org/wiki/Chain_rule_(probability)#Chain_rule_for_random_variables

2.3 INVENTORY OF DISCRETE DISTRIBUTIONS 62

2.3 Inventory of discrete distributions

It’s time to introduce the probability distributions used in statis-
tics. We’ve already seen some examples involving the uniform
distribution Udpα, βq and the Poisson distribution Poispλq, but there
are a couple of others that you should know about. Recall the
notation X „ Mpθq, which we use to denote the random variable
X distributed according to the model family M initialized with pa-
rameters θ. In this section, we’ll learn about the different probability
models M that exist and the different choices for their parameters θ.

Figure 2.27 shows examples of the different shapes of the discrete
probability distributions families M that we’ll discuss in this section.

0 1 2 3 4 5 6 7 8 9
R

0.00

0.05

0.10

0.15

0.20

0.25

0.30
d(= 1, = 6)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
X

0.00

0.05

0.10

0.15
Binom(n = 20, p = 0.5)

0 1 2 3 4 5
B

0.0

0.2

0.4

0.6
Bernoulli(p = 0.4)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
P

0.00

0.02

0.04

0.06

0.08

0.10

0.12 Pois(= 10)

Figure 2.27: Graphs of the probability mass functions of four common dis-
crete probability distributions: uniform, binomial, Bernoulli, and Poisson.

The four discrete probability distributions that are most com-
monly used in statistics are:

• The discrete uniform distribution Udpα, βq, which assigns equal
probabilities to the integers between α and β, inclusively.

• The Bernoulli distribution Bernoullippq, which describes the
coin toss of a biased coin, for which the outcome “suc-
cess”/heads/1 has probability p, and the outcome “fail-
ure”/tails/0 has probability p1´ pq.

• The binomial distribution Binompn, pq, which describes the
number of successes in a sequence of n Bernoulli trials.

• The Poisson distribution Poispλq, which models the number of
times an event occurs in some interval, given that the average
number of occurrences is λ.

2.3 INVENTORY OF DISCRETE DISTRIBUTIONS 63

All these distributions will come up in one statistical analysis sce-
nario or another later in the book, so it’s a good idea to get to know
them now. You’re not expected to memorize any of the definitions
or equations associated with these distributions, but rather think of
this section as a “reference manual” you can return to later when you
need to use one of these functions.

We’ll also briefly talk about some other distributions (marked as
“(optional)” in the table of contents), which are less important since
they are not often used in statistics. Examples of this “optional read-
ing material” includes the discussion on the geometric distribution
Geomppq (waiting time until the first success in a series of Bernoulli
trials), the negative binomial distribution NBinompr, pq (waiting time
until r successes is series of Bernoulli trials), and the hypergeometric
distribution Hypergeompa, b, nq. These are all interesting to see once,
but they won’t play a big rest of the book. We’ve only included them
to make this section a complete inventory of all discrete probability
distributions, in case you want to play with these probabilistic
LEGOs later on.

Before we get to the list of distributions, let’s take a moment to
introduce some math concepts that we’ll need for the rest of the
section.

2.3.1 Math prerequisites

In this section, we’ll learn some counting and summations tricks
that will help us understand discrete probability distributions. We’ll
start with combinatorics formulas, which are used to for counting the
number of ways certain events can occur. Combinatorics concepts
are useful to know because they are used in the definitions of differ-
ent discrete probabilities distributions. We’ll then show some useful
summation formulas for computing the probability of composite
outcomes.

Introduction to combinatorics

We’ll now discuss some important formulas for counting the number
of ways that certain events can occur. Thinking in terms of “how
many ways can you choose x from the set Y” allows us to compute
all kinds of probabilities, so mathematicians developed some tools
and notation for this type of calculations: factorials, combinations,
permutations, etc.

For example, how many ways can you choose a two-card hand
of poker from a set of 52 cards. In this example, x is a two-card
poker “hand”, Y is a standard deck of 52 cards t1, 2, 3, . . . , 52uwhere

2.3 INVENTORY OF DISCRETE DISTRIBUTIONS 64

1 corresponds to A spades, and 52 is two of clubs. Currently, this
may seem like a complicated calculation to do, but by the end of
this section you’ll know the answer is

`52
2

˘

, where the weird-looking
notation is pronounced “52 choose 2.” You’ll also learn there is a
math formula n!

k!pn´kq! for computing
`n

k
˘

, the “number of ways you
can choose k items from a set of n items, when the order doesn’t
matter.”

Why are we learning this stuff? In order to motivate you to
read the next 10 pages of dense math formulas, I should probably
explain why the idea of counting the number of ways a given
outcome can occur is such a useful concept. Think about it: if
mathematicians spent time developing specialized notation for this
stuff, it’s probably useful.

Many probability scenarios can be described a sample space of
equally likely outcomes. Computing probabilities of some composite
outcome A is just a matter of counting the number of ways a certain
outcome can occur. then dividing by the total number of possible
outcomes:

Prptoutcome Auq “ number of ways outcome A can occur
total number of possible outcomes

.

Basically, if you learn these 10 pages of “boring” and “scary”
looking math formulas for counting “number of ways ...” in various
scenarios, you’ll have a solid foundation for understanding discrete
probability distributions.

Definitions and notation

There are four formulas for counting configurations that you need to
be familiar with:

• n1 ¨ n2: the product of the number of independent outcomes.
• n!: the factorial function that counts the number of ways we can

order a list of n objects.
• Pn k : the number of permutations of k objects chosen from a set

of n objects.
• Cn k “

`n
k
˘

: the number of combinations of k objects chosen from
a set of n objects.

We’ll now show the formulas and the logic behind these four for-
mulas for combinatorial calculations. Instead of trying to memorize
the formulas, it’s easier to remember the “procedure” behind each of
these operations.

2.3 INVENTORY OF DISCRETE DISTRIBUTIONS 65

Products If a composite outcome can be described by a sequence
of k steps, where the number of ways of outcomes in step i is ni, then
the total number of ways of different outcomes that can occur is the
product n1 ¨ n2 ¨ ¨ ¨ nk.

Recall the product rule of probabilities, which we use used to
describe independent outcomes: fX1X2 “ fX1 ¨ fX2 . If fX1px1q “ 1

n1

(n1 possible outcomes with equal probability), and fX2px1q “ 1
n1

(n2

equiprobable outcomes), then fX1X2px1, x2q “ 1
n1
¨ 1

n2
.

Factorials The factorial of the integer n is defined as the product of
all positive integers less than or equal to n:

n! def“ n ¨ pn´ 1q ¨ pn´ 2q ¨ ¨ ¨ 3 ¨ 2 ¨ 1.

The factorial function n! describes the number of ways of arranging
n distinct objects into an ordered sequence. When choosing which
object to put first in the list, we can select from n candidates. Then
to select the second object, we can choose from the remaining pn ´
1q candidates, and when choosing the third object we have pn ´ 2q
possibilities. This process continues until the last object of the list,
when we have only one choice. For example, the number of ways
you can order four elements is 4! “ 4 ¨ 3! “ 4 ¨ 6 “ 24.

You can compute n! using pen and paper when n is a small
number. For larger values of n we can use the computer.

code
2.3.1

>>> from scipy.special import factorial
>>> factorial (4) # 4! = 4*3*2*1
24

Note the factorial function grows very quickly:

code
2.3.2

>>> [factorial(k) for k in [5,6,7,8,9,10,11]]
[120, 720, 5040, 40320, 362880 , 3628800 , 39916800]

The factorial 15! is more than 1.3 trillion:

code
2.3.3

>>> factorial (15)
1307674368000

The factorial function is the basis for the definition of the permuta-
tions and the combinations formulas, which we’ll discuss next.

Permutations The math term permutation refers to the different
possible arrangement of a list of elements into a sequence. The
number of permutations of k objects selected from a list of n objects
is given by the formula:

Pn k “ n ¨ pn´ 1q ¨ pn´ 2q ¨ ¨ ¨ pn´ k` 1q
looooooooooooooooooooomooooooooooooooooooooon

k factors

“ n!
pn´ kq! .

2.3 INVENTORY OF DISCRETE DISTRIBUTIONS 66

In words, the quantity Pn k describes the product of all positive
integers between n and pn ´ k ` 1q. The logic behind this formula
is very similar to the counting we for the factorial, but the product
contains only k factors, since we are selecting only k objects.

The second equality follows from the following calculation

n!
pn´ kq! “

n¨pn´1q¨¨¨¨pn´k`1q ¨ pn´kq¨pn´k´1q¨¨¨3¨2¨1
pn´kq¨pn´k´1q¨¨¨3¨2¨1

“ n ¨ pn´ 1q ¨ ¨ ¨ ¨ pn´ k` 1q
���

���
���:

1
pn´kq¨pn´k´1q¨¨¨3¨2¨1
pn´kq¨pn´k´1q¨¨¨3¨2¨1

“ n ¨ pn´ 1q ¨ ¨ ¨ pn´ k` 1q.
In other words, the effect of dividing the factorial n! by the factorial
pn´ kq! has the effect of cancelling all factors pn´ kq and smaller from
the calculation.

Let’s look at a concrete example to understand how the formula
works. The number of permutations of 2 items selected from a list of
5 items is

P5 2 “
5!

p5´ 2q! “
5!
3!
“ 5 ¨ 4 ¨ 3 ¨ 2 ¨ 1

3 ¨ 2 ¨ 1 “ 5 ¨ 4 “ 20.

Dividing by 3! has the effect of stopping the factorial calculation 5!
after two steps. We can use the function perm(n,k) defined in the
module scipy.special to compute the same answer.

code
2.3.4

>>> from scipy.special import perm
>>> perm (5,2)
20

The function perm only tells us the number of permutations. If we
want to actually see the list of these 20 permutations, we can use the
function permutations from the module itertools:

code
2.3.5

>>> from itertools import permutations
>>> n = 5
>>> nitems = range(1,n+1)
>>> k = 2
>>> list(permutations(nitems , k))
[(1,2), (1,3), (1,4), (1,5), (2,1), (2,3), (2,4), (2,5),
(3,1), (3,2), (3,4), (3,5), (4,1), (4,2), (4,3), (4,5),
(5,1), (5,2), (5,3), (5,4)]

Note the list contains both the permutations p1, 2q and p2, 1q, since the
order of the k elements chosen matters. How many ways are there of
selecting k elements from an n-element set, when the order doesn’t
matter? You’re about to find out!

Combinations Let’s now think about the number of combinations
we can make by selecting a set of k objects from a list of n objects.

2.3 INVENTORY OF DISCRETE DISTRIBUTIONS 67

The order of the k selected items doesn’t matter. The formula that
describes the number of combinations of k objects selected from a
list of n items is:

Cn k
def“ n!
pn´ kq!k!

.

We often use the alternative notation
`n

k
˘

, read “n choose k,” to
denote the number of combinations of size k selected from n possible
items.
We can understand this formula as a modification on the formula for
permutations we saw in the previous section.

Cn k “
Pn k

pn´ kq! .

Permutations are sequences of the form pa1, a2, . . . , akq, where the
order of the elements matters. To obtain the number of sets of the
form ta1, a2, . . . , aku, we need to divide the number of permutations
by the number of possible ways to sort k elements, which is given by
the factorial k!.

For example, the number of combinations of size 2 selected from
a list of 5 items is

C5 2 “
ˆ

5
2

˙

“ 5!
p5´ 2q!2!

“ 5!
p3!2!

“ 5 ¨ 4 ¨ 3 ¨ 2 ¨ 1
3 ¨ 2 ¨ 1 ¨ 2 ¨ 1 “

20
2
“ 10.

Dividing by 3! has the effect of stopping the factorial calculation 5!
after two steps, and dividing by 2! is because we don’t care about the
order of the two elements selected. The function comb(n,k) defined
in the module scipy.special gives the same answer:

code
2.3.6

>>> from scipy.special import comb
>>> comb (5,2) # = "n choose k"
10

To see a list of all possible combinations of k “ 2 items selected from
a set of n “ 5 items, use the function permutations from the module
itertools:

code
2.3.7

>>> from itertools import combinations
>>> n = 5
>>> nitems = range(1,n+1)
>>> k = 2
>>> list(combinations(nitems , k))
[(1,2), (1,3), (1,4), (1,5), (2,3), (2,4), (2,5), (3,4),
(3,5), (4 ,5)]

Note this list contains the combination p1, 2q which corresponds to
the set t1, 2u, and doesn’t contain p2, 1q since it corresponds to the
same set t1, 2u. Compare the list of combinations with the list of
permutations we obtained earlier in code block 2.3.5.

2.3 INVENTORY OF DISCRETE DISTRIBUTIONS 68

Example Let’s look at a real-world situation that in which we
use the four different ways of counting configurations. Tracy is
launching a new website. She has come up with a number of
different alternatives for the main heading text and the subheading
text. For the company blog (which is also in scope somehow!), she
has prepared five blog posts, and also has seven user testimonials
that say how great her company’s products are.

Instead of making a single choice for the main heading text, the
subheading text, the blog posts and the user testimonials to show
to website, Tracy wants to make a “random” website that shows a
different page elements to each visitor. Why choose when you can
randomize?

Before building her “random webpage” idea, she wants to do
some basic checks to see how many different choices for the websites
elements there will be for various configurations.

1. Suppose she has 2 candidates for the main heading text and
3 choices for the subheading text. The number of different
choices for main heading text plus subheading text is given by
the product

2ˆ 3 “ 6.

We have two alternatives choices for the main heading and
three alternatives for the subheading, so there are six possible
choices for the page header.

2. Tracy has prepared 5 blog posts and wants to show all of
them in the “from our blog” section of the website. The
order of appearance matters. The number of different ways
to sequence the “blog posts” section of the website are given
by the factorial:

5! “ 5ˆ 4ˆ 3ˆ 2ˆ 1 “ 120.

There are five choices for the first blog post, then four choices
for which blog post will appear second, three remaining
choices for the third blog post, two choices for the fourth, and
only one choice for the last.

3. Suppose now that Tracy decides she only wants to show
two posts instead of all five—she doesn’t want to overwhelm
visitors with too much text. The number of different ways to
build the “from our blog” section of the website is then

P5 2
def“ 5!

3!
“ 5ˆ 4ˆ 3ˆ 2ˆ 1

3ˆ 2ˆ 1
“ 5ˆ 4 “ 20.

2.3 INVENTORY OF DISCRETE DISTRIBUTIONS 69

The reasoning is similar to the previous case (five choices for
the first article and four choices for the second article), but
we stop the factorial calculation after two steps since she only
wants to show two blog posts.

4. Combinations are used to count the number of outcomes where
the order of the events doesn’t matter. Tracy has collected
a total of 7 user testimonials, but only wants to show three
user testimonials on the homepage. The user testimonials will
appear side-by-side as three columns, and we assume the order
of appearance doesn’t matter. The number of ways to build the
“user testimonials” section is

C7 3
def“

ˆ

7
3

˙

def“ 7!
3!4!

“ 35.

The logic for the combinations calculations is similar to the
formula for permutations, but an extra factor of 3! appears in
the denominator since the order doesn’t matter.

Combinatorial formulas

We arbitrarily define the factorial of zero to be one 0! “ 1, because
this will help write certain formulas more easily. For example, the
number of ways to choose zero elements is defined as one:

ˆ

n
0

˙

“ n!
0!pn´ 0q! “

n!
1 ¨ n!

“ 1.

The number of ways to choose n elements from a set of n is also one;
ˆ

n
n

˙

“ n!
n!pn´ nq! “

n!
n! 0!

“ 1.

Here are some other formulas and relations for the number of
combinations:

ˆ

n
k` 1

˙

“
ˆ

n
k

˙

n´ k
k` 1

,

The recursive formula is
ˆ

n
k

˙

“
ˆ

n´ 1
k

˙

`
ˆ

n´ 1
k´ 1

˙

.

ˆ

M
n

˙

“ M
n

ˆ

M´ 1
n´ 1

˙

Don’t worry too much about these formulas. We’re including them
here in case you might need one of them when solving the exercises.

2.3 INVENTORY OF DISCRETE DISTRIBUTIONS 70

Summations formulas

Recall that computing the probability of the event ta ď X ď bu
is defined as the summation of the values of the probability mass
function fXpxq for x varying from x “ a until x “ b:

Prpta ď X ď buq “
x“b
ÿ

x“a
fXpxq “ fXpaq ` fXpa` 1q ` ¨ ¨ ¨ fXpbq.

Here are some formulas for calculating the sum of sequences
ak “ k and bk “ k2. The formulas for the sum of the first N positive
integers is

N
ÿ

k“1

k “ NpN ` 1q
2

.

The sum of the squares of the first N positive integers is

N
ÿ

k“1

k2 “ NpN ` 1qp2N ` 1q
6

.

Sum of cubes of the first N positive integers is

N
ÿ

k“1

k3 “
ˆ

NpN ` 1q
2

˙2
.

Let’s verify these formulas, but computing the sum of the first
N “ 10 integers using Python. First we’ll create the list of numbers
named nums, which contains the numbers from 1 until N “ 10.

code
2.3.8

>>> N = 10
>>> nums = range(1,N+1)
>>> nums
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

We can compute the sum of the values in the list nums using the
Python built-in function sum:

code
2.3.9

>>> sum(nums)
55

We can verify the formula NpN`1q
2 gives the same number when N “

10.
The sum of the squares of the numbers in the list is obtained as

follows:

code
2.3.10

>>> squarednums = [num**2 for num in nums]
>>> squarednums
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
>>> sum(squarednums)
385

2.3 INVENTORY OF DISCRETE DISTRIBUTIONS 71

We can obtain the same answer using the formula NpN`1qp2N`1q
6

when N “ 10.
The sum of the cubes of the numbers is:

code
2.3.11

>>> cubednums = [num **3 for num in nums]
>>> cubednums
[1, 8, 27, 64, 125, 216, 343, 512, 729, 1000]
>>> sum(cubednums)
3025

This is what we obtain from the formula
´

NpN`1q
2

¯2
when N “ 10.

The geometric series

Since we’re on the topic of summations, it would be a good moment
to introduce the geometric series, which describes a summation of
terms in the geometric sequence p1, r, r2, r3, r4, . . .q. The pattern in
the geometric sequence is that each term is r-times the previous term.
The formula for the kth term in the geometric sequence is ck “ rk.

If |r| ă 1, there is an exact formula for the sum of the geometric
series: 8

ÿ

k“0

rk “ 1` r` r2 ` r3 ` r4 ` ¨ ¨ ¨ “ 1
1´ r

.

This is pretty crazy if you think about it! The expression on the left
contains infinitely many terms, yet somehow, the sum of all of these
terms is described by a simple mathematical formula 1

1´r .
More generally, the terms in the geometric series could contain

a multiplicative constant a, in which case the summation formula
becomes:

8
ÿ

k“0

ark “ a` ar` ar2 ` ar3 ` ar4 ` ¨ ¨ ¨ “ a
1´ r

.

Example Let’s compute the sum of the geometric series with a “ 1
2

and r “ 1
2 . Applying the above formula, we obtain

8
ÿ

k“0

1
2

ˆ

1
2

˙k
“ 1

2
` 1

4
` 1

8
` 1

16
` 1

32
` ¨ ¨ ¨ “

1
2

1´ 1
2
“ 1.

Figure 2.28 shows a visualization of how the numbers in this series
add up to give the total of 1.

We can also compute the sum of the geometric series using
Python code. Instead of computing infinitely many terms, we’ll stop
the summation after 60 terms because higher terms are negligibly
small.

code
2.3.12

2.3 INVENTORY OF DISCRETE DISTRIBUTIONS 72

Figure 2.28: A graphical representation of the infinite sum of the geometric
series 1

2 ` 1
4 ` 1

8 ` 1
16 ` 1

32 ` ¨ ¨ ¨ . The area of each region corresponds to one
of the terms in the series. The total area is equal to

ř8
k“0

1
2 p 1

2 qk “ 1.

>>> a = 0.5
>>> r = 0.5
>>> sum([a*r**k for k in range (0 ,60)])
1.0

* * *

At this point, you might be wondering why you had to go through
all these MM pages of dense math formulas. The reason why I
want to expose you to all this math, is because I wanted to expose
you to the underlying “structure” in the formulas and the “stories”
behind the product, factorial, permutations, and combinations cal-
culations. This way you will never have to memorize any formulas
for doing probability calculations, but instead be able to reconstruct
the formula by replaying the appropriate “story” as needed. This is
what learning math is all about: seeing the underlying structure and
patterns in different calculations.

Exercises

E2.20 Compute the sum of an “ n` n2 for n from 0 to N.

E2.21 INSERT QUESTION requiring
`n

k
˘

here...

E2.22 Compute the infinite sum ... r=1/3

Links

[Nice visual explanation of combinatorics formulas]
https://www.youtube.com/watch?v=0NAASclUm4k

[Binomial coefficient]
https://en.wikipedia.org/wiki/Binomial_coefficient

https://www.youtube.com/watch?v=0NAASclUm4k
https://en.wikipedia.org/wiki/Binomial_coefficient

2.3 INVENTORY OF DISCRETE DISTRIBUTIONS 73

[Binomial theorem]
https://en.wikipedia.org/wiki/Binomial_theorem

[Online calculator for the permutations and combinations]
https://www.calculatorsoup.com/calculators/discretemathematics/

2.3.2 Review of definitions and formulas

We’ll now briefly review, in condensed form, all the definitions of
discrete random variables that we saw in Section 2.1. I know it has
been a while, so I figured you might need a little refresher.

The random variable X describes a quantity that can take on
different values due to uncertainty or variability. We denote random
variables by uppercase letters like X, Y, and Z, and particular
outcomes of these random variables using lowercase letters like x, y,
and z. The sample space X (calligraphic X) is the set of all possible
outcomes of the random variable X. Another term to describe the
sample space is support. In this section, we’ll focus on discrete sample
spaces, which consist of discrete values like subsets of the integers.

The probability mass function (pmf) is a function of the form fX :
X Ñ r0, 1s, that assigns probabilities to each of the possible outcomes
in the sample space of the random variable X. The probability of
the outcome tX “ xu is given by the value of the probability mass
function: PrptX “ xuq “ fXpxq.

A composite outcome is a set of simple outcomes, like the set of
numbers between a and b: ta ď X ď bu, or any other subset of the
sample space. The probability of a composite outcome ta ď X ď bu
is calculated by as the sum of the probability mass function values
between a and b:

Prpta ď X ď buq “
x“b
ÿ

x“a
fXpxq.

The cumulative distribution function (CDF) FXpbq describes the sum of
the probabilities of all outcomes up to and including b:

FXpbq def“ PrptX ď buq.
We can use the CDF FX to compute probabilities of composite
outcomes using the formula Prpta ď X ď buq “ FXpbq ´ FXpa´ 1q.

The inverse of the cumulative distribution function (inverse-CDF),
denoted F´1

X pqq, is used to do “inverse probability calculations.” We
specify the probability q P r0, 1s, and we want to find the value xq
such that the outcome tX ď xqu will contain at least a proportion q
of the total probability. In other words, xq is the smallest value such
that FXpxqq ě q.

https://en.wikipedia.org/wiki/Binomial_theorem
https://www.calculatorsoup.com/calculators/discretemathematics/

2.3 INVENTORY OF DISCRETE DISTRIBUTIONS 74

The expectation EXrwpXqs describes the computation of the ex-
pected value of the function w : X Ñ R, which depends on the
random variable X. Expectations are computed as the weighted sum
over all possible outcomes: EXrwpXqs def“ ř

xPX wpxq fXpxq.
The mean of the random variable X is defined as the expectation

µX
def“ EXrXs “

ř

xPX x ¨ fXpxq. The variance of X is defined as σ2
X

def“
EXrpX ´ µXq2s “

ř

xPX pX ´ µXq2 ¨ fXpxq. The standard deviation of
the random variable X is the square root of its variance.

You should already be familiar with these concepts and formulas,
so if looking at any of the above formulas makes you feel uncomfort-
able (fills you with math anxiety), then I highly recommend you go
back to Section 2.1 to review all the formulas, figures, and examples.
If you skipped the exercises on your first reading, now might be a
good time to try solving some of them. The best antidote to math
anxiety is doing math exercises—we can’t really learn math concepts
by reading about them, we have to play with them.

2.3.3 Review of computer models

Let’s briefly review what we learned about random variable objects
rvX based on the computer models defined in scipy.stats. To
create the random variable object rvX we must initialize a model
by passing in a set of parameters: rvX = <model>(<params>),
where <model> is the name of one of the model families defined
in scipy.stats, and <params> is a comma-separated list of model-
specific parameters.

Once you have created the random variable object rvX, you can
use its methods to do probability calculations. You should be already
somewhat familiar with the methods available on random variable
objects like rvX from what we learned in Section 2.1.4. But this was a
long time ago, so I’ve compiled for you Table 2.1, which lists all the
methods available on any random variable object rvX created from
one of the families of pre-defined discrete probability distributions
in scipy.stats.

Please keep this list in mind as you read through the rest of this
section, to remind you that all the calculations you might be asked
to do using math formulas can be done in one or two lines of Python
code based on one of the above methods. In other words, if you
know enough Python to import and initialize a model based on the
pre-defined model families in scipy.stats, then you don’t have to
worry about any of the math equations!

2.3 INVENTORY OF DISCRETE DISTRIBUTIONS 75

method args math formula description

rvX.pmf x fXpxq probability mass function
rvX.cdf b FXpbq cumulative dist. function
rvX.ppf q F´1

X pqq inverse of the CDF function
rvX.mean µX “ EXrXs mean of the distribution
rvX.var σ2

X variance of the distribution
rvX.std σX standard deviation
rvX.median F´1

X p 1
2 q median of the distribution

rvX.support X bounds of the sample space
rvX.interval 1-a rF´1

X pα2q, F´1
X p1´ α

2 qs p1´ αq confidence interval
rvX.rvs n generate n observations from X
rvX.expect w EXrwpXqs expected value of wpXq

Table 2.1: Summary of the methods of discrete random variable objects rvX
created from one of the model families defined in scipy.stats.

2.3 INVENTORY OF DISCRETE DISTRIBUTIONS 76

2.3.4 Discrete distributions reference

We’ll now switch the narrative to point-form listicle mode. The
next NN pages contain an inventory of the most important discrete
probability distributions you need to know about. The idea is to give
you a quick overview of these building blocks, and provide you with
a “reference manual” that you can refer to when you need to look up
facts and formulas in the later chapters.

Each subsection is dedicated to one distribution family and
follows the same pattern:

• Definition: What is the “story” for the generative process of the
random variable?

• Formulas: What is the probability mass function fX? What is
the formula for the mean µX and variance σ2?

• Applications: what are the use cases for this family of proba-
bility models?

• Relations: how is the probability model related to other mod-
els. See Figure 2.38 for a graphical summary of the relations.

• Code examples: we’ll show the Python code for creating a
random variable object rvX based on one of the computer
models defined in scipy.stats.

We’ll also provide links to relevant resources where you can learn
more about each distribution family.

All the complicated-looking math equations you’ll encounter in
the upcoming section are for “reference purposes” only—you’re not
expected to memorize them, just look at them as a mathematical
implementation of the “story” that goes with each distribution. It’s
useful to see the structure of the probability density function fX , but
you’ll rarely have to do calculations with it, since using one of the
pre-defined computer models scipy.stats are already available.

Are you ready for this? Let’s get started!

2.3 INVENTORY OF DISCRETE DISTRIBUTIONS 77

Discrete uniform

The discrete uniform distribution Udpα, βq “ randint(alpha,beta+1)
describes the random action of picking an integer between α and β
at random. This distribution is called “uniform” since it assigns the
same probability to each of the possible outcomes.

A random variable X „ Udpα, βq has the probability mass
function

fXpxq “ 1
β` 1 ´ α

for all x between α and β.

The sample space is X “ tα, α` 1, . . . , β´ 1, βu and contains a total
of n “ β` 1´ α possible outcomes.

0 1 2 3 4 5 6 7 8 9 101112131415
0.0

0.1

0.2

0.3

0.4

0.5
= 0, = 1

0 1 2 3 4 5 6 7 8 9 101112131415

= 1, = 6

0 1 2 3 4 5 6 7 8 9 101112131415

= 1, = 10

Figure 2.29: Plot of various discrete uniform distributions obtained from
various choices of parameters α and β. The uniform distribution Udp0, 1q is
equivalent to the “coin toss” random variable C. The uniform distribution
Udp1, 6q is equivalent to the “die roll” random variable D. The distribution
Udp1, 10q describes the outcomes of rolling a 10-sided die.

The mean and variance of a random variable X „ Udpα, βq are

µX “ α` β

2
and σ2

X “
pβ` 1´ αq2 ´ 1

12
.

Intuitively speaking, The mean µX “ α`β
2 tells us the average value

of X and is the centre of α and β. For example, the mean of the
random variable D „ Udp1, 6q (rolling a six sided die) is µX “ 1`6

2 “
3.5. You’ll be asked to verify the formula for the variance σ2

X in
probrefYY.

Applications We’ve already seen many instances of the discrete
uniform distribution, like the coin toss random variable C, and the
roll of a six-sided die random variable D. The action of “pick a
number at random between α and β” is one of the simplest and most
common type of random process, so it comes up all over the place.

2.3 INVENTORY OF DISCRETE DISTRIBUTIONS 78

Consider a sweepstakes contest with n people, and we want to
award the prize to a random person. We can assign participants
numeric identifiers from 1 to n, then generate an observation from
the random variable Udp1, nq to determine who gets the prize.

Recall the concept of random assignment we discussed in the
DATA chapter. In a statistical experiment, if we want to split
participants into an intervention group and a control group, we can
define a random variable Udp0, 1q and use the random observations
from it to determine assignment: 0 control, and 1 intervention.

Computer models To create a computer model for the random
variable U „ Udpα, βq, use the code rvU = randint(alpha,beta+1).
Note the extra `1 that we added to the second argument. Here is a
complete code example:

code
2.3.13

>>> from scipy.stats import randint
>>> alpha = 1 # start at
>>> beta = 4 # stop at
>>> rvU = randint(alpha , beta +1)

Now that you have the random variable, you can call its methods to
do see its properties:

code
2.3.14

>>> rvU.mean()
2.5
>>> rvU.var()
1.25
>>> rvU.std() # = np.sqrt(rvU.var ())
1.118033988749895

Recall exercises E... and E..., where we obtained the formulas for the
mean and variance of the discrete uniform distribution: µX “ α`β

2

and σ2
X “ pβ`1´αq2´1

12 . Use the formulas and the appropriate choice
of α and β to verify the numerical answers obtained above.

We can obtain the limits of the sample space X for the random
variable rvU by calling its .support() method.

code
2.3.15

>>> rvU.support ()
(1,4)

To obtain the value of the probability mass function of fU of the
random variable rvU, we can use its .pmf method:

code
2.3.16

>>> for x in range (1 ,4+1):
print("f_U(",x,") = ", rvU.pmf(x))

f_U(1) = 0.25
f_U(2) = 0.25
f_U(3) = 0.25
f_U(4) = 0.25

To visualize the probability mass function of the random variable
rvU by creating a stem plot. To create a stem-plot of the probability
mass function fU , we can use the following three-step procedure:

2.3 INVENTORY OF DISCRETE DISTRIBUTIONS 79

1. Create a range of inputs xs for the plot.

2. Compute the value of fU “ rvU for each of the inputs and store
the results as list of values fUs.

3. Plot the values fUs at locations xs by calling the function
plt.stem(xs,fUs).

The code below plots the probability mass function of the random
variable rvU for the range of inputs between x “ 0 and x “ 8:

code
2.3.17

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> xs = np.arange(0, 8+1)
>>> fUs = rvU.pmf(xs)
>>> plt.stem(xs , fUs , basefmt=" ")
See stem plot shown in Figure 2.30.

0 1 2 3 4 5 6 7 8
u

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

f U

Figure 2.30: Plot of probability mass function of the random variable rvU.

Alternatively, if you don’t want to manually type the above steps
every time you want to look at the fX for some rvX, you can use the
helper function plot_pmf defined in module plot_helpers, which I
used to generate all the plots in this book. You simply call plot_pmf
by passing the random variable object, and the limits of the range of
inputs you want to use for the plot, and it will plot the probability
mass function for you:

code
2.3.18

>>> plot_pmf(rvU , xlims =[0 ,10])
Output is shown in Figure 2.30.

We can call the method rvU.cdf(b) to obtain the value of the
cumulative distribution function of FU for the random variable rvU.

code
2.3.19

>>> for b in range (1 ,4+1):
print("F_U(", b, ") = ", rvU.cdf(b))

F_U(1) = 0.25
F_U(2) = 0.5
F_U(3) = 0.75
F_U(4) = 1.0

2.3 INVENTORY OF DISCRETE DISTRIBUTIONS 80

To plot the CDF, we use the three-step plot-a-function procedure
with a linear space of inputs (np.linspace).

code
2.3.20

>>> import numpy as np
>>> import seaborn as sns
>>> xs = np.linspace (0 ,10 ,1000)
>>> FUs = rvU.cdf(xs)
>>> sns.lineplot(x=xs, y=FUs)
See the line plot shown in Figure 2.31.

0 1 2 3 4 5 6 7 8
u

0.0

0.2

0.4

0.6

0.8

1.0

F U

Figure 2.31: Plot of the cumulative distribution function rvU.cdf(b) of the
continuous range of inputs b between 0 and 10. The graph of FU starts at
zero and stays zero until it jumps to FXp1q “ 1

4 at x “ 1, then jumps again
to FXp2q “ 1

2 at x “ 2, FXp3q “ 3
4 at x “ 3, and finally reaches its maximum

value with final jump at FXp4q “ 1 at x “ 4.

The cumulative distribution function FX looks like a “step func-
tion” that “jump” by height 0.25 at each of the values 1, 2, 3, and
4. The height of each jump is proportional to the values of the
probability mass function fU assigns to each outcome.

Another way to obtain the graph of the function FX is to use the
helper function plot_cdf defined in module plot_helpers.

code
2.3.21

>>> plot_cdf(rvU , xlims =[0 ,10])
Output is shown in Figure 2.31.

To avoid repetition, we won’t show the plot-the-pmf and plot-the-
CDF code examples for any of the other distribution discussed
below, but you can copy-paste the above code examples and adapt
them to use for other random variables.

Relations to other distributions

• The uniform distribution on with two outcomes Udp0, 1q is
identical to the distribution Bernoullip 1

2 q.
See the links below for more about the discrete uniform distribution.

[Wikipedia article has more info and additional formulas]
https://en.wikipedia.org/wiki/Discrete_uniform_distribution

https://en.wikipedia.org/wiki/Discrete_uniform_distribution

2.3 INVENTORY OF DISCRETE DISTRIBUTIONS 81

Bernoulli

The Bernoulli random variable X „ Bernoullippq describes a coin toss
with a biased coin that has probability of heads p. The distribution
is named after the mathematician Jacob Bernoulli, who did some
important early work in probability theory.

The convention is to identify the outcomes of the coin toss as 0 for
tails and 1 for heads. The sample space is therefore X “ t0, 1u. The
probability mass function for the random variable X „ Bernoullippq
is

fXpxq “ pxp1´ pq1´x.

When x “ 0, only the second factor remains: fXp0q “ p0p1´ pq1´0 “
p1´ pq1 “ 1´ p. When x “ 1, only the first term remains fXp1q “
p1p1´ pq1´1 “ pp1´ pq0 “ p.

If the coin is fair, then p “ 0.5 and 1 ´ p “ 1 ´ 0.5 “ 0.5.
We previously discussed the coin toss random variable C in several
examples (see Section 2.1).

The mean and variance for a random variable X „ Bernoullippq
are

µX “ ErXs “ p and σ2
X “ pp1´ pq.

0.0

0.2

0.4

0.6

0.8

1.0
p = 0 p = 0.5 p = 1

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0
p = 0.1

0 1 2 3 4 5

p = 0.2

0 1 2 3 4 5

p = 0.9

Figure 2.32: Plot of various Bernoulli distributions with various choices of
the parameter p.

Computer model The code below shows how to create a Bernoulli
random variable with parameter p “ 0.3.

code
2.3.22

>>> from scipy.stats import bernoulli
>>> rvB = bernoulli(p=0.3)

2.3 INVENTORY OF DISCRETE DISTRIBUTIONS 82

The mean and variance of the random variable rvB are shown below.

code
2.3.23

>>> rvB.mean(), rvB.var()
(0.3, 0.21)

You can verify these are the same numbers as predicted by the
formulas.

Calling the method rvB.rvs(n) will generate n random observa-
tions from the random variable rvB. Let’s generate 10 observations
to see how this works:

code
2.3.24

>>> rvB.rvs (10)
array([0, 1, 1, 0, 0, 0, 0, 1, 0, 1])

Note 4 out of the 10 outcomes were successes, which is close to the
expected value p “ 0.3.

Applications Many random phenomena besides coin tosses have
two possible outcomes: success or failure, such as pass positive or
negative outcome of a diagnostic test, converted vs non-converted
for a website visitor, etc.

Relations to other distributions The Bernoulli distribution serve
as building blocks for many of the other probability distributions.

• The distribution Bernoullipp “ 1
2 q is identical to the distribu-

tion Udp0, 1q
• The sum of n copies of a Bernoullippq random variable is the

binomial distribution Binompn, pq (defined below).
• The time-to-first-success in a series of independent

Bernoullippq observations is the geometric distribution (defined
below).

Follow the links below to learn more about Bernoulli distributions.

[Bernoulli distribution on Wikipedia]
https://en.wikipedia.org/wiki/Bernoulli_distribution

https://en.wikipedia.org/wiki/Bernoulli_distribution

2.3 INVENTORY OF DISCRETE DISTRIBUTIONS 83

Poisson

The Poisson distribution describes the number of random events that
occur during some period of time, in a situation where each instant
has the same probability of the event to occur.

We assume the events occur independently of each other at a
constant average rate of λ. The probability mass function for the
random variable X „ Poispλq is

fXpxq “ λxe´λ

x!
,

where x P t0, 1, 2, 3, . . .u. The parameter λ describes the average
probability of the event during the chosen time period. Recall you’ve
already seen this distribution when modelling the hard disk failures
random variable H in Section 2.1.

0.00

0.05

0.10

0.15

0.20 = 3 = 5 = 10

0 5 10 15 20 25 30 35 40
0.00

0.05

0.10

0.15

0.20 = 15

0 5 10 15 20 25 30 35 40

= 20

0 5 10 15 20 25 30 35 40

= 30

Figure 2.33: Probability mass function of the Poisson distribution for
different values of the parameter λ.

Figure 2.33 shows the probability mass function of the Poisson
distribution for different values of λ. As λ increases, the mean of the
distributions shifts to larger values and also becomes more spread
out.

The mean and variance for a random variable X „ Poispλq are

µX “ ErXs “ λ and σ2
X “ EXrpX´ λq2s “ λ.

See E2.29 and P2.7 for the calculations.

2.3 INVENTORY OF DISCRETE DISTRIBUTIONS 84

Computer model To create the random variable object rvP equiv-
alent to the random variable X „ Poispλ “ 10q, you can use the
following code:

code
2.3.25

>>> from scipy.stats import poisson
>>> lam = 10
>>> rvP = poisson(lam)

We used the variable name lam and not lambda because lambda is
a reserved keyword in Python. (shorthand notation for defining
functions; see Appendix C).

