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In order to apply statistical procedures correctly you need to un-
derstand the probabilistic models used in them. Different stats pro-
cedures make different probability assumptions about how the data
was generated and you need to learn some probability theory in or-
der to understand these assumptions. Statistical procedures are like
computer programs that work on different types of input files. It
doesn’t make sense to try to open a text file with a video editing pro-
gram. Even if you somehow trick the program into opening the file,
you can’t expect a correct output will result since the video program
only works correctly for video data. Similarly, it doesn’t make sense
to apply a stats procedure to experimental data that doesn’t fit the
statistical assumptions of that procedure.

It’s not enough to follow a statistical procedure’s steps like the
steps of a recipe. Without understanding the assumptions you might
pick the wrong stats procedure and come to invalid conclusions, like
what happens when you open a text file with a video editing pro-
gram. Unlike computer programs that will refuse to open files that
they are not designed to process, statistical procedures won’t “com-
plain” if you use them the wrong way. This task is on you. You must
learn probability theory so you can use stats correctly.

SEE https://ermongroup.github.io/cs228-notes/preliminaries/
probabilityreview/and https://github.com/ermongroup/cs228-notes/
blob/master/preliminaries/probabilityreview/index.md


https://ermongroup.github.io/cs228-notes/preliminaries/probabilityreview/
https://ermongroup.github.io/cs228-notes/preliminaries/probabilityreview/
https://github.com/ermongroup/cs228-notes/blob/master/preliminaries/probabilityreview/index.md
https://github.com/ermongroup/cs228-notes/blob/master/preliminaries/probabilityreview/index.md

Chapter 21

Introduction

Probability theory started when a bunch of mathematicians went to
the casino and tried to use their math skills to compute the chance of
winning at different games. Suppose someone offers you the chance
to play a dice game. The game costs $1 to play, and you win $5 if
you roll a { and you win nothing if you roll any other number. The
die is six-sided are fair, meaning that you have an equal chance of
rolling any of the six possible numbers {(), 3, (5, &3, &, £3}. Knowing
the chance for each outcome is simply %, you calculate your expected
gains like so:

$5 - probability of rolling a 8 = $5 - % = 83 cents.

Since the expected gains from this game are smaller than the cost
of playing, this game is not worth playing. You'd lose 17 cents per
game on average, so you might as well throw your money down the
drain—it would be just as efficient. Surprise-surprise: the expected
gains for playing casino games are always negative.

Though the early days of probability theory were concerned with
games of chance, this framework can be applied to any situation
where uncertainty plays a role including many real-world systems.
Probability theory is the foundation for both statistics and machine
learning, so our journey towards learning these subjects must start
with an introduction of the laws of probability theory.

21.1 Probability building blocks

In probability theory lingo, the roll of a fair die is a random phe-
nomenon because we can’t know the precise result in advance. We
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21.2 PROBABILITY MODELS 46

do know all the potential results, however, and we call these six pos-
sibilities {(J, 3, &, €3, ), @3} the sample space. Each element within a
sample space (e.g. () is called an outcome. When we talk about
the chance that any particular outcome will happen, we are talking
about probability. We represent probability with a number that’s be-
tween 0 (will almost never happen) and 1 (will almost surely hap-
pen). We denote the probability of an outcome with the notation
Pr(outcome), for example, Pr(3)= % = 0.167 = 16.7% means you've
got a 1 in 6 chance of rolling a two. The corresponding probabil-
ity for each of the six possible outcomes (%, 11 %, %, %) is called
the probability distribution. Notice that the total probability adds to
one. This sums-to-one characteristic is true for all probability distri-
butions, since we always distribute a “total amount of probability”
across the all possible outcomes in the sample space.

21.2 Probability models

We use the sample space and the probability distribution to define a
probability model. A probability model is a mathematical description
of a random phenomenon. In the case of a die, the probability model
looks like this:

outcome ©
probability %

o=
o)
o= 3
o=
o=

We can use this model to predict specific events. In probability
theory, an event is one or more outcomes. For example, the prob-
ability of the event in which you roll a () on the first game, then
a (J the second game is Pr((3J) - Pr(E3) = % . % = % = 2.7%. The
probability of losing the first game, then winning the second game is
Pr(0,0,E08) Pr@) = (3 +i+g+s+8) & =5 =138%.

Using math tools like summations and functions transformations,
we can build probability models that help us understand and make
predictions about all kinds of real-world situations. To illustrate this,
we’ll focus on a particular application: predicting the number of
hard disk failures in a data centre. We’ll model the number of hard
disk failures that occur during one year of operation as the variable
Z. We denote as {Z = k} the event “k hard disks failed in one year.”
We denote {a < Z < b} the event where the number of hard disk
failures is between a and b inclusively.

Because the number of hard disk failures is uncertain, Z is an
random variable. As a matter of convention we use uppercase letters
like Z to denote random variables, and lowercase letters like z to
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denote particular events. When you see the variable Z in an equation
you have to keep in mind this is a random variable that can take on
any value in the sample space {0,1,2,3,...}. On the other hand, if
you see the expression z = k, then we're referring to a particular
event which describes the occurrence of exactly k hard disks failing.

We will model the random variable Z with the Poisson distribution
(to be defined formally in Section ???). The probability distribution
of the Poisson model is controlled by a single parameter A, which
represents the rate at which errors occur on average. The Poisson
distribution with A = ¢ tells us ¢ hard disks will fail on average, and
it also allows us to estimate the probability of {Z = c + 1} failures,
and in fact any other outcome {Z = k}.

Figure 21.1 shows a schematic diagram of the Poisson probabil-
ity model. The Poisson probability distribution is controlled by the
parameter A and produces the random variable Z.

Poisson
A—=

€ Rt
€ {0,1,2,...}

Figure 21.1: Graphical representation the Poisson model for the random
variable Z distributed according to the Poisson probability distribution with
parameter A.

At the core of every probabilistic model is some probability distri-
bution function that describes the probabilities for all possible out-
comes. The probability distribution of the Poisson model is defined
by the equation

Aee—=A
fz(k) = T forke {0,1,2,3,...}.

The probability of the event {Z = k} is given by the k' value the
probability mass function f7:

Pr({Z = k}) = f(k), forke {0,1,2,3,...}.
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Figure 21.2: Graphical representation the Poisson model for the random
variable Z with parameter A = 20. We see the average number of hard disk
failures is 20 but we outcomes from 15 to 25 have significant probability of
occurring. Even extreme outcomes like 10 and 30 can be expected to occur.

Figure 21.2 illustrates the variability of possible outcomes we can ex-
pect to occur for an poisson model with parameter A = 20 (twenty
hard disk failures on average). A probabilistic model for the number
of hard disk failures allow us to better describe the number of failures
that might occur, as compared to just knowing the average A = 20.
It’s true that the average number of failures is 20, but we also see that
there is significant probability of observing more-that-average num-
ber failures like {Z = 25} and {Z = 30}. The Poisson model allows
us to calculate the probabilities of all possible outcomes, including
really bad cases like {Z > 30}, which describes the case where 30 or
more failures occur. Knowing these probabilities can help you plan
a robust backup strategy for the data centre that includes worst-case
scenarios, rather than just planning for the average-case scenario.