We can use the method rvP.pmf(x) to obtain values of the
probability mass function fPpxq, and the method rvP.cdf(b) to
obtain values from the cumulative distribution function FPpbq:

code
2.3.26

>>> rvP.pmf(8)
0.11259903214902009
>>> rvP.cdf(8)
0.3328196787507191

Applications The Poisson distribution is an important model for
many phenomena we can observe in the real world:

• The number of phone calls a business will receive during the
morning shift.

• The number of visitors to a website per minute.
• The number of customers arriving at a store.
• The number of radioactive decays...

The commonality in all these phenomena is that we’re counting
the total number of statistically independent events that occur at a
constant rate λ (the expected number of the events per time period).

Relations to other distributions

• The Poisson distribution can be seen as a limiting case
of the binomial distribution, if we take λ “ np and n
goes to infinity. Expressed in math notation, this means
limnÑ8 rPoispnpq “ Binompn, pqs.

• The Poisson distribution is related to the negative binomial
(Pascal) distribution: when λ “ n{p and n Ñ8, ... TODO

• Becomes the normal distribution for large value of λ, if we set
σ2 “ λ (and therefore (Ivan is assuming here) µ “ λ).

• The sum of two independent Poisson random variables is also
a Poisson random variable. If X1 „ Poispλ1q and X2 „
Poispλ2q, then X1 ` X2 „ Poispλ1 ` λ2q.

[Wikipedia page on the Poisson distribution]
https://en.wikipedia.org/wiki/Poisson_distribution

https://en.wikipedia.org/wiki/Poisson_distribution

2.3 INVENTORY OF DISCRETE DISTRIBUTIONS 85

Binomial distribution

The binomial distribution models the number of successes in n
consecutive draws from a Bernoulli distribution. Recall that the
Bernoulli distribution with parameter p describes a coin toss of a
biased coin with the probability of 1 (a.k.a. heads or “success”) is p,
and therefore the probability of 0 (a.k.a. tails or “failure”) is 1´ p.
If we flip this coin n times, then the number of heads we’ll observe
is described by the binomial random variable X „ Binompn, pq.

A random variable X „ Binompn, pq has the probability mass
function

fXpxq “
ˆ

n
x

˙

px p1´ pqn´x, for all x P t0, 1, . . . , nu.

The formula consists of the product of probabilities for x successes,
n ´ x failures, and the binomial coefficient

`n
x
˘

. This takes into
account the number of ways the x successes can occur within the
sequence of n trials. The name for this distribution comes from the
binomial coefficient

`n
x
˘

that appears in the formula.

0.00

0.05

0.10

0.15

0.20

0.25 n = 10, p = 0.3 n = 20, p = 0.3 n = 30, p = 0.3

0 5 10 15 20 25 30 35 40
0.00

0.05

0.10

0.15

0.20

0.25 n = 40, p = 0.1

0 5 10 15 20 25 30 35 40

n = 40, p = 0.3

0 5 10 15 20 25 30 35 40

n = 40, p = 0.5

Figure 2.34: Plot of the probability mass function of the binomial distribu-
tion for different values of n and p.

Figure 2.34 shows the probability mass function for different
values of p. Note the mean is np and the values get more spread
out as p increases since σ2 “ npp1´ pq.

The mean and the variance of the distribution Binompn, pq are:

µX “ EXrXs “ np and σ2
X “ EXrpX´ µXq2s “ npp1´ pq.

2.3 INVENTORY OF DISCRETE DISTRIBUTIONS 86

We can verify these formulas using the fact that the binomial distri-
bution is equivalent to the sum of the outcomes of n independent
variables B1, B2, . . ., Bn, where each Bi „ Bernoullippq:

X “ B1 ` B2 ` ¨ ¨ ¨ ` Bn,

Each Bi has mean p and variance pp1´ pq, so when we combine them
in a summation, we end up with the formulas µX “ np and σ2

X “
npp1´ pq. In exercises E2.23 and E2.24, you’ll be asked to verify the
formula for µX . In problems P2.1 and P2.2, you’ll be asked to derive
the formula for σ2

X .

Computer model The code below creates a computer model for the
binomial random variable for n “ 20 observations with probability
of success p “ 0.14.

code
2.3.27

>>> from scipy.stats import binom
>>> n = 20
>>> p = 0.14
>>> rvX = binom(n,p)

The sample space of the random variable rvX is t0, 1, 2, . . . , 20u:
code
2.3.28

>>> rvX.support ()
(0, 20)

The mean and the variance of rvX are given below.

code
2.3.29

>>> rvX.mean()
2.8
>>> rvX.var()
2.408

Applications The binomial distribution is very useful...
Example 1:

Example 2:

2.3 INVENTORY OF DISCRETE DISTRIBUTIONS 87

Relations to other distributions

• The Bernoulli distribution is a special case of the binomial
distribution with n “ 1.

• If X „ Binompn, pq and Y „ Binompm, pq, then X ` Y „
Binompn`m, pq.

• We can obtain the Poisson distribution from the binomial
distribution by taking the limit n Ñ8 and p Ñ 0. See problem
P2.3 for the details of this derivation.

• Normal approximation to the binomial: If the size of the
sample n is large (n ě 20), the normal distribution X1 „
N pµ “ np, σ “ a

npp1´ pqq can be used to approximate the
binomial distribution Binompn, pq. We’ll learn more about this
in Section 2.6 (see page 174).

• Consider a bucket that contains a “success” balls and b “fail-
ure” balls. The binomial distribution Binompn, p “ a

a`b q
describes the number of successes can expect to observe if
sample n balls from the bucket with replacement, meaning each
ball is replaced back after being observed. If instead we select
n balls from the bucket without replacement, then the number
of successes is described by the hypergeometric distribution
Hypergeompa, b, nq, which we’ll learn about later on in this
section.

[The Wikipedia article on the binomial distribution]
https://en.wikipedia.org/wiki/Binomial_distribution

https://en.wikipedia.org/wiki/Binomial_distribution

2.3 INVENTORY OF DISCRETE DISTRIBUTIONS 88

Geometric

The geometric distribution describes the distribution of the waiting
time until the first success in a series of independent Bernoulli
trials, where each Bernoulli trial has probability of a success p. The
probability mass function of a random variable X „ Geomppq is

fXpxq “ p1´ pqx´1 p,

where x is some positive integer. The formula consists of the product
of x´ 1 failure probabilities and once success. Note the sample space
of the random variable X is X “ N` “ t1, 2, 3, . . .u, which is a
countably infinite set. Indeed, there is no theoretical limit to the “bad
luck” scenario in which the sequence of Bernoulli trials continues to
result in failure. By definition, the trials must continue until the first
success so the distribution is defined for all positive integers.

0.0

0.1

0.2

0.3

0.4

0.5
p = 0.05 p = 0.1 p = 0.2

0 5 10 15 20 25 30 35 40
0.0

0.1

0.2

0.3

0.4

0.5
p = 0.3

0 5 10 15 20 25 30 35 40

p = 0.4

0 5 10 15 20 25 30 35 40

p = 0.5

Figure 2.35: Plot of the probability mass function of the geometric distribu-
tion for different values of p. The higher the value of p, the more likely we
are to observe the first success quickly.

The mean µX and the variance σ2
X of the random variable X „

Geomppq are given by the formulas:

µX “ EXrXs “ 1
p

and σ2
X “ EX

”

`

X´ 1
p
˘2
ı

“ 1´ p
p2 .

See E2.25 and P2.4 for the derivations of these formulas.
The values of the probability mass function decrease geometri-

cally by a factor of r “ p1´ pq. Each subsequent trial, fXpx ` 1q “
p1´ pq fXpxq. This is where the name “geometric” comes from. Recall

2.3 INVENTORY OF DISCRETE DISTRIBUTIONS 89

the geometric sequence has the form an “ arn, and its infinite series
given by the formula

ř8
n“0 arn “ a

1´r .
The geometric distribution has the memoryless property:

PrpX ą s|X ą tq “ PpX ą s´ tq.
This tells us ...

Computer model Let’s create a computer model for a geometric
distribution with parameter p “ 0.2:

code
2.3.30

>>> from scipy.stats import geom
>>> rvG = geom(p = 0.2)

The sample space of the geometric distribution is t1, 2, 3, . . .u.
code
2.3.31

>>> rvG.support ()
(1, inf)

The mean and variance of the random X are

code
2.3.32

>>> rvG.mean(), rvG.var()
(5.0, 20.0)

Applications We can model many situations with trials that are
repeated until the first success occurs using the geometric distribu-
tion. For example, if the probability of success for some difficult task
is p, then fXpxq represents the probability of succeeding on the xth

attempt. Persistence is the key, my friends! Alternatively, you can
use the geometric distribution to compute the probability of failure
after repeated successes. Suppose each time you turn on a light bulb
it has a probability p of burning out, then you can fXpxq represent
the probability of burning out on the xth use, after x ´ 1 successes.
In baseball, you can model the probability of a batter with average
hit probability p of getting a hit on one of the first three attempts. In
business, you could model the number of interviews you’ll need to
perform to hire a competent candidate as a geometric distribution,
assuming each hiring interview has probability of success p.

Relations to other distributions

• If instead of stopping after the first success occurs, we continue
counting until the first r successes occur, the waiting time will
be described by the distribution NBinompr, pq.

[Wikipedia article on the geometric distribution]
https://en.wikipedia.org/wiki/Geometric_distribution

https://en.wikipedia.org/wiki/Geometric_distribution

2.3 INVENTORY OF DISCRETE DISTRIBUTIONS 90

Negative binomial (optional)

The geometric distribution describes repeated Bernoulli trials until
the first success outcome. The negative binomial distribution is a
generalization of a geometric distribution where we wait to obtain
r successes. The probability mass function a random variable X „
NBinompr, pq is

fXpxq “
ˆ

x` r´ 1
r´ 1

˙

prp1´ pqx,

where p describes the probability of success, and x takes on values in
the set t0, 1, 2, 3, . . .u. Note the random variable X counts the number
of trials starting at the rth, because we need to run at least r trials to
obtain r successes. The last trial is necessarily a success, so the factor
`x`r´1

r´1

˘

counts the number of ways of choosing the remaining r´ 1
successes among the x` r´ 1 trials before the last.

The name of this distribution comes from the fact that we can
rewrite

`x`r´1
r´1

˘

as an expression that involves the negative binomial
coefficient p´1qx`´r

x
˘

. See E2.27 for the calculation. The negative
binomial is sometimes called Pascal’s distribution.

0.00

0.02

0.04

0.06

0.08

0.10
r = 3, p = 0.1 r = 3, p = 0.2 r = 3, p = 0.3

0 5 10 15 20 25 30 35 40
0.00

0.02

0.04

0.06

0.08

0.10
r = 3, p = 0.2

0 5 10 15 20 25 30 35 40

r = 4, p = 0.2

0 5 10 15 20 25 30 35 40

r = 5, p = 0.2

Figure 2.36: Plot of the probability mass function of the negative binomial
distribution with different parameters.

The mean and variance of a random variable with negative
binomial distribution X „ NBinompr, pq are

µX “ ErXs “ rp1´ pq
p

and σ2
X “ ErpX´ µXqs “ rp1´ pq

p2 .

See E2.26 and P2.5 for the derivations.

2.3 INVENTORY OF DISCRETE DISTRIBUTIONS 91

Computer model Let’s create the computer model rvN distributed
according to NBinompr “ 10, p “ 0.2q.

code
2.3.33

>>> from scipy.stats import nbinom
>>> r = 10
>>> p = 0.2
>>> rvN = nbinom(r, p)

The mean and the variance of the random variable rvN are
calculated as follows.

code
2.3.34

>>> rvN.mean(), rvN.var()
(6.666666666666667 , 11.11111111111111)

Verify these number answers by computing µX and σ2
X above.

Applications The negative binomial distribution comes up in
many real-world situations where we’re waiting for r independent
events to occur. For example, consider a distributed storage in which
information must be stored on at least r “ 3 peers for redundancy.
When a client wants to store the file f in the system, it needs to
connect to different nodes of the storage system and attempt to save
the file. The probability of completing the transfer to any node in the
system is p “ 0.9 (i.e. 10% error rate), so the client must repeatedly
attempt the transfer to different nodes until it completes r “ 3
transfers successfully. We can describe the probability of the client
successfully saving the file after y attempts as a random variable
Y “ r` X, where X „ NBinompr “ 3, p “ 0.9q.

Relations to other distributions

• The negative binomial with r “ 1 is the geometric distribution.
• The negative binomial is related to the sum of the geometric

distribution: NBinompr, pq “ řr
i“1 Geomppq.

• The negative binomial becomes the Poisson distribution for
large r if we identify λ “ rp1´ pq.

• The negative binomial can be derived as a gamma mixture of
Poisson distributions. ????

[More details from the Wikipedia article]
https://en.wikipedia.org/wiki/Negative_binomial_distribution

https://en.wikipedia.org/wiki/Negative_binomial_distribution

2.3 INVENTORY OF DISCRETE DISTRIBUTIONS 92

Hypergeometric (optional)

Consider a bucket that contains a balls labelled “success” and b balls
labelled “failure.” If we choose n balls randomly from this bucket,
how many of the “success” balls will we observe?

In order to answer this question, we need to know the details of
the sampling procedure. The probability distribution that describes
the number of successes will be different depending on if we’re using
sampling with or without replacement:

• Sampling with replacement: The process of choosing a ball from
the bucket, recording its value (success or failure), then putting
it back in the bucket.

• Sampling without replacement: the process of choosing a ball
from the bucket, recording its value (success or failure), then
putting it away.

When sampling is done with replacement, the probability of observing
a “success” ball remains constant p “ a

a`b for all n draws, so the
probability distribution that describes the number of successes in n
draws is described by the binomial distribution Binompn, p “ a

a`b q,
which we’ve already discussed. See page 85.

When the sampling is done without replacement, the situation is
much more complicated, since the probability of observing a success
depends on the previous outcomes. For example, on the first draw,
the probability of success will be p1 “ a

a`b , but on the second draw
the probability of success can be either p2 “ a

a`b´1 or p2 “ a´1
a`b´1 ,

depending on what we observed in the first draw. The probability
of success on the third draw will in turn depend on the number of
successes observed in the first two draws. and so on. The probability
of observing a success on the kth draw, will depend on what balls
were observed on the previous k ´ 1 draws. Sounds complicated,
right?

It turns out, mathematicians have thought about this process,
and came up with a formula for the number of successes for the
scenario of sampling with replacement: the hypergeometric dis-
tribution. The probability mass function of the random variable
X „ Hypergeompa, b, nq is

fXpxq “
`a

x
˘` b

n´x
˘

`a`b
n
˘

,

for x P t0, 1, . . . , nu.

2.3 INVENTORY OF DISCRETE DISTRIBUTIONS 93

0.00

0.05

0.10

0.15

0.20
a = 20, b = 80, n = 40 a = 30, b = 70, n = 40 a = 40, b = 60, n = 40

0 5 10 15 20 25 30 35 40
0.00

0.05

0.10

0.15

0.20
a = 50, b = 50, n = 40

0 5 10 15 20 25 30 35 40

a = 50, b = 50, n = 50

0 5 10 15 20 25 30 35 40

a = 50, b = 50, n = 60

Figure 2.37: Plot of the probability mass function of the hypergeometric
distribution with different parameters.

The mean and the variance of the random variable X „
Hypergeompa, b, nq are

µX “ n
a

a` b
and σ2

X “ n
a

a` b

ˆ

1´ a
a` b

˙

a` b´ n
a` b´ 1

.

These formulas are easier to read if we define the quantity p “ a
a`b ,

which corresponds to the probability of picking a success ball on the
first draw:

µX “ np and σ2
X “ npp1´ pq a` b´ n

a` b´ 1
.

You’ll be asked to derive the formula for the mean µX in E2.28, and
the formula for the variance in P2.6.

Compare the equations for the mean and the variance of the
hypergeometric with the equations for the mean and the variance
of the Binomial distribution (see page 85). The resemblance is not a
coincidence. Indeed, the binomial and hypergeometric distributions
describe the same model, but the binomial distribution describes
sampling with replacement while the hypergeometric distribution
describes sampling without replacement. When x and ?? are large
numbers, the effect of sampling without replacement becomes neg-
ligible, and we can approximate the hypergeometric distribution
using a binomial distribution. The factor a`b´n

a`b´1 is sometimes called
the finite-sample size correction factor.

2.3 INVENTORY OF DISCRETE DISTRIBUTIONS 94

Computer model Let’s use the hypergeom model from
scipy.stats to create a random variable object rvH that corresponds
to Hypergeompa “ 30, b “ 40, n “ 20q.

code
2.3.35

>>> from scipy.stats import hypergeom
>>> a = 30 # number of success balls
>>> b = 40 # number of failure balls
>>> n = 20 # how many we're drawing
>>> rvH = hypergeom(a+b, a, n)

Note we passed in the sum a` b as the first argument when initial-
izing the hypergeom model. This is because the function hypergeom
expects the total number of balls as its first parameter.

The sample space of the random variable rvH is t0, 1, 2, 3, . . . , 20u.
code
2.3.36

>>> rvH.support ()
(0, 20)

We can also compute the mean and the variance of the distribution
using the appropriate methods.

code
2.3.37

>>> rvH.mean(), rvH.var()
(8.571 , 3.549)

Applications Suppose you have a bag containing a “ 3 good
tomatoes and b “ 4 rotten tomatoes. You want to choose n “ 2
tomatoes from this bag to make a salad. What is the probability you
will end up with zero, one, or two good tomatoes for your salad?

The situation is described by a hypergeometric random variable
X „ Hypergeompa “ 3, b “ 4, n “ 2qwith probability mass function:

fXpxq “
`a

x
˘` b

n´x
˘

`a`b
n
˘

“
`3

x
˘` 4

2´x
˘

`7
2

˘
.

Intuitively, the distribution counts the number of ways to choose
x good tomatoes from the 3 good ones, times the number of ways
to choose the remaining 2 ´ x from the 4 bad ones, divided by a
normalization factor that describes all possible ways to choose any
2 tomatoes from a bag that contains a total of 7 tomatoes. In Exercise
E2.32, you’ll be asked you to obtain fXp0q, fXp1q, and fXp3q based on
this formula.

We can also compute the probabilities of the three different
outcomes, by thinking about the different sequences of observations
that lead to each outcome. Since n “ 2, we need to consider only
two steps: the first draw and the second. The probability of picking
zero good tomatoes is given by fXp0q “ 4

7 ¨ 3
6 “ 0.2857, where 4

7 is
the probability of picking a bad tomato on the first draw, and 3

6 is
the probability of picking a bad tomato on the second draw. There

2.3 INVENTORY OF DISCRETE DISTRIBUTIONS 95

are two possible ways to pick one good tomato in two draws: the
first one or the second one, so the probability of this outcome is
fXp1q “ 4

7 ¨ 3
6 ` 3

7 ¨ 4
6 “ 0.5714. The probability of picking two good

tomatoes is fXp2q “ 3
7 ¨ 2

6 “ 0.1429.

Relations to other distributions

• If the draws from the are performed with replacements, the
number of successes is described by the binomial distribution
Binompp, nq, where p “ a

a`b is the probability of drawing a
success ball.

• Alternatively, if the number of balls a and b is very large, then
sampling without replacement will be approximately the same
as sampling with replacements, so the hypergeometric will
resemble Binomp a

a`b , nq.
[Wikipedia article on the hypergeometric distribution]
https://en.wikipedia.org/wiki/Hypergeometric_distribution

https://en.wikipedia.org/wiki/Hypergeometric_distribution

2.3 INVENTORY OF DISCRETE DISTRIBUTIONS 96

2.3.5 Modelling real-world data

Let’s try to connect probability distributions we discussed in this
chapter with the data sets that we used as examples in the data
chapters. The probability modelling skills you developed in this
section, will help you model the data distributions in real-world
datasets.

We’ll plot the histogram of the data and a plot of the pmf in the
same graph, then tweak the model parameters interactively until the
two curves start to look the same.

Dataset 1: Website visitors conversion rates

Recall Alice’s dataset of website visitors, which she collected to
compare the current design (A) or the new design (B), is better
at making visitors click the BUY NOW button. See page ?? for a
reminder.

Each visitor to the website can be modelled as an instance of
the Bernoulli random variable, where we identify bought=1 random
variable with “success,” and bought=0 as “failure.”

If we sum together the number of conversions for the whole
group, then

If we assume each Bernoulli trials are independent, then the
total count of conversions is a binomial distribution. Since we have
version A and version B of the website, we’ll assume the probability
of conversion is different for each website pA and pB. There were
nA “ 1014 visitors assigned to the group A, and nB “ 986 visitors
assigned to group B, so the two relevant distributions are:

XA „ BinompnA, pAq and XB „ BinompnB, pBq.
Alice has observed the values xA “ 47 and xB “ 56 from these
distributions (see Table ?? on page ??). She wants to know the value
of the unknown parameters pA and pB, which correspond to the
“conversion probabilities” for the two designs.

The process of “guessing” the model parameters based on data
observations is called estimation, and this will be the main focus in the
statistics chapter. Your knowledge of the properties of the binomial
distribution will play an essential role.

Hard disk failure rates

Recall the example hard disk failure rate from page 25 in Section 2.1.
In that example, we assumed the number of hard disks failures
is distributed according to a Poisson distribution with parameter

2.3 INVENTORY OF DISCRETE DISTRIBUTIONS 97

λ “ 20, H „ Poispλ “ 20q, and used the computer model to obtain
various estimates, and predictions for future observations.

2.3.6 Discussion

Summary of relations between distributions

TODO: FIGURE concept map showing the relations between prob.
dists in this chapter

Figure 2.38

The relations shown in Figure 2.38 are only a subset of all possible
relations that exist between probability distributions. For a more
complete view see graph from [?] see http://www.stat.rice.edu/
~dobelman/courses/texts/leemis.distributions.2008amstat.
pdf#page=3.

Math formulas are optional

Even if this section had lots of math equations, I want you to
remember that you can always use Python for practical calculations.
If you need to compute

`n
k
˘

(n choose k), you can use the math
definition n!

pn´kq!k! , or call the Python function comb(n,k).

Review of the scipy.stats methods

Recall the methods on discrete random variable objects, listed in
Table 2.1 (page 75). These methods will come in handy when you
try to solve the exercises.

http://www.stat.rice.edu/~dobelman/courses/texts/leemis.distributions.2008amstat.pdf#page=3
http://www.stat.rice.edu/~dobelman/courses/texts/leemis.distributions.2008amstat.pdf#page=3
http://www.stat.rice.edu/~dobelman/courses/texts/leemis.distributions.2008amstat.pdf#page=3

2.3 INVENTORY OF DISCRETE DISTRIBUTIONS 98

Plotting distributions

The best way to understand a probability distribution is to plot
its probability mass function. Recall the three-step procedure we
showed in code block 2.3.17. 1. arange 2. values of pmf 3.
plt.stem The function plot_pmf defined in plot_helpers module
can perform these steps for you.

The procedure for plotting the CDF is slightly different, 1.
linspace 2. values of cdf 3. sns.lineplot The function plot_cdf
defined can perform these steps for you.

Plotting the probability functions is the best way to understand
how their parameters change their shape. Try initializing random
variables from different choices of parameters, and plot the distribu-
tion to see you get. Hands-on experience is always helpful after you
have looked at equations.

Exercises

E2.23 Compute the mean of the random variable X „ Binompn, pq,
using the interpretation that X “ B1 ` B2 ` ¨ ¨ ¨ ` Bn, where eachBi „
Bernoullippq is drawn from the Bernoulli distribution with parameter
p.

Hint: Recall the linear property of the expectation operator.

E2.24 Compute the mean of the random variable X „ Binomialpn, pq
whose distribution is pXpkq “

`n
k
˘

pkp1´ pqn´k, for k P t0, 1, . . . , nu.
E2.25 Compute the mean of the random variable X „ Geometricppq
with probability mass function pXpkq “ p1´ pqk´1 p, for k P t1, 2, . . .u.

Hint: You can use the formula
ř8

k“1 kark´1 “ ´ a
p1´rq2 , which is

obtained by taking the derivative of
ř8

n“0 arn “ a
1´r with respect

to r.

E2.26 TODO: Replace k P r... to x P 0...;
Compute the mean of X „ NegativeBinomialpr, pq whose distri-

bution is pXpkq “
`k´1

r´1

˘p1´ pqk´r pr, for k P tr, r` 1, r` 2, . . .u.
E2.27 TODO Replace m “ x

Show that
`k´1

r´1

˘

equals p´1qm`´r
m
˘

where m “ k´ r.

Hint: Expand both expressions separately to show they are equal.

E2.28 Replace n with a` b
Replace K with a
Replace N with n

2.3 INVENTORY OF DISCRETE DISTRIBUTIONS 99

Find the mean of the random variable X „
Hypergeometricpn, K, Nq with probability mass function fXpkq “
pKkqpN´K

n´k q
pN

nq
, where k is between maxt0, n` K´ Nu and mintK, nu.

E2.29 Compute the mean of the random variable X „ Poissonpλq
with probability mass function pXpkq “ pλqke´λ

k! , for k P t0, 1, 2, . . .u.
E2.30 Use the probability functions dpois(k,lambda),
ppois(k,lambda), and qpois(q, lambda) to reproduce the
calculations of the the number-of-hard-disk-failures scenario from
page 2.1.5. Compute a) the probability of exactly 20, 21, and 22
failures, b) the probability of the event t16 ď Z ď 24u, and c) the 95
percentile F´1

Z p0.95q for the random variable Z „ Poissonpλ “ 20q.
E2.31 Use the probability functions in Excel to reproduce the
calculations of the the number-of-hard-disk-failures scenario from
page 2.1.5. Compute a) the probability of exactly 20, 21, and 22
failures, b) the probability of the event t16 ď Z ď 24u, and c) the 95
percentile F´1

Z p0.95q for the random variable Z „ Poissonpλ “ 20q.
E2.32 Create a random variable object from the hypergom computer
model defined in scipy.stats that describes the scenario where
we’re choosing n “ 2 tomatoes from a bag that contains a “ 3
good tomatoes and b “ 4 rotten tomatoes. Compute the probabilities
fXp0q, fXp1q, and fXp2q using the computer model.

Hint: Recall that the hypergom takes the total number of items as the
first argument.

E2.33 Amy is a veterinarian who helps all kinds of animals, but
deep down inside she’s a dog person, so she keeps always counts
how many dog “patients” she sees each day. Suppose Amy’s clinic
received 20 pets today, of which 7 are dogs, and Amy will see will
be able to see 12 of the 20 animals during her shift. What is the
probability Amy will see exactly five dogs today?

Links

[Crash course in combinatorics]
https://www.youtube.com/watch?v=ggNeQUe1Hj8

[Graph showing the relations between probability distributions]
https://wikipedia.org/wiki/Relationships_among_probability_distributions

[Complete list of the discrete distributions available in SciPy]
https://docs.scipy.org/doc/scipy/tutorial/stats/discrete.html

https://www.youtube.com/watch?v=ggNeQUe1Hj8
https://en.wikipedia.org/wiki/Relationships_among_probability_distributions
https://docs.scipy.org/doc/scipy/tutorial/stats/discrete.html

2.3 INVENTORY OF DISCRETE DISTRIBUTIONS 100

[Description of probability distributions]
https://en.wikipedia.org/wiki/Probability_distribution

https://en.wikipedia.org/wiki/Probability_distribution

2.3 INVENTORY OF DISCRETE DISTRIBUTIONS 101

Congratulations on reaching the halfway point in the probability
chapter. You now know everything you need to know about discrete
distributions. In the next three sections, we’ll learn about the
probability theory with continuous distributions, which will first
require introducing some math tools from calculus (integration).
Logically, the probability theory with continuous random variables
uses the same ideas as in the previous sections, but we’re switching
to a different math machinery for doing probability calculations.

This is a good moment to take a break from reading and try to
solve some of the end-of-chapter problems (see page ZZ).

2.4 CALCULUS PREREQUISITES 102

2.4 Calculus prerequisites

In order to do calculations with continuous random variables, you
need to know about the calculus procedure of integration, which is
used to compute the “total amount accumulated” of some quantity
described by a continuous function, over an interval of inputs.

This section is your opportunity to learn (or relearn) the main
concepts from calculus that you need to know to do calculations with
continuous probability distributions. We’ll talk about concepts like
sets, functions, and integrals, which are essential for understanding
what’s going on in the rest of the book. We’ll start with a practical
example in which integration is used. I want to show you that
integration is not some fancy new idea, but an operation you’re
already familiar with from everyday life.

Banking example Consider the function baptq that represents your
bank account balance at time t. Also consider the function trptq,
which corresponds to the transactions (deposits and withdrawals)
on your account.

Suppose you have a record of all the transactions on your account
trptq, and you want to compute the final account balance at the
end of the month bap30q. You can use the integration procedure
on the transactions trptq to calculate the total change in the account
balance at the end of the month, relative to the account balance at
the beginning of the month bap0q. The end-of-the-month-balance
calculation is described by the following equation:

bap30q “ bap0q `
ż 30

0
trptq dt.

The integral
ş30

0 trptqdt describes the process of computing the total
of all the transactions that occurred between day 0 and day 30. The
weird-looking integral sign “

ş

” comes from the Latin word summa
for sum.

We use integrals every time we need to calculate the total of some
quantity over a time period. The integral

şb
a qptqdt is the calculation

of the total of some quantity qptq that accumulates during the time
period from t “ a to t “ b.

2.4.1 Definitions

Let’s start by defining all the concepts from university-level math
you need to know about. Don’t worry if you’re seeing some of these
concepts for the first time, you’ll see plenty of examples using these

2.4 CALCULUS PREREQUISITES 103

concepts, so you’ll get to know them very well by the end of this
section.

• set: a collection of math objects. Sets are denoted using curly
brackets t. . .u. A set can be defined as a finite list of elements
like theads, tailsu, by specifying a pattern t0, 1, 2, 3, . . .u, or
through some other math expression t<def’n>u.

• f pxq: a function of the form f : R Ñ R, which means f takes
real numbers as inputs and produces real numbers as outputs.
Functions are usually defined through an analytical formula
like f pxq “ x2, which tells us how to compute the output f pxq
for a given input x. Functions can also be represented visually
as a function graph , which is a curve that passes through
all the coordinates pairs px, f pxqq in the Cartesian plane.

• A f pa, bq: the value of the area under the graph of the function
f pxq from x “ a until x “ b. The area A f pa, bq corresponds to
the following integral

A f pa, bq def“
ż b

a
f pxq dx.

The
ş

sign stands for sum. Indeed, the integral is the “sum” of
all the values of f pxq for inputs x between x “ a and x “ b.

• F0pbq def“ A f p0, bq: the integral function of f pxq. The integral
function corresponds to the computation of the area under f pxq
as a function of the upper limit of integration:

Fpbq def“ A f p0, bq “
ż b

0
f pxq dx.

The choice of x “ 0 as the lower limit of integration is arbitrary.
We could define any number of other integral functions Fapbq
for different starting points x “ a.

In the next few pages, we’ll go into some details about each of these
math concepts. Don’t be intimidated by all the fancy-looking math
notation—it’s just a bunch of language mathematicians invented in
order to describe concepts precisely and concisely. It looks weird to
everyone who sees this specialized math notation for the first time
(a.k.a. alien symbols), but you’ll quickly get used to it.

2.4.2 Sets and intervals

Sets are arbitrary collections of math objects. Many math ideas are
expressed using the language of sets, so it’s worth going over the
basic definitions and notation conventions.

2.4 CALCULUS PREREQUISITES 104

• S, T: the usual variable names for sets
• s P S: this statement is read “s is an element of S” or “s is in S”
• t definition u: the curly brackets surround the definition of a

set, and the expression inside the curly brackets describes what
the set contains.

• Sc: the complement of the set S, is defined as all elements that
are not in the set S.

• N: the set of natural numbers N
def“ t0, 1, 2, . . .u

• Z: the set of integers Z
def“ t. . . ,´2,´1, 0, 1, 2, 3, . . .u

• Q: the set of rational numbers, Q
def“

!

m
n

ˇ

ˇ

ˇ
m P Z, n P N, n ‰ 0

)

.
The set Q consists of all numbers that can be expressed as
fractions of the form m

n , where m is an integer, n is a natural
number, and n ‰ 0.

• R: the set of real numbers
• R`: the set of nonnegative real numbers. The definition of the

nonnegative is written as R` def“ tall x in R such that x ě 0u, or
it can be expressed more compactly as R` def“ tx P R | x ě 0u.

Note the multiple ways we use the curly-brackets notation tu to de-
note sets. A finite set is defined by simply listing all its elements. For
example, the set of possible outcomes of a coin flip is theads, tailsu.
For an infinite set we can’t write down all the elements, but we can
show the pattern like N

def“ t0, 1, 2, 3, 4, . . .u. The meaning of the
three dots is “and so on, continuing the same pattern.” Another
way to define a set is to use the set-builder notation t ¨ | ¨ u. Inside
the curly brackets we first describe the general kind of mathematical
objects we are talking about, followed by the symbol “|” (read
“such that”), followed by the conditions that must be satisfied by all
elements of the set. The definitions of the rational numbers Q and the
nonnegative real numbers R` above are examples of the set-builder
notation.

The number line is a visual representation of the set of real
numbers R, as shown in Figure 2.39. The real numbers correspond
to all the points on the number line, from ´8 to8.

´5 ´4 ´3 ´2 ´1 0 1 2 3 4 5

´ 3
2

1
2

?
2 e π

9
2

Figure 2.39: The real numbers R cover the entire number line.

The set of real numbers includes all the rational numbers like ´ 3
2 , 1

2 ,
and 9

2 , as well as irrational numbers like
?

2, e, and π. This means

2.4 CALCULUS PREREQUISITES 105

any number you are likely to run into when solving math problems
can be visualized as a point on the number line.

Intervals

The number line can also be used to represent subsets of the real
numbers, which we call intervals. Figure 2.40 shows an illustration
of the interval r2, 4s “ tx P R | 2 ď x ď 4u, which is a subset of the
real numbers.

Here are some more examples of various intervals:

• ra, bs: the interval from a to b. This corresponds to the set of real
numbers between a and b, including the endpoints a and b. The
interval ra, bs corresponds to the set tx P R | a ď x ď bu.

• ra,8q: the interval from a until infinity, which corresponds to
the set tx P R | a ď xu.

• p´8, bs: the interval from negative infinity until b, which
corresponds to the set tx P R | x ď bu.

The notation ra, bs describes the closed interval from a to b, which
means the endpoints a and b are included in the interval. The
notation pa, bq describes the open interval from a to b, defined as the
set tx P R | a ă x ă bu, which doesn’t include the endpoints a
and b. In other words, intervals defined using square brackets “r”
include the endpoints (defined using less-than-or-equal conditions)
while intervals defined with round brackets “p” do not include their
endpoints (defined using strictly-less-than conditions). The distinc-
tion between open and closed intervals is important in general, but
makes no difference in the context of probability theory, so you don’t
need to worry about the difference between ra, bs and pa, bq in this
book.

´5 ´4 ´3 ´2 ´1 0 1 2 3 4 5

Figure 2.40: The interval r2, 4s def“ tx P R | 2 ď x ď 4u.

Set operations

We use set operations like union Y, intersection X, and set differ-
ence z to define composite sets.

• SY T: the union of two sets. The union of S and T corresponds
to the elements in either S or T.

• SX T: the intersection of two sets. The intersection of S and T
corresponds to the elements that are in both S and T.

2.4 CALCULUS PREREQUISITES 106

• S z T: set difference or set minus. The set difference SzT corre-
sponds to the elements of S that are not in T.

Consider the overlapping intervals A “ ra, bs and B “ rc, ds
illustrated in Figure 2.41. The union of these two intervals is the
set of numbers that are either between a and b or between c and d,
which corresponds to the interval ra, ds. The intersection of A and
B is the set of numbers that are in both A and B, and corresponds to
the interval rc, bs. The figure also illustrates the two set differences,
A z B and B z A which correspond to numbers that are in one set,
but not in the other.

Figure 2.41: Various intervals that can be obtained using set operations of
the intervals A and B.

I hope these definitions and examples made you feel more comfort-
able with sets, and the weird-looking curly bracket notation that
mathematicians use to define sets. It might look a little complicated
at first, but you’ll get used to it in the rest of the book. In proba-
bility theory, we use finite sets and countably infinite sets like the
natural numbers to represent the sample spaces of discrete random
variables. We also use intervals to describe outcomes in the sample
space of continuous random variables.

2.4.3 Functions

A function is a mathematical object that takes numbers as inputs and
produces numbers as outputs. We use the notation

f : A Ñ B

to denote a function from the input set A to the output set B. For
every input x, the output value of f for that input is denoted f pxq.

Function graph

The graph of a function is a line that passes through all input-output
pairs of a function. Imagine we take out a piece of paper and

2.4 CALCULUS PREREQUISITES 107

draw a coordinate system with a horizontal axis and a vertical axis.
The horizontal axis describes the different input values x, while the
vertical axis describes the output values f pxq. Each input-output pair
of the function f corresponds to the point px, f pxqq in the coordinate
system. We obtain the graph of the function by varying the input
coordinate x and plotting all the points px, f pxqq, as illustrated in
Figure 2.42.

Figure 2.42: The graph of the function f consists of all the points with
coordinates px, f pxqq over some interval of x values.

The graph of the function f allows us to see at a glance the
behaviour of the function for all possible inputs, and forms an essen-
tial visualization tool. Indeed, many phenomena and calculations
related to functions can be understood geometrically as operations
based on the graph of the function.

In probability theory, we use functions to describe the probability
distributions of random variables. Discrete random variables are
described by a probability mass function of the form f : X Ñ R,
where the sample space X is either a finite set or a countably infinite
set like the natural numbers N. Continuous random variables are
described by probability density functions of the form f : X Ñ R,
where the sample space X is some subset of the real numbers R.

Python functions

In Python, functions are defined using the def keyword. For
example, the code below shows how to define the function gpxq “ x2.

code
2.4.1

>>> def g(x):
return x**2

The first line specifies we’re defining a function called g that takes
the variable x as input (function inputs are also called arguments).
The function body can contain multiple lines and compute arbitrary
intermediate values. The return statement (usually the last line in
the function body) specifies the output value of the function.

We call a Python functions using its name followed by the input
value in brackets, which is identical to the math notation.

code
2.4.2

2.4 CALCULUS PREREQUISITES 108

>>> g(4)
16

Consult the Python tutorial in Appendix C for more details about the
syntax for defining functions.

Plotting functions in Python

An easy way to plot the graph of the function gpxq is to use the numpy
and seaborn modules, as shown in the code example below.

code
2.4.3

>>> import numpy as np
>>> import seaborn as sns
>>> xs = np.linspace(0, 10, 100)
>>> gxs = g(x)
>>> sns.lineplot(x=xs, y=gxs , label="Graph of g(x)")
See Figure 2.43 for the output.

The first two lines import the modules numpy and seaborn under the
aliases np and sns. We use the function np.linspace to create an
array (a list of numbers) xs, which contains 100 input values that
range from x “ 0 until x “ 10. Next we apply the function g to
the array of inputs xs and store the result in the array gxs, which
contains all the output values of the function for the input values xs.
At this point, the arrays xs and gxs contain 100 input-output pairs of
the form px, gpxqq, which is exactly what we need to plot the graph of
the function. On the last line, we call the function lineplot to create
the graph of gpxq, which produces the plot shown in Figure 2.43.

0 2 4 6 8 10
x

0

20

40

60

80

100

g(
x)

Graph of the function g(x)

Figure 2.43: Graph of the function gpxq “ x from x “ 0 until x “ 10.

Note the steps we used to obtain the function graph in code 2.4.3
correspond exactly to the mathematical procedure for drawing the
graph of f pxq: draw the line that passes through all px, f pxqq input-
output pairs.

2.4 CALCULUS PREREQUISITES 109

Using pre-defined Python functions

For many math calculations, we can reuse pre-defined functions that
are available in Python modules like NumPy, SciPy, and SymPy. For
example, if we need to calculate the square root of 4 or the natural
logarithm of 4, we can import the Python module numpy and call the
functions sqrt and log defined in that module.

code
2.4.4

>>> import numpy as np
>>> np.sqrt (4)
2.0
>>> np.log(4)
1.3862943611198906

Inverse functions

The inverse function f´1 : B Ñ A performs the inverse operation of
the function f : A Ñ B. If you start from some x, apply f , and then
apply f´1, you’ll arrive—full circle—back to the original input x:

f´1` f pxq ˘ “ x.

In Figure 2.44 the function f is represented as a forward arrow, and
the inverse function f´1 is represented as a backward arrow that
puts the value f pxq back to the x it came from.

x f pxq

A B
f

f ´1

Figure 2.44: The inverse f´1 undoes the operation of the function f .

For example, if we compute the square root of a number, then
square the result, we obtain the original number, since the quadratic
function x2 is the inverse of the square-root function

?
x.

code
2.4.5

>>> np.sqrt (4)**2
4.0

The exponential function ex is the inverse of the logarithmic function
logepxq, so if we compute the logarithm of a number then apply the
exponential function, we get back the original input.

code
2.4.6

>>> np.exp(np.log (4))
4.0

2.4 CALCULUS PREREQUISITES 110

In probability theory, we often do calculations using the cumulative
distribution function (CDF) FX : X Ñ r0, 1s, and also use the inverse
of the cumulative distribution function F´1

X : r0, 1s Ñ X . Knowing
about inverse functions (and the weird superscript ´1 notation used
to describe them) is useful for your conceptual understanding of
these concepts: instead of thinking about the inverse-CDF F´1

X as
some new complicated concept you have to memorize, you can think
of F´1

X as the “undo operation” for FX . In other words, FX and F´1
X

describe the same mapping, but used in opposite directions.

2.4.4 Integrals as area calculations

An integral corresponds to the computation of the area enclosed
between the curve f pxq and the x-axis over some interval of x values:

A f pa, bq “
ż x“b

x“a
f pxq dx.

We refer to the numbers a and b as the limits of integration, and the
notation

şb
a f pxq dx is shorthand for

şx“b
x“a f pxq dx.

x

f pxq

Afpa, bq

f pxq

a b

x

f pxq

Figure 2.45: The integral of the function f pxq between x “ a and x “ b
corresponds to the shaded area.

The notion of an integral is foundational for understanding contin-
uous random variables. Every time we compute the probability of
some outcome of a continuous random variable, there is an integral
calculation going on under the hood, so integrals is not a topic you
can skip.

If this is the first time you’re learning about integrals, it’s under-
standable if you feel intimidated by the complicated math notation,
but you have to trust me on this one: except for the notation, there
is nothing to worry about! In the next few pages, I’ll do my best to
introduce you to the topic of integrals, and you’ll learn three different
ways to do compute integrals.

Let’s start with some examples.

2.4 CALCULUS PREREQUISITES 111

Example 1: integral of a constant function

Consider the constant function f pxq “ 3. No matter what the input x
is, the output is always 3. We can easily find the area under the graph
of the function f pxq between any two points, since the region under
the graph has a rectangular shape. See Figure 2.46 for an illustration.

The area under f pxq between x “ 0 and x “ 5 corresponds to the
following calculation:

A f p0, 5q “
ż 5

0
f pxq dx “ 3 ¨ 5 “ 15.

The area under the graph of f pxq is a rectangle with height 3 and
width 5, so its area is 3 ¨ 5 “ 15.

1 2 3 4 5 6 7

1

2

3

4

5

x

f(x)

f(x) = 3

Af (0, 5) =

∫ 5

0

f(x)dx = 15

Figure 2.46: The area of a rectangle of height 3 and width 5 is equal to 15.

Example 2: integral of a linear function

Consider now the area under the graph of the line gpxq “ x between
x “ 0 and x “ 5, as shown in Figure 2.47. Since the region under the
curve is triangular, we can compute its area using the formula for the
area of a triangle, which is “base times height divided by 2.”

The integral of gpxq from x “ 0 until x “ 5 is described by the
following calculation:

Agp0, 5q “
ż 5

0
gpxq dx “ 1

2 5 ¨ 5 “ 1
2 52 “ 25

2
“ 12.5.

I hope these examples helped you see that the scary-looking integral
sign is not that complicated after all. It’s just a fancy way to describe
“area under the graph of a function” calculations.

2.4 CALCULUS PREREQUISITES 112

1 2 3 4 5 6 7

1

2

3

4

5

x

g(x)
g(x) = x

Ag(0, 5) =

∫ 5

0

g(x)dx = 1
2
52

Figure 2.47: The area of a triangle with base 5 and height 5 is equal to 1
2 52 “

25
2 “ 12.5.

Properties of integrals

We’ll now state some properties of integrals that follow from their
interpretation as area calculations.

• Additivity. The integral from a to b plus the integral from b to
c is equal to the integral from a to c:

ż b

a
f pxq dx`

ż c

b
f pxq dx “

ż c

a
f pxq dx.

• Constant multiple of a function. The integral of the function
c f pxq is equal to c times the integral of f pxq, for any constant c:

ż

c f pxq dx “ c
ż

f pxq dx.

• Sum of two functions. The integral of a sum of two functions
is equal to the sum of the integrals of the individual functions:

ż

r f pxq ` gpxqs dx “
ż

f pxq dx`
ż

gpxq dx.

• Linearity. The combination of the above two properties tells
us that integration is a linear operation, meaning it preserves
linear combinations. The integral of the linear combination
of two functions α f pxq ` βgpxq, is equal to the same linear
combination of the integrals of the two functions:

ż

rα f pxq ` βgpxqs dx “ α

ż

f pxq dx ` β

ż

gpxq dx,

where α and β are two arbitrary constants.

2.4 CALCULUS PREREQUISITES 113

• Integral at a single point. Integrals over intervals with zero
length have zero value for any function f pxq:

ż a

a
f pxq dx “ 0.

Thinking geometrically, this integral defines a region with
height f pxq and width 0, so it corresponds to zero area.

2.4.5 Integrals as functions

The integral function F0pbq corresponds to the area calculation with
a variable upper limit of integration A f p0, bq. The variable b, which
serves as the input for the integral function F0, corresponds to the
upper limit of integration in the following calculation:

F0pbq def“ A f p0, bq “
ż x“b

x“0
f pxq dx .

There are two variables and one constant in this formula. The input
variable b describes the upper limit of integration. The integration
variable x performs a sweep from x “ 0 until x “ b. The constant 0
describes the lower limit of integration. As a matter of convention,
we’ll always denote the integral function using the capital letter of
the same letter as the original function.

Note that choosing x “ 0 for the starting point of the integral
function was an arbitrary choice, and we obtain another integral
function if we use x “ a as the starting point, Fapbq “

şb
a f pxq dx.

Two integral functions differ only by a constant term. For example,
F0pbq “ Fapbq ` C, where C “ şx“a

x“0 f pxqdx.
The integral function Fpbq contains the “precomputed” informa-

tion about the area under the graph of f pxq. The area under f pxq
between x “ a and x “ b can be obtained by calculating the change
in the integral function as follows:

A f pa, bq “
ż b

a
f pxq dx “ Fpbq ´ Fpaq.

Intuitively, this formula computes the area A f pa, bq as the difference
between the areas of two regions: the area until x “ b minus the area
until x “ a, as illustrated in Figure 2.48.

Example 1 revisited

We can easily find the integral function for the constant function
f pxq “ 3, because the region under the curve is rectangular.

2.4 CALCULUS PREREQUISITES 114

x

f pxq

Afpa, bq

a b

x

f pxq

x

f pxq

F0pbq

0 b

x

f pxq

x

f pxq

F0paq

0 a

x

f pxq

“ ´

Figure 2.48: The area under f pxq between x “ a and x “ b is computed
using the formula A f pa, bq “ F0pbq ´ F0paq, which describes the change in
the output of F0pxq between x “ a and x “ b.

Choosing x “ 0 as the starting point, we obtain the integral function
F0pbq that corresponds to the area under f pxq between x “ 0 and
x “ b as follows:

F0pbq “ A f p0, bq “
ż b

0
f pxq dx “ 3b.

The area is equal to the rectangle’s height times its width, as
illustrated in Figure 2.49.

1 2 3 4 5 6 7

1

2

3

4

5

x

f(x)

f(x) = 3

F0(b) =

∫ b

0

f(x)dx = 3b

b

Figure 2.49: The area of a rectangle of height 3 and width b is equal to 3b.

Knowing the function F0pbq allows us to compute the area under
the graph of f pxq between any two points x “ a and x “ b using the
formula A f pa, bq “ F0pbq ´ F0paq “ 3pb´ aq.

Example 2 revisited

Consider now the area under the graph of the line gpxq “ x, starting
from x “ 0. Since the region under the curve is triangular, we can
compute its area using the formula for the area of a triangle: base
times height divided by two.

2.4 CALCULUS PREREQUISITES 115

The general formula for the area under gpxq from x “ 0 until
x “ b is described by the following integral calculation:

G0pbq “ Agp0, bq “
ż b

0
gpxq dx “ 1

2 pbˆ bq “ 1
2 b2.

1 2 3 4 5 6 7

1

2

3

4

5

x

g(x)
g(x) = x

G0(b) =

∫ b

0

g(x)dx =
1

2
b2

b

Figure 2.50: The area of a triangle with base b and height b is equal to 1
2 b2.

Knowing the function G0pbq allows us to compute the area under
the graph of gpxq between x “ a and x “ b as the difference
Agpa, bq “ G0pbq ´ G0paq “ 1

2 b2 ´ 1
2 a2.

We were able to compute the above integrals thanks to the simple
geometries of the areas under the graphs. Computing integrals
of more complicated functions requires more advanced techniques.
There is an entire course called integral calculus which is dedicated
to the task of finding integrals using various tricks and techniques.

Taking a calculus course would be useful if you plan to study
physics or engineering, but for the purpose of learning probability
and statistics, you’re not required to learn all these integration
techniques. Instead, you can rely on computers to do integration for
you. Specifically, you can use the Python modules SciPy and SymPy
to compute all the integrals you need, as we’ll show in the next two
sections.

2.4.6 Computing integrals numerically using SciPy

There are numerous ways to compute integrals using Python. Com-
puting integrals “numerically” means we’re splitting the region of
integration into thousands or millions of subregions, computing the
areas of these subregions, then adding up the areas of the subregions
to obtain the total area.

The Python function quad in the module scipy.integrate al-
lows us to compute the integral of any function. The name quad

2.4 CALCULUS PREREQUISITES 116

is short for “quadrature” which is the historical math term used for
find-the-area procedures. Let’s start by importing the quad function.

code
2.4.7

>>> from scipy.integrate import quad

Now let’s define a Python function f that corresponds to the constant
function f pxq “ 3.

code
2.4.8

>>> def f(x):
return 3

>>> f(333)
3

No matter what input x we choose, the output will always be the
same f pxq “ 3.

To compute the integral
ş5

0 f pxqdx we call the function quad with
inputs f as the first argument, and the limits of integration a “ 0 and
b “ 5 as the second and third arguments.

code
2.4.9

>>> quad(f, 0, 5)
(15.0, 1.1102230246251565e-13)

The function quad returns a tuple (a pair of numbers) as output:
pA, εq. The first number in the tuple is the value of the area calcu-
lation. The second number ε tells us the accuracy of the procedure
used to calculate the area. In the above calculation, the output tells
us the integral

ş5
0 f pxqdx is equal to 15.0 up to a precision on the order

of 10´13.
Since we’re usually only interested in the value of the area A and

not the precision ε, we often select the first number in the output of
quad. This is why you’ll often see the expression quad(...)[0] in
code examples.

code
2.4.10

>>> quad(f, 0, 5)[0] # extract A
15.0

As a second example, let’s calculate the area under the graph of the
function gpxq “ x between x “ 0 and x “ 5.

code
2.4.11

>>> def g(x):
return x

>>> quad(g, 0, 5)[0]
12.5

The answer we obtained matches the results of the general formula
we obtained above, Agp0, 5q “ 1

2 b2, when the upper limit of
integration is b “ 5.

We’ll use the function quad hundreds of times in the remainder
of the book to compute various integrals as part of probability and
statistics calculations, so make sure you understand what is going
on in the above code examples. The main takeaway message is that
the quad function is your friend whenever you need to compute

2.4 CALCULUS PREREQUISITES 117

integrals. All the scary-looking math equations that contain the
ş

symbol can be computed using one or two lines of Python code.

Trapezoid approximation

There is another way to compute the area under the graph of f pxq
called the trapezoid approximation, which I want you to know about.
Note, however, this section is optional reading material and you can
totally skip it if you prefer.

In mathematics, a trapezoid is a quadrilateral (a geometric figure
with four sides) that has two sides that are parallel. We can
compute the integral

şb
a f pxqdx by splitting up the region under the

graph of f pxq into a number of smaller trapezoid-shaped subregions.
Figure 2.51 shows an illustration of the trapezoid approximation
calculation under the graph of some function f pxq using n “ 10 sub-
regions. The combined area of the 10 trapezoids is an approximation
of the area of the region under the graph of f pxq.

Notice the first trapezoid (actually a triangle) is an overestimate
for the area under the graph of f pxq, since its area is greater than
the area under the graph of f pxq. In contrast, the second and third
subregions are underestimates, since they don’t cover all the area
under the function. This issue of underestimation and overestima-
tion can be addressed by increasing the number of subregions. If
we split the region into n “ 100 trapezoids, the size of the under-
and over-estimates will become much smaller, and a split into n “
1000 subregions will produce an even more accurate approximation.
The illustration with n “ 10 subregions allows us to see how the
trapezoid approximation works, but for practical calculations we
always compute trapezoid approximations using thousands or tens
of thousands of subregions to get more accurate results.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

0.00

0.02

0.04

0.06

0.08

0.10

(xi, 0)

(xi, f(xi))

(xi + x, 0)

(xi + x, f(xi + x))

Figure 2.51: Illustration of the trapezoid approximation to the integral
ş25
0 f pxqdx using n “ 10 trapezoids.

Figure 2.51 illustrates the calculation of the area under f pxq
by approximating it using n “ 10 trapezoid subregions. We’ve

2.4 CALCULUS PREREQUISITES 118

highlighted the corners of the third trapezoid subregion, to give
you some intuition about the data that is required to compute this
approximation. The integral we want to compute is from a “ 0 until
b “ 25. We split the region into n “ 10 subregions, so the width of
each subregion is ∆x “ b´a

n “ 25´0
10 “ 2.5. The x-coordinate of the

regions are given by xs “ r0, 2.5, 5, 7.5, 10, 12.5, 15, 17.5, 20, 22.5, 25s,
and we also need to know the value of the function f pxq for all the
coordinates x in the list xs.

We don’t need to know the actual formula for the area of a
trapezoid, since the computer will compute it for us. We just need
to give it the lists containing the x-values and f pxq-values, as you’ll
see in the code examples below.

Let’s use the trapezoid approximation to compute the integral
ş5

0 gpxqdx, where gpxq “ x. We already computed this integral two
times earlier using the simple geometry of the region and using
the quad function, and we found out the area under gpxq over the
interval r0, 5s is 12.5, so we better be getting the same answer!

code
2.4.12

>>> from scipy.integrate import trapz
>>> n = 1000
>>> xs = np.linspace(0, 5, n)
>>> gxs = g(xs)
>>> trapz(gxs , xs)
12.5

On the first line, we import the function trapz from the mod-
ule scipy.integrate. On the second line, we use the function
np.linspace to create an array xs (a list of numbers) that contains
n “ 1000 input values x that go from x “ 0 until x “ 5. On the third
line, we compute the value of the function gpxq for each of the input
values, and store the result in another array called gxs. Finally, we
call the function trapz(gxs,xs) with the two arrays to compute the
trapezoid approximation.

2.4.7 Computing integrals symbolically with SymPy

We can also use Python to do symbolic integration using variables
(symbols) instead of numbers. Symbolic integration allows us to
obtain exact formulas for integrals that are valid for any limits of
integration x “ a and x “ b. The Python module sympy provides
the functionality for doing symbolic math calculations similar to the
calculation you could do using pen and paper.

The following code block imports the SymPy function symbols,
which is used to define new symbolic variables, and the function
integrate that we’ll use for computing integrals.

code
2.4.13

>>> from sympy import symbols , integrate

2.4 CALCULUS PREREQUISITES 119

Next we define four symbols x, a, b, and c, which we’ll use to
denote mathematical variables and constants in the following code
examples.

code
2.4.14

>>> x, a, b, c = symbols('x a b c')

Example 1 revisited again

Consider the constant function f pxq “ c. The symbolic expression
that represents the value of this function is simply the constant c,
which we can define as follows:

code
2.4.15

>>> fx = c
>>> fx
c

The variable fx is defined as the constant c, one of the SymPy
symbols we defined earlier, which we assume corresponds to some
unspecified constant value.

To compute the integral
şb

a f pxqdx, we call the SymPy function
integrate, passing in the expression we want to integrate as the first
argument. The second argument is a triple px, a, bq, which specifies
the variable of integration x, the lower limit of integration a, and the
upper limit of integration b.

code
2.4.16

>>> integrate(fx, (x,a,b)) # = A_f(a,b)
c*(b-a)

Since a, b, and c are arbitrary constants, the expression we obtain
for A f pa, bq “ şb

a f pxqdx is a general purpose formula that works for
all functions f pxq “ c and all possible integration intervals ra, bs.
Geometrically speaking, this is just the height-times-width formula
for the area of a rectangle.

To compute the specific integral between a “ 0 and b “ 5 under
the graph of f pxq “ 3, we can use the method subs (short for
substitute) on the SymPy expression we obtained as a result of the
integration. The subs method expects as inputs a Python dictionary
whose keys are symbols, and whose values represent the numbers
we want to “plug” into the expression. In our case, we want to make
the substitutions c “ 3, a “ 0, and b “ 5.

code
2.4.17

>>> integrate(fx, (x,a,b)). subs({c:3, a:0, b:5})
15

This result matches the value we obtained using the intuitive ge-
ometrical calculation (see Figure 2.46) and the value we obtained
using numerical integration, quad(f,0,5) = 15.

We can also use SymPy to compute the integral function F0pbq,
which is defined as F0pbq def“ şb

0 f pxqdx, for the function f pxq “ fx.

code
2.4.18

2.4 CALCULUS PREREQUISITES 120

>>> integrate(fx, (x,0,b)) # = F_0(b)
b*c

Recall that the integral function F0 is simply the area-under-the-
graph calculation with a variable upper limit of integration b. See
Figure 2.49 for an illustration of the integral function F0pbq.

Example 2 revisited again

Let’s now compute some integrals of the function gpxq “ x. First
we’ll define a SymPy expression that corresponds to the function.

code
2.4.19

>>> gx = 1*x
>>> gx
x

We can now compute the integral
şb

a gpxqdx by calling the function
integrate with arguments gx, followed by the triple specifying the
variable of the integration and the limits of integration.

code
2.4.20

>>> integrate(gx, (x,a,b)) # = A_g(a,b)
b**2/2 - a**2/2

To obtain the numerical value for the integral
ş5

0 gpxqdx, we call the
method subs on the result of the integration.

code
2.4.21

>>> integrate(gx, (x,a,b)). subs({a:0, b:5})
25/2

SymPy computed the exact answer for us as a fraction 25
2 , but we

sometimes want to force the answer to be computed as a floating-
point number (a Python float), which we can do by calling the
.evalf() method on the SymPy expression.

code
2.4.22

>>> integrate(gx, (x,a,b)). subs({a:0, b:5}). evalf()
12.5

This result matches the value we obtained earlier using numerical
integration, quad(g,0,5) = 12.5.

If we use the symbol b for the upper limit of integration, we can
obtain an expression for the integral function G0pbq def“ şb

0 gpxqdx.

code
2.4.23

>>> integrate(gx, (x,0,b)) # = G_0(b)
b**2 / 2

Note the expression for G0pbq we obtain from SymPy is identical to
the formula we obtained earlier using a geometrical calculation (the
area of a triangle with base b and height b). See Figure 2.50.

Unfortunately, it’s not always possible to use symbolic manipula-
tions to find integrals. We can only use sympy.integrate for certain
simple examples where it is possible to obtain exact expressions

2.4 CALCULUS PREREQUISITES 121

for integral functions. For most practical calculations in probability
and statistics, we’ll need to rely on the scipy.integrate function
quad(f,a,b), which computes the integral

şb
a f pxqdx for any function

f pxq expressed as a Python function f.

2.4.8 Other calculus topics

In this section, we focused on integration, which is the main tool you
need to “import” from calculus to understand probability theory.
There are many other interesting calculus topics like: limits, deriva-
tives, sequences, and series. Learning calculus will introduce you to
a number of mind-expanding theoretical results, like the fundamental
theorem of calculus, for example.

We’ll now give a bird’s-eye view of these other topics in calculus,
and provide links to books and other resources you can use to learn
more about calculus.

Limits

In high school math, we learn all kinds of math procedures for
solving problems using a finite number of steps of math operations.
Whether you’re manipulating expressions using algebra, or applying
the inverse function to simplify an equation, all problems in high
school math can be solved by using less than five steps, or if your
teacher really doesn’t like you 10 steps. In calculus, we learn a
broader class of problem-solving strategies that include procedures
with an infinite number of steps.

Limit expressions provide a precise mathematical language for
talking about infinitely large numbers, infinitely small steps, and
mathematical procedures with an infinite number of steps. Here are
three representative examples of limit expressions:

• limxÑ8 f pxq: limit expression that describes what happens to
f pxq when the input to the function x tends to infinity (gets
larger and larger). In words, this limit expression is read as
“limit of f pxq as n goes to infinity.”

• limnÑ8 gpnq: limit expression that describes the value of gpnq
as the integer n tends to infinity. The integer n usually
describes the number of steps in a given procedure, and gpnq
describes the output of this procedure when n steps are used.

• limδÑ0 hpδq: limit expression that describes what happens to
hpδq as the real number δ tends to zero. The number δ (the
Greek letter delta) usually describes a small distance, and the
limit as delta goes to zero (δ Ñ 0) describes the behaviour of
the expression hpδq for an infinitely short distance δ.

2.4 CALCULUS PREREQUISITES 122

The SymPy function limit allows us to compute limit expressions.
For example, if we want to see if the exponential function ex or
the polynomial function x100 grows faster in the limit as x goes to
infinity, The code for computing the limit of the ratio between these
two expressions is

code
2.4.24

>>> from sympy import limit , exp , oo
>>> limit(exp(x)/x**100, x, oo)
oo

The answer 8, written as oo (two lowercase letters “o”), tells us
exponential functions grow faster than polynomial functions.

Limits are important in calculus because they are used in the
formal definitions of the derivative and integral operations. The
derivative is defined as a rise-over-run calculation for an infinitely
short run. The integral is defined as a Riemann sum with infinitely
narrow rectangles. We’ll explain both of these in the next sections.

Derivatives

The derivative function, denoted f 1pxq, d
dx f pxq, or d f

dx , describes the
rate of change of the function f pxq. For example, the constant function
f pxq “ c has derivative f 1pxq “ 0 since the function f pxq does not
change at all. The derivative function describes the slope of the graph
of the function f pxq. The derivative of a line f pxq “ mx` b is f 1pxq “
m, since the slope of this line is equal to m. In general, the slope
of a function is different at different values of x, so mathematicians
invented a new notation for describing “the slope (rate of change) of
the function f pxq” and obtained formulas for finding the derivative
of any function.

The derivative function f 1pxq is defined as the rate of change of
the function f at x:

f 1pxq “ lim
δÑ0

f px` δq ´ f pxq
δ

.

In words, this formula describes the general rise-over-run calculation
for computing the slope of a line that connects the points px, f pxqq
and px` δ, f px` δqq, with the step-length δ becoming infinitely small.

Geometrically, the derivative function computes the slope of the
graph of the function f pxq for all values of x. In general, the slope of
a function is different for different values of x. Figure 2.52 shows the
slope calculation for the function f pxq “ 1

2 x2 for two different values
of x: x “ ´0.5 and x “ 1.

The code below shows how to compute the derivative of the
function f pxq “ mx` b.

code
2.4.25

2.4 CALCULUS PREREQUISITES 123

x

f(x)

−2 0 1 2

1

2

f(t) = 1
2x

2

f ′(1) = 1

f ′(−0.5) = −0.5

Figure 2.52: The derivative of the function at x “ a is denoted f 1paq and
describes the slope function at that point.

>>> from sympy import diff
>>> f = b + m*x
>>> diff(f, x)
m

In words, this calculation tells us the derivative of the function
f pxq “ mx ` b is the constant function f 1pxq “ m. The expression
diff(f,x) tells SymPy to compute the derivative of the expression f
with respect to the variable x.

Let’s now define the function f pxq “ c
2 x2 and compute its

derivative.

code
2.4.26

>>> f = c/2 * x**2
>>> diff(f, x)
c*x

The derivative function is f 1pxq “ cx. See the plot in Figure 2.52 for
an illustration of the case when c “ 1.

Here is another example of a complicated-looking function f , that
includes an exponential, a trigonometric, and a logarithmic function:

code
2.4.27

>>> from sympy import log , exp , sin
>>> f = exp(x) + sin(x) + log(x)
>>> diff(f, x)
exp(x) + cos(x) + 1/x

As you can see, using the function SymPy function diff allows you
to compute the derivative function for any function f pxq.

Optimization algorithms

One of the most prominent applications of derivatives is optimization:
the process of finding a function’s maximum and minimum values.

Consider the shape of the function near a minimum value. The
function is decreasing just before it reaches its minimum, and the

2.4 CALCULUS PREREQUISITES 124

function increases just after its minimum. This means we can
start at any point x0 near the minimum and take “downhill” steps
following the descending direction of the function, we’ll end up at
the minimum value. This simple procedure that repeatedly takes
steps in the direction where the function is decreasing turns out to be
a very powerful tool that can find the minimum of any function. This
procedure is called the gradient descent algorithm, where the name
gradient refers to the derivative operation for multivariable functions.

In this book, we won’t discuss the details behind optimization
algorithms, and instead rely on the computational tools available
in numpy, scipy, and sympy to do optimization-type calculations
for us. We’ll encounter optimization ideas (maximization and
minimization) in several concepts in statistics: maximum likelihood
and least squares, and rely on “visual proofs” for these optimization
procedures. If you’re interested in attaining a deeper understanding
of optimization algorithms, you can follow the links provided at the
end of this section, but note such “under the hood” understanding is
not required to continue with the rest of the book.

Here is a quick code example that shows how to use the function
minimize defined in the module scipy.optimize to find the mini-
mum value of the function f pxq “ px´ 5q2.

code
2.4.28

>>> from scipy.optimize import minimize
>>> def f(x):

return (x -5)**2
>>> res = minimize(f, x0=0)
>>> res["x"][0] # = argmin f(x)
4.99999997455944

The minimize function takes two arguments: the function to mini-
mize, and a initial value x0 where to start the minimization process.

Riemann sums

The formal definition of the integration operation we learn in the first
calculus course is based on the concept called a Riemann sum, which
consists of approximating the area under the graph of a function
using a series of rectangles.

The definite integral between x “ a and x “ b is defined as the
limit of the following summation as n goes to infinity:

Apa, bq “
ż b

a
f pxq dx def“ lim

nÑ8
n
ÿ

k“1

f pa` k∆xq∆x.

This formula describes an approximation of the area under the graph
of f pxq with infinitely many rectangles. The height of each rectangle
is given by f pa` k∆xq and its width is ∆x “ b´a

n .

2.4 CALCULUS PREREQUISITES 125

For example, let’s take a look at how we can compute the integral
of f pxq “ x3 ´ 5x2 ` x` 10 between x “ ´1 and x “ 4. Figure 2.53
shows the graph of f pxq (in red) and an approximation of the area
under the graph of f pxq as the sum of the areas of n “ 12 rectangles.

Figure 2.53: An approximation of the area under the function f pxq “ x3 ´
5x2 ` x` 10 between x “ ´1 and x “ 4 using n “ 12 rectangles.

Note the approximation we obtain using n “ 12 rectangles is not
very precise: there are many rectangles sitting outside the area
(overestimates), and other rectangles that don’t cover the whole area
(underestimates). But observe what happens when we use n “ 25
and n “ 50 rectangles, as shown in Figure 2.54. Now imagine
how good the approximation will become when we use thousands
or millions of individual rectangles. The Riemann sum formula
computes an approximation to the area using an infinite number of
rectangles.

(a) n “ 25 (b) n “ 50

Figure 2.54: An approximation to the area under the graph of the function
f pxq “ x3 ´ 5x2 ` x` 10 using n “ 25 and n “ 50 rectangles.

The Riemann sum is important as a theoretical construct, but
nobody actually computes integrals by hand using this formula. The
functions quad and trapz in the SciPy module scipy.integrate
offer better tools for computing integrals, so you’ll never have to use
the Riemann sum formula above.

2.4 CALCULUS PREREQUISITES 126

Fundamental theorem of calculus

The fundamental theorem of calculus (FTC) is a deep insight about
the inverse relation that exists between the operations of integration
ş ¨dx and differentiation d

dx r¨s.
The integral function Fapxq is obtained from the original function

f pxq using integration, Fapxq “
şx

a f puqdu. Another way to describe
this is to say we applied the integration operator

ş ¨dx on the function
f pxq to obtain the integral function Fapxq. The derivative function
f 1pxq is defined by the formula f 1pxq “ limδÑ0

f px`δq ´ f pxq
δ . We can

also say we applied the derivative operator d
dx r¨s to the function f pxq

to obtain the derivative function f 1pxq. I use the word “operator”
here to refer to an operation that acts on functions.

There is no reason a priori to think that integration and differenti-
ation might be related: the former is a calculation about areas, while
the latter is a calculation about slopes. The fundamental theorem
of calculus reveals that they are in fact inverse operations: we can
obtain the original function f pxq from the integral function Fapxq by
computing it’s derivative:

d
dx

“

Fapxq
‰ “ d

dx

„
ż x

a
f puq du



“ f pxq.

Note we used a temporary variable u as the integration variable,
since x is already used to denote the upper limit of integration.

In order to understand the inverse relationship between integra-
tion and differentiation, we can draw an analogy with the inverse
relationship between a function f and its inverse function f´1, which
undoes the effects of f . See Figure 2.44 on page 109. Given some
initial value x, if we apply the function f to obtain the number f pxq,
and apply the inverse function f´1 on the number f pxq, then the
result will be the initial value x we started from:

f´1p f pxqq “ x.

Similarly, the derivative operator is the “inverse operator” of the
integral operator. If you perform the integral operation followed by
the derivative operation on some function, you’ll obtain the same
function:

diff(integrate(f pxq)) “ f pxq,
where we’ve used the SymPy functions integrate for computing
the integrals, and diff (short for “differentiate”) for computing
derivatives.

The code example below shows how we can construct a
complicated-looking function f and compute its integral function F
using SymPy.

code
2.4.29

2.4 CALCULUS PREREQUISITES 127

>>> from sympy import diff , integrate , log , exp , sin
>>> f = log(x) + exp(x) + sin(x)
>>> F = integrate(f)
>>> F
x*log(x) - x + exp(x) - cos(x)

If we now take the derivative of the function F, we get back the
original function f.

code
2.4.30

>>> diff(F)
log(x) + exp(x) + sin(x)
>>> diff(integrate(f)) == f # FTC part 1
True

The inverse relationship also holds for the opposite order of appli-
cation: if we take the derivative of some function, then compute the
integral of the derivative, then we arrive back at the original function
(up to an additive constant factor).

code
2.4.31

>>> integrate(diff(f)) == f # FTC part 2
True

That’s kind of cool, no?

In probability theory, the FTC tells us that the probability density can
be obtained from the cumulative distribution using differentiation

fXpxq “ d
dx
rFXpxqs “ dFX

dx
pxq “ F1Xpxq.

The fact that we can obtain fX from FX and vice versa, means we only
need to define one of the two functions, and obtain the other function
using differentiation or integration. In this book, we define the
random variable X through its probability distribution function fX ,
then define FX as the integral of fX . In other books, you might see the
random variable X being defined through its cumulative distribution
function FX , with its probability density function fX defined as the
derivative of FX .

Recommended calculus learning resources

There is an excellent free book called Calculus made simple[?] by
Silvanus P. Thompson, which is a very friendly introduction to the
subject. The subtitle of Thompson’s book includes the phrase “Being
a very-simplest introduction to those beautiful methods which are
generally called by terrifying names,” which should give you some
idea about the author’s attitude and the tone of his writing. You can
also check out Chapter 5 in the No bullshit guide to math and physics[?],
which is a compact introduction to calculus, and includes lots of
examples from physics.

2.4 CALCULUS PREREQUISITES 128

Above all, my advice is not to think of calculus as “advanced
math theory” that might be difficult to understand, but instead
as practical, useful math that allows you to do calculations—just
look at the name of the thing! This means learning calculus is
all about getting practical experience calculating limits, derivatives,
and integrals of functions, which is best achieved by solving lots of
problems. The problems and exercises in the books Calculus made
simple and No bullshit guide to math and physics are therefore your best
route for learning calculus, if you choose to pursue this subject.

Remember that you have SymPy at your disposal to solve calcu-
lus problems, so you don’t have to do all the calculations by hand
using pen and paper. Indeed, you can solve any calculus problem
using just a few lines of code using the SymPy functions limit, diff,
and integrate. Check out Section III of the SymPy tutorial[?] to learn
how to use these functions.

Exercises

TODO: 10x exercises on sets, functions, and integrals (geometric,
numeric, and symbolic)
E2.34 Compute the integral function F0pbq for the function f pxq “ c.

E2.35 Compute the integral function G0pbq for the function gpxq “
mx.

TODO: 3 more

Links

[Essence of calculus series by 3Blue1Brown]
https://www.youtube.com/playlist?list=PLZHQObOWTQDMsr9K-rj53DwVRMYO3t5Yr

TODO add more links to intro-calculus material

https://www.youtube.com/playlist?list=PLZHQObOWTQDMsr9K-rj53DwVRMYO3t5Yr

2.5 CONTINUOUS RANDOM VARIABLES 129

2.5 Continuous random variables

Continuous random variables represent smoothly varying quantities
that are described by real numbers. The sample space X for a
continuous random variable consists of some subset of the real
numbers. The probabilities of different outcomes are described by
the probability density function fX of the random variable X.

Examples of continuous random variables include the height and
weight of individuals, physical measurements like time, length, area,
volume, distance, etc. For example, the total volume of liquid that
goes into a bottle produced at a bottling plant.

All the concepts and formulas you’ll see in this section will
sound like a “rerun” of the concepts and formulas we learned
about discrete random variables in Section 2.1. Indeed, continuous
random variables calculations are just like discrete random variable
calculations, but we replace all summations with integrals. Since
you already know about discrete random variables from Section 2.1,
and you just learned about integration in the previous section, you’re
optimally prepared to learn about continuous random variables.

Don’t rely on the “I’ve seen this before” feeling too much, though.
Make sure you read all the definitions and formulas and know
how exactly they are different from the equivalent formulas and
equations we learned about in Section 2.1. This kind of review and
study by comparison to concepts you’ve already seen is an excellent
way to review what you’ve learned so far in the chapter. Trust me on
this one: it’s always a good idea to revisit all math concepts that you
“know already” once in a while. The forgetting curve is real!

2.5.1 Definitions

Let’s start with the definitions of continuous random variables.
The continuous random variable X describes some smoothly varying
quantity. We denote random variables by uppercase letters like X,
Y, and Z, and particular outcomes of these random variables using
lowercase letters like x, y, and z. The sample space X (calligraphic X)
is the set of all possible outcomes of the random variable X. In this
section, we’ll focus on continuous sample spaces, which consist of
subsets of the real numbers. Examples of continuous sample spaces
include all the real numbers R “ p´8,8q, the non-negative real
numbers R` “ r0,8q, and the interval between zero and one r0, 1s.

The probability density function (pdf) is a function of the form fX :
X Ñ R that tells us which regions of the sample space contain the
likely outcomes of the random variable X. The outcome that the
random variable X falls between a and b is denoted as the set ta ď

2.5 CONTINUOUS RANDOM VARIABLES 130

X ď bu, which is a subset of the sample space X . The probability of
the outcome ta ď X ď bu is calculated by integrating the probability
density function between a and b:

Prpta ď X ď buq “
ż x“b

x“a
fXpxq dx.

Intuitively, the integral of fX from x “ a until x “ b calculates the
total amount of density that lies in that interval of x-values. The
probability density fX varies for different values of x, so if we want
to compute the total probability of X falling between x “ a and x “ b,
we must sum up (integrate) the total amount of fX between x “ a
and x “ b.

Figure 2.55: Example graph of the probability density function fX of some
random variable X. The area highlighted on the right shows the probability
of the outcome t0.6 ď X ď 0.8u.

The left side of Figure 2.55 shows an example of a probability
density function fX for a continuous random variable X. The right
side of the figure illustrates the calculation of the outcome that the
variable X falls between 0.6 and 0.8, which we denote as the set
t0.6 ď X ď 0.8u. We compute the probability of the outcome
t0.6 ď X ď 0.8u using the integral

şx“0.8
x“0.6 fXpxq dx, which corresponds

to the calculation of the area under the graph of the function fX
between x “ 0.6 and x “ 0.8.

Properties of probability density functions The probability den-
sity function fX satisfies Kolmogorov’s axioms of probability:

• Nonnegativity: fXpxq ě 0 for all x P X .
• Unit total:

ş

xPX fXpxq dx “ 1.

The first axiom states that probability functions cannot take on
negative values. The second axiom states that the total amount of
probability over the whole sample space is 1. Note the similarity
to the axioms for discrete distributions that we saw previously in
Section 2.1. The only difference is that summation is replaced by
integration.

2.5 CONTINUOUS RANDOM VARIABLES 131

Example 1: uniform distribution The uniform distribution assigns
equal probability to all values in its sample space. The uniform
distribution on the sample space r0, 1s (the interval of real num-
bers between 0 and 1) is denoted Up0, 1q in math notation and
uniform(0,1) in code notation (more on that later).