21.3 Applications

In this book we want to focus on applications of probability the-
ory to statistics and machine learning. Probability theory has appli-
cations to countless areas like information theory, communications,
randomized algorithms in computer science, physics, chemistry, bi-
ology, politics, cat memes, etc. To cover all these topics and keep the
book a reasonable size would be impossible (Pr = 0). So we'll only
mention these other applications in passing and instead focus on the
topics that are direct prerequisites for understanding statistics and
machine learning topics.
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21.3.1 Statistical models

Statisticians use probability models to characterize the statistics of
data samples taken from large populations. Given a sample of 1 ob-
served values from a population and an assumed probability model
for the population, statistical reasoning allows us to estimate the
population parameters. The process of statistical inference consists
of “reverse engineering” the probabilistic generative process. In-
stead of generating random numbers from a probability distribution
with some known parameters, we start from some observed data and
have to produce a “guess” for the unknown model parameters. Cru-
cially to the statistics endeavour, every estimate of a population pa-
rameter that we compute comes with an estimate of its accuracy. You
can think of statistics a bit like an “educated guessing” strategy: you
state your guess estimate but also specify a confidence interval for your
estimate.

To illustrate the notion of statistical inference, let’s consider a
real-world scenario that makes use of the Poisson model we intro-
duced above. Suppose you're a hard disk manufacturer and you
want to estimate the average failure rate A for the hard drives you
produce. You have collected sample data from 7 identical data cen-
tres {z1,z2,...,2n}. Each z; is assumed to be an independent obser-
vation for the number of hard disk failures generated by the model
shown in Figure 21.3. Your job is to compute an estimate A (esti-
mates are denoted with a hat on top) for the average error rate and
also quantify the variance of your estimate s3. Note what's going
on here—we assumed the Poisson model is true and produce an es-
timate A based on this assumption. Note the difference between A
and A. The parameter A is an abstract quantity of the underlying
math model, and we can never compute its value. We simply as-
sume the parameter A exists since we’re using the Poisson model. In
contrast, the estimate A is a real quantity computed from the sample
A= e({z1,22,...,2u}), for some function g. If ¢ is a good estimator
function then A ~ A, but it’s not like A actually exists. It’s just a vari-
able in a math model that we assumed to be true. Statisticians often
identify the parameters of the math models they use with the pa-
rameters of the entire population. In that context, you can think of A
as the parameter estimate you would obtain from an infinitely large
sample that includes the whole population, A = g({z1, 22,23, .. .}).
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Poisson
A —B——p

Figure 21.3: A statistical model for the number of hard disk failures. We
assume the value z is observed (shown as filled in circle), while the model
parameter A is unknown. Using statistics computed from 7 independent
draws from this model {z1, z, . . ., 2z, }, we can compute an estimate A and an
estimate of the variance s%\. These estimates can help us make better business
decisions.

As a business owner, knowing an estimate of the failure rate A for
the hard drives you produce can help you answer business ques-
tions. How many years of warranty should you offer? What is the
estimated cost of replacements under this warranty program? How
does the failure rate of hard disks produced by factory one compare
with the failure rate of hard disks produced by factory two? Further-
more, knowing the variability of the estimates can help you plan for
best case and worst case scenarios, not just the average case.

Statistics is a field of study with more than three hundred years
of history. Generations of statisticians have developed various tech-
niques for estimating population parameters based on samples, and
computing confidence intervals. It would be vastly optimistic to
think that any single book could summarize all these techniques, so
the goal of this book is to introduce only the fundamental concepts
like estimators, hypothesis testing, and sampling distributions. This is
what we’ll do in PART III of this book.

21.3.2 Machine learning models

Let’s continue with the same running example to describe what a
machine learning model for hard disk failure rates could look like.
Suppose you're the operator responsible for running your company’s
data centres. You're interested in the hard disk failure rates in order
to plan a redundant data storage strategy that is robust to individual
hard disk failures. You have at your disposal historical data of op-
erations from various data centres. The dataset contains information
about the workload, operating temperature, hard disk manufacturer,
and the resulting number of failures that occurred.

Instead of using a basic model with a single constant parameter
A (the average failure rate), you want to leverage your data to build
a rich model that captures how the failure rate depends on the vari-
ables workload w (measured as number of reads and writes), tem-
perature t (measured in degrees), and manufacturer m (a categorical
variable). Such a machine learning model can be useful for mak-
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ing business decisions like preferring to buy disks from one manu-
facturer over another because they produce more reliable disks, or
setting the temperature in your data centre to reduce error rates.

Figure 21.4 shows a schematic for a machine learning model for
this situation. The variables denoted with filled in circles represent
observed quantities. Instead of treating the error rate A as a constant
parameter, the machine learning model treats A as an unknown ran-
dom variable that depends on the workload, temperature, and de-
vice manufacturer. Note this is a composite model that combines a
ReliabilityModel and the Poisson model that we previously dis-
cussed.

ReliabilityModel

Poisson
—>

Figure 21.4: A machine learning model for predicting the number of hard
disk failures z as a function of different operating conditions like workload
w and temperature ¢, and hard disk manufacturer m.

As a data centre operator, the machine learning model allows you
to simulate hypothetical situations. What will happen to the failure
rates if we buy more discs from manufacturer A instead of manufac-
turer B? How much more failures can we expect if we operate the
data centres at higher temperature?

In order to obtain this machine learning model, you will usually
start from a data set of past observations from different data centres:

data = [(wy,t1,m1, 21),

(ZUZ, tr, mp, Z2)/

(wn/ ty, my, Zn)]-

Based on these data, you can train the machine learning model to
predict the relationship between the operating conditions (w, t, m)
and failure rates z. This is why it’s called machine learning, since the
goal is to learn the model parameters from past observations.
Machine learning as a field has grown rapidly over the last 50
years, and just like statistics, there are a lot of machine learning tech-
niques you can learn about. The focus of the machine learning topics



21.4 OVERVIEW OF PROBABILITY CHAPTERS 52

we'll discuss in PART IV of this book is on topics directly related to
statistics. If you know probability and statistics there are some ma-
chine learning topics that require very little additional effort for you
to learn. In other words, if you already “own” statistics, the machine
learning expansion pack in PART IV of the book is “free” in terms of
mental effort.

21.4 Overview of probability chapters

In Chapter 22 we’ll delve into the core ideas of probability theory.
We don’t need to go too far into the math at first, and focus on defi-
nition the new concepts and general principles used for probabilistic
thinking.

We'll follow this up with a condensed chapter of math prerequi-
sites topics. To be frank with you, dear readers, there is no proba-
bility theory without math and equations. So no matter how much
we as authors try to “simplify” things for you using words and dia-
grams, in the end of the day you'll need to learn how to handle equa-
tions and formulas if you want to truly understand what’s going on.
In Chapter ?? we'll review concepts from set, functions, calculus, and
combinatorics, which are needed for understanding probability the-
ory and statistics.

In Chapter 23 we’ll discuss discrete random variables and Chap-
ter 24 we’ll discuss continuous random variables Together these chap-
ters will give you an inventory of probability distributions that you
can use to build mathematical models for describing random phe-
nomena in later chapters.

In Chapter ???? we’ll describe how to use computers to simulate
the generative process of any random variable and product random
numbers from the appropriate distribution.