The math shorthand statement “U „ Up0, 1q” defines a random
variable U that is distributed according to the uniform distribution
Up0, 1q. The symbol “„” is read “is distributed according to” in the
context of probability theory. The random variable U „ Up0, 1q is
described by the following probability density function:

fUpuq “
#

1 if 0 ď u ď 1,
0 if u ă 0 or u ą 1.

The definition tells us that each outcome u between 0 and 1 is
equally likely to occur, and values of u outside this range have zero
probability of occurring. Figure 2.56 (a) shows the graph of the
probability density function fU . The total area under the graph of
fU is equal to 1, since the region is a square of width 1 and height 1.

The shaded region in Figure 2.56 (a) corresponds to the proba-
bility of the outcome of U will be between a and b, which we can
denote as the set ta ď U ď bu. We know from geometry that
the formula for the area of a rectangle of width w and height h is
w ¨ h. Using this formula, we can calculate the probability of the
outcome ta ď U ď bu is Prpta ď U ď buq “ pb´ aq ¨ 1. For example,
Prpt0.2 ď U ď 0.5uq “ p0.5´ 0.2q ¨ 1 “ 0.3, which means the interval
r0.2, 0.5s contains 30% of the total probability.

(a) Uniform random variable (b) Normal random variable

Figure 2.56: Probability density functions for two continuous random
variables. The graph in (a) shows the probability density function fU for
the uniform random variable U with distribution Up0, 1q. The graph in (b)
shows the probability density function fN for the normal random variable
N with distribution N p1000, 100q.

Example 2: normal distribution The family of normally dis-
tributed random variables is described by the notation N pµ, σq,

2.5 CONTINUOUS RANDOM VARIABLES 132

where the constants µ (the Greek letter mu) and σ (the Greek letter
sigma) are called parameters of the distribution. Normal variables
are also called Gaussian. The random variable N with distribution
N pµ, σq is described by the probability density function

fNpnq “ 1
σ
?

2π
e´

pn´µq2
2σ2 .

This complicated-looking formula describes a multi-step calculation
in which we calculate the difference between n and the parameter µ,
square the result, then divide by the constant 2σ2, pass the result
through the function e´x, and finally divide by the normalizing
constant σ

?
2π. The combined result of all these transformations

results in a function fN that has a central peak at n “ µ and rapidly
decreases for values that “deviate” from this centre. The parameter
σ controls the dispersion of the distribution.

Let’s consider a particular random variable N distributed ac-
cording to the normal distribution with parameters µ “ 1000 and
σ “ 100. Figure 2.56 (b) shows the graph of the probability density
function fN of the random variable N „ N p1000, 100q. Recall “„” is
math shorthand for the phrase “distributed according to.”

Calculating the area under the graph of fN between a and b
is not as straightforward as in the previous example, since the
region doesn’t have a simple geometrical shape. To calculate
the probability Prpta ď N ď buq, we need to use the numerical
integration techniques that we learned in the previous section.
For example, using the function scipy.integrate.quad, we find
Prpt800 ď N ď 900uq “ şn“900

n“800 fNpnqdn “ 0.1359, which corresponds
to the area of the shared region in Figure 2.56 (b). In words, this tells
us the probability of observing N between 800 and 900 is 13.59%.

2.5.2 Cumulative distribution function

The cumulative distribution function of the random variable X de-
scribes the probability of outcomes that are smaller than or equal to
some value b. The cumulative distribution function (CDF) is defined
as the following integral:

FXpbq def“ PrptX ď buq “
ż b

´8
fXpxq dx.

Properties of the cumulative distribution function:

• If b1 ď b2 then FXpb1q ď FXpb2q, which means the function FX
is nondecreasing.

2.5 CONTINUOUS RANDOM VARIABLES 133

• 0 ď FXpbq ď 1 for all b.
• PrptX ą buq “ 1´ Fpbq for all b.

The first property follows from the nonnegativity property of the
underlying probability density function fXpxq ě 0 for all x P X .
The second property follows from the unit total property of the
probability density function

ş8
´8 fXpxqdx “ 1. The third property

is a consequence of the general probability rule PrpAcq “ 1´ PrpAq,
which applies for any outcome A, and since the outcome tX ą bu is
the complement of the outcome tX ď bu.

Knowing the cumulative distribution function FX for the random
variable X allows us to compute probabilities very quickly. We can
find the probability of outcomes between a and b by computing the
difference in the value of the cumulative distribution function:

Prpta ď X ď buq “
ż b

´8
fXpxqdx´

ż a

´8
fXpxqdx “ FXpbq ´ FXpaq.

Recall the visualization we showed in Figure 2.48 to better under-
stand the above equation. The value FXpbq is the pre-computed
integral until x “ b, so if we want to know the value of the integral
from x “ a to x “ b, we can subtract the integral until FXpaq.

Uniform random variable The cumulative distribution function
for the uniform random variable U „ Up0, 1q is obtained through
the following integral:

FUpbq “
ż u“b

u“0
fUpuq du “

ż u“b

u“0
1 du “ b, for all b P r0, 1s.

We can start the integration at u “ 0 instead of u “ ´8 since fU is
zero for all u ă 0. This integral corresponds to calculating the area
under the graph of a constant function, which we saw previously in
Figure 2.49. The region under the graph of fU has the shape of a
rectangle with height 1 and width b, so its area is 1 ¨ b “ b.

Figure 2.57 shows how FUpbq increases at a constant rate as b
increases, until it reaches the maximum value when b “ 1, and then
stays constant after that.

Normal random variable The cumulative distribution function for
the normal random variable N „ N p1000, 100q requires calculating
the following integral:

FNpbq “
ż n“b

n“´8
fNpnq dn “

ż n“b

n“´8
1

σ
?

2π
e´

pn´µq2
2σ2 dn.

2.5 CONTINUOUS RANDOM VARIABLES 134

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.0

0.2

0.4

0.6

0.8

1.0

b

Pr({U b})

Probability density function

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.0

0.2

0.4

0.6

0.8

1.0

b

(b, FU(b))

Cumulative distribution function

Figure 2.57: The left side shows the probability density function fU , with the
area from x “ 0 until x “ b highlighted in blue. The right side shows CDF
FU with point at pb, FUpbqq on the curve highlighted in blue.

There is no simple formula expression for the answer to this integral,
so we need to use numerical integration (scipy.integrate.quad).
See the graph of FN in Figure 2.58, to get an idea of what it looks like.

700 800 900 1000 1100 1200 1300

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

b

Pr({N b})

Probability density function

700 800 900 1000 1100 1200 1300

0.0

0.2

0.4

0.6

0.8

1.0

b

(b, FN(b))

Cumulative distribution function

Figure 2.58: The left side shows the probability density function fN with
area from x “ ´8 until x “ b highlighted in blue. The right side shows
CDF FN with point at pb, FUpbqq on the curve highlighted in blue.

Inverse of the cumulative distribution function

The inverse function of the cumulative distribution function is de-
noted F´1

X pqq, and it helps us do “inverse probability” calculations.
The inverse-CDF is also sometimes called the percentile point function
or quantile function, since it tells us the positions of the quantiles of
the random variable X. We specify the quantile q P r0, 1s, and we
want to find the value xq such that the outcome tX ď xquwill contain
a proportion q of the total probability. In other words, xq is the value
such that FXpxqq “ q.

For example, the 20% percentile (quantile q “ 0.2) is the value
of x0.2 when the cumulative distribution reaches the value 0.2,

2.5 CONTINUOUS RANDOM VARIABLES 135

FXpx0.2q “ 0.2. In other words, the interval p´8, x0.2s contains 20%
of the total probability.

We can use the function F´1 to obtain a confidence interval that
contain a certain percentage of the total probability. For example,
the interval between F´1

X p0.025q and F´1
X p0.975q contains 95% of the

probability density of the random variable X.

2.5.3 Calculating expectations

Suppose we’re interested in calculating some value wpXq that de-
pends on the random variable X. You can think of w as a function
of the form w : X Ñ R that assigns different “winning” amounts to
the different outcomes of the random variable X. Since the input
to the function w is a random variable, the output value wpXq is
also a random variable. The expected value of the quantity wpXq
is obtained by computing the average value of wpxq over all the
possible outcomes x of the random variable X.

For a continuous random variable X, the expected value of wpXq
is defined as the following integral calculation:

EXrwpXqs def“
ż

xPX
wpxq fXpxqdx.

The expected value is computed by “weighing” each value of wpxq
by the probability fXpxq of the event tX “ xu, “summed” over all
possible outcomes for the random variable X.

Expectations play an important role in many calculations involv-
ing random variables. The mean of the random variable X is defined
as the expectation µX

def“ EXrXs. The variance σ2
X is the expectation

of pX ´ µXq2, and it is defined by the formula σ2
X

def“ EXrpX ´ µXq2s.
Let’s talk about each of these in some more detail.

Measures of centre and dispersion

The mean of the continuous random variable X with probability
density function fX is given by

µX
def“ EXrXs “

ż

xPX
x ¨ fXpxq dx.

The mean tells us the position of the distribution’s centre of mass.
The variance of a continuous random variable is defined as

σ2
X

def“ EXrpX´ µXq2s “
ż

xPX
pX´ µq2 ¨ fXpxq dx.

2.5 CONTINUOUS RANDOM VARIABLES 136

The variance calculates the average squared deviation of the random
variable X from its mean µX , which is a measure of the dispersion of
the distribution. The standard deviation of the random variable X is
the square root of its variance σX “

b

σ2
X .

Let’s see some examples of mean and variance calculations.

Example 1 (cont.): mean and variance of the uniform distribution
The probability density function for the uniform random variable
U „ Up0, 1q is given by

fUpuq “
#

1 if 0 ď u ď 1,
0 if u ă 0 or u ą 1.

To calculate the mean of the random variable U, we need to compute
the following integral:

µU “ EUrUs “
ż 8

´8
u ¨ fUpuq du

“
ż 1

0
u ¨ fUpuq du

“
ż 1

0
u ¨ 1 du “ 1

2 .

This integral corresponds to the area of a triangle, see Figure 2.50
on page 115. In this case the upper limit is b “ 1, so the formula
becomes 1

2 b2 “ 1
2 “ 0.5.

The formula for the variance is

σ2
U “ EU

”

pU ´ µUq2
ı

“
ż 1

0
pu´ 1

2 q2 ¨ fUpuq du “
ż 1

0
pu´ 1

2 q2 ¨ 1 du.

Let’s use SymPy to calculate this integral

code
2.5.1

>>> from sympy import symbols , integrate
>>> u = symbols('u')
>>> integrate((u -1/2)**2 * 1, (u,0,1))
0.0833333333333333

The variance of U is equal to 0.083 “ 1
12 . We can obtain the standard

deviation of U by taking the square root of the variance.

code
2.5.2

>>> import numpy as np
>>> np.sqrt (0.0833333333333333)
0.2886751345948128

The random variable U therefore has mean µU “ 0.5 and standard
deviation σU “ 0.289.

2.5 CONTINUOUS RANDOM VARIABLES 137

Example 2 (cont.): mean and variance of a normal distribution
The probability density function for the normal random variable
N „ N p1000, 100q is given by

fNpnq “ 1
100
?

2π
e´
pn´1000q2

2¨1002 “ 1
100
?

2π
e
´ 1

2 ¨
´

n´1000
100

¯2

.

Let’s create a Python function fN that corresponds to the math
function fN . We’ll use the math functions exp and sqrt from the
NumPy module to build up the complicated formula from simpler
expressions.

code
2.5.3

>>> import numpy as np
>>> mu = 1000
>>> sigma = 100
>>> def fN(n):

z = (n - mu)/sigma
C = sigma * np.sqrt (2*np.pi)
return 1 / C * np.exp(-1/2 * z**2)

Don’t worry about the complicated-looking math and code. You
won’t have to write code like this every time you need to do some
probability calculations. At the end of this section, we’ll learn about
the module scipy.stats, which will make working with probability
distributions much easier. I’m just showing you the code for fN as
an example of converting complicated-looking math equation into
code.

To find the mean µN , we need to compute the expected value of
N, which is defined as the integral

µN “ ENrNs “
ż 8

´8
n ¨ fNpnq dn.

This integral doesn’t correspond to a simple geometrical region, so
we’ll use numerical integration to calculate it.

code
2.5.4

>>> from scipy.integrate import quad
>>> def n_times_fN(n):

return n * fN(n)
>>> muN = quad(n_times_fN , 0, 3000)[0]
>>> muN
1000.0

The function n_times_fN computes the value n ¨ fNpnq, which we
then integrate using the quad function between a “ 0 and b “
3000. Note the mathematical equation describes an integration from
minus infinity to plus infinity, but computing the integral over the
finite interval r0, 3000s provides an accurate approximation, since the
value of fN is negligible outside that interval.

2.5 CONTINUOUS RANDOM VARIABLES 138

The variance σ2
N is defined as the follows:

σ2
N “ EN

”

pN ´ µNq2
ı

“
ż 8

´8
pn´ 1000q2 ¨ fNpnq dn.

We’ll use a similar approach as in the code example above, based on
the function n_minus_mu_sq_times_fN that computes the quantity
pn ´ µNq2 ¨ fNpnq. We’ll then compute the integral to find the
variance, and take the square root to find the standard deviation.

code
2.5.5

>>> def n_minus_mu_sq_times_fN(n):
return (n-muN)**2 * fN(n)

>>> sigma_sq = quad(n_minus_mu_sq_times_fN , 0, 2000)[0]
>>> sigmaN = np.sqrt(sigma_sq)
>>> sigmaN
100.0

The random variable N has mean µN “ 1000 and standard deviation
σN “ 100.

A physical analogy Readers familiar with physics might recognize
the formulas for the mean and the variance of a random variable
are the same as the centre of mass and moment of inertia formulas in
mechanics. For an object in one dimension, like a stick, the centre of
mass xcm represents the centre of its weight distribution. If you place
your finger at xcm, you can balance the stick using a single point of
contact. See Figure ?? (page ??) for an illustration.

The moment of inertia of an object tells you how difficult it is to
make the object turn around its centre of mass. Intuitively, the more
the weight of an object is spread out away from its centre of mass,
the more difficult it will be to make it turn. The contribution to the
moment of inertia of a piece of mass is proportional to the square of
its distance from the centre of mass. An object with small moment
of inertia has most of its mass concentrated near xcm. Similarly, the
variance computes the average squared deviation from the mean. A
distribution with small variance has most of its probability density
concentrated close to the mean µ.

Measures of skewness and kurtosis

There are two additional properties that are useful for describing the
“shape” of probability distributions: skewness and kurtosis, which are
computed from “higher moments” of the distribution.

Moments of a distribution The formulas for the skewness and
kurtosis are defined in terms of the moments of the distribution,

2.5 CONTINUOUS RANDOM VARIABLES 139

which are expectations of different powers of pX ´ µXq. The mth

moment of the distribution fX around its mean µX is defined as:

Mm
def“ EX rpX´ µXqms “

ż

xPX
px´ µXqm ¨ fXpxq.

You’re already familiar with this formula for the second moment
(m “ 2), which computes the variance of the distribution:

M2 “ EX

”

pX´ µXq2
ı

“ σ2
X .

Skewness The skew of the random variable X describes the lopsid-
edness of its distribution fX—whether its peak lies to the left or to
the right of its mean. We calculate the skewness skewpXq in terms of
a normalized third moment:

skewpXq “ M3

σ3
X

.

Figure 2.59 shows examples of distributions with positive, zero, and
negative skew.

Figure 2.59: The distribution in the left panel has positive skewness, which
means the distribution extends further to the right. We can also describe this
distribution as right skewed. In the centre, we’ve shown a distribution with
zero skewness, which is symmetric around the mean. Negative skewness,
or left skewness, means the distribution extends further to the left.
Figure credit by Diva Jain CC BY-SA via Wikipedia commons File:
Relationship_between_mean_and_median_under_different_skewness.png.

Recall we’ve already seen the concept of skewness informally,
when we talked about data distributions. See Figure ?? on page ?? for
examples of histograms that show positive skew (right skew), zero
(symmetric), and negative skew (left skew).

Kurtosis The kurtosis is a measure of the “heaviness”’ of the tails of
the distribution fX . A distribution is heavy-tailed (sometimes called
“fat-tailed”) if it has a lot of density in its tails, meaning far away

File:Relationship_between_mean_and_median_under_different_skewness.png
File:Relationship_between_mean_and_median_under_different_skewness.png

2.5 CONTINUOUS RANDOM VARIABLES 140

from its mean. The opposite is a light-tailed distribution with very
thin tails that drop off to zero very quickly.

We calculate the kurtosis kurtpXq in terms of a normalized fourth
moment:

kurtpXq “ M4

σ4
X
´ 3.

We’ll explain where the constant ´3 comes from in a few para-
graphs. See Figure 2.78 on page 179 for an example of Student’s
t-distribution, which has “heavy tails,” as compared to the distri-
bution of the standard normal fZ.

Example 2 (cont.): skewness and kurtosis of a normal distribution
Let’s compute the skewness and the kurtosis of the standard normal
random variable Z „ N pµ “ 0, σ “ 1q. We’ll start by creating a
random variable rvZ from the normal model family imported from
scipy.stats, initialized with parameters µ “ 0 and σ “ 1. We can
then call the method rvX.stats() to compute the mean, variance,
skewness, and kurtosis in a single step:

code
2.5.6

>>> from scipy.stats import norm
>>> mu = 0 # position of the centre
>>> sigma = 1 # scale of dispersion
>>> rvZ = norm(mu , sigma)
>>> mean , var , skew , kurt = rvZ.stats(moments="mvsk")
>>> mean , var , skew , kurt
(0, 1, 0, 0)

The keyword argument moments="mvsk" tells the stats method to
compute all four moments of the distribution: m for the mean, v for
the variance, s for the skewness, and k for the kurtosis. The first two
numbers in the results show that the random variable Z has mean
µZ “ 0 and variance σ2

Z “ 12 “ 1.
The third number tells us skewpZq “ 0, which makes sense since

the normal distribution is symmetric.
The fourth number tells us the kurtosis is also zero kurtpZq “ 0.

This is not a coincidence! Indeed, the formula for the kurtosis
kurtpXq “ M4

σ4
X
´ 3 is chosen specifically so that the normal distribu-

tion (the most common “shape” for data in the real world) will have
zero kurtosis. In other words, the kurtosis kurtpXq measures how
“fat tailed” the distribution fX is, relative to the tails of the normal
distribution. Basically, the formula assumes the normal distribution
is the reference for what is a “normal” amount of weight in the
tails of a distribution. Distributions with positive kurtosis have tails
heavier than the normal, and negative kurtosis indicates the tails of
a distribution are lighter than the tails of the normal.

2.5 CONTINUOUS RANDOM VARIABLES 141

2.5.4 Computer models for random variables

The computer models defined in scipy.stats allow us to create
random variable objects rvX distributed according to any probability
distribution family. To create the random variable object rvX, we
need to initialize the model by passing in a set of parameters: rvX
= <model>(<params>), where <model> is the name of the model
family we imported from scipy.stats, and <params> is a comma-
separated list of model-specific parameters.

Once we have created the random variable object rvX, we can use
its methods (.pdf(x), .cdf(b), .mean(), .std(), etc.) to complete
any probability calculations we might need. Table 2.2 lists all the
methods available on any random variable rvX created from one
of the families of pre-defined continuous probability distributions
defined in scipy.stats.

method args math formula description

rvX.pdf x fXpxq probability density function
rvX.cdf b FXpbq cumulative dist. function
rvX.ppf q F´1

X pqq inverse of the CDF function
rvX.mean µX “ EXrXs mean of the distribution
rvX.var σ2

X variance of the distribution
rvX.std σX standard deviation
rvX.median F´1

X p 1
2 q median of the distribution

rvX.support X bounds of the sample space
rvX.interval 1-a rF´1

X pα2q, F´1
X p1´ α

2 qs p1´ αq confidence interval
rvX.rvs n generate n observations from X
rvX.expect w EXrwpXqs expected value of wpXq

Table 2.2: Summary of the methods of continuous random variable objects
rvX created from one of the model families in scipy.stats.

Compare Table 2.2 to the similar Table 2.1 (page 75) that shows
the methods available on discrete random variable objects. Note
most of the methods are common for both discrete and continuous
random variables, except for the following two notable differences:

• Continuous random variables have a probability density func-
tion method rvX.pdf(x) instead of a probability mass function
rvX.pmf(x). This in turn dictates a different way to compute
the probabilities of outcomes, using integration instead of
summations. For example, to calculate the probability of the
outcome ta ď X ď bu for the continuous random variable rvX,

2.5 CONTINUOUS RANDOM VARIABLES 142

we can use the function quad from module scipy.integrate:
Prpta ď X ď buq “ quad(rvX.pdf, a, b).

• The interpretation of the output of rvX.support() for a con-
tinuous random variable is a continuous interval—a subset of
the real numbers. In contrast, the support of a discrete random
variable is a range of whole numbers—a subset of the integers.

Let’s now illustrate some of the “features” of computer models by
working through a real-world example.

2.5.5 Kombucha volume example

Recall the Kombucha bottling example that we talked about in
the introduction (see page 3). The math model for the volume of
kombucha that goes into each bottle during the bottling process
is N p1000, 100q, which is a normally distributed random variable
with mean µ “ 1000 and standard deviation σ “ 100. We can
build a computer model for the volume of kombucha by creating
a random variable rvN based on the normal model norm initialized
with parameters µ “ 1000 and σ “ 100.

code
2.5.7

>>> from scipy.stats import norm
>>> rvN = norm (1000, 100)

The methods on the random variable object rvN will allow us to do
all kinds of visualizations, probability calculations, and predictions.

Plotting the probability density function

Let’s start by plotting the probability density function fNpnq, which
is available as the method rvN.pdf(n).

code
2.5.8

>>> ns = np.linspace(0, 2000, 10000)
>>> fNs = rvN.pdf(ns)
>>> sns.lineplot(x=ns, y=fNs , label="pdf of N")
The result is shown in Figure 2.60.

To create the plot of fN , we first create an array of input values for
the interval r0, 2000s, then compute the values of the function fN
for these inputs, and finally call the Seaborn function lineplot to
generate the plot.

Note we didn’t need to write the complicated formula 1
σ
?

2π
e´

pn´µq2
2σ2

for the probability density function fNpnq to obtain the plot in Fig-
ure 2.60. The method rvN.pdf(n) already contains the appropriate
formula, with the parameters µ “ 1000 and σ “ 100 that we specified
when we created the object rvN.

The procedure for plotting the cumulative distribution function,
FNpnq “ rvN.cdf(n) is very similar.

code
2.5.9

2.5 CONTINUOUS RANDOM VARIABLES 143

0 250 500 750 1000 1250 1500 1750 2000

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040 pdf of N

Figure 2.60: Probability density function fN of the random variable rvN.

>>> ns = np.linspace(0, 2000, 10000)
>>> FNs = rvN.cdf(ns)
>>> sns.lineplot(x=ns, y=FNs , label="CDF of N")
The result is shown in Figure 2.61.

0 250 500 750 1000 1250 1500 1750 2000

0.0

0.2

0.4

0.6

0.8

1.0 CDF of N

Figure 2.61: Cumulative distribution function FN of the random variable N.

We didn’t need to do any integration to obtain the plot in Figure 2.61.
The method rvN.cdf(b) computed the integral

şb
´8 fNpnqdn for us.

Properties of the distribution

Let’s verify that the properties of the computer model rvN are as
expected: µ “ 1000 and σ “ 100. These are the parameters we used
when we created rvN, so we better get back the same values when
we call the methods rvN.mean() and rvN.std().

code
2.5.10

>>> rvN.mean()
1000.0
>>> rvN.std()
100.0

We didn’t need to manually compute the integrals that correspond
to ENrNs and

a

ENrpN ´ µNq2s, because the methods rvN.mean()
and rvN.std() did the calculations for us. Thank you Python.
The median of the distribution is another property that is easy to
obtain.

code
2.5.11

2.5 CONTINUOUS RANDOM VARIABLES 144

>>> rvN.median ()
1000.0

The support of the distribution tells us where the sample space of the
distribution starts and where it ends.

code
2.5.12

>>> rvN.support ()
(-inf , inf)

In the case of normally distributed random variables, the sample
space is all the entire real number line, from minus infinity to plus
infinity.

* * *

Once we know the probability density function fNpnq “ rvN.pdf(n)
or the cumulative distribution function FNpbq “ rvN.cdf(b), we can
compute the probability of any outcome of interest for the random
variable N. There are two principal questions we’re interested in:
probability calculations for certain outcomes like ta ď N ď bu, and
inverse probability calculation to find the outcome that contains a
desired proportion of the total probability (quantiles). We’ll describe
each of these tasks below.

Computing probabilities

Let’s say someone asks you to compute the probability of the
outcome t800 ď N ď 1200u, which is the probability that a bottle
will contain between 800 ml and 1200 ml of kombucha. In math
notation, we’re interested in calculating Prpt800 ď N ď 1200uq “
şn“1200

n“800 fNpnqdn, which is the integral of the probability density
function fN “ rvN.pdf between n “ 800 and n “ 1200. We can cal-
culate this integral using the quad function from scipy.integrate
as shown below:

code
2.5.13

>>> from scipy.integrate import quad
>>> quad(rvN.pdf , 800, 1200)[0]
0.954499736103641

The probability of the random variable N being between 800 and
1200 is 95.45%.

We can also obtain the same answer using the CDF function:

code
2.5.14

>>> rvN.cdf (1200) - rvN.cdf (800)
0.954499736103641

We don’t need to remember the complicated-looking formula for
the probability density function fN or compute integrals, since the
methods rvN.pmf and rvN.cdf take care of all the calculations for
us.

2.5 CONTINUOUS RANDOM VARIABLES 145

Computing quantiles

Now let’s discuss the inverse question—we want to find the interval
p´8, nqs that contains the proportion q of the total probability. To
answer this, we need to use the inverse-CDF function F´1

N , which is
provided by the point percentile method rvN.ppf(q).

Recall the quartiles, percentiles, and quantiles calculations that
we used to describe samples in Section ??. The method rvN.ppf(q) is
equivalent to computing the qth quantile of the distribution. The ppf
method allows us to compute the first quartile Q1 as shown below.

code
2.5.15

>>> rvN.ppf (0.25)
932.55

The interval p´8, 932.55s contains 25% of the probability mass of
the random variable N. We can verify this by doing the probability
calculation PrptN ď 932.55uq using the rvN.cdf() method.

code
2.5.16

>>> rvN.cdf (932.5510249803918)
0.25

The second quartile Q2 describes the median of the distribution—
half the probability mass of the random variable lies to the left of Q2
and the other half to the right of Q2.

code
2.5.17

>>> rvN.ppf (0.5)
1000.0

The third quartile Q3 tells us the value n0.75 such that
PrptN ď n0.75uq “ 0.75, and it is obtained by calling the rvN.ppf
method with the input q “ 0.75.

code
2.5.18

>>> rvN.ppf (0.75)
1067.45

Computing the tails of the distribution

Another calculation we’re often interested in is to find the tails of
the distribution, which contain the most extreme or unexpected
values. For example, the 5% left tail of the distribution is the interval
p´8, nql s, where nql is the position of the ql “ 0.05th quantile of the
distribution. We compute the cutoff value nql of the 5% left tail of the
distribution using:

code
2.5.19

>>> rvN.ppf (0.05)
835.514

The above calculation tells us that the interval p´8, 835.514s contains
5% of the probability. In other words, the outcome tN ă 835.514u has
less than 5% chance of occurrence.

2.5 CONTINUOUS RANDOM VARIABLES 146

The 5% right tail of the distribution is the interval rxqr ,8q, where
nqr is the value of the qr “ 0.95th quantile of the distribution. We
compute it as follows.

code
2.5.20

>>> rvN.ppf (0.95)
1164.485

The interval p´8, 1164.485s contains 95% of the probability, so the
remaining interval r1164.485,8q contains only 5% of the probability.
In other words, the probability of observing extremely high values
tN ą 1164.485u is less than 5%.

Computing confidence intervals

The concept of a confidence interval (CI) combines the left-tail and
right-tail calculations to define a centre-interval rnql , nqr s that con-
tains the bulk of the distribution. A 90% confidence interval is de-
fined as the interval rnql , nqr s that contains 0.9 of the total probability:
Pr
`tnql ď N ď nqru

˘ “ şnqr
nql

fNpnqdn “ 0.9.
We can obtain the 90% confidence interval for the random vari-

able rvN by combining the q “ 0.05 and q “ 0.95 quantiles of the
distribution obtained from the method rvN.ppf(q).

code
2.5.21

>>> rvN.ppf (0.05) , rvN.ppf (0.95)
(835.514 , 1164.485)

The 90% confidence interval we obtain is rF´1
N p0.05q, F´1

N p0.95qs “
r835.514, 1164.485s. This means, if we were to generate thousands or
millions of observations from the random variable N, 90% of these
observations will fall in that interval.

The method rvN.interval() is a shortcut for computing the
confidence interval in a single step:

code
2.5.22

>>> rvN.interval (0.90)
(835.514 , 1164.485)

The method rvN.interval(p) computes rF´1
N p 1´p

2 q, F´1
N p1´ 1´p

2 qs.
Confidence intervals are often defined in terms of the param-

eter α “ 1 ´ p, which describes the “missing” probability—the
weight of the tails of the distribution that are not included in the
confidence interval. The p1 ´ αq-confidence interval is defined as
rF´1

N p α
2 q, F´1

N p1´ α
2 qs, and it is computed using rvN.interval(1´α).

Generating random observations

Let’s say you want to generate 10 observations from the random
variable N. You can do this by calling the method rvN.rvs(10) as
shown below.

code
2.5.23

2.5 CONTINUOUS RANDOM VARIABLES 147

>>> ns = rvN.rvs (10)
>>> ns
[1178.86 , 1043.65 , 1009.65 , 813.65 , 972.26 , 964.52 ,
991.73 , 937.3, 995.62 , 952.28]

To compute the mean of these 10 observations, we can use the Python
function sum(ns), which computes the sum of the values in the list
ns, then divide the sum by the length of the list, which we can obtain
by calling len(ns).

code
2.5.24

>>> ns_mean = sum(ns) / len(ns)
>>> ns_mean
985.95

Note the mean of this sample of 10 observations from rvN is close to
the mean of the distribution rvN.mean(), but it’s not identical. This
example touches on a very interesting topic, which is the variability
of the statistics we observe when we study samples generated from
a given distribution. The entire Section 2.8 is dedicated to this topic.

Computing expectations

Suppose the distributor that purchases the kombucha bottles has a
policy requiring the volume of kombucha in each bottle to be within
two standard deviations of the mean. Bottles that contain between
800 ml and 1200 ml will be accepted, and you’ll receive a payment
of $2 for each bottle. Bottles outside that range get rejected, and you
don’t get paid for them. Given the model for the variability of the
kombucha bottling process, can you compute the expected payment
you’ll receive per 100 bottles?

To answer this question, we’ll first build a function that describes
the payment per bottle, as a function of the volume. If the bottle fits
the distributor’s “spec” you get paid $2, else the payment is zero.

code
2.5.25

>>> def payment(n):
if 800 <= n and n <= 1200:

return 2
else:

return 0

We can verify the function payment works as expected by testing an
input that is “in spec” and another input that is “out of spec.”

code
2.5.26

>>> payment (1050)
2
>>> payment (1250)
0

We can now compute the expected value of the payment function
under the random variable N using the rvN.expect() method.

code
2.5.27

>>> rvN.expect(payment , lb=0, ub =2000)
1.9090

2.5 CONTINUOUS RANDOM VARIABLES 148

The code above calculates the expectation ENrpaymentpNqs, which
is the value of the expected payment per bottle. Note we manually
specified the lower bound lb=0 and upper bound ub=2000 for
computing the expectation, which covers most of the weight of the
distribution. We can expect to get paid $190.90 for each batch of 100
bottles delivered to the distributor.

* * *

All the above code calculations used the random variable rvN
based on the normal model norm, which is defined in the module
scipy.stats. In Section 2.6, we’ll learn about other computer
models for continuous distributions that are defined in scipy.stats.
Here is a sneak-peek preview of the other computer models we’ll
use later in the book: uniform, gamma, expon, t, chi2, and f. Each
of these models provides the same set of methods for computing
probabilities, quantiles, and confidence intervals as we saw in the
above example. See Table 2.2 for the complete list of methods.

Exercises

E2.36 Compute the expected value EUpwpUqq, where wpuq “ u3 and
U is the uniform random variable Up0, 1q.

2.5.6 Multiple continuous random variables

Let’s now talk about two continuous random variables pX, Yq de-
fined over the joint sample space R ˆ R. This section will be a
“rerun” of what we learned about multiple random variables in
Section 2.2, but this time X and Y are continuous random variables.

Definitions

Consider the pair of random variables pX, Yq defined in the joint
sample space X ˆ Y . A particular outcome in the joint sample space
looks like a pair of real numbers px, yq. Geometrically speaking, the
joint sample space is a two-dimensional region.

Joint probability density function

The joint probability density function fXY is the main tool for modelling
relationships between two random variables X and Y. By choosing
the appropriate function fXY, we can describe and model various
relationships between the two random variables.

2.5 CONTINUOUS RANDOM VARIABLES 149

Since the probability density function fXYpx, yq has two inputs,
we can plot its graph as a three-dimensional surface, as shown in
Figure 2.62 (a). The height of the surface is given by fXYpx, yq for
each coordinate px, yq in the two-dimensional sample space.

We can also represent the probability density function fXY using
a contour plot, in which darker shaded regions indicating higher
probability density, as shown in Figure 2.62 (b). The contour plot
allows us to see more clearly the joint variability of the random
variables X and Y: larger X values are associated with larger Y
values, so it seems there is a linear relationship between these
two variables. We’ll learn how to quantify the strength of such
relationship using the concepts of covariance and correlation later in
this section.

(a) 3D plot of fXY as a surface (b) Contour plot of fXY in 2D

Figure 2.62: Graphical representations of the joint probability density func-
tion fXY . In (a) we plot the graph of fXY as a surface in a three-dimensional
space. In (b) we see a plot of fXY in two dimensions (as if looking from
above), and represent the third dimension using shading. The darker shaded
regions correspond to locations with higher probability density.

The exact formula for the probability density function fXYpx, yq
shown in Figure 2.62 is not important. I’ve just chosen a multivariate
distribution (multivariate normal), with an interesting density distri-
bution for illustrative purposes.

The outcomes in the joint sample space consists of pairs of
outcomes. For example, the outcome where X takes on a value
between x “ a and x “ b, and Y takes on a value between y “ c and
y “ d, is written as ta ď X ď b, c ď Y ď du in set notation. Another,
more compact representation of this outcome is as a product of
intervals A “ ra, bs ˆ rc, ds. Geometrically speaking, this outcome
describes a rectangular region with width b´ a and height d´ c. The
probability of the outcome A is obtained using the following double

2.5 CONTINUOUS RANDOM VARIABLES 150

integration calculation:

PrpAq “
ż ż

px,yqPA
fXYpx, yq dxdy “

ż x“b

x“a

ż y“d

y“c
fXYpx, yq dxdy.

In words, this integral describes the process of adding up the
values of the probability density function fXYpx, yq over the two-
dimensional region A.

The concept of a joint probability density function fXY is directly
analogous to the single-variable probability density functions, which
you’re already familiar with. Yes there are more dimensions now,
so instead of single-variable integration we need double-variable
integration, but this is not a big deal. You have to trust me on
this one—double integral formulas look intimidating, but there is
nothing fancy going on. It’s still the same idea of calculating the
“total” amount of fXY over some region of integration.

Speaking of totals, let’s review the mathematical axioms that
apply to all joint probability density functions fXY:

• Nonnegativity: fXYpx, yq ě 0 for all x and y.
• Unit total:

ş ş

px,yqPXˆY fXYpx, yqdxdy “ 1.

The unit total property describes the calculation of the integral of
fXY over the entire sample space, which corresponds to the integral
şx“8

x“´8
şy“8

y“´8 fXYpx, yqdxdy “ 1.

Example 3: product of uniform distributions Consider the uni-
formly distributed random variables U „ Up0, 100q and V „
Up0, 10q. The joint probability density function that describes the
pair pU, Vq can be written as the product of the probability density
functions of the two random variables:

fUVpu, vq “ fUpuq ¨ fVpvq,
where fUpuq “ 1

100 for u P r0, 100s and zero otherwise, and fVpvq “
1

10 for v P r0, 10s and zero otherwise.
Figure 2.63 shows two plots of the joint probability density

function fUV .

Marginal distribution functions

The marginal probability density function fX is obtained from the joint
probability density function fXY by integrating over all possible
values for the variable y:

fXpxq “
ż y“8

y“´8
fXYpx, yqdy.

2.5 CONTINUOUS RANDOM VARIABLES 151

(a) 3D plot of fUV as a surface (b) Contour plot of fUV in 2D

Figure 2.63: Graphical representations of the joint probability density
function fUV . The graph of fUV looks like a raised rectangle of width 100
along the u-axis, and width 10 along the v-axis.

The idea for a marginal distribution fX is to get rid of the Y
randomness and corresponds to a description of the random variable
X when the random variable is unknown. The name marginal
distribution comes from the procedure we use to compute it, by
“summing” over all y values for a given x and writing the total in the
margin. See Figure 2.20 for an illustration, and also recall Table ??
on page ??, where we used a similar procedure for computing the
marginal frequencies in a two-way table.

Figure 2.64: The top panel shows the marginal distribution fX , which is
obtained by integrating fXY over all values of Y. The right panel shows the
marginal distribution fY obtained by integrating fXY over all values of X.

The marginal distributions fY is obtained from the joint dis-
tribution fXY similarly, but this time integrating over all possible
values for the variable x: fYpyq “

ş8
´8 fXYpx, yqdx. The marginal

distribution fY describes the randomness of Y when we don’t know
the value of X.

2.5 CONTINUOUS RANDOM VARIABLES 152

Conditional probability distributions

The conditional probability density functions fX|Y and fY|X are defined
as follows:

fX|Ypx|yq “
fXYpx, yq

fYpyq and fY|Xpy|xq “
fXYpx, yq

fXpxq .

The vertical bar is pronounced “given” and describes situations
where the realization of some random variables is known. For
example, the conditional distribution fY|Xpy|xaq describes the prob-
abilities of the random variable Y, given we know the value of the
random variable X is xa. In general, there is a different conditional
distribution fY|X for each of the possible values of x P X .

(a) Slices through fXYpx, yq at different
values of the variable x.

(b) Conditional distributions fY|Xpy|xq
for different values of x

Figure 2.65: Conditional probability distributions fY|X are obtained by slices
of the joint probability distribution along different values of x. The left graph
shows the shape of the slices before normalization. The right side shows the
normalized slices, which are proper probability distributions.

Example 4: Kombucha volume increasing with temperature

One of your production line engineers in the Kombucha brewery, has
a theory that the volume that goes into each bottle depends on the
ambient temperature in the room. They have observed bottles get
under-filled on cold days, and over-filled on hot days.