Finally we conclude with Chapter ?? which contains extra topics
in probability theory. Probability theory is such a vast topics that it
would take forever to cover all aspects, so the best w can do is give
you some pointers to areas of interest.



Chapter 22

Probability theory

In this chapter we’ll introduce the fundamental ideas of probability
theory that you need to know for statistics and machine learning.
We'll define precisely the basic building blocks like random vari-
ables, probability distributions, and expectations.

There are two types of random variables that we’ll study in this
book: discrete random variables and continuous random variables.
Because of the different nature of the underlying samples spaces, dif-
ferent “math machinery” is used for computing probabilities and ex-
pectations. In order to keep this chapter concise, we’ll give all the
probability theory definitions and formulas using the math machin-
ery for discrete random variables. Rest assured, the same results also
apply to continuous random variables by changing summations to
integrations. We defer the detailed discussion on continuous random
variables and continuous probability distributions until Chapter 24.

22.1 Definitions

Let’s first establish the notation and terminology for the math objects
used in probability theory. Pay attention because we’ll be introduc-
ing a lot of new concepts and things will go quickly. Probability the-
ory is like a new language you have to learn in order to understand
stats and machine learning.

22.1.1 Random variables

Random variables are the main building blocks of probability the-
ory. A random variable X is associated with with a probability dis-
tribution fx that describes the probabilities of the different possible
outcomes of a random phenomenon.
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o X the sample space is the set of possible values for the random
variable X.

e X: arandom variable. We use capital letters to denote random
variables.

e x: a particular value of the random variable X. We use lower-
case letters to denote specific outcomes.

The sample space of the random variable X, denoted X, is the set
of all possible outcomes of the random variable. For example, we
can describe the random phenomenon of rolling a six-sided die us-
ing the random variable X € X, where the sample space is X' =
{8,606, 6, 6}. We can describe the coin toss as a random vari-
able Y € ), where the sample space is J = {heads, tails}. In order
to do probability calculations, we assign a value to each outcome. In
the case of the die, X = {1,2,3,4,5,6}, and in the case of the coin,
Y ={0,1}.

22.1.2 Probability mass function

In all the random phenomena we’ve described so far—rolling a dice,
flipping a coin—the possible outcomes are discrete. We can describe
the probability distribution of a discrete scenario using a probability
mass function. The probability mass function fx tells us the probabil-
ity of each outcome of the random variable X. If you know fx you
can compute the probability of all possible random outcomes and
events of X.

Figure 22.1: Illustration of the probability mass function fx for some random
variable X. The height of each column tells us the probability of this outcome
occurring. The area highlighted in the left half of the figure shows the proba-
bility of the event {3 < X < 4}, which is the sum of all values fx(x) for which
x satisfies the conditions of the event: Pr({3 < X <4}) = fx(3) + fx(4).

o fx: X — IR: the probability mass function, or pmf, of a discrete
random variable X tells us the probability of each of the possi-
ble outcomes:

fx(x) =Pr({X = x}), forallx e X.
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The function is non-negative: fx(x) = 0 for all x € X'. The total
amount of probability is one ). .y fx(x) = 1.

b
e Pr({fa < X <b}) = Z fx(x): the probability of the event in
X=a

which the random variable X takes on any value between a and
b, inclusively. This is calculated by taking the sum the proba-
bilities for all outcomes within and including a and b.

o Fx(x) = Pr({X < x}): the cumulative probability distribution of
the random variable X, describes the probability of random
variable being smaller than x. You can use Fx to compute
the probability of X being between a and b using subtraction:
Pr({a < X < b}) = Fx(b) — Fx(a —1). The cumulative distribu-
tion function is oftern abbreviated as the cdf or CDF.

The probability mass function of a random throw of a six-sided die
has the form fx : x - R, x € {1,2,3,4,5,6} and its values are

Written compactly, we could say fx(x) = %, forall x € {1,2,3,4,5,6}.

The probability distribution of the six-sided die can also be de-
noted DiscreteUniform(1,6). It is an instance of the general model
for discrete uniform distributions, denoted DiscreteUniform(a,b),
which assign equal probabilities to all integers between a and b: {a,a +
1l,a+2,...,b}.

The probability distribution for the coin toss has the form fy :
{0,1} — R and its values are

fr0)=3 and  fy(1) =

where 0 is heads and 1 is tails. The coin toss random variable can
also be denoted fy = Bernoulli(}) and is an instance of the gen-
eral model of Bernoulli random variable Bernoulli(p), which as-
signs probability p to success and probability 1 — p for failure of some
event.

Note the sum of the values for both probability distributions fx
and fy sum to one, which is the normalization convention used through-
out probability theory—we assume the total probability is one, and
represent probabilities of different events as fractions of this total.
For example, the probability of rolling a number between 3 and 5 is

4

NI—
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given by

x=3
= fx(3) + fx(4) + fx(5)
SRS

Note the probability distribution of the composite event {3 < X < 5}
was computed by summing the probabilities of the individual out-
comes that make up this event.

Here is a list of common discrete probability distributions:

DiscreteUniform(a,b) variables assign equal probabilities to
the integers between the a and b, inclusively.

Bernoulli(p) variables that describe a coin toss with outcomes
Oorl.

Binomial(#n, p) distribution that describes the number of suc-
cesses in n repeated Bernoulli trials.

Geometric(p) describes the waiting time until the first success
in a series of Bernoulli trials.

NegativeBinomial(r, p) is a generalization of a geometric dis-
tribution where we wait to obtain r successes.
Hypergeometric(N, n, K) describes the number of successes that
will be observed when sampling n balls without replacement
from a bucket that contains a total of N balls of which K balls
are labelled “success” and the remaining N — K balls are la-
beled as “failure.”

Poisson(A) models the number of times an event occurs in

some interval, given that the average number of occurrences
is A.

We'll describe each of these distributions and provide further details
about their properties and applications in Section 23.1.

22.1.3 Expectations

Even if the outcomes of the random variable X are uncertain, we can
compute various quantities that describe the outcomes of X, on aver-
age. The expectation operator computes expected values of quantities
that depend on X and takes into account the probability of every
possible outcome.

[Ex: the expectation operator with respect random variable X.
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o Ex[g(X)]: the expected value of the quantity ¢(X) that de-
pends on the random variable X.

o 1ix = Ex[X]: the mean or expected value of X

e Ex[X?]: the expectation of the quantity X2. This quantity is
also known as the second moment of X around the origin.

e 0% = V[X] = Ex[(X — u)?]: the variance of X, also denoted
var(X). The variance is the second moment of X computed
around the mean.

Consider a function g : X — R that assigns values to each of the
possible outcomes of a random variable X. You can think of g as the
payout function in a game of chance based on the random variable
X. You obtain g(x) dollars when the outcome of X is x. The expected
value of the function g(X) is computed as follows:

Ex[g(X)] = Y g(x)fx(x)
xekX
Note the formula weights the value of each g(x) by the probability
of the outcome x, hence the name expected value—the value of g(X)
will take on different values depending on the random variable X,
but Ex[g(X)] tells us the expected value of g on average, under the
randomness encoded in X.