In order to model the temperature-dependence of the kombucha
volume, we need to consider now the joint sample space pN, Tq,
where T describes the ambient temperature in the room, and N
describes the volume that goes into each bottle.

Suppose the temperature random variable is normally dis-
tributed with standard deviation σT “ 2 around the mean of µT “

2.5 CONTINUOUS RANDOM VARIABLES 153

20, which is written mathematically as T „ N p20, 2q. Using the
estimates provided by the production engineer for the increase in
the average volume of kombucha as a function of the temperature t,
we can build a model for the random variable N „ N pµN , 75q, where
µN “ 1000` 35pt´ 20q. In other words, the conditional distribution
fN|T is N p1000` 35pT´ 20q, 75q.

By studying the dependence between the bottling temperature
T and the volume of of kombucha N, you hope you’ll be able to
improve the reliability of the kombucha bottling process. Recall that
your distributor only pays for bottles that are within “spec” (between
800 ml and 1200 ml).

16 18 20 22 24
t

700

800

900

1000

1100

1200

n

Figure 2.66: Graph of the joint probability density function fNT . The
kombucha volume random variable N tends to increase as the temperature
increases.

Looking at shape of the joint probability density function in
Figure 2.66, we see if we want the kombucha volume to fall within
the interval r800, 1200s, we should keep the production facilities at
t “ 20.

Example 5: Temperature-dependent variance

Your master brewer has a different theory. According to her, the
effects of temperature is to create more bubbles, and so the variability
in the kombucha volume increases. In other words, it’s the variance
that depends on the temperature, not the mean.

Based on their parameter estimates provided by the master
brewer, you build the model for the volume of kombucha N „
N p1000, σNq, where σN “ 100 ` 5pt ´ 20q. In other words, the
conditional distribution fN|T is N p1000, 100` 5pT´ 20qq. We assume
the temperature random variable is T „ N p20, 2q.

Figure 2.67 shows the variance of kombucha volume increases
with temperature. Note we have plotted the temperature on the
horizontal axis, to reinforce the fact we’re looking at the dependence
of N on T.

2.5 CONTINUOUS RANDOM VARIABLES 154

16 18 20 22 24
t

800

1000

1200

n

Figure 2.67: Graph of the joint probability density function fNT . Note the
variance of the kombucha volume random variable N tends to increase with
temperature.

According to the contour plot in Figure 2.67, the colder the
bottling temperature, the lower the variability, so you should aim
to cool the kombucha as much as possible, if we want most of the
volumes to fall in the distributor’s requirements N P r800, 1200s.

* * *

We just saw two different models for the dependence between
temperature T and kombucha volume N. Using math equations (and
computer calculations), we were able to come up with different the-
oretical models, and arrive at two possible strategies for improving
the production process. Unfortunately, the two theoretical models
suggest different strategies! According to the model suggested by
the production engineer (Example 4), we should run the bottling
process at 20 degrees for optimal results. The master brewer’s model
we developed in Example 5 suggests we should do the bottling at
low temperature, like 16 degrees. What is the right thing to do?
Should you believe the model from Example 4 or from Example 5?

These examples were chosen to illustrate the point that mathe-
matical modelling cannot lead to answers on its own. Math models
are only useful when we connect them to the real-world. If you want
to know the optimal temperature, you’ll need to check which of the
two math models are better description of real-world data. This is
what statistics is all about. In chapters ?? and ??, we’ll learn statistical
procedures based on real-world data observations that allow us to
choose the “best fit” probability model for a given situation.

Who knows, maybe the production engineer and the master
brewer are both “right” and the best model for describing the de-
pendence between the random variables N and T combines aspects
of temperature dependence on both the mean and the variance of N.

2.5 CONTINUOUS RANDOM VARIABLES 155

Useful probability formulas

Let’s revisit the probability formulas we saw in Section 2.2 that are
most helpful for doing calculations with multiple random variables.

Chain rule formula The chain rule states that we can decompose
the joint distribution fXY as the product of the conditional distribu-
tion fY|X and marginal distribution fX :

fXYpx, yq “ fY|Xpy|xq ¨ fXpxq.

In words, this means the joint-uncertainty in pX, Yq can be broken
down into X-uncertainty, and Y-given-X-uncertainty. This formula
follows from the definition of conditional probability distribution
fY|Xpy|xq def“ fXYpx,yq

fXpxq . We can also write the joint probability density
function fXYpx, yq as the product fX|Ypx|yq ¨ fXpyq.

Bayes’ rule formula Bayes’ rule is a useful formula based on the
chain rule:

fY|Xpy|xq “
fX|Ypx|yq fYpyq

ş

y1PY fX|Ypx|y1q fYpy1qdy1 .

Note we’re using a different integration variable y1 in the denomina-
tor to avoid confusion with the variable y used in the numerator.

I know the above formulas for Bayes rule for continuous random
variables looks complicated and intimidating, but you look at it for
a little while, you’ll see it’s quite simple. Recall that the primary use
of Bayes’ rule is to convert our knowledge of fX|Y into knowledge
about fY|X . This simple-sounding task, turns out to be extremely
powerful. Indeed, we could say that 50% of all statistics, and 70%
of all machine learning ideas currently in use in research and in
industry are consequences of this simple formula.

Multivariable expectation

Consider the function wpX, Yq which depends on the random vari-
ables X and Y. The expected value of w is defined as

EXYrwpX, Yqs “
ż 8

´8

ż 8

´8
wpx, yq fXYpx, yqdxdy.

This is exactly the same formula as the expectation for a single vari-
able, but we now have two-dimensional sample space, so computing
the expected value of wpX, Yq requires a double integral.

2.5 CONTINUOUS RANDOM VARIABLES 156

Covariance The covariance of the random variables pX, Yq is de-
fined as:

covpX, Yq “ EXYrpX´ µXqpY´ µYqs
“

ÿ

xPX

ÿ

yPY
px´ µXqpy´ µYq fXYpx, yq,

where µX “ EXrXs and µY “ EYrYs are the means of the marginal
distributions fX and fY. In words, the covariance covpX, Yqmeasures
the joint variability of two random variables X and Y.

An alternative formula for calculating the covariance is:

covpX, Yq “ EXYrXYs ´ µXµY.

In words, this calculation tells us the covariance covpX, Yq can also
be computed as the expectation of the product XY minus the product
of the means of the marginals.

Correlation The correlation between the random variables X and Y
is denoted corrpX, Yq or ρXY. The correlation between X and Y is
defined as the ratio of the covariance covpX, Yq to the product of the
variables’ standard deviations:

corrpX, Yq “ covpX, Yq
σX σY

.

Dividing the covariance by the product of the standard deviations
σXσY has a normalizing effect, constraining the correlation corrpX, Yq
to always be between ´1 and 1.

Recall we’ve already the concepts of covariance and correlation
twice already, earlier in Section ?? (correlation between two nu-
merical variables in a dataset) and again in Section 2.2 (correlation
between two discrete random variables), so consider all the above
formulas as reminders: we simply replaced summations with inte-
grals, the but logic is the same.

All the formulas we learned about expectations and variance
calculations for multivariate discrete variables also apply to multi-
variate continuous random variables. For example, EXYrX ` Ys “
EXrXs ` EYrYs, and varpX ` Yq “ varpXq ` varpYq ` 2covpX, Yq.
Jump back to page 53 to review the properties and formulas of the
expectation operator EXY and the covariance covpX, Yq.

Example n: compute the correlation and covariance of fNT TODO

2.5 CONTINUOUS RANDOM VARIABLES 157

Independent random variables Two random variables X and Y are
called independent if their joint probability density function can be
written as the product of the marginal distributions:

fXYpx, yq “ fXpxq fYpyq.
The randomness of X does not depend on the randomness of Y, and
vice versa.

When X and Y are independent random variable, the conditional
distribution function fY|X is equal to the marginal distribution fY. In
other words, knowing the value of X doesn’t change anything about
our uncertainty of Y. Similarly, the conditional distribution fX|Y is
equal to the marginal fX . The covariance is zero covpX, Yq “ 0, and
by extension the correlation is also zero corrpX, Yq “ 0.

Example 6: sum two normal random variables Consider the
random variables Z1 „ N p0, 1q and Z2 „ N p0, 1q, which are both
instances of the standard normal Z. Define the random variable
which is their sum S “ Z1 ` Z2. In words, S describes the sum of
two independent standard normal random variables.

Using the fact that Z1 and Z2 are independent, we can easily
compute the mean of the random variable S:

µS
def“ ESrSs “ EXYrX`Ys “ EXrXs `EYrYs “ µZ ` µZ “ 0.

This is not too surprising, since the means of the Z1 and Z2 are zero,
it makes sense that their sum is also zero.

Let’s not calculate the variance of the random variable S.

varpSq “ varpZ1 ` Z2q “ varpZ1q ` varpZ2q “ 2 ¨����:1
varpZq “ 2.

The variance of S is double the variance of the individual random
variables σ2

S “ 2σ2
Z “ 2.

Independent, identically distributed setting Consider the se-
quence of n independent observations from the random variable X,
which we’ll write as a sequence pX1, X2, . . . , Xnq. Each Xi is a copy
of the same continuous probability random variable X, described by
the probability density function fX . This is the independent, identically
distributed setting (i.i.d. for short).

The joint probability distribution for the sequence
pX1, X2, . . . , Xnq is the product of n copies of the probability
distribution of the random variable X:

fX1X2¨¨¨Xnpx1, x2, ¨ ¨ ¨ , xnq “ fXpx1q fXpx2q ¨ ¨ ¨ fXpxnq.

2.5 CONTINUOUS RANDOM VARIABLES 158

This product structure of the joint distribution fX1X2¨¨¨Xn tells us the
random variables are independent, and each Xi is an identical copy of
the random variable X „ fX .

We’ll study the properties of these sequences of n observations
from the same random variable later in Section 2.8.

Example 7: average of n copies of the standard normal Consider
the sequence n independent observations from the standard normal
pZ1, Z2, . . . , Znq, where each Zi „ N p0, 1q. Define the random
variable A which computes the average value of the sequence
pZ1, Z2, . . . , Znq:

A “ 1
n

n
ÿ

i“1

Zi “ 1
n pZ1 ` Z2 ` ¨` Znq .

We can use the i.i.d. properties of A to obtain its mean µA and

EArAs “ EZ1Z2¨Zn

”

1
n pZ1 ` Z2 ` ¨ ¨ ¨ ` Znq

ı

“ 1
n ¨ n ¨EZrZs “ µZ.

Since the mean of the standard normal is zero µZ “ 0, the mean of
the average of n i.i.d. copies of Z is also zero µA “ 0.

More interestingly, let’s compute the variance of A:

σ2
A “ varpAq “ var

´

1
n pZ1 ` Z2 ` ¨` Znq

¯

“ 1
n2 ¨ var pZ1 ` Z2 ` ¨` Znq

“ 1
n2 ¨ n ¨ varpZq

“ 1
n ¨ varpZq.

This calculation tells us the variance of the average of n random
normally distributed variables is equal to 1

n times the variance of the
individual random variables:

σ2
A “ 1

n ¨ σ2
Z.

This may seem like a counterintuitive result. Remember that the ran-
dom variable A contains the randomness from n standard normals,
and one might think that the variance should increase as you add
more and more random objects together. The calculation we obtain
in Example 6, where we found σ2

S “ 2σ2
Z, certainly suggests this.

But when we compute the average A, we’re not summing to-
gether the Zis, there is also the factor 1

n . Here is another way to write
the random variable A that will help us see what is going on:

A “ Z1
n ` Z2

n ` ¨ ¨ ¨ ` Zn
n .

2.5 CONTINUOUS RANDOM VARIABLES 159

The intuition that adding up together multiple independent random
variable will result in a combined variance that is higher than the
individual variances is correct. The reason the variance ends up
being smaller is because we’re adding together copies of Z

n , which
has variance 1

n2 ¨ σ2
Z, so the effects of summing together n copies is

countered by the factor 1
n2 .

The above observations about the mean and variance of the
random variable A in the i.i.d. case are the basis of the central limit
theorem, which is an important theoretical result we’ll learn about
in Section 2.8. Spoiler: the above equations for µA and σ2

A are
approximately true for the average of any random variable X.

2.5.7 Discussion

We briefly touch upon the topic of “bulk” and “tails” of a distribu-
tion, since this type of reasoning and calculations will come up a lot
in the rest of the book.

Bulk of the normal distribution

We’re often interested in calculating an interval that contains “the
bulk” of the distribution fX . We want to find an interval (a subset
of the sample space) where most of the observations of the random
variable X will fall. One way to construct such a high-density
interval is to define it in terms of the mean µX and the standard
deviation σX of the random variable. For example, we can define
the interval Ik that contains all values that are within k standard
deviations of the mean of the random variable X as follows:

Ik “ rµX ´ kσX , µX ` kσXs.
We can then compute the probability PrpX P Ikq (how likely is X to
be within k standard deviations of its mean), for different values of
the parameter k.

For any normally distributed random variable N „ N pµN , σNq
like the random variable rvN that we saw in Example 2, we can
calculate the value of the probability PrpN P Ikq numerically:

PrpN P Ikq “ PrptµN ´ kσN ď N ď µN ` kσNuq “ pk,

where pk “ 0.682 for k “ 1, pk “ 0.954 for k “ 2, and pk “ 0.997
for k “ 3. See Figure 2.68 for an illustration. These total-probability-
within-k-standard-deviations-of-the-mean values are the same for all
normally distributed variables, and is sometimes called the “68-95-
99.7 rule.” The interval I1 is not particularly interesting, since it

2.5 CONTINUOUS RANDOM VARIABLES 160

covers only 68.2% of the probability mass of the random variable X.
The interval I2 contains 95.4% of the total weight of the distribution,
which is “most” of it. Intuitively, if we predict the outcome tN P I2u
we’ll be correct 95.4% of the time.

600 700 800 900 1000 1100 1200 1300 1400

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

(a) Pr({ N + })
600 700 800 900 1000 1100 1200 1300 1400

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

(b) Pr({ 2 N + 2 })
600 700 800 900 1000 1100 1200 1300 1400

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

(c) Pr({ 3 N + 3 })

Figure 2.68: The probability of observing the random variable N within k
standard deviations of the mean. In (a) we show the calculation Prpt900 ď
N ď 1100uq “ 0.682, which is roughly two thirds of the total mass of the
distribution. The shaded region in (b) show the calculation Prpt800 ď N ď
1200uq “ 0.954, which means 95.4% of the probability mass of fN is situated
within two standard deviations of the mean. The shaded region in (c) shows
the three-sigma confidence interval that contains 99.7% of the probability.

The technical term for the interval Ik is confidence interval, mean-
ing we’re confident, to a certain degree of probability pk, that future
outcomes of the random variable N will fall in this interval. We
say I2 “ rµN ´ 2σN , µN ` 2σNs “ r800, 1200s is a 95.4% confidence
interval for the random variable N. This means, if we generate
millions of observations from the random variable N, in the long
run, 95.4% of these observations will be contained in the interval
rµN ´ 2σN , µN ` 2σNs. For an even higher degree of “confidence,”
we can choose the three-sigma interval I3 “ rµN ´ 3σN , µN ` 3σNs “
r700, 1300s, which contains 99.7% of all observations.

Confidence intervals play an important role in statistics, when-
ever we estimate some quantity, we’ll report a confidence interval.

Tails of the normal distribution

The “tails” of the distribution contain the unlikely outcomes for the
random variable. Figure 2.69 shows the tails of the distribution fN ,
which are defined as the observations that are more than k standard
deviations away from the mean.

The observations in the tails of the distribution are deemed “sur-
prising” and “unexpected.” The notion of “unexpected outcome”
plays a central role in the statistical concept of hypothesis testing
(Section 3.X), in the next chapter.

If we observe and outcome that is part of the tails of some
distribution, we’ll label it “unexpected” and interpret this result as
interesting (statistically significant), and worthy of reporting and

2.5 CONTINUOUS RANDOM VARIABLES 161

600 700 800 900 1000 1100 1200 1300 1400

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

(a) Pr({N } {N + })
600 700 800 900 1000 1100 1200 1300 1400

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

(b) Pr({N 2 } {N + 2 })
600 700 800 900 1000 1100 1200 1300 1400

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

(c) Pr({N 3 } {N + 3 })

Figure 2.69: Illustration of the tails of the distribution fN for the random
variable N „ N p1000, 100q. The highlighted regions correspond to the
complements of the regions highlighted in Figure 2.68. Subplot (b) shows
that the probability of observing values of N that are more than two standard
deviations away from the mean µN is 4.55%, which we can qualify as “very
unlikely.” Subplot (c) shows the probability of observing N more than three
standard deviations away from its mean is 0.27%, which we can qualify as
“extremely unlikely.”

publication in scientific journals. The whole hypothesis testing
procedure can be summarized as a “is it in the tail of the distribution”
check, where the distribution in question is specially designed to
model the probability of different outcomes under the current theory.
If the observed outcome is “unexpected” under the current theory,
then this lends support to the need to seek alternative theories.

At the risk of repeating myself, I’ll remind you the above calcula-
tions apply to all normally distributed random variables. In other
words, for any random variable X „ N pµX , σXq, the probability
PrpX P rµX ´ 2σX , µX ` 2σXsq is 95.4%. This is a really powerful
idea: we’ve obtained a result that applies to all normally distributed
random variables, which are used to model many kinds of real-
world situations. If we can calculate the mean µX and the standard
deviation σX of this random variable, then we can compute a 95.4%
confidence interval for it based on the two-standard-deviations-
away-from-the-mean formula.

Exercises

TODO: select cont. RVs problems to convert to exercises
TODO: other uniform;
TODO: another normal calc.

Links

[Comprehensive list of hundreds of probability models]
https://en.wikipedia.org/wiki/List_of_probability_distributions

https://en.wikipedia.org/wiki/List_of_probability_distributions

2.5 CONTINUOUS RANDOM VARIABLES 162

[Probability theory chapter from a book by Simon Hubbert]
https://bookdown.org/S_hubbert/mathematics_of_financial_derivatives/Prob-Th.html

[Video explainer about the moments of a distribution]
https://www.youtube.com/watch?v=fv5QB3eK7jA

https://bookdown.org/S_hubbert/mathematics_of_financial_derivatives/Prob-Th.html
https://www.youtube.com/watch?v=fv5QB3eK7jA

2.6 INVENTORY OF CONTINUOUS DISTRIBUTIONS 163

2.6 Inventory of continuous distributions

We’ll now continue the work we started in Section 2.3 to complete the
list of the most important probability distribution used in statistics.
In the previous section, we already saw some examples involving the
uniform distribution Upα, βq and the normal distribution N pµ, σq,
but there are several other continuous distributions that you need
to know about.

Recall the notation X „ Mpθq which describes the random
variable X distributed according to model M with parameters θ.
In this section, we’ll learn about the different probability models
M that are available, and different choices of their parameters θ.
Specifically, we’ll talk about the following continuous probability
distributions:

• Uniform Upα, βq: assign constant probability density over the
interval rα, βs.

• Exponential Exponpλq: decaying probability curve defined for
nonnegative real numbers.

• Normal N pµ, σq: the normal or Gaussian distribution with
mean µ and standard deviation σ.

• Standard normal N p0, 1q: a special case of the normal distribu-
tion with mean µ “ 0 and standard deviation σ “ 1.

• Student’s t-distribution: resembles the standard normal, but
has “heavy” tails.

• Snedecor’s F distribution: related to the ratio of variances.
• Chi-square χ2: related to the sum of squared deviations.

We’ll also briefly mention the gamma distribution Gammapα, λq,
the beta distribution Betapα, βq, and the Cauchy distribution
Cauchypx0, γq, but you should consider these as “optional” reading
material.

Figure 2.70 shows six examples, of the most common continuous
probability distributions. Note the variety of “shapes” of the proba-
bility density functions. Compare the shapes in Figure 2.70 with the
shapes of the discrete distributions that we saw earlier in Figure 2.27.

2.6.1 Math prerequisites

Let’s quickly introduce some math concepts that we’ll need later
on in this section. Recall factorial function n! “ n ¨ pn ´ 1q ¨ ¨ ¨ ¨ ¨
2 ¨ 1, which we used a lot in calculations for discrete probability
distributions. The gamma function is a generalization of the factorial
function to the space of continuous variables, and will similarly play
a big role in the definitions of continuous random variables.

2.6 INVENTORY OF CONTINUOUS DISTRIBUTIONS 164

4 2 0 2 4
U

0.0

0.1

0.2

0.3

0.4

0.5
(= 0, = 4)

0 5 10 15 20
E

0.00

0.05

0.10

0.15

0.20
Expon(= 0.2)

4 2 0 2 4
Z

0.0

0.1

0.2

0.3

0.4

0.5
(= 0, = 1)

0 5 10 15 20
X2

0.000

0.025

0.050

0.075

0.100

0.125 2(k = 6)

4 2 0 2 4
T

0.0

0.1

0.2

0.3

0.4

0.5
(= 4)

0 5 10 15 20
F

0.0

0.2

0.4

(1 = 10, 2 = 2)

Figure 2.70: Probability density plots of 6 common probability distributions.

The gamma function The gamma function Γpzq, denoted using the
capital Greek letter gamma, is defined as the following complicated-
looking integral:

Γpzq def“
ż 8

0
tz´1e´t dt.

You’ll rarely need to compute values of the gamma function by hand,
and instead use a computer (see code example below). For now,
let’s start by looking at the graph of the function Γpzq shown in
Figure 2.71.

0 1 2 3 4 5
z

0

5

10

15

20

25
(z)

Figure 2.71: Graph of the gamma function Γ on the interval p0, 5s.

The gamma function Γpzq is defined for all z ą 0, and it obeys the

2.6 INVENTORY OF CONTINUOUS DISTRIBUTIONS 165

following recursive relationship when evaluated at integer inputs:

Γpz` 1q “ z ¨ Γpzq,
which is similar to the structure obeyed by the factorial function.
Indeed, the gamma function evaluated at n ` 1 is equal to the
factorial function n!:

Γpn` 1q “ n! “ n ¨ pn´ 1q ¨ ¨ ¨ ¨ ¨ 2 ¨ 1.

If you need to compute the value of Γpzq, you can rely on the Python
function gamma defined in the scipy.special module.

code
2.6.1

>>> from scipy.special import gamma as gammaf
>>> gammaf (5) # = 4! = 4*3*2*1
24.0

In the above code example, we imported the function
scipy.special.gamma under the alias gammaf. We do this
to avoid any possible confusion with the gamma distribution
scipy.stats.gamma, which has the same name.

The value of Γpzq varies smoothly between integers inputs. We
can observe this by evaluating Γpzq for a sequence of inputs ranging
between 4 and 5:

code
2.6.2

>>> [gammaf(z) for z in [4, 4.1, 4.5, 4.9, 5]]
[6.0, 6.81, 11.63, 20.67, 24.0]

See Figure 2.71 for the graph of the function. Use the graph to
visually confirm the coordinate pairs pz, Γpzqq from code block 2.6.2
all lie on the graph of the function Γpzq.

You don’t need to worry about the gamma function too much.
I know it sounds and looks complicated, but you’re not expected
to memorize its formula, or ever have to do math calculations with
it. I’m only introducing the Γ function here, so you won’t be like,
“what the hell is this Γ thing!?,” when you see it later on in one of the
formulas in this section. Don’t freak out, and remember that Γpzq as
just fancy math notation that behaves like the factorial pz´ 1q!.

2.6.2 Continuous distributions reference

We’ll now switch to “reference mode” and show examples of the
six most common families of continuous probability distributions:
uniform, exponential, normal, Student’s t-distribution, Snedecor’s
F distribution, and the Chi-squared distribution. For each of these
distributions, we’ll show the definitions and formulas, describe their
properties, and provide a minimal code example. We’ll also include
additional links for further study.

2.6 INVENTORY OF CONTINUOUS DISTRIBUTIONS 166

All of these distributions are used in one way or another in
statistics, so it’s worth spending some time to get to know them.
Remember that you’re not supposed to memorize any of the formu-
las and definitions in the next MM pages. You just need to know
that these distributions exist, so you can refer back to this section if
you need to look up facts about them. You want to focus on “visual
understanding” by looking at the graphs of their probability density
functions, and remember the “story” behind the distribution, but no
need to memorize formulas.

OK enough preliminaries! Let’s start the inventorying of contin-
uous distributions. Ready? Let’s go!

2.6 INVENTORY OF CONTINUOUS DISTRIBUTIONS 167

Uniform

The continuous uniform distribution Upα, βq assigns equal proba-
bility to all numbers on the interval rα, βs “ tα ď X ď βu. The
probability density function is

fXpxq “
#

1
β´α for α ď x ď β,

0 for x ă 0 or x ą 1.

In words, we see each x between α and β is equally likely to occur,
and values of x outside this range have zero probability of occurring.

Figure 2.72 shows various uniform distributions defined over
different intervals rα, βs. Note the longer the length of the interval
β ´ α, the lower the probability density becomes, so that the total
area under the curve remains 1.

0 5 10 15 20 25 30 35 40
0.00

0.02

0.04

0.06

0.08

0.10 = 0, = 10

0 5 10 15 20 25 30 35 40

= 0, = 20

0 5 10 15 20 25 30 35 40

= 0, = 30

0 5 10 15 20 25 30 35 40
0.00

0.02

0.04

0.06

0.08

0.10 = 5, = 20

0 5 10 15 20 25 30 35 40

= 10, = 20

0 5 10 15 20 25 30 35 40

= 15, = 20

Figure 2.72: Plot of uniform distributions for various choices of the parame-
ter α and β.

Its mean and variance are

µ “ α` β

2
and σ2 “ pβ´ αq2

12
.

You’ll be asked to verify these formulas in exercise E2.39 and
problem P2.1.

Cumulative distribution function The cumulative distribution
function of the uniform distribution looks like a straight line that
increases from 0 to 1 as the input b varies from α to β. Figure 2.73

2.6 INVENTORY OF CONTINUOUS DISTRIBUTIONS 168

shows a side-by-side plots of the probability density function (pmf)
fX and the cumulative distribution function (CDF) FX for the uni-
form random variable X „ Up2, 7q. Recall the CDF is obtained from
the pdf using integration:

FXpbq “ PrptX ď buq “
ż b

´8
fXpxq.

0 2 4 6 8

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200
Probability density function

0 2 4 6 8

0.0

0.2

0.4

0.6

0.8

1.0
Cumulative distribution function

Figure 2.73: Graphs of the probability density function fX and the cumula-
tive density function FX for the random variable X „ Up2, 7q.

Computer model We can use the uniform model from
scipy.stats to create computer models uniformly distributed
random variables. For example, we can create the computer from
the random variable X „ Up2, 7q using the following code:

code
2.6.3

>>> from scipy.stats import uniform
>>> alpha = 2
>>> beta = 7
>>> rvU = uniform(alpha , beta -alpha)

Note when initializing the uniform model, we pass in the distance
β´ α as the second parameter, and not β as in the math notation.

To generate 10 random observations from the random variable
rvU, we call the .rvs() method, as shown below.

code
2.6.4

>>> rvU.rvs (10)
array ([2.69746 , 3.460723 , 3.831809 , 4.280349 , 5.925879 ,

2.99836 , 4.571172 , 4.962072 , 2.232252 , 5.037724])

Observe all the numbers are between α “ 2 and β “ 7, which are the
initialization parameters we specified when we created the random
variable rvU.

See Figure 2.73 for the graphs of the pdf and CDF of the random
variable rvU.

2.6 INVENTORY OF CONTINUOUS DISTRIBUTIONS 169

The standard uniform The standard uniform distribution is a spe-
cial case of the uniform distribution over the interval r0, 1s. The
standard uniform is important because it allows us to generate other
types of random variables thanks to the inverse-CDF trick, which
we’ll discuss further in Section 2.7.

Most programming languages provide functionality for generat-
ing random observations according to the standard uniform Up0, 1q.
Python has at least three options for generating random numbers
uniformly distributed between 0 and 1.

The first option, which we saw above, is to create the random
variable rvU = uniform(0,1) and then call the method rvU.rvs(n).

The second option is to import the Python module random and
use the function random.random() as shown below.

code
2.6.5

>>> import random
>>> random.random ()
0.23796462709189137

Every time you call the function random.random(), the computer
will generate a new random number from the interval r0, 1s.

The third option for generating numbers from the distribution
Up0, 1q is to call the function random.rand() which is part of the
NumPy package.

code
2.6.6

>>> import numpy as np
>>> np.random.rand()
0.3745401188473625

Calling np.random.rand(n) will return a NumPy array of n random
numbers drawn from Up0, 1q.

Similarly named functions are available in other programming
languages and computational platforms. In Excel, you can use the
function RAND() to generate a random number between 0 and 1.
The equivalent function in R is runif(1), which is short for random
uniform and the number indicates we just want one draw.

Applications We can use the uniform random variable to generate
random variables from other distributions. For example, suppose
we want to generate observations of a coin toss random variable
which comes out heads 50% of the time and tails 50% of the time.
We can use the standard uniform random variables obtained from
random.random() and split the outcomes at the “halfway point” of
the sample space, to generate the 50-50 randomness of a coin toss.
The Python function flip_coin shows how to do this:

code
2.6.7

>>> def flip_coin ():
u = random.random () # random number in [0,1]
if u < 0.5:

return "heads"

2.6 INVENTORY OF CONTINUOUS DISTRIBUTIONS 170

else:
return "tails"

To generate the outcome of a random coin toss, simply call the
function flip_coin:

code
2.6.8

>>> flip_coin ()
'heads '

To generate a list of 10 outcomes of flipping the coin, write a for loop
that calls the function 10 times.

code
2.6.9

>>> [flip_coin () for i in range (0 ,10)]
['tails ', 'tails ', 'heads ', 'heads ', 'tails ',
'heads ', 'heads ', 'tails ', 'heads ', 'tails ']

We’ll continue the discussion on generation of random variables in
... TODO: setup a placeholder so we can reference it.

Relations to other distributions

• The standard uniform Upα “ 0, β “ 1q is equivalent to the beta
distribution with Betap1, 1q.

•

[Continuous uniform distribution on Wikipedia]
https://en.wikipedia.org/wiki/Continuous_uniform_distribution

https://en.wikipedia.org/wiki/Continuous_uniform_distribution

2.6 INVENTORY OF CONTINUOUS DISTRIBUTIONS 171

Exponential

The exponential distribution X „ Exponpλq describes the “waiting
time” between two events, when the base rate is λ. The sample
space of this random variable is X “ r0,8q. The probability density
function is

fXpxq “ λe´λx.

0 5 10 15 20 25 30 35 40
0.0

0.1

0.2

0.3 = 3

0 5 10 15 20 25 30 35 40

= 5

0 5 10 15 20 25 30 35 40

= 10

Figure 2.74: Plot of the probability density function of the exponential model
for three different values of the parameter λ

The mean and variance are of the exponential distribution are

µ “ EXrXs “ 1
λ

and σ2
X “ ErpX´ µXq2s “ 1

λ2 .

You’ll be asked to compute these formulas in exercises E2.41 and
E2.42.

The cumulative distribution is easy to compute (see Exercise
E2.40), and it is given by

FXpbq “ 1´ e´λb.

Memoryless property The exponential distribution is memoryless,
meaning it has a self-similar shape for all values of x. The memoryless
property is expressed as

PrpX ą xq “ PrpX ą x` y|X ą yq.
In words, this means the probability that a success will take longer
than x seconds starting at 0, is equal to the probability of a success
taking x ` y seconds, given that no success happened in the first y
seconds. In other words, the exponential random variable doesn’t
become more likely to occur even after a long period where it hasn’t
occurred. The probability of outcome of success in the next second
stays constant, no matter what happened previous seconds, hence
the name “memoryless” used to describe this property.

2.6 INVENTORY OF CONTINUOUS DISTRIBUTIONS 172

For example, in the waiting time before the next call X can
be modelled as an exponential distribution then the memoryless
property says that the probability of receiving a call in the next 30
seconds given that you have already waited five minutes is the same
as during the first 30 seconds.

The exponential distribution is the only continuous probability
distribution that has the memoryless property. The geometric distri-
bution we saw in Section 2.3 is also memoryless.

Computer model We can use the expon model from scipy.stats
to create computer models exponentially distributed random vari-
ables. For example, we can create the computer from the random
variable rvE „ Exponpλ “ 7q using the following code:

code
2.6.10

>>> from scipy.stats import expon
>>> loc = 0
>>> lam = 7
>>> scale = 1/lam
>>> rvE = expon(loc , scale)

To compute the mean and variance, we call use the methods on the
random variable rvE:

code
2.6.11

>>> rvE.mean(), rvE.var()
(0.14285714285714285 , 0.02040816326530612)

Alternatively, we can use the math formulas for µE and σ2
E, which

give the same answer:

code
2.6.12

>>> 1/lam , 1/lam **2
(0.14285714285714285 , 0.02040816326530612)

Applications Radioactive decay?

Relations to other distributions

• The Poisson distribution counts the number of events that
will occur during some interval with base rate λ, while the
exponential measures the time between events.

• A geometric random variable is the floor of an exponential
random variable.

• The exponential distribution is a special case of the gamma
distributions for with gamma shape α “ 1.

• The sum of n exponential random variables with parameter λ
a gamma distribution with parameters α “ n and λ “ λ.

[Wikipedia page]
https://en.wikipedia.org/wiki/Exponential_distribution

https://en.wikipedia.org/wiki/Exponential_distribution

2.6 INVENTORY OF CONTINUOUS DISTRIBUTIONS 173

Normal

The normal distribution N pµ, σq has the probability density function:

fXpxq “ 1
σ
?

2π
e´

px´µq2
2σ2 ,

where µ is the mean and σ is the standard deviation. We use
the notation N pµ, σq to describe the distribution as math, and
norm(mu,sigma) to describe as computer model.

0 5 10 15 20 25 30 35 40
0.00

0.05

0.10

0.15

0.20 = 10, = 2

0 5 10 15 20 25 30 35 40

= 10, = 3

0 5 10 15 20 25 30 35 40

= 10, = 5

0 5 10 15 20 25 30 35 40
0.00

0.05

0.10

0.15

0.20 = 10, = 5

0 5 10 15 20 25 30 35 40

= 20, = 5

0 5 10 15 20 25 30 35 40

= 30, = 5

Figure 2.75: Plot of normal distributions for various choices of the parame-
ters µ and σ.

The mean and variance of the distribution are as follows:

EXrXs “ µ ErpX´ µXq2s “ σ2.

Computer model To create a normally distributed random variable
rvN „ N pµ “ 1000, σ “ 100q, we use the following code:

code
2.6.13

>>> from scipy.stats import norm
>>> mu = 10
>>> sigma = 3
>>> rvN = norm(mu , sigma)

Let’s verify the formulas for the mean and variance:

code
2.6.14

>>> rvN.mean(), rvN.var()
(10.0, 9.0)

2.6 INVENTORY OF CONTINUOUS DISTRIBUTIONS 174

Applications Every quantity in this world that is computed as the
sum of a large number of independent observations ends up looking
like a normal distribution.

The normal distribution is used as a generic all-purpose distribu-
tion whenever we want to describe some unknown distribution with
mean µ and standard deviation σ. (or if based on sample statistics x
and s too).

The normal distribution N pµ “ np, σ “a

npp1´ pqq can be used
as an approximation for the binomial distribution Binompn, pq, when
the sample size n is large (n ě 20). This is known as the Moivre–
Laplace approximation.

Relations to other distributions In addition to the normal approx-
imation to the binomial distribution which we discussed above,
the normal distribution is connected to many other probability
distributions:

• The Poisson is also ...
• Related to Student’s t-distribution when using estimated
• It is equal to the standard normal Z if we perform the “stan-

dardization” transformation Z “ X´µX
σX

.
• The sum of n normally distributed random variables, is also

normally distributed: TODO show CLT formula (without
explaining). This is big thing = TODO: FWD reference to CLT

[The normal distribution]
https://en.wikipedia.org/wiki/Normal_distribution

https://en.wikipedia.org/wiki/Normal_distribution

2.6 INVENTORY OF CONTINUOUS DISTRIBUTIONS 175

Standard Normal

The standard normal distribution is denoted Z „ N p0, 1q and it has the
probability density function:

fZpzq “ 1?
2π

e´ z2
2 .

Note this is the equation as the general normal distribution N pµ, σq if
choose the parameters µ “ 0 and σ “ 1. The term “standard” refers
to this choice of 0 for the mean and 1 for the standard deviation. See
Figure 2.76 for the graph of the probability density function fZ.

4 3 2 1 0 1 2 3 4
z

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

f Z

Figure 2.76: Plot of the probability density function fZ for the standard
normal Z.

The mean and variance of the distribution are as follows:

EZrZs “ 0 EZrpZ´ 0q2s “ 1.

Relation to the generic normal distribution All normal distri-
butions have essentially the same “shape.” Consider the random
variable X which is normally distributed with mean µ and standard
deviation σ:

X „ N pµ, σq.
The two random variables Z and X are related by the following
equation:

Z “ X´ µ

σ
,

which subtracts the mean and divides by the standard deviation.
Every Gaussian random variable can be transformed to the standard
normal distribution using this transformation.

For every calculation you might want to do with the random
variable X, there is an equivalent calculation you can carry out using
the random variable Z:

FXpaq “ Pr
`

X ď a
˘ “ Pr

ˆ

Z ď a´ µX
σX

˙

“ FZ

ˆ

a´ µX
σX

˙

,

2.6 INVENTORY OF CONTINUOUS DISTRIBUTIONS 176

where FXpaq “
şa
´8 fXpxq dx is the cumulative distribution function

(CDF) of the random variable X, and FZ is the CDF of the standard
normal. This means it suffices to know the values of the CDF for
the standard normal distribution FZ, where Z „ N p0, 1q, and the
calculations for all other normal distributions can be obtained after a
suitable transformation.

Probability calculations The function FZ : R Ñ r0, 1s can be
used in two directions. Either we have a given value of z and we
want to calculate FZpzq (the cumulative probability of the random
variable Z taking on this or any smaller value), or we start with some
probability value q and want to compute the corresponding z-value
zq such that Fpzqq “ q, in other words zq ” F´1pqq.

Figure 2.77: Illustration of the cumulative probability density calculations
of the standard normal. The value zq is such that a total probability of q is
enclosed in the left tail of the distribution.

Computer model To create a

code
2.6.15

>>> from scipy.stats import norm
>>> rvZ = norm(0, 1)

Let’s verify the mean and variance of the random variable rvZ are as
specified.

code
2.6.16

>>> rvZ.mean(), rvZ.var()
(0.0, 1.0)

Calculations using the cumulative distribution function Several
statistics procedures involve calculations based on the cumulative
distribution function FZ, so it is a good idea to get to know them
well.

We’ll start with some example questions that we can answer
using the cumulative distribution FZ. Suppose you observed the
value zo “ ´2.3, and you want to know the probability of observing
the value zo or more negative for the random variable Z. You
can compute the answer using the FZp´2.3q “ PrptZ ď ´2.3uq “
rvZ.cdf(-2.3), as shown below.

code
2.6.17

2.6 INVENTORY OF CONTINUOUS DISTRIBUTIONS 177

>>> rvZ.cdf(-2.3)
0.010724110021675809

This is called a “left tail” calculation because the calculation involves
integrating the left tail of the normal distribution until zo “ ´2.3.

You can obtain the symmetric calculation of the right tail using
one-minus the cumulative distribution:

code
2.6.18

>>> 1 - rvZ.cdf (2.3)
0.010724110021675837

This corresponds to the probability of observing value zo “ 2.3 or
greater: PrptZ ě 2.3uq.

The more general calculation you’ll see in the statistics chapter,
is to compute the probability of “observing zo or a more extreme
value,” which corresponds to the two-tailed probability calculation
Prpt|Z| ě |zo|uq “ PrptZ ď ´2.3uq ` PrptZ ě 2.3uq, which we can
compute by adding together the contribution from the left tail and
right tail we obtained above:

code
2.6.19

>>> rvZ.cdf(-2.3) + (1-rvZ.cdf (2.3))
0.021448220043351646

Calculations using the inverse CDF The inverse cumulative distri-
bution function of the standard normal F´1

Z will also come up often
in the statistics chapter. In the inverse direction, we’re starting from
some proportion q P r0, 1s of the total probability, and we want to
know the smallest value zq such that PrptZ ď zquq “ q.

For example, we can find the cutoff value of the 5% left tail of the
standard normal distribution using

code
2.6.20

>>> rvZ.ppf (0.05)
-1.6448536269514729

This tells us PrptZ ď ´1.64uq “ 0.05.
To find the cutoff value of the 5% right tail of the distribution, we

use the code

code
2.6.21

>>> rvZ.ppf (0.95)
1.6448536269514722

This tells us PrptZ ď 1.64uq “ 0.95 and therefore PrptZ ě 1.64uq “
0.05.

The complement of the above two regions contains the middle
90% of the distribution: Prpt´1.64 ď Z ď 1.64uq “ 0.90. This is the
called the 90% confidence interval for the random variable Z, which
means 90% of observations from the standard normal will fall in that
interval. We can also use the method rvZ.interval() to compute
the confidence interval in one step:

code
2.6.22

2.6 INVENTORY OF CONTINUOUS DISTRIBUTIONS 178

>>> rvZ.interval (0.9)
(-1.6448536269514729 , 1.6448536269514722)

Applications The standard normal distribution is one of the top-
three distributions used in statistics procedures. It is used for all
statistical tests where the variance of the distribution is known,
and for statistical tests that compare two proportions (based on the
normal approximation to binomial distribution).

The standard normal is also used to compute the z-score of any
value x in a dataset: zx “ x´Mean

Std . The z-score can then be used to
identify “outliers,” that is values that are exceptional or unexpected.
For example, one common approach for detecting outliers is to look
for values whose z-score is |zx| ě 3. These values are more than three
standard deviations away from the mean.

Relations to other distributions

• We can simulate general normal X „ N pµ, σq using the scale-
and-location transformation X “ µ` σX.

• The general normal X „ N pµ, σq if the same as Z after the
standardization transformation Z “ X´µ

σ .
•

[The standard normal defined on Wikipedia]
https://en.wikipedia.org/wiki/Normal_distribution#Standard_normal_distribution

https://en.wikipedia.org/wiki/Normal_distribution#Standard_normal_distribution

2.6 INVENTORY OF CONTINUOUS DISTRIBUTIONS 179

Student’s t-distribution

The shape of the t-distribution is similar to the shape of the normal,
but with “heavier” tails. We’ll use Student’s t-distribution for several
statistical analysis procedures in situations when we need to estimate
the population variance based on the sample variance.

There is a whole family of t-distributions defined by the different
values of the parameter ν, which represents the number of degrees
of freedom of the distribution, and determines the shape of the
distribution. We’ll denote the degrees of freedom parameter using
the Greek letter “ν” (pronounced like “new”) in math equations, and
“df” in code examples.

4 2 0 2 4
x

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

f X

= 2
= 5
= 10
= 100

Figure 2.78: Plot of the probability densities of Student’s t-distribution for
four choices of the degrees of freedom ν. For large values of ν, the shape of
Student’s t-distribution becomes equal to the standard normal N p0, 1q.

The probability density function of Student’s t-distribution is a
really scary-looking math expression, which I’m about to show you.
Rest assured, you’ll never need to compute this function by hand—
we’re only showing it for completeness. The probability density
function for Student’s t-distribution with ν degrees of freedom is

fXpxq “
Γp ν`1

2 q?
νπ Γp ν

2 q
ˆ

1` x2

ν

˙´ ν`1
2

.

2.6 INVENTORY OF CONTINUOUS DISTRIBUTIONS 180

I warned you the formula will look complicated!
The mean and variance of Student’s t-distribution are

µX “ 0 and σ2
X “

ν

ν´ 2
, for ν ą 2.

Historical background Student’s t-distribution has an interesting
history. The statistician William Gosset came up with this dis-
tribution while working at the Guinness brewing company, but
because he was in “industry” he published under the pseudonym
"Student," and the name was never changed. Presumably, he used
a pseudonym so readers would not be able to tie the analysis to
Guinness brewing. Imagine if Irish people hear there are “bad
batches” of Guinness that the factory has to throw out—people
would storm the factory for sure asking to be given the bad batches!

Computer model To create a random variable �rvT with probability
distribution T pν “ 10q, we import the t model from scipy.stats
and initialize it with degrees of freedom parameter.

code
2.6.23

>>> from scipy.stats import chi2
>>> df = 10
>>> rvT = t(df)

The mean and the variance of the distribution are:

code
2.6.24

>>> rvT.mean(), rvT.var()
(0.0, 1.25)

You can verify the value of the variance matches the math formulas
we showed above. Note the variance is slightly larger than the
standard normal Z, which has variance σ2

Z “ 1.

Calculations using the cumulative distribution function We can
then use the method rvT.cdf(b) to obtain values of the cumulative
distribution function FTpbq and the method rvT.ppf(q) to obtain
values of the inverse CDF F´1

T pqq.
For example, the if we observe the value to “ ´2.3, we can calcu-

late the probability of observing to or more negative for the random
variable T using the cumulative distribution function FTp´2.3q “
PrptT ď ´2.3uq “ rvZ.cdf(-2.3), which has the value:

code
2.6.25

2.6 INVENTORY OF CONTINUOUS DISTRIBUTIONS 181

>>> rvT.cdf(-2.3)
0.022127156642143552

The probability PrptT ď ´2.3uq “ 2.21%. Compare this with
the value PrptZ ď ´2.3uq “ 1.07%, which we obtained for the
standard normal distribution. This is why we say the t-distribution
has “heavy tails.”

Let’s now look at some calculations, based on the inverse cu-
mulative distribution function F´1

T pqq “ tq. We can obtain the 90%
confidence interval for the t-distribution using the following code:

code
2.6.26

>>> rvT.ppf (0.05) , rvT.ppf (0.95)
(-1.8124611228107341 , 1.8124611228107335)

Compare this with the 90% interval for the standard normal:
rFZp0.05q, FZp0.95qs “ r´1.645, 1.645s. Again, we see the t-
distribution is more spread out as compared to the standard normal.

Cumulative distribution calculations Calculating values of the
cumulative distribution function FXpbq of Student’s t-distribution
and its inverse F´1

X pqq is a very common task in statistics, so let’s
review visually the meaning of the probability calculations FXpbq and
F´1

X pqq.
The cumulative distribution function computes the integral of the

probability density up to x “ b:

FXpbq “ PrptT ď buq “
ż b

´8
fXpxq

We’ll often be interested in the probability of the complementary
event PrptT ě buq, which we can obtain as one minus the value of
the value of the cumulative distribution

PrptT ě buq “ 1´ FXpbq.
For example, we want to compute the probability of observing the
value of the t random variable equal to or greater than 2, you can
compute this using PrptT ě 2uq “ 1´ FXp2q, which corresponds to
the code 1 - rvT.cdf(2), where rvT is the probability model of the
t distribution.

Suppose instead we’re interested in the inverse problem: we
want to find the value tq such that FXptqq is equal to q. Visually
speaking, see Figure 2.79, we must choose the value tq such that the
total probability of values of t or smaller is equal to q. The inverse of
the cumulative distribution function F´1

X is defined precisely for this
purpose: tq “ F´1

X pqq.

2.6 INVENTORY OF CONTINUOUS DISTRIBUTIONS 182

Figure 2.79: Illustration of the cumulative probability density calculations of
the t distribution with ν degrees of freedom. The value tq is such that a total
probability of q is enclosed in the left tail of the distribution.

For example, if you want to find the cutoff value t` such that 0.05
(5 percent) of the distribution to the left of it, you can compute t` “
F´1

X p0.05q using the code rvT.ppf(0.05). We can also find the cutoff
value tr such that 0.05 (5 percent) of the distribution to the right of it,
compute tr “ F´1

X p0.95q “ rvT.ppf(0.95). Note the interval rt`, trs
contains 90% percent of the probability of the random variable T.
In words, 90% of random observations from the random variable T
will fall in the interval rt`, trs, which means this is a 90% confidence
interval, denoted CI0.9.

Obtaining a confidence interval that contains p1´ αq of the total
probability is described by the following general formula:

CI1´α “
”

F´1
X pα{2q, F´1

X p1´ α{2q
ı

.

TODO: visual for CI & tails — back reference to bulk and tails
discussion earlier in Section 2.1

TODO: mention 70% of STATS101 homework questions will
involve this CI construction, or calculation 1´ FTptq to get p-value.
this is how important the t-distribution is, as we’ll explain in the next
section.

Applications (1) Interpreting the values of the t-statistic: t “ θ̂´µθ
pse

θ̂
,

where µθ is the mean of an estimator and pse
θ̂

is an estimated
standard error.
Student’s t distribution is used in conjunction with the t-statistic to
perform statistical analysis in case where the population variance is
estimated from a sample.

2.6 INVENTORY OF CONTINUOUS DISTRIBUTIONS 183

TODO EXAMPLE: calculate the probability of observing the test
statistic t “ 5 for the sample mean x computed from samples of size
n “ 9 taken from a population with mean µ and variance σ2. (this
is setting up the eprices analysis that is comping up in hypothesis
testing...)

(2) Calculating CIs using the inverse-CDF of the t-distribution:

Relations to other distributions

• As ν goes to infinity, Student’s t-distribution becomes the
standard normal distribution.

• Related to the F-distribution Fp1, νq “ pT pνq2q.
[Wikipedia page]
https://en.wikipedia.org/wiki/Student’s_t-distribution

[The process of fattening the tails is called Studentization]
https://en.wikipedia.org/wiki/Studentization

https://en.wikipedia.org/wiki/Student's_t-distribution
https://en.wikipedia.org/wiki/Studentization

2.6 INVENTORY OF CONTINUOUS DISTRIBUTIONS 184

Snedecor’s F distribution

Snedecor’s F-distribution is also called Fisher, or Fisher–Snedecor
distribution, or sometimes also called the variance ratio distribution.

The probability density function is

fXpxq def“ Γp ν1`ν2
2 q

Γp ν1
2 qΓp ν2

2 q
ˆ

ν1

ν2

˙ν1{2 xpν1´2q{2
´

1` ν1
ν2

x
¯pν1`ν2q{2 ,

with sample space r0,8q.

0 1 2 3 4 5
0.00

0.25

0.50

0.75

1.00 1 = 2, 2 = 1

0 1 2 3 4 5

1 = 5, 2 = 1

0 1 2 3 4 5

1 = 20, 2 = 1

0 1 2 3 4 5
0.00

0.25

0.50

0.75

1.00 1 = 20, 2 = 10

0 1 2 3 4 5

1 = 20, 2 = 20

0 1 2 3 4 5

1 = 20, 2 = 50

Figure 2.80: Plot of the probability densities of Snedecor’s F-distribution for
different choices of the parameters ν1 and ν2.

The mean and variance of the distribution are as follows:

µX “ ν2

ν1 ` ν2
, ν2 ą 2, σ2

X “ 2
ˆ

ν2

ν2 ´ 2

˙2 ν1 ` ν2 ´ 2
ν1pν2 ´ 4q , ν2 ą 4.

Computer model The code below shows how to create an instance
of the F-distribution with degrees of freedom parameters ν1 “ 15
and ν2 “ 10.

code
2.6.27

>>> from scipy.stats import f
>>> df1 , df2 = 15, 10
>>> rvF = f(df1 , df2)

The mean and variance of the random variable rvF are

code
2.6.28

>>> rvF.mean(), rvF.var()
(1.25, 0.7986111111111112)

2.6 INVENTORY OF CONTINUOUS DISTRIBUTIONS 185

Applications Used in certain statistical tests...

Relations to other distributions

• Related to the chi-squared distribution Fpν1, ν2q “ χ2pν1q{ν1
χ2pν2q{ν2

• Related to the square of the t-distribution Fp1, νq “ pT pνq2q.
[Wikipedia page]
https://en.wikipedia.org/wiki/F-distribution

https://en.wikipedia.org/wiki/F-distribution

2.6 INVENTORY OF CONTINUOUS DISTRIBUTIONS 186

Chi-squared distribution

The χ2 distribution is used in several statistics procedures. The
superscript 2 gives us a hint that the quantity has something to
do with squares. The Greek letter χ is spelled “chi” (rhymes with
“bye”), so “χ2” is read “chi squared.”

Sample space is all the non-negative real numbers r0,8q “ R`.
The probability density of the χ2 distribution with k degrees of
freedom is

fXpxq “ 1

2
k
2 Γpk{2q

x
k
2´1 e´ x

2 ,

for k P t1, 2, 3, . . .u.
The degrees of freedom parameter k determines the shape of the

distribution. Figure 2.81 illustrates several plots for different values
of k.

0 5 10 15 20 25 30 35 40
0.00

0.05

0.10

0.15
k = 4

0 5 10 15 20 25 30 35 40

k = 6

0 5 10 15 20 25 30 35 40

k = 8

0 5 10 15 20 25 30 35 40
0.00

0.05

0.10

0.15
k = 10

0 5 10 15 20 25 30 35 40

k = 15

0 5 10 15 20 25 30 35 40

k = 20

Figure 2.81: Plot of the Chi-squared distribution for different choices of the
parameter k. As k gets larger, the peak of the distribution moves to the right.

The mean and variance of χ2-distribution with k degrees of
freedom are as follows:

EXrXs “ k ErpX´ µXq2s “ 2k.

Computer model Let’s create a χ2-distribution with k “ 10 degrees
of freedom.

code
2.6.29

>>> from scipy.stats import chi2
>>> k = 10
>>> rvX2 = chi2(k)

2.6 INVENTORY OF CONTINUOUS DISTRIBUTIONS 187

The mean and the variance of the random variable rvX2 are given
by:

code
2.6.30

>>> rvX2.mean(), rvX2.var()
(10.0, 20.0)

Cumulative distribution calculations CDF and inverse CDF will
be used a lot in statistical procedures, so let’s review visually ...

Figure 2.82: Illustration of the probability calculations for χ2 distribution
with k degrees of freedom. The value χ2

q,k is such that a total probability of q
is enclosed in the left tail of the distribution.

For example, if we want to calculate the probability of observing
a value greater than 20 for the χ2 distribution with k “ 10 degrees of
freedom, we run the code:

code
2.6.31

>>> 1 - rvX2.cdf (20)
0.02925268807696113

The probability is 2.9%, which is fairly unlikely.

Applications The χ2 distribution is the sampling distribution of
the estimator that computes the sum of squares independent nor-
mally distributed random variables.

Used to obtain the sampling distribution of the sample variance
estimator S2. If S2 is the variance of a random sample of size n
from a normal population having variance σ2, then the sampling

distribution of pn´1qS2

σ2 is χ2 with n ´ 1 degrees of freedom. We
use this result for inferences concerning the population standard
deviation σ.

Relations to other distributions

• χ2 is related to sum of squares deviations of normally dis-
tributed random variables.

• Special case of the gamma function
• We can combine the standard normal Z and a χ2pνq distribu-

tion to obtain Student’s t-distribution: T “ Z?
χ2pνq{ν .

[Lots of useful info in the Wikipedia article]
https://en.wikipedia.org/wiki/Chi-squared_distribution

https://en.wikipedia.org/wiki/Chi-squared_distribution

2.6 INVENTORY OF CONTINUOUS DISTRIBUTIONS 188

Gamma (optional)

The probability density function of the Gammapα, λq distribution is

fXpxq def“ λα

Γpαqxα´1e´λx.

0 5 10 15 20 25
0.0

0.1

0.2

0.3

0.4 = 4, = 2

0 5 10 15 20 25

= 4, = 1

0 5 10 15 20 25

= 4, = 0.5

0 5 10 15 20 25
0.0

0.1

0.2

0.3

0.4 = 10, = 2

0 5 10 15 20 25

= 20, = 2

0 5 10 15 20 25

= 30, = 2

Figure 2.83: Plot of the gamma distribution for different choices of the
parameters α and λ.

The mean and variance of the distribution are as follows:

EXrXs “ α

λ
ErpX´ µXq2s “ α

λ2 .

Computer model The code below shows how to create a gamma
distribution with parameters α “ 4 and λ “ 2.

code
2.6.32

>>> from scipy.stats import gamma as gammad
>>> alpha = 4
>>> loc = 0
>>> lam = 2
>>> beta = 1/lam
>>> rvG = gamma(alpha , loc , beta)

We import the gamma distribution under the alias gammad to avoid
possible confusing with the gamma function, which has the same
name. Note initializing the model expects a location parameter as
the second argument, which in our case is 0, and the third argument
is the scale parameter β which is defined as the inverse of λ: β “ 1

λ .
The mean and the variance of the distribution are:

code
2.6.33

>>> rvG.mean(), rvG.var()
(2.0, 1.0)

2.6 INVENTORY OF CONTINUOUS DISTRIBUTIONS 189

Relations to other distributions

• The gamma distribution becomes the exponential distribution
when α “ 1.

• The gamma distribution becomes the χ2 distribution when α “
k
2 and β “ 2.

• Related to Poisson via...
• The sum of independent gamma variables is also a gamma

variable. If X1 „ Gammapα1, λq and X2 „ Gammapα2, λq, then
X1 ` X2 „ Gammapα1 ` α2, λq

[Gamma function]
https://en.wikipedia.org/wiki/Gamma_function

[Gamma probability distribution]
https://en.wikipedia.org/wiki/Gamma_distribution

https://en.wikipedia.org/wiki/Gamma_function
https://en.wikipedia.org/wiki/Gamma_distribution

2.6 INVENTORY OF CONTINUOUS DISTRIBUTIONS 190

Beta (optional)

The Betapα, βq distribution has the probability density function

fXpxq “ 1
Bpα, βqxα´1p1´ xqβ´1,

where Bpα, βq is the value of the beta function, which is defined in
terms of the gamma function Bpα, βq def“ ΓpαqΓpβq

Γpα`βq .

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4
= 5, = 2

0.0 0.2 0.4 0.6 0.8 1.0

= 2, = 2

0.0 0.2 0.4 0.6 0.8 1.0

= 2, = 5

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4
= 10, = 5

0.0 0.2 0.4 0.6 0.8 1.0

= 5, = 5

0.0 0.2 0.4 0.6 0.8 1.0

= 5, = 10

Figure 2.84: Plot of the beta distribution for different choices of the parame-
ters α and β.

The mean and variance of the distribution are as follows:

EXrXs “ α

α` β
ErpX´ µXq2s “ αβ

pα` βq2pα` β` 1q .

Applications The Beta distributions is often used in Bayesian
statistics, since it is the “natural” prior to the binomial dis-
tributions. See http://varianceexplained.org/statistics/
beta_distribution_and_baseball/ and https://stats.
stackexchange.com/a/47782

Relations to other distributions

• If we set α “ β and both go to infinity, the beta distribution
becomes the normal: Betapα, βq “ N p.., ...q

• Betapα “ 1, β “ 1q “ Up0, 1q

http://varianceexplained.org/statistics/beta_distribution_and_baseball/
http://varianceexplained.org/statistics/beta_distribution_and_baseball/
https://stats.stackexchange.com/a/47782
https://stats.stackexchange.com/a/47782

2.6 INVENTORY OF CONTINUOUS DISTRIBUTIONS 191

[The beta function]
https://en.wikipedia.org/wiki/Beta_function

[The beta probability distribution]
https://en.wikipedia.org/wiki/Beta_distribution

https://en.wikipedia.org/wiki/Beta_function
https://en.wikipedia.org/wiki/Beta_distribution

2.6 INVENTORY OF CONTINUOUS DISTRIBUTIONS 192

Cauchy (optional)

The probability density function for the random variable X „
Cauchypx0, γq is

fXpxq “ 1
πγ

1

1`
´

x´x0
γ

¯2 ,

where x0 P R and γ P R`.
The parameter x0 is called the shape parameter, while γ is the

inverse scale parameter.

0 5 10 15 20 25 30 35 40
0.00

0.05

0.10

0.15 x0 = 10, = 5

0 5 10 15 20 25 30 35 40

x0 = 20, = 5

0 5 10 15 20 25 30 35 40

x0 = 30, = 5

0 5 10 15 20 25 30 35 40
0.00

0.05

0.10

0.15 x0 = 20, = 2

0 5 10 15 20 25 30 35 40

x0 = 20, = 4

0 5 10 15 20 25 30 35 40

x0 = 20, = 8

Figure 2.85: Plot of the Cauchy distribution for different choices of the
parameters x0 and γ.

NO mean no var!
Exercises:

- Show EXYrX{Ys doesn’t exist.

Relations to other distributions

• If X and Y that are two normally distributed random variables
with mean 0 and standard deviation 1, X „ N p0, 1q and Y „
N p0, 1q. Then the random variable that corresponds to the ratio
X{Y has the Cauchy distribution: X

Y „ Cauchyp0, 1q.
• Special case of Student’s t-distribution when ν “ 1.

[The Cauchy distribution]
https://en.wikipedia.org/wiki/Cauchy_distribution

https://en.wikipedia.org/wiki/Cauchy_distribution

2.6 INVENTORY OF CONTINUOUS DISTRIBUTIONS 193

2.6.3 Modelling real-world data

Now that we’ve learned about continuous probability distributions,
let’s look back at the two datasets we introduce in the book’s
introduction, to see how probabilistic modelling skills we developed
can help you better understand datasets.

Dataset 2: Electricity prices data

Recall Bob’s dataset of electricity prices available for electric car
charging in the East and West parts of his city. See page ??.

The electricity price at each station depends on numerous vari-
ables (supply cost, rent, location, etc.) so one could make an argu-
ment that if the price is governed by the sum of these contributions,
then it will be Gaussian, or normally distributed, and each price
observation is independent.

Bob can use the average price in the East is xE “ 6.156 ¢/kWh and
the sample variance sXW , and the average in the West is xW “ 9.156
¢/kWh and the sample variance sXW , as the basis of constructing
probability models XE and XW , that describe prices in the East and
West.

One could also argue that prices are not normally distributed or
independent. CONTINUE

It seems we need some tools to check the normality assumption ...
We’ll talk more about comparing data observations for “model fit”
to a theoretical distribution later in Section 2.7.

TODO: mention Student t-distribution also useful for estimates...

Dataset 3: Student grades data

Recall the students’ grades dataset that Charlotte collected in order
to study the effectiveness of a new teaching method. See page ??.

We can model the effort and score variables as a normally
distributed, with parameters µ and σ that describe the shape of the
data.

We can then compare the difference between teaching methods,
by comparing the probability distributions.

TODO: mention Student t-distribution also useful for estimates...

2.6 INVENTORY OF CONTINUOUS DISTRIBUTIONS 194

2.6.4 Discussion

Location, scale, and standardization Continuous probability dis-
tributions are often described in terms of a location (where is the
peak) and a scale parameter (how spread out is the density).

The canonical example of this is the normal distribution N „
N pµ, σq, whose location parameter is the mean µ and whose scale
parameter is the standard deviation σ.

The standardization transformation for a random variable X is

Z “ X´ µX
σX

We can similarly do this transformation on x x_std = (xsample -
xsample.mean()) / xsample.std ... TODO: finish this mention (or
cut) this is bonus so “standardize” is not first time mention in Section
2.8

Summary of relations between distributions

TODO FIGURE FULL GRAPH (including discrete and continuous)
TODO: insert simplified concept map from http://www.stat.

rice.edu/~dobelman/courses/texts/leemis.distributions.
2008amstat.pdf#page=3 or https://pdfs.semanticscholar.org/
c0db/71a4101347404d698f68fbed54ddb88b1500.pdf#page=2

Normal approximation to the binomial distribution If X is a
binomial random variable with parameters n and p, then

Z “ X´ np
a

npp1´ pq
is approximately equal to the standard normal. To approximate
a binomial probability with a normal distribution, a continuity
correction is given by

PrpX “ kq “ Prpk´0.5 ď X ď k`0.5q « Pr

˜

k´ 0.5´ np
a

npp1´ pq ď Z ď k` 0.5´ np
a

npp1´ pq

¸

PrpX ď kq “ PrpX ď k` 0.5q « Pr

˜

Z ď k` 0.5´ np
a

npp1´ pq

¸

http://www.stat.rice.edu/~dobelman/courses/texts/leemis.distributions.2008amstat.pdf#page=3
http://www.stat.rice.edu/~dobelman/courses/texts/leemis.distributions.2008amstat.pdf#page=3
http://www.stat.rice.edu/~dobelman/courses/texts/leemis.distributions.2008amstat.pdf#page=3
https://pdfs.semanticscholar.org/c0db/71a4101347404d698f68fbed54ddb88b1500.pdf#page=2
https://pdfs.semanticscholar.org/c0db/71a4101347404d698f68fbed54ddb88b1500.pdf#page=2

2.6 INVENTORY OF CONTINUOUS DISTRIBUTIONS 195

PrpX ě kq “ PrpX ď k´ 0.5q « Pr

˜

Z ě k´ 0.5´ np
a

npp1´ pq

¸

This approximation is good for np ą 5 and np1´ pq ą 5.

Normal approximation to the Poisson distribution If X is a Pois-
son random variable with ErXs “ λ and VrXs “ λ, then

Z “ X´ λ?
λ

is approximately a standard normal random variable. The same
continuity correction used for the binomial distribution can also be
applied. The approximation is good for λ ą 5.

TODO: give other examples of phenomena to show normality
emerge for large n

https://www.efavdb.com/normal-distributions

Reminder of computer model methods

The inventory of continuous distributions presented above contains
code examples for creating a random variable object rvX from any of
the following families of probability distributions: uniform, expon,
norm, t, f, chi2, gamma and beta, all defined in scipy.stats.

We showed only basic calculations in the code examples, but
you should keep in mind that there are a lot of other methods
available on random variable objects created from one of the families
in scipy.stats. To see a complete list of all the methods available,
look back to Table 2.2 on page 141. You’ll need to use some of these
methods to complete the exercises.

Recall how we compute probabilities numerically. The proba-
bility Prpta ď X ď buq is defined as the integral

şb
a fXpxqdx. You

can compute the value of this integral numerically by calling the
function quad(rvX.pmf,a,b), after importing quad from the module
scipy.integrate.

https://www.efavdb.com/normal-distributions

2.6 INVENTORY OF CONTINUOUS DISTRIBUTIONS 196

2.6.5 Exercises

E2.37 Calculate the value of Γpzq def“ ş8
0 tz´1e´t dt, when z “ 1 by

evaluating the integral.

Hint:

E2.38 Show that Γpzq “ pz´ 1qΓpz´ 1q, by applying the integration-
by-parts procedure to the integral Γpzq “ ş8

0 tz´1e´t dt.

Hint:

E2.39 Calculate the mean of the uniform distribution Upα, βq.
E2.40 The probability density function of the random variable X „
Exponpλq is given by fXpxq “ λe´λx. Use integration to obtain the
formula for cumulative distribution function FXpbq “ PrptX ď buq.
E2.41 Use integration to compute the mean of the exponential
distribution fXpxq “ λe´λx.

Hint: Use integration by parts.

E2.42 Use integration to compute the variance of the exponential
distribution fXpxq “ λe´λx.

Hint: Use integration by parts.

Links

[Read more about the relations between probability distributions]
https://wikipedia.org/wiki/Relationships_among_probability_distributions

[Complete list of the continuous distributions available in SciPy]
https://docs.scipy.org/doc/scipy/tutorial/stats/continuous.html

[More info about the gamma and beta functions]
https://docs.scipy.org/doc/scipy/reference/special.html

https://wikipedia.org/wiki/Relationships_among_probability_distributions
https://docs.scipy.org/doc/scipy/tutorial/stats/continuous.html
https://docs.scipy.org/doc/scipy/reference/special.html#gamma-and-related-functions

2.7 RANDOM VARIABLE GENERATION 197

2.7 Random variable generation

In this section, we’ll learn how to use computers to generate obser-
vations from random variables. Using computer simulations for ran-
dom variables is a very useful tool for learning and visualizations,
which we’ll use throughout the rest of the book.

Suppose you want to generate a random observation x from the
random variable X, described by the probability distribution fX . One
approach would be to create a random variable object rvX based
on one of the model families defined in scipy.stats, then call the
method rvX.rvs() to generate a random observation. But how does
the random generation process work under the hood? And how do
you know if a sequence of observations px1, x2, . . . , xnq really comes
from the distribution fX?

2.7.1 Definitions

Let’s start by introducing the concepts we’ll use in this section:

• X: a random variable with probability distribution fX

• gen_x: a function that generates random observations x from
the random variable X.

• x “ px1, x2, . . . , xnq: a sample of n observations generated by
gen_x. If the generator function gen_x is working correctly,
the distribution of the observations xi will correspond to the
distribution fX of the random variable X.

• fx: the empirical probability mass function (epmf) of the sample
x. The empirical distribution allows us to model the data
observations px1, x2, . . . , xnq as a probability distribution.

• Fx: the empirical cumulative distribution function (eCDF) of the
sample x “ px1, x2, . . . , xnq. The function Fx is the integral of fx.

2.7.2 Why simulate?

Using computers to simulate observations from random variables is
an essential skill I want you to develop, since it will be very useful for
understanding statistics procedures and verifying math equations
“experimentally.”

In the statistics chapter (Chapter ??) we’ll study all kinds of sta-
tistical procedures for modelling real-world data using probability
distributions. We’ll have to learn complicated, multi-step procedures
that involve lots of math equations and formulas. Some of the math
formulas will look quite intimidating! It’s easy to get lost in all the
math and get discouraged.

2.7 RANDOM VARIABLE GENERATION 198

Simulations to the rescue! Running computer simulations gives
us a hands-on alternative approach to understanding statistical pro-
cedures, and verifying the validity of math equations. For example,
suppose that a statistician has come up with a math formula for the
quantity EXrgs, which is the expected value of some complicated
function g : X Ñ R under the randomness of the random variable
X described by the probability distribution fX . The statistician com-
puted some complicated math integral EXrgs “

ş

xPX gpxq ¨ fXpxqdx,
and is offering you the result of the integral as a pre-packaged
formula you can use whenever you need to compute EXrgs.

In the old days before computers were widely available, you’d
have to take it on faith that the statistician did the math correctly and
the formula works as expected. In modern times when computers
are everywhere (often in your pocket!), you can run a computer
simulation to verify the statistician’s claim.

Suppose you have access to a generator function gen_x() that
generates random observations from the probability distribution
fX . You can call the generator function gen_x() multiple times to
obtain a sequence of observations px1, x2, x3, . . . , xnq. Next you can
compute the function g on each of these observations to obtain a
list of g-values rgpx1q, gpx2q, gpx3q, . . . , gpxnqs. You can then obtain
an estimate of the expected value EXrgs by computing the average
of the list of g-values.

In essence, running a simulation based on the observations
px1, x2, x3, . . . , xnq gives us an alternative way to compute the same
quantity EXrgs using summation instead of integration. We can
describe what is going on using the following equation:

EXrgs “
ż

xPX
gpxq ¨ fXpxqdx « 1

n

n
ÿ

i“1

gpxiq.

The summation formula on the right side of this equation is an
estimate of the expected value EXrgs, computed from a finite sample
of observations from fX . As n becomes larger and larger, the
approximation becomes more and more accurate. In the limit n Ñ8
(read n goes to infinity), the « sign becomes an equality.

Let’s now look at the code for running a simulation involving n “
100 random observations xi from X, and computing the expected
value EXrgs using the formula 1

n
řn

i“1 gpxiq.
code
2.7.1

>>> n = 100
>>> gvalues = []
>>> for i in range(0,n):

xi = gen_x ()
gi = g(xi)
gvalues.append(gi)

>>> sum(gvalues) / n

2.7 RANDOM VARIABLE GENERATION 199

The code maps directly to the math summation formula. The main
structure is the for-loop which repeats the simulation steps n times.
In each iteration of the for loop, we call the generator function gen_x
to obtain the random observation xi “ xi, compute the value gi“
gpxiq, then add the value gi to the end of the list gvalues. On the
last line, we finally compute the average of the list gvalues, which
corresponds to the desired result 1

n
řn

i“1 gpxiq « EXrgs.

* * *

Essentially, the reason simulations are so important, is that all the
probability modelling and estimation you might want to do with the
probability model fX , you can verify running a simulation on a large
number of observations px1, x2, x3, . . . , xnq in a numerical simulation.

Using a few lines of Python code, you can create a simulation of
any probability scenario, and use the results of your simulation to
visualize the data distributions involved and calculate quantities of
interest. Think about all the different probability distributions we
learned about in this chapter, and the complicated math formulas
associated with them. If you know how to write a for loop in
Python, then you can generate lots of random observations from
the random variable, then plot a histogram to see what is going on.
In other words, simulations allow you to see every distribution and
verify every equation.

All this to say that simulations are good. And what do you need
to run simulations involving random variables? You need some way
to generate observations from random variables, which is the topic
we’ll learn about next.

2.7.3 Random variable generation using a computer

Most programming languages provide some way to generate ran-
dom numbers from the standard uniform distribution Up0, 1q. The
ability to generate random observations from the uniform distribu-
tion is an essential building block that allows us to generate random
observations from any other distribution. In Python, you can import
the random module then generate random numbers between 0 and 1
by calling the function random.random() as shown below:

code
2.7.2

>>> import random
>>> random.random ()
0.8371523646930408

Every time you call the function random.random(), you’ll see a
different random number in the interval r0, 1s. In other words,

2.7 RANDOM VARIABLE GENERATION 200

calling the function random.random() is equivalent to generating an
observation from the uniform random variable U „ Up0, 1q.

In this section, we’ll describe how to generate random obser-
vations from any probability distribution based on the standard
uniform randomness provided by random.random(). The practical
importance of knowing how to generate random variables is of
marginal utility (since we already have the method rvX.rvs()), but
we present this topic because of the associated “math tools” that
we’ll need to develop to “verify” if the random variable generation
procedures we use are working correctly.

Discrete random variable generation

Starting from the standard uniform random variable U „ Up0, 1q, we
can generate any discrete random variable by “slicing” the interval
r0, 1s appropriately.

Example 1: observations from the Bernoulli distribution Suppose
we want to generate outcomes from the distribution Bernoullippq,
which is equivalent to a coin toss of a biased coin that has probability
of coming out heads p. We’ll start by drawing a uniform random
number u from random.random(), then return 1 (heads) if the ran-
dom number r is smaller than p, or else return 0 (tails).

code
2.7.3

>>> def gen_b(p=0.5):
u = random.random ()
if u < p:

return 1
else:

return 0

The function gen_b expects the argument p to be specified, which is
the probability of “heads” of the Bernoulli trial. If p is not specified,
the default value p=0.5 is used (equivalent to a fair coin).

Since the random number u is uniformly distributed between 0
and 1, the observed outcome will be 1 with probability p, and 0 with
probability p1´ pq.

To generate a random observation from the distribution
Bernoullipp “ 0.3q, we simply call the generator function, specifying
the value of the parameter p:

code
2.7.4

>>> gen_b(p=0.3)
0

The code below generates a list of n=100 observations from the
distribution Bernoullipp “ 0.3q, and computes the proportion of the
outcome 1 (heads) in the list.

code
2.7.5

2.7 RANDOM VARIABLE GENERATION 201

>>> n = 1000
>>> bsample = [gen_b(p=0.3) for i in range(0,n)]
>>> bsample.count (1) / n
0.309

Note the proportion of heads observed after 1000 coin tosses is
approximately equal to the parameter p “ 0.3, which we specified
for the Bernoulli distribution, so it seems the random generation
function gen_b is working correctly.

We can use this approach to generate random observations from
any discrete random variable Y. We just need to know the values of
the cumulative distribution function FY, which tell us the appropri-
ate places to “slice” the sample space r0, 1s of the standard uniform
random variable.

Continuous random variable generation (optional)

Suppose we want to generate observations from a continuous ran-
dom variable X, and we know its inverse cumulative distribution
function F´1

X . We can simulate observations from X by transforming
the uniform random variable U „ Up0, 1q though the inverse CDF
function. We can write this as:

X “ F´1
X pUq.

In other words, generating observations from the random variable
X can be done by staring from observations from the uniform
distribution, and “passing them through” the inverse cumulative
distribution function F´1

X . This procedure is known as inverse
transform sampling or Smirnov transform, but we’ll refer to it as the
“inverse-CDF trick” in this book.

The inverse-CDF trick corresponds to the following two-step
procedure:

1. Generate an observation u from the standard uniform distribu-
tion U „ Up0, 1q

2. Compute the value x “ F´1
X puq (which is equivalent to solving

the equation FXpxq “ u).

The result x will be a random observation from the random variable
X. Let’s look at some examples of the inverse-CDF trick in practice.

2.7 RANDOM VARIABLE GENERATION 202

Example 2: shifted uniform distribution Suppose we want to
generate observations from the random variable V „ Upα “ 100, β “
120q, which is uniformly distributed between 100 and 120.

TODO: add steps to obtain FV from fV and invert to obtain F´1
V pqq

code
2.7.6

>>> def gen_v ():
u = random.random ()
v = 100 + 20*u
return v

>>> gen_v()
110.89
>>> n = 100 # sample size
>>> vsample = [gen_v() for i in range(0,n)]
>>> sns.histplot(vsample , stat="density")

90 100 110 120 130
0.00

0.02

0.04

0.06

0.08

D
en

si
ty

Figure 2.86: Histogram of 1000 observations from the shifted uniform
distribution vsample, which we generated using the inverse-CDF trick. The
superimposed line shows the probability density function of the random
variable V „ Upα “ 100, β “ 120q.

Figure 2.86 shows a histogram of the values in the list vsample.
Using visual inspection, we see all the numbers we generated fall in
the right range r100, 120s, and look roughly uniform (except for one
of the histogram bin).

Example 3: exponential distribution Suppose we want to gen-
erate random observations from the exponential random variable
E „ Exponpλ “ 0.2q. The random variable E is described by

2.7 RANDOM VARIABLE GENERATION 203

the probability density function fEpxq “ λe´λx and its cumulative
distribution function is FEpbq “ 1´ e´λb (see Exercise E2.40).