Example Consider the following game involving a six-sided die.
You pay $1 to roll the die and the payout for the game is as follows.
If yourolla (3, a3, a @, or a£J, you win nothing. If you roll a &, you
win $1. If you roll a {3, you win $4. Should you play this game?

The payout function for this game is defined as follows:

@) =¢g(@) =g(@) =g(@) =$0, gE) =91 g(E) =34
We'll model the die roll as a random variable X with distribution

fx(x) = %, for all x € {(5,3,(, &), &), E3}. The expected gains from
this game are

Ex[g(X)] = X, 8(x) fx(x)
=3 +8O)t + @)1 + 3@ +8E) + (@)L
= ($0)¢ + ($0) ¢ + ($0)¢ + ($0)§ + ($1)§ + ($4)¢

— Lg“ = %5 ~ 83 cents.

The expected gains of this game is less than the cost of playing, so it
doesn’t make sense to play.

Computing expectations is crucial for many applications in statis-
tics and machine learning. The function g(X) could represent any
quantity of interest in a particular situation. Two important quanti-
ties of interest for any random variable are its mean and its variance.
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22.1.4 Mean and variance

The mean and the variance are two properties of any random variable
X that capture important aspects of its behaviour.

We compute the mean of the random variable X is the expected
value of the variable itself:

nx =EBx[X] =), x fx(x).
X
The mean is a single number that tells us what value of X we can
expect to obtain on average from the random variable X. The mean
is also called the average or the expected value of the random variable
X. The mean gives us an indication the centre of the probability dis-
tribution.
The variance of the random variable X is defined as follows:

0% = Ex[(X — px)?] = ), (x — ux)* fx(x).

X

The variance formula computes the expectation of the squared dis-
tance of the random variable X from its expected value, and gives
us an indication of how clustered or spread the values of X are. A
small variance indicates the outcomes of X are tightly clustered near
the expected value yx, while a large variance indicates the outcomes
of X are widely spread. The variance 0% is also denoted var(X) or
V[X]. The square root of the variance is called the standard deviation:

ox =1/0%.

Please take a look a the above formulas and memorize them, be-
cause from now on we’ll use concepts of yx and 0% a lot, and it’s
important for you to know the calculations that these quantities re-
fer to.

The mean and the variance are two properties of any random vari-
able X that capture two important aspects of its behaviour and will
be used throughout the entire book. Readers familiar with concepts
from physics can think of the mean as the centre of mass of the distri-
bution, and the variance as the moment of inertia of the distribution.

Expectation formulas

Consider the new random variable Z = mX + b that is defined as the
transformation of another random variable X with sample space X
and probability mass function fx. The random variable Z describe
the same underlying random events as the random variable X, but
assign different values to the outcomes. The random variable Z
describes an affine transformation (multiplication by a constant scaling
factor m and addition of a constant offset b).
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The mean and variance of the variables Z are related to the mean
and variance of X.

Hz =mux+b and 0% = mo%.
The mean is transformed exactly like the values of the random vari-
able, while the variance “ignores” the constant offset b.
To get a better feeling of the properties of expectation operator
consider the following general rules that apply for all expectation
calculations:

o The expected value of a constant is the constant itself:
Elc] =c.
o Expectation of mX is m times the expected value of X:
E[mX] = mE[X]

o The expected value of a sum of two variables is the sum of their
expectations:
E[X +Y] = E[X] + E[Y]

e The variance of the variable X + b the same as variance of the
variable X:
var(X + b) = var(X).

e The variance of the variable mX is m? times the variance of the
variable X:
var(mX) = m? var(X).

e The variance can be obtained by computing the second mo-
ment of X around the origin IE[X?] and subtracting the mean
squared:

0% = E[(X — ux)’] = E[X?] — p%.
Readers familiar with mechanics will recognize this is an in-

stance of the parallel axis theorem for computing the moment of
inertia of objects.

Additionally, there are two important formulas that apply for two
independent variables X and Y. The expected value of their product
is the product of their expectations:

E[XY] = E[X] - E[Y],

and the variance of the sum of the two variables is the sum of the
individual variances

var(X +Y) = var(X) + var(Y).
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22.2 Explanations

If you're reading this, it means you “survived” your first exposure
to math equations and computer code. That’s good news, because
there is a lot of math equations and algorithmic thinking coming up
in the book.

So far in this chapters, we defined all the key concepts and gave
some general examples about how probabilistic models are can be
useful. The opted for a rushed presentations in order to introduce
you to all the “moving pieces,” without taking too long. Now that
we’re done with the whirlwind overview, let’s take the time to pro-
vide some additional explanations and behind-the-scenes commen-
tary.

22.2.1 Random events

For pedagogical purposes, we started the discussion of probability
theory with random variables and skipped the notion of random
events. It's now time to repay this “theory debt” and take a mo-
ment to dig into the math a little. Specifically, we’ll take a look at the
underlying representation for random events as subsets of a sample
space (). The sample space () consists of all possible outcomes of a
random phenomenon. An event E is a subset of the sample space.
You can think of an event as one or more outcomes. Events are de-
fined using a word description {descr}, a math equation {g(X) > c},
or in terms of set operation like union, intersection, subtraction, and
negation.

o (): a sample space that describes all the possible outcomes of a
random experiment.

o {descr}: a random event described by the conditions “descr”
Pr({descr}): the probability of the random event “{descr}”

o (J: the empty set denotes a set that contains no elements.
e X: arandom variable is a function X : Q) — X.

The set () is called the sample space and contains all possible outcomes
of the random event. For example, the case of a random dice throw
the sample space is Q) = {3, 0, 9, &3, &, 3}, and the sample space for
a toss is () = {heads, tails}.

22.2.2 Probabilities

The notation Pr(A) describes the probability of event A for some
random phenomenon. For example, the probabilities of a fair coin
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toss are Pr({heads}) = % and Pr({tails}) = 3. For a six-sided

die, the probabilities for different outcomes are Pr({(J}) = % and

Pr({3,69}) = % For simple random events like coin tosses and a dice

throws, it is not necessary to invoke the mathematical machinery of
random variables and their associated probability distributions since
we can compute probabilities directly. A coin toss has two possi-
ble outcomes. If the coin is fair, each outcome is equally likely so
the probabilities are % each. There are six possible outcomes for six
sided die, and if the die is fair the probability of each outcome is %.
The probability of the outcome being either (] or (J is defined as the
event A = {(J,}, and the probability of event A is computed by
comparing the size of the set |A| to the size of the sample space |()|:
_ 4] G, ) 2_1
PO =D =0 " mooaam 6 3

Instead of studying specific examples of change occurrences like a
coin toss or the throw of a die, we can think about the general prin-
ciples that apply to all random phenomena.

22.2.3 Rules of probability theory

Consider the random phenomenon with sample space (). The prob-
ability function Pr assigns probabilities to all possible outcomes of
the random experiment. A random event A is defined as a subset of
the sample space A < (). The probability of the event is defined as

Pr(A) = probability of random outcome falling in the set A.

The number Pr(A) tells us the “probability weight” of the outcomes
in the set A, relative to the weights of other outcomes.
All probabilities satisfy the following conditions:

Axiom 1: Probabilities are always nonnegative numbers:

0 < Pr(A), forall Ac Q.

Axiom 2: The probability of the whole sample space is one:
Pr(Q)) =1.

The sample space () is the set of all possible outcomes and it
contains a total probability weight of one.

Axiom 3: The probability of the union of disjoint events By, By, B3, . . .,
is given by the sum of the probabilities of the individual events:

Pr( G Bi> = gPr(Bi).

i=1
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Taken together, these three conditions are known as the Kolmogorov
axioms of probability. Note there is nothing particularly profound
about the first two axioms—we simply want to establish the general
rules of the game for representing probabilities. We use nonnegative
numbers to describe the “weights” to the different outcomes, and
establish a convention that the “total amount of probability” is one.
The third axiom describes the additive structure of probability the-
ory, which tells us how to compute probabilities of composite events.
Consider for example two disjoint events By and B, (B1 n By = ).
The set By u By describes the event when the result is either one of
the outcomes of set By or one of the outcomes of set B. The prob-
ability of this event is given by the sum of the probabilities of the
individual events Pr(B; u B;) = Pr(By) + Pr(B3).

All concepts, rules, and equations of probability theory follow
from these three basic assumptions. Assume that A and B are events
of a random experiment with sample space (). Each event is a subset
of the sample space A < () and B < ). We'll now describe some
general rules for computing probabilities that are a consequence of
the set operations that implement them “under the hood.”

e For any event A, the complement of A is denoted A°, and de-
scribes the event that A does not happen:

AC = O\ A.

By definition, either A or A° will happenso A U A® = Q). Ap-
plying the third axiom we know

Pr(A°) =1—Pr(A).

The probability of the complement A€ is equal to one minus the
probability of event A.

e The probability of the empty set is zero:
Pr(g) = 0.
o Larger events have larger probabilities. Consider B < A, then
Pr(B) < Pr(A).

If B is a subset A, then the probability of B must be less than or
equal to the probability of A.

e Probabilities are numbers between 0 and 1:

0<Pr(A) <1, forall AcQ.



22.2 EXPLANATIONS 63

o The logical OR of the two events corresponding to the outcomes
that are either in set A or in set B, which is the union of the two
sets A U B. The probability of the event A U B is given by

Pr(A v B) = Pr(A) + Pr(B) — Pr(A n B).

The idea behind this formula is to avoid “double counting” the
probability of the set A n B, which is included on both Pr(A)
and Pr(B).

Two events E and F are called mutually exclusive if E N F = (.
The probability of their union of such events is equal to the sum
of the probabilities: Pr(E u F) = Pr(E) + Pr(F).

o The logical AND of the two events corresponds to the intersec-
tion of the two sets Pr(A n B). Two events are mutually exclusive
ifAnB=.

e For any event A and a sequence of mutually exclusive events
Bi, By, ..., B, then

Pr(A) =Pr(AnBy) +Pr(An By)+ -+ Pr(An By).

e Two events are called independent if Pr(A n B) = Pr(A)Pr(B).

22.24 Conditional probabilities

The conditional probability of event B given the output of the random
event A has occurred is denoted by Pr(B|A) and computed as

Pr(A n B)

Pr(BJ|A) = Pr(A)

This formula computes the “weight” of the event B given that the
event A has occurred.
For every event A with probability Pr(A) > 0, we have

1. Pr(B|A) = 0, for all events B < Q).
2. Pr(QJA) = 1

3. Given disjoint sets By, By, . . . the union of the conditional prob-
ability of these events is given by the sum of the individual
conditional probabilities: Pr(| JZ; Bi|A) = 372, Pr(B;|A).

Note these three properties are identical to the Kolmogorov’s axioms,
but this time we’ve restricted (conditioned) the events on subsets of
events that overlap with the event A.

For any events A, B, and C with Pr(A) > 0, the following proba-
bility rules apply:
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Pr(B°|A) =1—Pr(B|A)

If B < C then Pr(B|A) < Pr(C|A).

Pr(Bu C|A) = Pr(B|A) + Pr(C|A) — Pr(B n C|A).

Observe that A n B and A° n B form mutually exclusive events
and that B = (A n B) u (A° n B). The probability of event B
can therefore be written as two parts:

Pr(B) =Pr(AnB)  + Pr(A°nB)
= Pr(B|A)Pr(A) + Pr(B|A")Pr(A°)

The first term corresponds to the probability of event B occurs
with event A, while the second term computes the probability
of the event B and event NOT-A, denoted A°€.

e The probability of the event A n B can be computed from the
conditional probability distribution:

Pr(A n B) = Pr(B|A) - Pr(A).
More generally

Pr(AnBnC) =Pr(C|AnB)-Pr(B|A)-Pr(A).

The ability to decompose a complex event A n B n C as a sequence
of products is important for computing probabilities of random ex-
periments that have a sequential structure.

22.2.,5 Independent events

We say that the two random events are independent if knowledge
of one of them does not give information about the other. Inde-
pendence is very important concept to understand because it serves
as the basis of many complex calculations in probability theory and
statistics.

If the events A and B are independent then the following state-
ments are true

e Pr(A n B) = Pr(A)Pr(B)
e Pr(A|B) =Pr(A)
e Pr(B|A) = Pr(B)

Furthermore, if A and B are independent, then the complement
of the two events are also independent:

e A and Bf are independent
e A‘and B are independent
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e Afand B¢ are independent

For three events A, B, and C to be independent, the following
four conditions must be satisfied:

Pr(A n B) = Pr(A)Pr(B)
Pr(AnC) = Pr(A)Pr(C)
Pr(B n C) = Pr(B)Pr(C)
Pr(AnBnC) =Pr(A)Pr(B)Pr(C)

22.2.6 Bayes’ Theorem

A useful result that allows us to compute the conditional probability
Pr(A|B) in terms of Pr(B|A) or vice-versa is obtained by manipulat-
ing our previously developed formulae and expressed as

Pr(B|A)Pr(A)

Pr(A|B) = Pr(B)

Conversely we can also compute Pr(B|A) in terms of Pr(A|B),
Pr(B) and Pr(A):

Pr(A|B)Pr(B)

Pr(Bl4) = =5

TODO: Example medical test

A collection By, By, ..., By, is said to be exhaustive if the union of
its events is the sample space, in which case U"_; B; = Q). The events
are said to be mutually exclusive if B; n B; = &, for all i # j. A col-
lection of mutually exclusive and exhaustive events forms a partition
of O. If By, By, ..., B, are mutually exclusive and exhaustive events
and A is any event with Pr(A) > 0, then

_ Pr(A|By)Pr(By)
Pr(Bi|A) = ST Pr(A[Bo)Pr(By)’

TODO: EXAMPLE

Observe that rules of probability do not dictate how the proba-
bilities Pr are computed. The most common approach for describing
random events is through the use of random variables and their as-
sociated probability distributions.

22.2.7 Random variables and probability distributions

A random variable X is described by a probability distribution fx.
We denote by & (calligraphic X) the sample space of the random vari-
able X, which is the set of all possible outcomes of the random vari-
able. For example, we can describe the outcome of rolling a six-sided
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die using the random variable X € X, where the sample space is
X ={1,2,3,4,5,6}. The number of possible outcomes is six: | X'| = 6.
We use the capital letter X when referring to the random vari-
able, and the lowercase letter x to refer to particular outcomes of X.
In the standard terminology for probability theory, we refer to the
particular outcome x as a realization of the random variable X.