To apply the “inverse-CDF trick,” we need to know the inverse
cumulative distribution F´1

E , which requires some math calculations,
which involve solving for b in the equation FEpbq “ q. You’ll be asked
to do these calculations in E2.43. The inverse cumulative distribution
function of the random variable E is F´1

E pqq “ ´ lnp1´qq
λ .

We can now use the formula F´1
E pqq “ ´ lnp1´qq

λ to transform
observations from the uniform distribution to obtain observations
from the exponential distribution. We’ll generate n “ 1000 such
observations, and plot a histogram of them.

code
2.7.7

>>> def gen_e(lam):
u = random.random ()
e = -1 * np.log(1-u) / lam
return e

>>> n = 100 # sample size
>>> esample = [gen_e(lam =0.2) for i in range(0,n)]
>>> sns.histplot(esample , stat="density")

Figure 2.87 shows the histogram of the observations in esample. For
comparison, we have also plotted the probability density function of
the random variable E „ Exponpλ “ 0.2q, which is the distribution
we are trying to simulate. As you can see, the distribution of the data
in esample is similar to the desired model fE, so it seems the random
variable generator function gen_e is working correctly.

0 5 10 15 20 25 30
0.00

0.05

0.10

0.15

0.20

P
ro

ba
bi

lit
y

Figure 2.87: Histogram of 100 observations from the random variable E „
Exponpλ “ 0.2q obtained using the inverse-CDF trick. The superimposed
line shows the probability density function fEpxq “ λe´λx.

* * *

You can use the inverse-CDF trick to generate random observations
from any continuous random variable X if you know its inverse
cumulative distribution function F´1

X .

2.7 RANDOM VARIABLE GENERATION 204

How can we know if the random variable generation procedures
we used in the above examples are accurate? In the above examples
we did a “visual comparison” of the histograms of the observations
in vsample and esample, and we saw they roughly correspond to the
probability density function fV and fE, but is there a more systematic
approach we could use to check if the generation procedure is
working correctly?

The ability to check whether a given sample of observations
(data) comes from a particular distribution (model) is an important
task in statistics, which we refer to as data-model fit or more generally
goodness of fit. We’ll continue the discussion of data-model fit checks
in a few pages, but first we need to introduce some math tools
for describing data distributions using the language of probability
distributions.

2.7.4 Empirical distribution of a data sample

The empirical distribution allows us to describe data from a sample
using the tools of probability theory. The term “empirical” means
the same thing as “experimental” and refers to real data we have
observed (or generated in a simulation). We need to use the modifier
“empirical” in front of “distribution” because by default the meaning
of “distribution” in probability and statistics is a “theoretical distri-
bution” or “model,” which is described using math equations.

Given a sample of n values x “ px1, x2, . . . , xnq, the empirical
probability mass function (epmf) of x is defined as:

fxpxq def“
$

&

%

1
n if x “ xi,

0 otherwise.

In words, the empirical distribution fx places probability mass 1
n on

each of the values x1, x2, . . . , xn, and zero mass everywhere else.
Recall that every random variable X can be described either in

terms of its probability distribution fX , or, equivalently, in terms
of its cumulative distribution function FXpbq def“ Prptx ď buq. The
empirical cumulative distribution function (eCDF) obtained based on
the sample x “ px1, x2, . . . , xnq is defined as follows:

Fxpbq “ countpxi ď bq
n

.

The empirical cumulative distribution Fx computes the proportion of
observations that are less than or equal to the upper limit b.

Let’s define a Python function ecdf(data,b) that computes the
values of the empirical cumulative distribution function Fdatapbq.

code
2.7.8

2.7 RANDOM VARIABLE GENERATION 205

>>> def ecdf(data , b):
sdata = np.sort(data)
count = sum(sdata <= b) # num. of obs. <= b
return count / len(data) # proportion of total

In words, we see that calculating Fxpbq is equivalent to counting
the number of observations xi that are less than or equal to b, and
dividing by the total n.

Let’s use try the function

code
2.7.9

>>> ecdf(vsample , 110)
0.48

This is expected, since the value 110 falls roughly in the middle of
the sample space of the random variable V.

Figure 2.88 shows the graph of the empirical cumulative distri-
bution Fvsample and the probability mass function fV .

80 90 100 110 120 130 140

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

po
rti

on

eCDF(vsample)
FV

Figure 2.88: TODO

Figure 2.89 shows the graph of the empirical cumulative distri-
bution Fesample and the probability mass function fE.

0 5 10 15 20 25 30

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

po
rti

on

eCDF(esample)
FE

Figure 2.89: TODO

TODO: narrate figs

2.7 RANDOM VARIABLE GENERATION 206

Applications

The empirical distribution of the data sample x “ px1, x2, . . . , xnq
is a useful mathematical “adapter” that allows us to describe all
kinds of data using the language of probability theory (probability
distributions). The sample x “ px1, x2, . . . , xnq could be produced
from any one of the following processes:

• Random draws from a generative process or simulation like the
Python functions like gen_b and gen_e we defined above.

• Random draws from a real-world process (real-world measure-
ments).

• A sample from a population (real-world observations from a
sample)

Note this list contains many different kinds of variability and ran-
domness: randomness obtained from simulations, and measure-
ments obtained from entire population or samples from populations.
By representing a real-world data source as an empirical distribution
fx, we can then use all the tools we learned in this chapter to make
calculations. We’ll see empirical distributions again in Chapter ??.

Another application of the empirical distribution is to generate
bootstrap samples, which is the process of sampling from the empir-
ical distribution. We’ll talk more about the bootstrap at the end of
this section (see page 215).

For now, let’s focus on the original question related to random
variable generation, how can we know if the data we generated
using the inverse-CDF trick is working correctly? Are the random
numbers we generated px1, x2, . . . , xnq really coming from the distri-
bution fX?

2.7.5 Measuring data–model fit

Suppose you have a sample of observations x “ px1, x2, . . . , xnq, and
you want to check if these observations come from the theoretical
distribution fX . We call this a data–model fit question, since we want
to check if the data x fits the model fX . We can rephrase this question
in terms of the empirical distribution fx obtained from the sample
x, by asking “how similar is the distribution fx to the theoretical
distribution fX ,” or equivalently, “how similar is the empirical CDF
Fx to the CDF of the theoretical distribution FX .”

Recall the lists of observations vsample and esample that we
generated using the inverse-CDF trick. In the next few pages, we’ll
learn about various “diagnostic checks” to assess whether vsample

2.7 RANDOM VARIABLE GENERATION 207

comes from the model V „ Up100, 120q, and we’ll also check if
esample comes from the model E „ Exponpλ “ 0.2q.

In order to have a greater variety of distributions for use in
comparisons, let’s generate an additional sample of 100 observations
from the normal distribution N „ N pµ “ 1000, σ “ 100q.

code
2.7.10

>>> from scipy.stats import norm
>>> rvN = norm (1000 ,100)
>>> nsample = rvN.rvs (100)

We know the data in nsample comes from the distribution fN , so
we should expect all the data–model fit diagnostics checks between
nsample and fN to pass.

Visual comparison between data and model distributions

Earlier in this section, we used a visual comparison between the
histogram of the samples vsample and esample and the theoretical
probability density function fV and fE. See Figure 2.86 and Fig-
ure 2.87. We also computed the empirical cumulative distribution
function from the generated samples, and compared them to the cu-
mulative distribution of the desired models. Look back to Figure 2.88
and Figure 2.89.

These types of visual comparisons can help detect major differ-
ences between data and model, but there are more precise qualitative
and quantitative techniques we can develop.

Quantile-quantile plots

The quantile-quantile plot (Q-Q plot) is a more advanced version
of a visual comparison, that plots the quantiles of the empirical
distribution against the quantiles of a theoretical distribution. If the
sample x “ px1, x2, . . . , xnq comes from the distribution fX , then all
the points in the Q-Q plot should fall on a diagonal line.

Examples of good fit Let’s start with the normal data nsample,
which we know comes from the distribution N pµ “ 1000, σ “ 100q.
Figure 2.90 shows the Q-Q plot that compares the empirical distribu-
tion obtained from nsample and the theoretical model N p1000, 100q.

code
2.7.11

>>> from statsmodels.graphics.api import qqplot
>>> from scipy.stats import norm
>>> qqplot(nsample , dist=norm (1000 ,100) , line='q')
The result is shown in Figure 2.90.

We often don’t need to check for exact fit with a specific dis-
tribution, but just want to check if the data comes from the same
family of distributions. Are the observations in nsample normally

2.7 RANDOM VARIABLE GENERATION 208

800 900 1000 1100 1200
Theoretical Quantiles

700

800

900

1000

1100

1200

S
am

pl
e

Q
ua

nt
ile

s

Figure 2.90: Q-Q plot showing the quantiles of the normally distributed
data sample nsample against the quartiles of the normal distribution
N p1000, 100q. We see all the points lie very close to the diagonal line, so
the two distributions are very similar.

distributed? To do this check (sometimes called a normality check), we
generate a Q-Q plot with respect to the standard normal, as shown
in Figure 2.91.

2 1 0 1 2
Theoretical Quantiles

700

800

900

1000

1100

1200

S
am

pl
e

Q
ua

nt
ile

s

Figure 2.91: Q-Q plot of the normally distributed data sample nsample
against the quartiles of the standard normal distribution N p0, 1q.

The code to generate Figure 2.91 is very similar to the code we
used to generate Figure 2.90, but we pass in the model norm(0,1) as
the dist argument:

code
2.7.12

>>> qqplot(nsample , dist=norm(0,1), line='q')
See Figure 2.91.

Note the Q-Q plot is Figure 2.91 is identical to the plot in Figure 2.90
except for the scale on the horizontal axis.

Examples of bad fit Let’s now see what happens when the data
distribution doesn’t match the theoretical model. We know the
datasets vsample and esample are not normally distributed, so we

2.7 RANDOM VARIABLE GENERATION 209

should be able to detect that by looking at the Q-Q plots against a
normal distribution.

code
2.7.13

>>> vsample = np.array(vsample)
>>> qqplot(vsample , dist=norm(0,1), line="q")
See Figure 2.92 (a).

>>> esample = np.array(esample)
>>> qqplot(esample , dist=norm(0,1), line="q")
See Figure 2.92 (b).

The lines where we convert vsample and esample to NumPy arrays
of the same name are necessary because the function qqplot assumes
some methods are present on the data inputs.

2 1 0 1 2
Theoretical Quantiles

95

100

105

110

115

120

125

130

S
am

pl
e

Q
ua

nt
ile

s

(a) Q-Q plot of vsample vs N p0, 1q

3 2 1 0 1 2 3
Theoretical Quantiles

10

5

0

5

10

15

20

25

30

S
am

pl
e

Q
ua

nt
ile

s

(b) Q-Q plot of esample vs N p0, 1q

Figure 2.92: Q-Q plots showing examples where the quantiles of a data
distribution do not fit quantiles of the theoretical model. Subfigure (a)
shows the quantiles of the uniformly distributed data vsample against the
quantiles of the standard normal N p0, 1q. Subfigure (b) shows the quantiles
of observations in the list esample against the standard normal.

Figure 2.92 (a) shows the Q-Q plots of the uniform observations
vsample plotted against the standard normal. The distribution of
the data in vsample is bounded between 100 and 120, while the
normal distribution has long tails, so we see major discrepancies
in the Q-Q plot in the tails. In Figure 2.92 (b) we see the Q-Q
plot of the exponential observations esample against the quantiles
of the standard normal. Again, we can see that very few points are
close to the diagonal, We can conclude from the Q-Q plots that the
observations vsample and esample do not match the quantiles of the
normal model.

Having seen examples of Q-Q plots that show “good fit” and “bad
fit” between data and model, we can now look at the goodness of
fit between the data in vsample we generated using the inverse-CDF
trick, and the theoretical model V „ Up100, 120q, which is shown in
Figure 2.93.

2.7 RANDOM VARIABLE GENERATION 210

100 105 110 115 120
Theoretical Quantiles

100

105

110

115

120

S
am

pl
e

Q
ua

nt
ile

s

Figure 2.93: Q-Q plot of the random observations we generated vsample us-
ing the inverse-CDF trick and comparison to quantiles the random variable
rvV „ Up100, 120q.

Figure 2.94 shows the comparison between the exponential data
esample against the exponential model Exponpλ “ 0.2q.

0 5 10 15 20 25 30 35
Theoretical Quantiles

0

5

10

15

20

25

30

35

S
am

pl
e

Q
ua

nt
ile

s

Figure 2.94: Q-Q plot of the data from esample and the random variable rvE
„ Exponpλ “ 0.2q.

Except for a few points, most of the data points in both plots fall
very close to the diagonal, so we conclude there is a good fit between
the data and the theoretical model. The random variable generation
process is working correctly.

Comparing moments

Another way to measure how well the data sample x “
px1, x2, . . . , xnq fits the probability model fX is to check if the data
sample and the probability distribution have the same moments.

Recall that the moments of a distribution are the expectation
of pX ´ µXq raised to different exponent. The mth moment of the
distribution fX around its mean µX is defined as EX rpX´ µXqms.
The variance of X is computed as the second moment σ2

X “ EXrpX´

2.7 RANDOM VARIABLE GENERATION 211

µXq2s. The skewness of X is related to the third moment of the
distribution EXrpX´ µXq3s, and the kurtosis of X is computed based
on the fourth moment EXrpX´ µXq4s.

The moments of a data sample are computed as summations
involving pxi ´ xq raised to different exponent. The mth moment of a
data sample is computed as 1

n´1
řn

i“1pxi ´ xqm, and we compute the
variance (second moment), skewness (related to third moment), and
kurtosis (related to fourth moment) for any data sample.

If the data sample x “ px1, x2, . . . , xnq comes from the distribution
fX , then all moment should match. In particular, we would expect
the sample mean to be equal to the distribution mean, and the
sample variance to be equal to the distribution variance. We can
therefore measure model-data fit by answering the question:

Is Meanpxq “ µX and Varpxq “ σ2
X ?

The skewness and kurtosis computed from the data sample should
also match the skewness and kurtosis of the distribution. We can do
these four comparisons to assess the goodness of fit between the data
x and the model fX .

In order to easily be able to calculate the moments of the data
samples, we’ll convert vsample and esample into Pandas series
objects, which have all the necessary methods.

code
2.7.14

>>> vseries = pd.Series(vsample)
>>> eseries = pd.Series(esample)

Moments of uniform distribution Let’s compare the similarity
between moments of data sample vsample and the theoretical dis-
tribution V „ Up100, 120q, represented by the computer model rvV
= uniform(100,20).

Does the mean of the vseries match the mean of the rvV? We can
find out by calling the mean method on the object vseries and rvV.

code
2.7.15

>>> vseries.mean(), rvV.mean()
(110.212 , 110.0)

We see the mean of the data we generated closely matches the mean
of the theoretical distribution fV , which is a good sign.

Does the variance of vseries match the variance of rvV?

code
2.7.16

>>> vseries.var(), rvV.var()
(35.95 , 33.3)

We can see that both the mean and the variance of the data we
generated closely match the mean and the variance of the theoretical
fV . We continue the comparisons, by calculating the skew and the
kurtosis:

code
2.7.17

2.7 RANDOM VARIABLE GENERATION 212

>>> vseries.skew(), rvV.stats("s")
(0.0397 , 0.0)
>>> vseries.kurt(), rvV.stats("k")
(-1.258, -1.2)

Again we see a close match between the properties of data observa-
tions in vseries and the theoretical model rvV, so we can conclude
that the random generation procedure we used to generate vseries
is working as expected.

Moments of exponential distribution We’ll now compare the
similarity between the moments of the data sample esample and
the moments of the theoretical distribution E „ Exponpλ “ 0.2q,
represented by the computer model rvE = expon(0,1/0.2).

The code below computes the mean, the variance, the skewness,
and the kurtosis, of both data and model:

code
2.7.18

>>> eseries.mean(), rvE.mean()
(5.234 , 5.0)
>>> eseries.var(), rvE.var()
(25.157 , 25.0)
>>> eseries.skew(), rvE.stats("s")
(1.931 , 2.0)
>>> eseries.kurt(), rvE.stats("k")
(5.458 , 6.0)

We can see there is a clear agreement between the moments of the
data esample and the theoretical distribution rvE, so we can be
reassured that the observations in esample really come from the
distribution we were trying to simulate.

Example of bad fit between higher moments Let’s now look at
what happens if we compare the moments of the exponential data
eseries to the moments of a wrong theoretical model. Define the
random variable NE that is normally distributed with mean and
standard deviation matching the theoretical model E:

NE „ N pµ “ 5, σ “ 5q.
In words, NE is the best normal approximation to the exponential
distribution E „ Exponpλ “ 0.2q.

Let’s also define the computer model rvNE that corresponds to
the random variable NE.

code
2.7.19

>>> rvNE = norm (5,5)
>>> rvNE.mean(), rvNE.var()
(5.0, 25.0)

If we compare the mean and the variance of the sample esample to
the mean and variance of the model NE we’ll see there is a close

2.7 RANDOM VARIABLE GENERATION 213

agreement. This is because we intentionally chose the parameters of
the normal approximation NE so they match those of the exponential
distribution: µNE “ µE “ 1

λ “ 5 and σ2
NE
“ σ2

E “ 1
λ2 “ 25.

Let’s now compare the skewness of eseries and the skewness of
the normal random variable NE:

code
2.7.20

>>> eseries.skew(), rvNE.stats("s")
(1.931 , 0.0)

We observe a big disagreement between the third moments. The
normal distribution NE is symmetric, so it has zero skewness, but
the data in eseries has positive skewness (a long tail that extends to
the right), and we’re able to detect this data-model mismatch thanks
to the skewness comparison.

We can also compare the kurtosis of the data in esample and the
kurtosis of the distribution NE.

code
2.7.21

>>> eseries.kurt(), rvNE.stats("k")
(5.458 , 0.0)

Again we observe a big disagreement. The normal distribution has
zero kurtosis, but the exponential distribution has positive kurtosis.
Informally, we could say the data in esample has heavier tails as
compared to the tails of a normal distribution.

Due to the differences observed in the third and fourth moments,
we conclude that the data in esample (eseries) does not come from
the distribution N pµ “ 5, σ “ 5q.

Later on in Chapter ?? we’ll learn about the “method of moments,”
which is a way to find the “best fit” model to a given dataset. The
method of moments is based the idea of choosing the parameters
for the model so the mean and variance will match the mean and
variance of the data.

Kolmogorov–Smirnov distance

We can measure the “difference” between the sample of observa-
tions x “ px1, x2, . . . , xnq and the probability distribution fX using
the Kolmogorov–Smirnov distance. The Kolmogorov–Smirnov dis-
tance, denoted DKS, is defined as the maximum difference between
the empirical cumulative distribution function Fx obtained from
the sample x “ px1, x2, . . . , xnq, and the CDF of the theoretical
distribution FX :

DKS “ max
b
|Fxpbq ´ FXpbq| .

If the quantity DKS is large, this means there is some value of b
for which the empirical cumulative distribution function Fx differs

2.7 RANDOM VARIABLE GENERATION 214

significantly from the theoretical cumulative distribution function
FX .

Figure 2.95 illustrates the maximum distance between the empir-
ical cumulative distribution obtained from some dataset x and the
cumulative distribution function FX of the theoretical model.

Figure 2.95: Maximum distance between Fx and FX .

We can use the function ks_1samp from the scipy.stats module
to compute DKS between any data sample and the CDF of a theoreti-
cal distribution. Let’s use this function to compute the Kolmogorov–
Smirnov distance between normally distributed sample nsample and
the theoretical distribution N p1000, 100q from which we generated it.

The function ks_1samp expects two arguments: a sample of
observations and a cumulative distribution function of the model.
We’ve already defined the computer model rvN = norm(1000,
100), so we have access to the cumulative distribution function FN
under the method rvN.cdf.

code
2.7.22

>>> ks_1samp(nsample , rvN.cdf). statistic
0.07815466189999987

The function ks_1samp returns a results object with addi-
tional information, but we’re only interested in the attribute
results.statistic which corresponds to DKS. The value of the
Kolmogorov–Smirnov distance DKS we observe is a relatively small
number, which indicates a good fit between the eCDF of nsample
and the CDF of the model rvN.cdf.

A similar calculation allows us to compare the data in vsample to
the theoretical model rvV.

code
2.7.23

>>> ks_1samp(vsample , rvV.cdf). statistic
0.05707018183377044

Again the observed difference DKS is small, so we conclude there is
a good fit.

Finally, we compute the KS distance between esample and the
theoretical distribution Exponpλ “ 0.2q, represented as the random
variable object rvE.

code
2.7.24

2.7 RANDOM VARIABLE GENERATION 215

>>> ks_1samp(esample , rvE.cdf). statistic
0.03597247001342496

The fact the observed distance is relatively small tells us there isn’t a
large difference between ecdf(esample) and FE, so our the random
number generation procedure is working correctly.

In contrast, if we were to compute the KS-distance between the
exponentially distributed data esample and the normal distribution
we’ll see a very large discrepancy, since the exponential distribution
and the normal distribution differ significantly.

code
2.7.25

>>> ks_1samp(esample , norm (5,5). cdf). statistic
0.15871546070321535

This is quite a big difference, so we conclude that esample is not
normally distributed.

Note interpreting the DKS values is kind of tricky. Why do we
consider 0.078 to be small, but 0.1587 to be large? What happens if
we generate smaller or larger samples? We defer further discussion
about the interpretation of the KS-distance until Chapter ??, where
we’ll also discuss other goodness-of-fit metrics.

* * *

You can think of all the above model-data fit verifications as al-
ternative measurements of the “difference” between the empirical
distribution fx and the model distribution fX . The Q-Q plot provides
a qualitative measure of the “how far from the quantiles diagonal”
distance between the two distributions. Comparing the moments
computed from the data and the moments of the theoretical distri-
bution is another approach to check the “fit” between data x and
model fX , which uses the summary statistics (mean, variance, etc.)
as the basis of comparison. The Kolmogorov–Smirnov distance uses
the cumulative distributions Fx and FX as the basis of comparison.

2.7.6 Bootstrap sample generation

The concept of bootstrapping refers to the process of “reusing” obser-
vations from a single sample x “ px1, x2, . . . , xnq to generate “new”
observations. This type of “reuse” of sample data for simulation is
the backbone of the modern statistics curriculum, and will play an
important role in the statistical procedures we’ll learn in Chapter ??.
Since we’ve covered random number generation and the empirical
distributions in this section, it would be worth giving a quick
preview of the bootstrap procedure.

2.7 RANDOM VARIABLE GENERATION 216

The bootstrap describes the process of sampling from the empir-
ical distribution fx of the observations x “ px1, x2, . . . , xnq. We can
describe the bootstrap observations as the random variable X˚ with
distribution empirical fx:

X˚ „ fx.

Following our usual convention for random variables and their
observations, we’ll denote a particular observation generated from
the bootstrap as x˚.

To generate a bootstrap observation, we can simply select at
random one of the xis from the data sample x “ px1, x2, . . . , xnq.
Recall that the empirical distribution fx assigns weight 1

n to each
xi, so selecting one of the xis from x at random has the same effect
as a draw from fx. If want to select multiple observations x1̊ , x2̊ ,
x3̊ , etc., we repeat the procedure, so in effect we’re “sampling with
replacement from x.”

A bootstrap sample of size n is defined as a sequence of n observa-
tions from the empirical distribution:

x˚ “ px1̊ , x2̊ , . . . , xn̊q,
where each xi̊ is generated from the empirical distribution fx. The
bootstrap sample is x˚ is an approximation to what a sample of size
n from the distribution fX would be.

Example: estimating variability from bootstrap samples

Consider the normal random variable N with probability distribu-
tion fN “ N p1000, 100q, and a particular sample nsample of size
n “ 30 from this distribution.

code
2.7.26

>>> from scipy.stats import norm
>>> rvN = norm (1000, 100)
>>> nsample = rvN.rvs (30)
>>> nsample
[1031.85 , 932.04 , 779.16 , 1059.02 , ... 26 more values ...]

Suppose Harry has obtained the sample nsample, but doesn’t know
the distribution fN where the sample came from. Harry can obtain
an estimate of the mean µN of the unknown distribution fN by
computing the mean from the data sample nsample:

code
2.7.27

>>> nsample.mean()
1004.16

We’ll denote Harry’s estimate as xµN , where the hat-on-top is a
standard way to denote estimated quantities in statistics. Harry’s es-
timate obtained from the sample is xµN “ Meanpnsampleq “ 1004.16,
so Harry knows the mean of the population µN is approximately

2.7 RANDOM VARIABLE GENERATION 217

equal to this value. Harry is aware this estimate is likely “off”
by some amount since it was computed from a data sample and
not from the real distribution, but it’s the best he can do given the
information he has (the n “ 30 observations in nsample).

Suppose Harry wants to also estimate the variability in the es-
timate he computed based on this sample. In other words, if he
were to obtain additional random samples of size n “ 30 from the
distribution, and compute the mean from each sample, what kind
of sample means would he observe? Unfortunately, Harry can’t
generate such samples, since he doesn’t know the distribution fN .
He has to work only with the single sample nsample he has on hand.

“No problem,” says Harry to himself, “I’ll use bootstrapping to
estimate the variability.” He then runs the following code to generate
B “ 10 bootstrap samples x1̊ , x2̊ , . . ., x1̊0 from the data in nsample,
and compute the mean of each bootstrap sample.

code
2.7.28

>>> B = 10
>>> bmeans = []
>>> for k in range(0,B):

bsample = np.random.choice(nsample , 30)
bmean = bsample.mean()
bmeans.append(bmean)

>>> bmeans
[1002.72 , 968.09 , 995.78 , 964.45 , 1011.08 ,
1013.17 , 1027.03 , 1041.01 , 969.77 , 1029.55]

Each bootstrap sample bsample has the same length as the original
sample nsample. To generate each bootstrap sample, Harry used
the function choice(nsample,30), which generates a new sample
of length 30 by sampling with replacement from nsample.

Harry starts to get an idea about how the mean estimates vary by
observing the values like 1002, 968, 995, etc. The maximum deviation
between the means computed from the bootstrap samples (bmeans)
and the mean of the original sample is:

code
2.7.29

>>> max(abs(bmeans - sample.mean ()))
39.72

This means we can expect an estimate of the population mean
obtained from a sample of size n “ 30 to vary by plus-or-minus 40
units. This allows Harry to quantify the uncertainty in the estimate
of the population he computed from the sample: nsample.mean()
“ 1004.16. He writes down in his notebook,

xµN “ 1004˘ 40,

as his “best effort” estimate of the mean µN of the unknown distri-
bution fN .

2.7 RANDOM VARIABLE GENERATION 218

* * *

I know that using bootstrap samples instead of samples from the real
distribution seems like cheating, but this approach works out great
in practice when trying to obtain uncertainty estimates of quantities
computed from a sample.

If you think about it, it makes a lot of sense. If you want to obtain
samples from the population but you only have a sample, the best
surrogate for the population is the sample you have.

To avoid any possible misunderstandings about this, I want it
to be clear that the empirical distribution obtained from a single
sample nsample is not a good approximation of the real distribution
fN . See Figure 2.96 for an illustration. It’s not like knowing one
sample nsample is the same as knowing the distribution fN overall,
but if we’re interested in computing some quantity like the sample
mean, then computing this quantity based on bootstrap samples will
simulate the real variability in samples from fN .

600 700 800 900 1000 1100 1200 1300 1400
0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

D
en

si
ty

Figure 2.96: Histogram of the empirical distribution obtained from the
sample nsample of size 30. The superimposed line plot is the probability
density function of the distribution fN .

The “quality” of the bootstrap estimates depends on whether
the initial sample is representative of the unknown distribution fN .
When the sample is too small (n ă 30), the variability observed in
it might not be enough to capture the true variability of fN . Also,
if the sample of observed values contains all exceptional values, e.g.
particularly large values, then all the bootstrap estimates will be too
large as well, since they are all computed by “reusing” the values
from the original. We’ll learn more about the bootstrap estimation
procedure in Chapter ??. This was just a preview.

2.7 RANDOM VARIABLE GENERATION 219

2.7.7 Discussion

Model–data fit as a basis of statistics

The model-data fit question we studied in this section is a very
important idea, that we’ll see come up again in Chapter ??. In this
section we assumed we knew the model’s distribution fX , and we
used the model-data fit to check if a random data we generated x
really comes from the model. We can think of all the data-model
fit checks as computing some kind of “difference” between the
empirical distribution fx and the theoretical distribution fX , which
we can denote as diffpx, fXq. Observing large values of diffpx, fXq
indicate the random variable procedure we used to generate the
observations x “ px1, x2, . . . , xnq is not working correctly (the data
x does not match the variability of the desired distribution fX). If
our random generation is working correctly, then all the goodness of
fit distances diffpx, fXq should be small: data points on the Q-Q plot
close to the diagonal, matching moments, and small Kolmogorov–
Smirnov distance DKS.

The more common scenario is to have some observations from a
real-world process y and use the model-data fit verification tools to
check if the data comes from theoretical distribution family M. We
can describe this scenario as computation of the difference between
observed data y and the whole family of distributions diffpy,Mq.
For example, we can ask if a given sample of real-world data
observations y comes from some normal distribution M “ N pµ, σq,
for some parameters µ and σ.

The question of finding the distribution fY that “best fits” the
dataset y is one of the central questions in statistics. Specifically,
if we assume the distribution fY comes from the model family M,
we can rephrase this question as a search for the “best-fit parameters
θ̂,” which are defined as the choice of θ that minimize the difference
between y and the distribution fY “ Mpθq. Using math notation,
the quantity θ̂ is defined as θ̂ “ minθ diffpy,Mpθqq. We’ll discuss
the different ways of computing estimates θ̂ that “fit” the data in a
sample y in Section ??.

Seeding random number generators

Writing code that involves random number generation can be tricky,
since every time you run the code you’ll get a different output. The
“state” of the random number generator used by your compute
has changed, so running the code will produce different random
observations.

If you want to make the code execution reproducible, you can

2.7 RANDOM VARIABLE GENERATION 220

seed the random number generator. If you’re using the module
random as your source of randomness, you need to call the method
random.seed passing in some arbitrary integer.

code
2.7.30

>>> import random
>>> random.seed (42)
>>> random.random ()
0.6394267984578837

Every time you re-run this code, the output will be the same, because
the call to random.seed(42) puts the random number generator in
the same state.

If you’re using any of the NumPy or SciPy models (including all
the scipy.stats models we discussed), then setting the seed is done
differently:

code
2.7.31

>>> import numpy as np
>>> np.random.seed (43)
>>> np.random.rand()
0.11505456638977896
>>> np.random.rand()

Try running this code block repeatedly and verify the number
generated by np.random.rand() is always the same.

You don’t need to worry about setting the seed in your code,
but I mention because might see these types of commands in the
notebooks.

Exercises

E2.43 The cumulative distribution function of the random variable
E „ Exponpλq is FEpbq “ 1 ´ e´λb, for b ě 0. Find the math
expression for the inverse cumulative distribution function F´1

E pqq.
Hint: Start with the equation q “ 1´ e´λb and solve for b.

TODO: graphical question? (show graph of CDF and ask to
sample from)

TODO: generate discrete observations from fYp1q “ 0.3, fYp2q “
0.5, and fYp3q “ 0.3.

simulate random samples X from distribution fX
TODO use eCDF method
For more exercises, see: https://web.mit.edu/urban_or_book/

www/book/chapter7/problems7/

https://web.mit.edu/urban_or_book/www/book/chapter7/problems7/
https://web.mit.edu/urban_or_book/www/book/chapter7/problems7/

2.7 RANDOM VARIABLE GENERATION 221

Links

[Empirical distributions]
https://en.wikipedia.org/wiki/Empirical_distribution_function

[Kolmogorov–Smirnov test]
https://en.wikipedia.org/wiki/Kolmogorov-Smirnov_test

[Bootstrapping]
https://en.wikipedia.org/wiki/Bootstrapping_(statistics)

https://en.wikipedia.org/wiki/Empirical_distribution_function
https://en.wikipedia.org/wiki/Kolmogorov-Smirnov_test
https://en.wikipedia.org/wiki/Bootstrapping_(statistics)

2.8 PROBABILITY MODELS FOR RANDOM SAMPLES 222

2.8 Probability models for random samples

Let’s now discuss the properties of random samples like X “
pX1, X2, . . . , Xnq, which are sequences of n independent copies of
the random variable X „ fX . In particular, we want to study
the statistics (function) computed from the random sample X. An
example of a statistic is the mean meanpXq “ 1

n
řn

i“1 Xi.
We’ll start with some definitions, then describe the notion of the

sampling distribution of a statistic, and by the end of this section we’ll
state the central limit theorem, which is an important theoretical result
about the sampling distribution of the mean computed from random
samples.

2.8.1 Definitions

Let’s review the probability concepts we have seen previously about
sequences of i.i.d. random variables, and define the new concepts.

• X: a random variable with probability distribution fX

• X “ pX1, X2, . . . , Xnq: n copies of the random variable X. Each
Xi represents an independent copy of the random variable X,
and has the same distribution Xi „ fX . We’ll refer to X as a
random sample.

• x “ px1, x2, . . . , xnq: a particular sample, which consists of n
observations from the distribution fX .

• statistic: any quantity computed from a sample. Examples
of statistics include the sample mean x “ 1

n
řn

i“1 xi and the
sample variance s2 “ 1

n´1
řn

i“1pxi ´ xq2.
• sampling distribution of a statistic: the variability of a statistic

when computed on a random sample X. For example, the
sampling distribution of the mean is described by the random
variable X “ 1

n
řn

i“1 Xi.

Recall the mouthful-of-an-expression independent, identically dis-
tributed (or i.i.d for short), which refers to the sequence of random
variables pX1, X2, . . . , Xnq, where the distribution of each Xi is iden-
tical (Xi „ fX), and the Xis are independent. The joint probability
distribution for the i.i.d. random sample pX1, X2, . . . , Xnq is

fX “ fX1X2¨¨¨Xnpx1, x2, . . . , xnq “
n
ź

i“1

fXpxiq.

In words, the joint distribution fX1X2¨¨¨Xn is the product of n copies of
the distribution fX .

2.8 PROBABILITY MODELS FOR RANDOM SAMPLES 223

2.8.2 Sample statistics

The term statistic is used to refer to any quantity computed from a
sample x “ px1, x2, . . . , xnq. Examples of statistics include the mean
Mean, the variance Var, and all the other descriptive statistics we
learned about in Section ??. Note we use the term “statistic” to refer
to the function that computes the quantity of interest, and not the
output of the function. The statistics Mean and Var are functions that
take samples as inputs, while Meanpxq and Varpxq are the values of
these statistics computed from a particular sample x.

In this section, we’ll focus our discussion on the sample mean:

Meanpxq def“ 1
n

n
ÿ

i“1

xi “ 1
n
px1 ` x2 ` ¨ ¨ ¨ ` xnq ,

which is also denoted as x. Let’s write a Python function that
computes the mean of a given sample:

code
2.8.1

>>> def mean(sample):
return sum(sample) / len(sample)

We assume the input sample is any list-like object (a Python list, a
NumPy array, or a Pandas series), then use Python builtin function
sum to compute the summation, and divide by the length of the
sample to obtain the output. Note that NymPy arrays and Pandas
series have the method .mean() you can call to obtain their mean.

Let’s compute the mean of the sample of three observations x “
r1, 3, 11s. The math formula tells us Meanpxq “ 1`3`11

3 “ 15
3 “ 5,

and we obtain the same answer by calling the function mean:

code
2.8.2

>>> mean ([1 ,3 ,11])
5.0

In the above code example, the statistic is the function mean, while the
number 5.0 is the value of the statistic computed from this sample.

The sample mean x “ Meanpxq is the most common statistic
computed from a sample, but there are many other quantities that
we might want to compute from a sample. For example, the variance
s2 “ Varpxq “ 1

n´1
řn

i“1 pxi ´ xq2, the median Medpxq “ F´1
x p 1

2 q, the
position of the third quartile Q3pxq “ F´1

x p0.75q, or the 90th percentile
F´1

x p0.9q. All these quantities can be described as computing some
function gpxq, where g is a function of the form g : X n Ñ R.

Example 1.1: mean of sample from the uniform distribution

Consider the sequence of observations u “ pu1, u2, . . . , unq, where
each ui is an observation from the standard uniform random variable

2.8 PROBABILITY MODELS FOR RANDOM SAMPLES 224

U „ Up0, 1q “ uniform(0,1). The mean of this sample is defined as:

u “ Meanpuq “ 1
n
pu1 ` u2 ` ¨ ¨ ¨ ` unq “ 1

n

n
ÿ

i“1

ui.

We’ll now run some simulations that generate samples of increasing
size and compute the mean from each sample.

code
2.8.3

>>> from scipy.stats import uniform
>>> rvU = uniform (0,1)
>>> mean(rvU.rvs (10))
0.5201367359526748
>>> mean(rvU.rvs (100))
0.459360440874598
>>> mean(rvU.rvs (1000))
0.49846377158147603
>>> mean(rvU.rvs (1000000))
0.5003560391875443

Note the results we obtain in the above simulations will change
every time we run them. Calling the method rvU.rvs(n) will return
a different set of n observations from the random variable U, so the
calculation of the mean statistic will result in a different number.

Observe the mean computed from each sample is close to the
mean of the distribution µU “ 0.5. The means computed from larger
samples get closer and closer to µU .

Example 1.2: mean of a sample from a normal distribution

We’ll now repeat the same procedure for the sample z “
pz1, z2, . . . , znq, where each zi is an observation from the standard
normal random variable Z „ N p0, 1q “ norm(0,1). The code below
computes the sample mean Meanpzq from samples of different sizes.

code
2.8.4

>>> from scipy.stats import norm
>>> rvZ = norm(0, 1)
>>> mean(rvZ.rvs (10))
-0.26951611032632794
>>> mean(rvZ.rvs (100))
0.04528630589790067
>>> mean(rvZ.rvs (1000))
-0.03750017240797483
>>> mean(rvZ.rvs (1000000))
>>> 0.0006794219838587821

The mean computed from samples of increasing size seems to get
closer and closer to the mean of the distribution µZ “ 0.

Example 1.3: mean of a sample from an exponential distribution

Let’s repeat the exercise a third time, this time generating samples
from the exponential random variable E „ Exponpλ “ 0.2q.

code
2.8.5

2.8 PROBABILITY MODELS FOR RANDOM SAMPLES 225

>>> from scipy.stats import expon
>>> lam = 0.2
>>> rvE = expon(0, 1/lam)
>>> mean(rvE.rvs (10))
5.334172048766929
>>> mean(rvE.rvs (100))
4.488399438411224
>>> mean(rvE.rvs (1000))
4.964101264394126
>>> mean(rvE.rvs (1000000))
4.996982168599892

We see the same pattern repeat again: the means of larger samples
get very close to the mean of the random variable µE “ 1

λ “ 5.

* * *

As we saw in the above examples, the mean computed from a sample
of observations seems to approach the mean of the distribution from
which the sample was generated.

This observation can be expressed as a mathematical theorem.
The law of large numbers (LLN) states that the sample mean x “
Meanpxq is approximately equal to the mean of the random variable
X, as the sample size n becomes larger and larger.

Theorem (Law of large numbers). Consider a sample of size n denoted
xn “ px1, x2, . . . , xnq, where each xi represents an independent draw from
the random variable X, which has mean µX . Then, the sample mean xn “
1
n
řn

i“1 xi will converge to the mean of the distribution µX :

xn Ñ µX ,

as the sample size n goes to infinity.

The arrow in the above theorem describes the limit behaviour as
n becomes larger and larger. Using the math notation for limits,
the statement is equivalent to limnÑ8 xn “ µX , which is read “the
limit of xn is µX .” Note this statement is not saying that the sample
mean computed any finite sample size will equal the mean of the
distribution. It only describes the limiting behaviour for infinitely
large samples.

Don’t worry much about the formal math language or the limit
expression: the law of large number is a very intuitive result. If
we take larger and larger samples, it makes sense that the mean
computed from the sample of observations will approach the mean
of the distribution.

2.8 PROBABILITY MODELS FOR RANDOM SAMPLES 226

This is a very useful thing to happen, since it gives us a practical
procedure for estimating the mean of an unknown distribution fX . If
you want to find µX , you can simply generate a large enough sample
x “ px1, x2, . . . , xnq from fX , and you know, thanks to the law of large
numbers, that the mean computed from the sample x “ Meanpxq
will approach the mean µX of the distribution fX .

The law of large numbers tells us the sample mean approaches
the mean of the distribution, but it doesn’t tell us anything about the
variability of means computed from random samples x. In the next
section, we’ll develop the vocabulary for describing the variability of
statistics.

2.8.3 Sampling distributions of statistics

Recall that a statistic is any function computed from a sample. Every
statistic corresponds to some function of the form g : X n Ñ R.
In the previous section, we studied the properties of the mean
statistic, gpxq “ x “ Meanpxq, computed from a particular sample
of observations x “ px1, x2, . . . , xnq. In this section, we switch our
attention to the sequence of random variables X “ pX1, X2, . . . , Xnq,
where each Xi is a copy of the random variable X. We’ll refer to
X “ pX1, X2, . . . , Xnq as a random sample.

For example, the mean of the random sample X is

X “ MeanpXq “ 1
n

n
ÿ

i“1

Xi.

Note that X is a random variable, since it is an expression computed
based on the random variables pX1, X2, . . . , Xnq. The distribution of
the mean computed from the random sample X is called the sampling
distributions of the mean, and we’ll denote it fX.

The variance of the random sample is S2 “ 1
n´1

řn
i“1

`

Xi ´ X
˘2.

The distribution of the random variable S2 is called the sampling
distributions of the variance.

In general, given any statistic we might want to compute from a
sample (a function g of the form g : X n Ñ R), the “sampling distri-
bution of g” describes the variability of the quantity gpXq, which is
the statistic computed from a random sample X “ pX1, X2, . . . , Xnq.

Note the difference between gpxq (a number) and gpXq (a random
variable). Calculating the statistic g on a particular sample x (a
sequence of observations) results in a single number: the value of
the statistic function computed from that sample. In contrast, the
sampling distribution gpXq represents the calculation of the statistic g
over all possible sequences X “ pX1, X2, . . . , Xnq.

2.8 PROBABILITY MODELS FOR RANDOM SAMPLES 227

One approach to study the properties of the sampling distribu-
tion gpXq is to use simulation. We can generate many (thousands)
random samples x, compute the value of the statistic function on
each sample gpxq, then plot a histogram of these observations gpxq.
We’ll now illustrate this procedure in the following examples.

Example 2.1: sampling distribution of MeanpUq
Uma just received a notification that her assignment for her prob-
ability class is due in one hour. She quickly goes through the first
three questions of the assignment since she remembers most of the
material, but then she reaches a question asking her to “compute
the mean and the variance of the sampling distribution of MeanpUq”
and she’s not 100% sure what to do. She vaguely remembers hearing
about sampling distributions in class, but not the details. She could
try to look up the answer online, but given how little time is left
to finish the assignment, she feels there is no time to “learn” all
the theory, and instead the right thing to do is to open a Jupyter
notebook and just try to solve the problem on her own. The teacher
said Python is powerful. Let’s see how powerful it is.

The exact wording of the questions is: “Find the mean and
the variance of the sampling distribution of MeanpUq, where U “
pU1, U2, . . . , U30q is a random sample that consists of 30 independent
copies of the standard uniform random variable U „ Up0, 1q.”

“Okay Python,” she says to herself. “You and me. We’ve got 36
minutes left to figure this shit out. Let’s do this!”

Uma starts by importing the uniform model from the module
scipy.stats, and since the question talks about the standard uni-
form random variable U „ Up0, 1q, she creates a computer model
rvU that represents this random variable.

code
2.8.6

>>> from scipy.stats import uniform
>>> rvU = uniform (0,1)

The question is asking something about the properties of random
samples of size n “ 30 from the random variable rvU. Uma is still
not sure what U “ pU1, U2, . . . , U30q means (why the capitals?), but
she knows the lowercase version u “ pu1, u2, . . . , u30q corresponds
to generating a simple of size n “ 30 from the random variable rvU.
Uma knows this is possible by calling the method rvU.rvs(30), as
shown in the code below.

code
2.8.7

>>> n = 30
>>> usample = rvU.rvs(n)
>>> usample
[0.8624 , 0.3383 , 0.1980 , ... 27 more numbers ...]

2.8 PROBABILITY MODELS FOR RANDOM SAMPLES 228

The assignment question is asking something about the Mean statis-
tic, so Uma copy-pastes the definition of the Python function mean
from code block 2.8.1 into her assignment notebook:

code
2.8.8

>>> def mean(sample):
return sum(sample) / len(sample)

Uma can now compute the value of the statistic Mean from of
any sample. She decides to try this out on the sample of random
observations u “ usample that she just generated.

code
2.8.9

>>> mean(usample)
0.5887109207913922

The question is asking to find the sampling distribution of MeanpUq,
so Uma feels she’s on the right track. She knows how to generate
random samples of n observations u by calling rvU.rvs(30), and she
knows how to compute the mean of a particular sample Meanpuq
using the function mean. But how do we go from Meanpuq to
MeanpUq?

0.0 0.2 0.4 0.6 0.8 1.0

sample0

sample1

sample2

sample3

sample4

sample5

sample6

sample7

sample8

sample9

Figure 2.97: Scatter plots of 10 samples of size n “ 30 from the standard
uniform distribution Up0, 1q. The sample mean computed from each sample
is indicated with the diamond marker.

To get an idea of the variability of the individual observations
Ui, Uma generated 10 samples of size n “ 30 from U, and creates
a combined strip plot of the samples, as shown in Figure 2.97. She
also computes the mean for each sample and display it as a diamond
marker in the figure.

Then it finally clicks—the sampling distribution of MeanpUq
describes the variability of the diamond markers in Figure 2.97.
The individual observations ui are uniformly distributed over the
interval r0, 1s, but the sample means are all concentrated close to the
value 0.5, with much less variability.

In order to quantify the variability of the sampling distribution
MeanpUq, Uma decides to generate N “ 1000 random samples u1,

2.8 PROBABILITY MODELS FOR RANDOM SAMPLES 229

u2, u3, . . ., uN , and compute the mean ui “ Meanpuiq from each
sample, to obtain the list of observations ru2, u2, u3, . . . , uNs, which
are corresponds to 1000 samples from MeanpUq.

Uma decides to use a Python for-loop to generate the 1000
random samples, and record the observations ui in a list named
xbars. She quickly comes up with the following simulation code.

code
2.8.10

>>> n = 30 # sample size
>>> N = 1000 # number of samples to generate
>>> ubars = []
>>> for i in range(0,N):

usample = rvU.rvs(n)
ubar = mean(usample)
ubars.append(ubar)

After running this code, the list ubars contains 1000 observations
from the sampling distribution, which she can now visualize by
generating a histogram and a strip plot of the values.

code
2.8.11

>>> sns.histplot(ubars , color="r")
>>> sns.scatterplot(x=ubars , y=-5, color="r", marker="D")
The result is shown in Figure 2.98.

0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70

0

20

40

60

80

100

120

C
ou

nt

Figure 2.98: An approximation to the sampling distribution of MeanpUq
computed from N “ 1000 samples of size n “ 30 taken from the standard
uniform distribution Up0, 1q. Most of the sample means computed from
these samples fall close to the distribution mean µU “ 0.5.

By inspecting Figure 2.98 Uma starts to get an intuitive under-
standing of the sampling distribution of MeanpUq (also denoted fU).
She notes the distribution is centred around 0.5 and has a standard
deviation of roughly 0.05 around the mean. These are the numbers
the assignment is asking her to compute!

To obtain precise numerical estimates of the mean and the
standard deviation of the sampling distribution, Uma decides to
compute the mean and standard deviation of the list ubars.

code
2.8.12

2.8 PROBABILITY MODELS FOR RANDOM SAMPLES 230

>>> np.mean(ubars), np.std(ubars)
(0.5000180761308989 , 0.05211860142360233)

The mean of the sampling distribution is µU “ 0.5 and its standard
deviation is σU “ 0.052. She quickly enters these answers to the
question and submits the online assignment. The server responds
with a positive feedback—the answers are correct.

Looking at the clock, Uma realized there are still 30 minutes left
before the deadline. Maybe the teacher is right, using Python to run
simulations really is very useful for solving probability questions.

General-purpose generator of sampling distributions

The ability to generate observations from the sampling distribution
of a statistics is a very useful skill to have. Let’s take a moment to
generalize Uma’s code so we can reuse it in other situations. When
discussing sampling distributions, we need to know three things:

• The sample size n (an integer).
• The random variable X that is used to form the random sample

X “ pX1, X2, . . . , Xnq.
• The statistic of interest (a function computed from samples).

In the case of Uma’s calculations we saw in Example 2.1, the sample
size was n “ 30, the random variable was U „ Up0, 1q, and the
statistic she wanted to calculate from each sample was Mean.

We can obtain a general-purpose sampling distribution generator
by turning Uma’s code into a Python function gen_sampling_dist
that takes three arguments: rv the model for the random variable
(an instance of one of the computer models from scipy.stats), the
statistic of interest (a Python function), and the sample size.

code
2.8.13

>>> def gen_sampling_dist(rv, statfunc , n, N=1000):
stats = []
for i in range(0, N):

sample = rv.rvs(n)
stat = statfunc(sample)
stats.append(stat)

return stats

The function also takes an optional parameter N, which controls
the number of observations from the sampling distribution will be
generated. The default value N “ 1000 is reasonable for most
situations—with 1000 data points, we can draw pretty accurate
histograms.

We can reproduce Uma’s calculations by calling the function
gen_sampling_dist with the following choice of arguments: set rv
to the computer model rvU = uniform(0,1), set statfunc to the
function mean, and set n to the value 30.

code
2.8.14

2.8 PROBABILITY MODELS FOR RANDOM SAMPLES 231

>>> ubars = gen_samp_dist(rvU , statfunc=mean , n=30)
>>> np.mean(ubars), np.std(ubars)
(0.5034057868782315 , 0.052257079327563884)

Note the mean and the standard deviations we obtain from the list of
observations ubars is very similar to the numbers Uma obtained, but
not identical. This is to be expected when running simulations, there
will always be small differences, but the answers are very close.

Example 2.2: sampling distribution of MeanpZq
Uma’s classmate Zach got a similar question on his assignment,
but asking to compute the mean and the standard deviation of the
sampling distribution of MeanpZq, where Z “ pZ1, Z2, . . . , Z30q is a
random sample of size 30 from the standard normal Z „ N p0, 1q.

Zach starts by creating the computer model rvZ = norm(0,1) for
the standard normal random variable Z „ N p0, 1q.

code
2.8.15

>>> from scipy.stats import norm
>>> rvZ = norm (0,1)

3 2 1 0 1 2 3

sample0

sample1

sample2

sample3

sample4

sample5

sample6

sample7

sample8

sample9

Figure 2.99: Scatter plots of ten samples of size n “ 30 from the standard
normal distribution Z „ N p0, 1q. The sample mean computed from each
sample is indicated with the diamond marker.

Figure 2.99 shows strip plots of ten samples of size n “ 30, generated
by calling rvZ.rvs(30), with the diamond shapes indicating the
values of Meanpziq computed from each sample zi.

In order to generate observations from the sampling distribution
of MeanpZq, Zach can call the function gen_sampling_dist, passing
in the random variable object rvZ as the first argument, the function
mean as the statfunc, and sample size n “ 30 as the third argument.

code
2.8.16

>>> zbars = gen_sampling_dist(rvZ , statfunc=mean , n=30)

2.8 PROBABILITY MODELS FOR RANDOM SAMPLES 232

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

0.0

0.5

1.0

1.5

2.0

D
en

si
ty

Figure 2.100: Sampling distribution of the mean computed from N “ 1000
samples of size n “ 30 taken from the standard normal distribution N p0, 1q.
Most of the sample means fall close to the mean of the distribution µZ “ 0.

Figure 2.100 shows the histogram and scatter plot of the observations
zbars. Similar to what we saw in Example 2.1, the sampling
distribution of the mean has the shape of a normal distribution.
Using visual inspection, Zach estimates the mean of the sampling
distribution is zero, and its standard deviation is roughly 0.2.

To obtain more precise estimates of the mean and the standard
deviation of the sampling distribution, Zach computes the mean and
the standard deviation of the values in the list zbars:

code
2.8.17

>>> np.mean(zbars), np.std(zbars)
(0.0019901929294202933 , 0.186121326960664)

He then uses the answers µZ “ 0 for the mean and σZ “ 0.186 for the
standard deviation to answer the assignment question.

* * *

Meanwhile, at the other end of town, Zoe got the same question as
Zach on her assignment: compute the mean µZ and the standard
deviation σZ of the sampling distribution of MeanpZq. Zoe has a
math background, and remembers reading about a similar type of
calculation in Example 7, back in Section 2.5 (see page 158). She
recognizes the random variable A in Example 7 is exactly the same
as the quantity MeanpZq, and she knows how to compute the mean
and the variance of the random variable using math equations.

The mean µZ of the sampling distribution MeanpZq is the same
as computing the mean of the random variable A:

µA “ EArAs “ EZ

«

1
n

n
ÿ

i“1

Zi

ff

“ 1
n

n
ÿ

i“1

EZi

“

Zi
‰ “ 1

n rn ¨ µZs “ µZ.

2.8 PROBABILITY MODELS FOR RANDOM SAMPLES 233

Zoe used the linearity of expectations to obtain the third equation,
which is allowed since the random variables Zi are independent. The
fourth equation follows because the Zis are identical copies of the
random variable Z. Knowing the mean of the standard normal is
µZ “ 0, tells her the first part of the answer is µZ “ 0.

The variance σ2
Z

of the sampling distribution Z is the same as the
variance of the random variable A:

σ2
A “ varpAq “ var

˜

1
n

n
ÿ

i“1

Zi

¸

“ 1
n2 var

˜

n
ÿ

i“1

Zi

¸

“ 1
n2 ¨n ¨varpZq “ σ2

Z
n .

Zoe used the variance formula varpmXq “ m2 ¨ varpXq to obtain the
third equation. The fourth equation follows because the random
variables Zi are independent. Knowing the standard deviation of
the random variable Z is σZ “ 1, she quickly calculates the desired

answer σZ “
b

σ2
Z
n “

b

1
30 « 0.18257 using her calculator. She

submits this answer and gets full points on this question, feeling
happy about how her math skills have helped her.

Example 2.3: sampling distribution of MeanpEq
Erica got a different version of this question on her assignment,
asking her to compute the properties of the sampling distribution
of MeanpEq, where E “ pE1, E2, . . . , E30q is a random sample of size
30 from the exponential random variable E „ Exponpλ “ 0.2q.

She knows she needs to build a computer model rvE for the
random variable E, so she consults the SciPy documentation about
the computer model scipy.stats.expon, in order to know what
parameters she must specify. She realizes she needs to set the loc
(location) parameter to zero, and the scale parameter to 1

λ to obtain
the appropriate computer model.

code
2.8.18

>>> from scipy.stats import expon
>>> lam = 0.2 # lambda
>>> scale = 1/lam
>>> rvE = expon(0, scale)

Figure 2.101 shows a ten samples of size n “ 30, that Erica obtained
by calling rvE.rvs(30). The diamond shapes indicating the mean
computed from each sample.

She then generates 1000 observations form the sampling distri-
bution of MeanpEq by calling the function gen_sampling_dist and
passing in the computer model rvE as the first argument.

code
2.8.19

>>> ebars = gen_sampling_dist(rvE , statfunc=mean , n=30)

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.expon.html

2.8 PROBABILITY MODELS FOR RANDOM SAMPLES 234

0 5 10 15 20 25 30

sample0

sample1

sample2

sample3

sample4

sample5

sample6

sample7

sample8

sample9

Figure 2.101: Scatter plots of ten samples of size n “ 30 from the exponential
distribution Exponpλ “ 0.2q. The sample mean computed from each sample
is indicated with the diamond marker.

0 2 4 6 8 10

0

20

40

60

80

100

C
ou

nt

Figure 2.102: Sampling distribution of the mean computed from N “ 1000
samples of size n “ 30 taken from the exponential distribution Exponpλ “
0.2q. Most of the sample means computed from these samples fall close to
the distribution mean µE “ 1

λ “ 5.

To visualize the distribution of the observations obtained in ebars,
Erica plots the histogram and strip chart shown in Figure 2.100. She
observes that the shape of the sampling distribution of MeanpEq kind
of looks like a Gaussian distribution, except for some extra values in
the right tail.

She computes the mean and the variance of the sampling distri-
bution using the code:

code
2.8.20

>>> np.mean(ebars), np.std(ebars)
(5.02490198427453 , 0.9335571543972068)

She provides the answers µE “ 5.02 and σE “ 0.933 for this question
and gets full marks on it.

* * *

2.8 PROBABILITY MODELS FOR RANDOM SAMPLES 235

Note that the sampling distribution of the mean computed in all
three of the above examples turns out to have a normal shape.
We would expect this to happen for samples from the normal
distribution fZ, it makes sense for the average of n observations from
the normal distribution to also be normally distributed. The distri-
butions fU and fE are not normal, yet the sampling distributions we
obtained from them turn out to be normally distributed. What is
up with that? How come the normal distribution pops up out of
nowhere? This is not a coincidence, but in fact an important theorem
of probability theory, which we’ll discuss next.

2.8.4 Central limit theorem

The central limit theorem (CLT) tells us that the sampling distribu-
tion of the mean computed from i.i.d. samples of any distribution is
approximately normally distributed.

Theorem (Central limit theorem). Consider a random sample of size n
denoted X “ pX1, X2, . . . Xnq, where each Xi represents an independent
draw from the random variable X. Let µX denote he mean of the random
variable X, and let σX denote the standard deviation of X. Then the
sampling distribution of the mean X “ 1

n
řn

i“1 Xi will converge to a normal
distribution:

X Ñ N
´

µX , σX?
n

¯

,

as the sample size n goes to infinity.

We already knew from the law of large numbers that the mean of the
sampling distribution X will approximately equal the mean of the
random variable µX , so this is not new.

What is new is that the central limit theorem tells us the “shape”
of the sampling distribution of the mean MeanpXq will be a normal
distribution. This is an interesting fact by itself: no matter what
model distribution fX we start from (not necessary normal), the
sample means will be normally distributed.

Moreover, the central limit theorem gives us a math formula for
the standard deviation of the sampling distribution as a function of
the sample size n:

σX “ σX?
n

.

Equivalently, we can state the predictions of the central limit theorem
in terms of variances: the variance of the sampling distribution of the

mean X computed from samples of size n is equal to σ2
X
n .

2.8 PROBABILITY MODELS FOR RANDOM SAMPLES 236

What exactly do we mean when we say “as n goes to infinity”
in the CLT? I used this informal expression in order to avoid getting
into the technical discussions, which are not required for using the
central limit theorem in practice. The CLT is exactly true only in
the limit of infinitely large sample size n. For finite-size samples,
n “ 10, n “ 30, n “ 100, etc., the statement of the CLT is only
approximately true fX « N

´

µX , σX?
n

¯

, with the accuracy of this
approximation increasing as n increases. In practice, we often use
the criterion n ě 30 as a rule of thumb for when we start to consider
the approximation to be accurate, but there is no real universal
threshold that we can apply for all situations. For different models,
the convergence could be faster (thus allowing small sample sizes
like n “ 10) or slower (requiring larger sample sizes like n “ 100).

Roughly speaking, the closer the distribution fX is to normal,
the smaller the sample size needs to be for the approximation to
be acceptably accurate. Unless the distribution fX is multimodal or
severely skewed, a sample size n ě 30 is usually sufficient for the
approximation to hold.

Let’s look at some examples in which we apply the central limit
theorem to different distributions and different samples sizes.

Example 3.1: CLT for samples from the uniform distribution

Figure 2.103 shows strip plots for random samples of different sizes
generated from the standard uniform random variable U „ Up0, 1q.
Note that the variability of the sample means decreases as the sample
size increases.

0.0 0.2 0.4 0.6 0.8 1.0

sample0
sample1
sample2
sample3
sample4
sample5
sample6
sample7
sample8
sample9

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure 2.103: Strip plots of samples of different size n “ 10, n “ 30, and
n “ 100 from the standard uniform distribution Up0, 1q. The sample mean
of each sample is indicated with the diamond marker.

Figure 2.104 shows a side-by-side comparison of the sampling
distributions of MeanpUq, computed from random samples of dif-
ferent size. The left panel shows the histogram of samples ubars10
which contains observations from sampling distribution of the mean
computed samples of size n “ 10. We see there is a reasonable agree-
ment between the histogram and the theoretical model suggested

2.8 PROBABILITY MODELS FOR RANDOM SAMPLES 237

0.3 0.4 0.5 0.6 0.7

0.0

2.5

5.0

7.5

10.0

12.5
D

en
si

ty
n = 10

0.3 0.4 0.5 0.6 0.7

n = 30

0.3 0.4 0.5 0.6 0.7

n = 100

Figure 2.104: Comparison of the sampling distribution of the mean com-
puted from samples of size n “ 10, n “ 30, and n “ 100 from the standard
uniform Up0, 1q. The purple line indicates the mathematical model obtained
by applying the central limit theorem.

by the central limit theorem N p0.5, σU?
10
q. For sample sizes of size

n “ 30 as shown in the middle panel, In the middle panel we see
the same situation repeated with samples of size n “ 30, and the
right panel the sampling distribution obtained from samples of size
n “ 200. Note how the variability of the sample mean estimates
decreases when we take larger samples, and the model predicted by
the central limit theorem correctly captures this effect.

Let’s compute the standard deviation of the sampling distribu-
tions for the different sizes.

code
2.8.21

>>> np.std(ubars10), np.std(ubars30), np.std(ubars100)
(0.0882 , 0.0522 , 0.0283)

The predictions of the central limit theorem for samples of these sizes
are as follows.

code
2.8.22

>>> from math import sqrt

>>> rvU.std()/ sqrt (10), rvU.std()/ sqrt (30), rvU.std ()/ sqrt (100)
(0.0912 , 0.0527 , 0.0288)

Comparing the two sets of numbers, we see there is some disagree-
ment between the theoretical prediction of the CLT for samples
of size n “ 10, but for samples of size n “ 30 and n “ 100
the predictions of the CLT are a very good match to the standard
deviations we calculated through simulation.

Example 3.2: CLT for samples from the normal distribution

Let’s repeat the exercise using samples from the standard normal
distribution Z „ N p0, 1q. Figure 2.105 shows strips plots of a few
samples, while Figure 2.106 shows the sampling distribution.

The standard deviations of the sampling distributions we ob-
tained through simulation are:

code
2.8.23

>>> np.std(zbars10), np.std(zbars30), np.std(zbars100)
(0.3181 , 0.1854 , 0.0999)

2.8 PROBABILITY MODELS FOR RANDOM SAMPLES 238

3 2 1 0 1 2 3

sample0
sample1
sample2
sample3
sample4
sample5
sample6
sample7
sample8
sample9

Samples of size n = 10

3 2 1 0 1 2 3

Samples of size n = 30

3 2 1 0 1 2 3

Samples of size n = 100

Figure 2.105: Strip plots of samples of different size n “ 10, n “ 30, and
n “ 100 from the standard normal distribution N p0, 1q. The sample means
are indicated as diamond markers.

1.0 0.5 0.0 0.5 1.0

0

1

2

3

4

D
en

si
ty

n = 10

1.0 0.5 0.0 0.5 1.0

n = 30

1.0 0.5 0.0 0.5 1.0

n = 100

Figure 2.106: Comparison of the sampling distribution of the mean com-
puted from samples of size n “ 10, n “ 30, and n “ 100 from the standard
normal distribution N pµ “ 0, σ “ 1q.

Let’s compare these observations from the theoretical prediction of
the CLT:

code
2.8.24

>>> from math import sqrt

>>> rvZ.std()/ sqrt (10), rvZ.std()/ sqrt (30), rvZ.std ()/ sqrt (100)
(0.3162 , 0.1825 , 0.1)

We see there is good agreement between the result of our simulation
and the prediction of the CLT, even for the small sample size n “ 10.

Example 3.3: CLT for samples from the exponential distribution

We’ll now repeat the sampling distribution visualizations a third
time, this time applying it to using samples from the exponential
random variable E „ Exponpλ “ 0.2q.

The standard deviations obtained through simulation are

code
2.8.25

>>> np.std(ebars10), np.std(ebars30), np.std(ebars100)
(1.660126019569815 , 0.9051707388579937 , 0.522425074266255)

The CLT predictions are

code
2.8.26

>>> rvE.std()/ sqrt (10), rvE.std()/ sqrt (30), rvE.std ()/ sqrt (100)
(1.581 , 0.9128 , 0.5)

The approximation is waaaaay off when n “ 10, not bad for n “ 30,
and starts to become good at n “ 100.

2.8 PROBABILITY MODELS FOR RANDOM SAMPLES 239

0 5 10 15 20 25 30

sample0
sample1
sample2
sample3
sample4
sample5
sample6
sample7
sample8
sample9

0 5 10 15 20 25 30 0 5 10 15 20 25 30

Figure 2.107: Strip plots of samples of different size n “ 10, n “ 30, and
n “ 100 from the exponential distribution Exponpλ “ 0.2q, with the sample
means indicated as diamonds.

0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

D
en

si
ty

n = 10

0 2 4 6 8 10

n = 30

0 2 4 6 8 10

n = 100

Figure 2.108: Comparison of the sampling distribution of the mean com-
puted from samples of size n “ 10, n “ 30, and n “ 100 from the exponential
distribution Exponpλ “ 0.2q.

2.8.5 Discussion

The topics introduced in this section are some of the most important
tools we’ll use in statistics. It’s essential that you understand the
general concept of a sampling distribution, and how to generate
observations from the sampling distribution. Make sure you under-
stand how the function gen_sampling_dist works (see code 2.8.13).
This general-purpose procedure will come in handy later in the book.

Going deeper into the math

Readers who are interested in digging deeper into the two theorems
we presented, LLN and CLT, will need to consult some more ad-
vanced books to learn about the details.

When talking about the LLN, mathematicians can describe the
exact nature of the convergence of Xn to µX . The weak law of large
numbers states that limnÑ8 Pr

`
ˇ

ˇXn ´ µX
ˇ

ˇ ă ε
˘ “ 1, for all ε ą 0. The

strong law of large numbers states Pr
`

limnÑ8 Xn “ µX
˘ “ 1, which

means Xn will become exactly µX . This paper[https://doi.org/
10.3150/12-BEJSP12] provides an interesting historical overview of
the different version of LLN that appeared throughout the years.

Similarly, there are different formal math statements for the CLT.
Learning those details requires measure theoretic math tools, which

https://doi.org/10.3150/12-BEJSP12
https://doi.org/10.3150/12-BEJSP12

2.8 PROBABILITY MODELS FOR RANDOM SAMPLES 240

is out of scope for this book. We’ll focus on the “write a for-loop to
run a simulation” approach, rather than try to prove mathematically
precise theorems.

CLT is the basis for all analytical approximations in statistics

The central limit theorem is a very powerful result, that you can use
whenever we’re analyzing the mean statistic computed from random
samples, which is a very common scenario in statistics. Indeed,
we could say half the analytical approximations formulas normally
covered in the STATS 101 course are consequences of the CLT. It
wouldn’t be an exaggeration to say the CLT is a pillar of statistics.

According to the CLT, the variability of the sampling distribution
decreases as the sample size n increases. In some sense, the CLT is
the reason why statistics works. We can use the properties samples
to estimate the parameters of the population, and our estimates get
more accurate if we use large samples.

We’ll talk about this “everything is approximately normal” phe-
nomenon at length in Section ??, and later in Section ??.

Exercises

simulate random samples X from distribution fX
numerically compute expectations of sample statistics (and

compare with theory)

compute sampling distribution for different statistics using
simulation

verify/observe the CLT for various distributions fX
(what happens when n “ 10 and n “ 15 from exponential... is the
sampling dist. of mean still normal?

Links

[Law of large numbers on Wikipedia]
https://en.wikipedia.org/wiki/Law_of_large_numbers

[Central limit theorem on Wikipedia]
https://en.wikipedia.org/wiki/Central_limit_theorem

[Seeing theory book by Devlin, Guo, Kunin, and Xiang]
https://seeing-theory.brown.edu/doc/seeing-theory.pdf

https://en.wikipedia.org/wiki/Law_of_large_numbers
https://en.wikipedia.org/wiki/Central_limit_theorem
https://seeing-theory.brown.edu/doc/seeing-theory.pdf#page=38

2.9 PROBABILITY PROBLEMS 241

Conclusion

If you want to have a good time in STATS, you need to make sure
you understand probability theory and are familiar with the various
prob. distributions we discussed. These distributions will be your
basic building blocks you’ll use repeatedly in the rest of the book.
The best way to do that is to solve practice problems and apply
the concepts to various situations, simple and complex. Reading is
not enough—you need get “hands on” experience with probability
distributions.

How convenient is it that the next section has exactly a bunch
of probability practice problems. Go grab a caffeinated beverage of
your choosing, and sit down to try some of these.

2.9 Probability problems

Intro/motivational text...
P2.1 The addition rule of probability states that

PrpAY Bq “ PrpAq ` PrpBq ´ PrpAX Bq,
for any two sets of outcomes A and B. The symbol Y describes the union
of two sets, which means all elements that are either A or B. The symbol X
describes the intersection of the two sets, meaning the elements that are in A
and B.

Verify the addition rule applies to the die roll random variable D, and
the sets of outcomes A “ t1, 2, 3u and B “ t2, 3, 4u, by computing the
probabilities of all terms in the above equation.

2.9.1 Simple probability problems

To better understand random variables and probability distributions,
you need to practice using these concepts to solve real-world prob-
lems. It just so happens there are some practice problems on this
very topic in this section—how convenient is that? Don’t skip them!

P2.1 Given a random variable X with three possible outcomes t1, 2, 3u and
probability distribution fX “ pp1, p2, p3q, prove that p1 ď 1.

Hint: Use the Kolmogorov’s axioms and build a proof by contradiction.

P2.2 The probability of heads for a fair coin is p “ 1
2 . The probability of

getting heads n times in a row is given by the expression pn. What is the
probability of getting heads four times in a row?

P2.3 You have a biased coin that lands on heads with probability p, and
consequently lands on tails with probability p1´ pq. Suppose you want
to flip the coin until you get heads. Define the random variable N as

2.9 PROBABILITY PROBLEMS 242

the number of tosses required until the first heads outcome. What is the
probability mass function PNpnq for success on the nth toss? Confirm that
the formula is a valid probability distribution by showing

ř8
n“1 PNpnq “ 1.

Hint: Find the probabilities for cases n “ 1, 2, 3, . . . and look for a pattern.

P2.4 The probability mass function for the geometric distribution with
success probability p is fXpxq “ p1´ pqx´1 p, where X describes the number
of trials until the first success. Compute the expected value EXrXs.
Hint: The formula for the sum of the geometric series is

ř8
k“0 rk “ 1

1´r , and
taking its derivative with respect to r gives

ř8
k“0 krk´1 “ 1

p1´rq2 .

P2.5 A mathematician walks over to a roulette table in a casino. The roulette
wheel has 101 numbers: 50 are black, 50 are red, and the number zero is
green. If the mathematician bets $1 on black and the roulette ball stops on
a black number, the payout is $2, otherwise the bet is lost. Calculate the
expected gains from playing this game, and determine whether it’s worth
playing.

P2.6 Consider the following variation of the six-sided die game. You pay
$1 to play one round of the game and the payout for the game is as follows.
If you roll a , a , or a , you win nothing. If you roll a or a , you win
$1. If you roll a , you win $5. Should you play this game?

P2.7 Show that variance of a random variable X with distribution fX is
given by the formula varpXq “ ř

xPX x2 fXpxq ´ µ2
X .

Hint: Start from the definition varpXq ” EX
“pX´ µXq2

‰

and simplify it.

P2.8 Perform the simulation analysis (proportion of wrong decisions made
and or errors in CI intervals) if statistical test uses z scores instead of t
statistic, as a function of: (1) effect size (2) sample size (d.f.)

2.9.2 Discrete distributions problems

Intro/motivational text...
P2.1 Compute the variance of the random variable X „
Binompn, pq.
Hint: Use the relation to the sum of independent Bernoulli variables,
and use the variance properties for independent variables.

P2.2 Compute the variance of the random variable X „
Binomialpn, pq whose distribution is pXpkq “

`n
k
˘

pkp1 ´ pqn´k, for
k P t0, 1, . . . , nu.
Hint: Start from the formula σ2 “ ErX2s ´ ErXs2, then add and
subtract ErXs and rewrite as σ2 “ ErXpX´ 1qs `ErXs ´ErXs2.

P2.3 Consider the random variable X that describes the number
of events during the time interval r0, Ts which has length T. We
assume, a priori, that the number of successes per unit length has an

2.9 PROBABILITY PROBLEMS 243

average of r so the expected value of successes over the time period
of length T is ErXs “ rT, which we’ll give a new name λ.

Show that gives the Poisson distributoin.

P2.4 Compute the variance of the random variable X „
Geometricppq with probability mass function pXpkq “ p1´ pqk´1 p,
for k P t1, 2, . . .u.
Hint: Start from the formula σ2 “ ErX2s ´ErXs2.

P2.5 TODO: Replace k P r... to x P 0...;
Compute the variance of X „ NegativeBinomialpr, pq whose

distribution is pXpkq “
`k´1

r´1

˘p1´ pqk´r pr, for k P tr, r` 1, r` 2, . . .u.
Hint: Use the formula σ2 “ ErXpX´ 1qs `ErXs ´ErXs2 as in P2.2.

P2.6 Replace k with x
Replace n with a` b
Replace K with a
Replace N with n

Compute the variance of the random variable X „
Hypergeometricpn, K, Nq with probability mass function fXpkq “
pKkqpN´K

n´k q
pN

nq
, for

Hint: Use the formula σ2 “ ErX2s ´ErXs2.

P2.7 Compute the variance of the random variable X „ Poissonpλq
with probability mass function pXpkq “ pλqke´λ

k! , for k P t0, 1, 2, . . .u.
Hint: Use the formula σ2 “ ErXpX´ 1qs `ErXs ´ErXs2.

P2.8 Suppose Z “ řn
i“1 aiZi is a linear combination of indepen-

dent random variables each having means µi. Show that ErZs “
ř

i“1 aiErZis and VrZs “ řn
i“1 a2

i VrZis.

2.9.3 Continuous distributions problems

P2.1 Calculate the variance of the uniform distribution Upα, βq.

Appendix A

Answers and solutions

Chapter 1 solutions

Answers to exercises
E1.3 4245. E1.13 Mean “ 8.9, Min “ 5.21, Max “ 12.0. E1.14 Q1 “ 7.76,
Med “ 8.69, Q3 “ 10.35. E1.15 The frequencies within the bins are 2, 6, 5,
and 2. E1.18 Freqpdebateq “ 8, Freqplectureq “ 7, RelFreqpdebateq “ 0.53,
RelFreqplectureq “ 0.47. E1.19 The mode is debate with frequency 8.

Solutions to selected exercises
E1.6 Load the data using pd.read_csv then call the .melt() method.

code
A.0.1

>>> df = pd.read_csv("../ datasets/exercises/grades.csv")
>>> df.melt(id_vars =["student_ID"],

var_name="test",
value_name="grade")

E1.13 We first use effort = students["effort"] to extract the effort variable, then
compute the answer using effort.mean(), effort.min(), and effort.max().
E1.14 Extract the effort variable effort = students["effort"] then compute
effort.quantile(q=0.25), effort.median(), effort.quantile(q=0.75).
E1.15 Run effort.value_counts(bins=bins).sort_index() where bins =
[5,7,9,11,13].
E1.16 Create the scatter plot by making a data frame then calling sns.scatterplot:

code
A.0.2

>>> df = pd.DataFrame ([(2,2), (3,3), (4,3), (5,5),
(6,4), (5,4), (7,6), (8,5)],

columns =["x", "y"])
>>> sns.scatterplot(x="x", y="y", data=df)

E1.17 Use sns.countplot(x="curriculum",data=students) to draw a bar chart.
E1.18 Use students["curriculum"].value_counts() to obtain the frequencies of
the curriculum variable. Add the keyword argument normalize=True to obtain the
relative frequencies.
E1.19 Call students["curriculum"].describe() to get all the info, and observe the
top value is debate and its frequency is 8.

244

Appendix C

Python tutorial

The tutorial is being developed as an interactive notebook. See link
below for a preview.

https://nobsstats.com/tutorials/python_tutorial.html

245

https://nobsstats.com/tutorials/python_tutorial.html

	Probability
	Discrete random variables
	Definitions
	Cumulative distribution functions
	Expected value calculations
	Computer models for random variables
	Hard disks example
	Discussion

	Multiple random variables
	Definitions
	Joint probability distributions
	Conditional probability distributions
	Probability formulas and rules
	Independent random variables
	Discussion

	Inventory of discrete distributions
	Math prerequisites
	Review of definitions and formulas
	Review of computer models
	Discrete distributions reference
	Modelling real-world data
	Discussion

	Calculus prerequisites
	Definitions
	Sets and intervals
	Functions
	Integrals as area calculations
	Integrals as functions
	Computing integrals numerically using SciPy
	Computing integrals symbolically with SymPy
	Other calculus topics

	Continuous random variables
	Definitions
	Cumulative distribution function
	Calculating expectations
	Computer models for random variables
	Kombucha volume example
	Multiple continuous random variables
	Discussion

	Inventory of continuous distributions
	Math prerequisites
	Continuous distributions reference
	Modelling real-world data
	Discussion
	Exercises

	Random variable generation
	Definitions
	Why simulate?
	Random variable generation using a computer
	Empirical distribution of a data sample
	Measuring data–model fit
	Bootstrap sample generation
	Discussion

	Probability models for random samples
	Definitions
	Sample statistics
	Sampling distributions of statistics
	Central limit theorem
	Discussion

	Probability problems
	Simple probability problems
	Discrete distributions problems
	Continuous distributions problems

	Answers and solutions
	Python tutorial