22.2.8 Probability mass function

A discrete random variable X € & is defined by a probability mass
function fx: X — R which tells us the probability of each of the
possible outcomes:

fx(x) =Pr({X = x}), forallx e X.

The probability functions is non-negative: fx(x) > 0 for all x € X.
The total amount of probability is one >,y fx(x) = 1. The abbrevi-
ation pmf is often used to refer to the probability mass function.

Using mathematical notation, we can describe the requirements
for a probability mass function fx as follows:

fx(x) =20,Vxe X and Z fx(x) =1.
xeX

The above conditions are a restatement of the Kolmogorov’s axioms
of probability applied to the probability mass function: the entries of
the probability mass function must be nonnegative numbers and the
sum of the entries must be one.

The probability mass function is used to compute the probability
of the random variable taking on a value in between a and b. The
probability of the event {a < X < b} is given by the expression:

x=b
Pr({a < X <b}) = > fx(¥) = fx(@) + fx(a+ 1)+ -+ fx(b).

This sum describes the probability of the random variable X taking
on one of the values between a and b, inclusively.
Cumulative probability distribution

The cumulative probability distribution of the random variable X de-
scribes the probability of random variable being smaller than x:

Fx(x) = Pr({X < x}).
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You can Fx to compute the probability of X being between a and b
using subtraction:

Pr({a < X < b}) = Fx(b) — Fx(a—1)

The cumulative distribution function is often abbreviated as the cdf
or CDF.
TODO: EXAMPLE

Inverse of the cumulative probability distribution

intervals
TODO: EXAMPLE

22.3 Multiple random variables

So far we discussed random variables in isolation, described by prob-
ability distribution, and showed calculate some of their summary
statistics. Many real-world scenarios require us to model multiple
random variables. In order to work with two random variables X
and Y, we can define a joint probability distribution fxy that describes
the probability of different outcomes of the two variables.

Consider the pair of random variables, defined in the sample
space X x ). We denote as {X = x,Y = y} the random event where
the variable X takes on value x and random variable Y is y. The joint
probability distribution is a function of the form fx: X x J — R, that
tells us the probability of each of the possible outcomes:

fxy(x,y) =Pr({X =x,Y =y}) forallxe XY andy e ).

Like all probability distributions, the joint probability distribution
has non-negative values, fxy(x,y) > 0 forall (x,y) € X x Y, and the
total amount of probability is one >}, yex <y fxy(x,¥) = 1.

o Fxy(x,y) = Pr({X < x,Y < y}): joint cumulative distribution

o fx(x) = Xyey fxy(x,y): the marginal distribution for the ran-
dom variable X.

o fy(y) = Yyex fxy(x,y): the marginal distribution for the ran-
dom variable Y.

e fxyy(xly) = Pr({X = x}[{Y = y}): the conditional distribution
of X given Y.

e fyx(ylx) = Pr({Y = y}[{X = x}): the conditional distribution
of Y given X.
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o fxy(x,y) = fx(x)fy(y): the probability distribution of two in-
dependent random variables. When X and Y are independent
random variables, their joint distribution consists of a product
of two independent distributions. The randomness of X does
not depend on the randomness of Y and vice versa.

e cov(X,Y) = E[XY] — E[X]E[Y]: the covariance of the random

variables X and Y
e oxy = % the correlation coefficient of the random vari-

ables X and Y is computed as the correlation of the two vari-
ables divided by the product of their standard deviations.

The joint probability distribution fxy is our main tool for modelling
relationships between two random variables X and Y. By choosing
the appropriate function fxy, we can describe and model various re-
lationships between random variables. We can model cases when
one random variable depends on the other, cases when the random
variables are correlated, or the case when the variables are indepen-
dent.  The joint distribution when the random variables X and Y
are independent can be written as the product of two single-variable

distributions fxy(x,y) = fx(x)fy(y).

N

%

Figure 22.2: Graphical representation of a joint probability distribution fxy :
X x Y — R, where |X| = 14 and | Y| = 8. The darkness of each square (x, y)
represents is proportional to its mass.

The marginal distributions fx and fy are obtained from the joint
distribution fxy by summing over all possible values for the other
variable:

fx(x) =) fxy(xy) and  fr(y) = Y fxy(xy).

yey xeX

The idea for a marginal distribution fx is to get rid of the Y random-
ness by marginalizing it, which means summing over all its possible
values. The marginal distribution fx describes the randomness of X
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when we don’t know the value of Y. Similarly the marginal distribu-
tion fy describes the randomness of Y, ignoring the random variable
X.

Figure 22.3: Marginal distribution fx is obtained by summing all the values
of fxy in each column. Marginal distribution fy is obtained by summing all
the values of fxy in each row.

The marginal distributions are also used to define the conditional
distributions fx|y and fy|x:

Frely) = DD and fetale) = P,

The vertical bar is pronounced “given” and describes situations where
the realization of some random variables is known. For example, the
conditional distribution fy|x(y|xs) describes the probabilities of the
random variable Y, given we know the value of the random variable
X is x4. The distribution fy|x(y|x,) describes the separate case when
X = xp, and in general there is a different distribution for each of the
possible x € X.

R

frix(ylx = 11)

1 NN
>

ey =4)

Figure 22.4: Conditional distributions fy|x(y|x) represent different verti-
cal slices through the joint distribution. Similarly, conditional distributions
fx|y(x|y) are horizontal slices of the joint distribution.
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Independent, identically distributed variables

The analysis of samples consisting of multiple, independent draws
from a random variable is very important in probability theory and
in statistics. Consider some random variable X and a sample that
consists of # draws from the variable.

e X:arandom variable with probability distribution fx

o (X1,Xy,...,Xy): n draws from the random variable X. Each
draw represents an independent copy of the random variable
X with the same distribution, X; ~ fx.

o {x1,x2,...,xy}: a particular sample of size n.

The joint probability distribution for the # random variables is

fxaxp %, (X1, %2, %) = fx(x1) fx(x2) -+ - fx(xn).

Note the joint probability distribution is the product of n copies of
the probability distribution of the random variable X. We call this
an independent, identically distributed sample, or i.i.d. for short. This
product structure implies that the random variables are independent,
and each copy of X has the same distribution fx, hence the name.

Collecting and analyzing samples form distributions is an impor-
tant strategy for studying random variables. Observing a single in-
stance x; of a random variable X doesn’t tell us much since the vari-
able is random and can take on any value in the set X. However, if
we collect n independent observations all drawn from the same dis-
tribution, {x1, xp,...,x,}, we can start to see patterns in the random-
ness, compute statistics, and make inferences about the probability
distribution.

Correlated random variables

If X and Y are not independent, we can quantify the amount of cor-
relation between them using the covariance calculations

cov(X,Y) = E[XY] — E[X]E[Y],

which computes the expectation of the product XY and subtracts the

product of the individual random variables. Thus correlation coef-

ficient pxy = % computes the ratio of the correlation to the

product of the standard deviations of the two variables. The covari-
ance and correlation coefficient both provide indicators about an un-
derlying linear relationship between the random variables X and Y.
Recall that for independent random variables E[XY] = E[X]E[Y] so
the covariance and correlation coefficient will both be zero.
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22.4 Probability models

Throughout this book we’ll use random variables to describe various
situation in statistics and machine learning. The probability distribu-
tions mentioned above (Uniform, Binomial, Poisson, etc.) are exam-
ples of the basic building blocks of randomness that are available
to use when trying to model random scenarios. Different situations
call for different probability distributions, but there are some general
ideas apply to all probability models.

model: the probability model that describes the scenario.

6: the model parameters

X: the random variable produced by a probability model
{x1,x2,...,x,}: a sample of n observations from the model

0: an estimate of the model parameters, usually obtained from
a sample of observations.

model
o —w—(x)

Figure 22.5: Graphical representation for the probabilistic model model with
parameters 6, which describes how the random variable X is generated.

The model parameters 6 represents the control knobs for the proba-
bility model. Each probability model has different parameters that
control the distribution. For example, a Bernoulli trial (coin flip)
has a single parameter p, which represents the probability of suc-
cess (heads). Another example of a model parameter is the average
error rate A, which we used to build the Poisson model for the num-
ber of hard disk failures. Every probability model has a different
set of parameters, which are often denoted with lowercase letters of
the Greek alphabet. In this book, we use the symbol 6 to refer to
the model parameters “in general” without specifying a particular
choice of model.

22.4.1 Computer models for random variables

Once we know the probability distribution fx for a random vari-
able, we can compute the probability of any outcome and calculate
any statistical property of interest for that random variable. Com-
puters models can be very helpful for such statistical calculations.
Doing hands on calculations, plotting, and generating samples from
probability distributions are very useful to help you understand and
“own” the equations.
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Here are some things you can do using a computer model of a
random variable X:

e Obtain values of the probability mass function fx for every
possible outcome {X = k} and composite events {a < X < b}
using the summation fx(a) + fx(a+1) +--- + fx(b).

o Obtain values of the cumulative distribution Fx and compute
probability of the event {# < X < b} using the difference
Fx(b) — Fx(a —1).

e Compute values of the percent point function, which corre-
sponds to the inverse cumulative distribution Fy 1(g). Percentiles
and quartiles represent values of x for which some percentage
of the population is smaller. The first quartile x5 = Fy 1(0.25)
corresponds to the value of x where the cumulative distribu-
tion Fx equals 0.25. The second quartile is x50 = Fx(0.5) and
is equal to the median of the distribution: the value of x for
which half of probability mass fx is on the left and the other
half of fx is on the right. Percentiles are useful when we’re
interested in giving guarantees. For example we could give a
“worst case” scenario for the number of hard disk failure rates
we guarantee that that the number of hard disk failure rates
won't be exceeded this value 90% of the time.

e Compute a-confidence intervals I, for the outcomes of X. The
a-confidence interval is defined as I, = [P‘l(%),F_l(l -3
and contains (1 — &) of the probability mass of the function fx.
Confidence intervals are used to give two-sided guarantees for
the range outcome values that are likely to occur. The proba-
bility of observing a value outside of the confidence interval is
bounded by a: Pr({X ¢ I,}) < a.

o Compute the expectations of any function g(X) which depends
on the randomness of X.

o Compute properties of the random variable like the mean, me-
dian, mode, variance, standard deviation, and others.

o Generate random samples from the random variable. You can
ask the computer generate a random draw where the proba-
bility of each outcome is proportional to fx. Such computer-
generated samples can be useful for visualization and numeri-
cal simulation experiments.

The SciPy library provides the module scipy.stats.distributions,
which contains ready-made models for various probability distribu-
tions. Let’s illustrate some of the “features” of these computer mod-
els by working through a concrete example.
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Example

Suppose you're the operator of a data centre and you want to esti-
mate the number X of hard disk failures you can expect this month.
Using some numbers from the manufacturer’s data sheets and the
specifics of your data centre you know that y = 20 hard disk failures
will occur on average.

Sometimes knowing the average is not good enough for the type
of questions you need to answer. What is the probability of observ-
ing 21 hard disk failures? What is the probability of having 25 hard
disk failures or less? Can you give a range of outcomes that will
occur 95% time? This is the type of questions your colleagues are
interested in. The software engineering department needs to know
the probabilities of different events to design the redundant storage
system, and legal wants to know “worst case” scenarios in order to
know how to draft the service level agreement (SLA) documents.
The finance people are interested in estimating costs of replacement
disks, so they’re also asking you to give certain estimates.

All these requests for estimates are piling up in your inbox, but
despite your interest in data science topics you never seem to find the
time to do the probabilistic modelling exercise needed to answer the
questions because you're busy fixing the servers, managing network
capacity, and paying electricity bills. One day during a high-level
meeting, your colleagues decide to gang up on you and to complain
loudly about the lack of estimates, and put you on the spot in front
of everyone. You decide to get this done right then and there, and
tell everyone

“Relax, everyone, we can do this right now. I know Python.”

Everyone is immediately reassured.

You know the Poisson family of probability models is well suited
to describe the random number of hard disk failures in general. The
parameter 4 = A = 20 for the Poisson model describes your data
centre in particular, since the expected number of hard disk failures
for your data centre is y = Ex[X] = 20. You proceed to share your
screen so everyone can see, open a Python shell, and start typing

>>> from scipy.stats.distributions import poisson
>>> rv = poisson(mu=20)

The code above imports the poisson model from the SciPy package
scipy.stats.distributions and creates a instance of it called rv
with parameter 4 = A = 20. Before you proceed with the calcula-
tions, you want to review the names of the methods available on the
rv that you'll be using. You type in “rv.” then press TAB to see all
the methods available on that object. The most useful methods are
listed below.
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rv.pdf(k) = fx(k). Use this method to obtain the value of the
probability mass function fx (k) = Pr({X = k}).

rv.cdf (k) = Fx(k). Use this method to evaluate the cumulative
distribution function Fx (k) = Pr({X < k}), which corresponds
to the sum of the probabilities of events smaller than k. The
CDF is useful for answering questions about the probabilities
falling in any interval.

rv.ppf(q) = Fy Y(q). The percent point function corresponds
to the inverse of the CDF function. This function is needed
for inverse-probability questions like percentiles which corre-
spond to guarantee values that the random variable won't ex-
ceed 90%, 95%, or 99% of the time.

rv.interval(a) = [F1(§),F~1(1—%)]. Use this method to
compute two-sided confidence intervals.

rv.rvs(size=n). This method is useful for generating instances
of the random variable. Calling rv.rvs(size=1) will return
an instance of the random variable. Calling rv.rvs(size=100)
will return a sample of size n = 100 generated from the same
random variable.

The object rv also has numerous methods for computing statis-
tics of the random variable.

> rv.mean() = px: computes the mean of the distribution.
> rv.var() = 0%: computes the variance of the distribution.
Recall that the standard deviation is defined as the square

root of the variance: ox = /0%. The method rv.std() =

ox can also be used to compute the standard deviation.

> rv.stats() = [ux, 0%]: computes both the mean and the
variance of the distribution.

> rv.median() = F;l(%): computes the median of the dis-
tribution.

rv.expect(g) = Ex(g(X)). The expect method computes the
expected value of any function g(X) with respect to the dis-
tribution. Recall that the mean is defined as the expectation
ux = Ex[X], and similarly the variance is defined as 0% =
Ex[(X — ux)?]. Additionally, there are methods for computing
the n™ moment rv.moment(n) = Ex[X"] and the entropy of
the distribution rv. entropy() = Ex[log(X)]
poisson.fit({x,x2,%3,...,X,}) = A. The fit method can be
used to compute an estimate A of the model parameters from a
sample data {x1, x2, x3,..., X, }. We assume that sample comes
from some Poisson distribution with an unknown parameter
A, and compute a “guess” A for this parameter.
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Feeling reassured by the plethora of methods available to you, you
explain what you want from your colleagues during the meeting: “I
want you to give me any probability question related to hard disk
failure rates, and I'll use the probability model to answer your ques-
tion to the best of my ability. Right now. Live.”

There is a moment of silence in the room as people are processing
your directives. You decide to use the time to compute the probabil-
ity of some outcomes:

>>> rv.pnmf (20)
0.0888353173920848

>>> rv.pmf (21)
0.08460506418293791

>>> rv.pnmf (22)
0.07691369471176195

You explain to your colleagues this means the probability of observ-
ing 20 failures next month is 8.88%, the probability of observing 21
failures is 8.46%, and the probability of 22 failures is 7.69%.

Alice from accounting interrupts with a question. “Wait, I thought
you said the expected value is 20. Now you're telling us there is just
8% chance of that happening?”

“Yes, the average is u = 20, but we could have 21, 22, 23, or any
other number of failures next month.”

“So we can’t know for sure how many failures will occur?”

“No, we can’t know for sure since failures are random, but we can
think about the different possible outcomes and plan accordingly.
For example, we could run simulations to—.” You stop yourself mid-
sentence because you sense this meeting can go on forever if you
start explaining each concept in detail. Better show than tell.

In order to better describe the range of values for the random
variable X, you compute the two important statistics of the probabil-
ity distribution:
>>> rv.mean()

20.0

>>> rv.std()
4.47213595499958

You interpret these numbers for your colleagues by saying: “This
means that we can expect 20 plus or minus 5 failures on average.”

“What do you mean ‘plus or minus 5?” asks Bob from sales.

“I mean that the number of failures will likely be roughly be-
tween 20-5=15 and 20+5 = 25.” You then proceed to compute the
exact probability by summing the probabilities of the individual out-
comes in that range.
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>>> sum( [rv.pmf (k) for k in range(15,25+1)] )
0.782950746174042 # =Pr({ 16 <= X <= 25 })

In other words, 78.2% of data centres like ours will experience be-
tween 15 and 25 failures. Mathematically speaking, the number above
corresponds to the probability of the event {15 < X < 25}, which can
also be calculated using rv.cdf(25) - rv.cdf(15-1).

You then say “Here is a plot that shows the probabilities of all the
outcomes,” while typing in the commands:

>>> n = 40

>>> k = numpy.arange(0,n)

>>> fX = rv.pmf (k)

>>> matplotlib.pyplot.bar(k, fX, color=’b’)

The graph generated as the output of this command is shown in Fig-
ure 22.6.
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Figure 22.6: Plot of the probability mass distribution of a poisson model with
parameter ¢ = A = 20. The possible outcomes are clustered around k = 20
with most of the probability mass falling in the range [15, 25].

Desiring to keep the conversation going, you ask “Other ques-
tions?”

“I have one.” says Charlotte from software engineering. “I want
to know, what is the maximum number of failure rates that I should
plan for.”

“I can’t answer that question because, theoretically speaking, any
number of failures can occur. What I can do is give you a 95% confi-
dence interval,” you explain as you're typing this in:

>>> rv.ppf (0.95)
28

To explain what this number means, you say “95% of the data centres
like ours will not observe more than 28 failures.” If you plan for
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28 failures as the worst-case scenario, you know there is only a 5%
chance that what happens next month will not be covered.

David from the marketing department has a question. “Is this
thing that you did just now AI?,” he asks, thinking about how he
can use this in the webcopy for the new company website.

“I suppose you could say that, since we're using probability dis-
tributions and probability distributions are used in Al,” you explain,
stretching the definitions.

“What about blockchain? Are we using a blockchain for this?”

“No blockchain,” you interject. “Listen David, let’s proceed one
buzzword at a time. You can have “Al” for now. Show me you can
sell $1M worth of product with it, then come back to me and I'll find
another buzzword for you.”

“Okay, deal! I can work with that. Al is hot these days.”

Looking around the room you sense the meeting is coming to a
close. Everyone is feeling good about their first data science expe-
rience. You decide to wrap things up with some random number
generation. “To close the meeting, let me show you some examples
of the possible number of hard disk failures we can expect to see dur-
ing the next year,” you say while running the command needed to
generate 12 random samples from the random variable rv:

>>> rv.rvs(12)
[20, 26, 18, 23, 13, 23, 22, 15, 26, 21, 19, 11]

You hear a few people in the room say “wow.” Visuals always work.
Finally people get it—the average is 20, but the number of failures
can vary a lot around that average.

Later that day you receive a followup email from Emily from
the purchasing department. She wants an estimate of the total cost
she should budget for replacement hard disks, given a base price of
$200/disk and a bulk discount of $150/disk if buying 20 or more
disks. In other words Emily is asking you to compute Ex|[g(X)]
where ¢(k) is the cost function for purchasing k replacement disks.
You quickly compute the answer by following the formula:

>>> def g(k):
if k > 20:
return 150%k
else:
return 200*k

>>> EXg = sum([g(k)*rv.pmf (k) for k in range(0,100)]1)
>>> EXg
3470.2572668392268

The expected value figure is computed by taking all possible out-
comes and weighing the cost in each case by the probability of this
outcome to occur.
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I hope reading about this real-world scenario convinced you of the
general usefulness of computers for doing probability calculations.
The above code examples were using Python, but you obtain the
same answers just as easily using the probability functions available
in R or in spreadsheet software (see problems P23.7 and P23.8 for
that).

Note that the poisson is just one of the random variable models
available in scipy.stats.distributions. Some other models de-
fined in that package are: randint, bernoulli, binom, geom, nbinom,
hypergeom, poisson. Each of these models provides you with the
same set of methods for computing probabilities, confidence inter-
vals, and generating random values. You'll have to wait until Chap-
ter 23 to learn the detailed story about these different families of
probabilistic models. For now you can think of probability mod-
els as various building blocks available to describe different random
processes, with applications in different situations.

22.4.2 Statistical inference

At the core of both statistics and machine learning lies the general
notion of statistical inference, which is the act of computing estimates
of model parameters based on observed data. Listen up, because this
section contains the “main idea” that we'll use throughout the rest of
the book.

Consider the random variable X, which is an instance of the model
ProbabilityModel with parameters 6:

= ProbabiliyModel(#).

In all the examples above we assumed that the model parameters
6 were known and used the model to probabilities of different out-
comes.

Suppose instead that 0 as an unknown parameter, and instead we
have a sample of observations {x1, X2, ..., x;} from the random vari-
able X. Figure 22.7 is a graphical representation of the probability
scenario. The node x is shown as “filled in” which means it is an
observed quantity. The variable x represents a particular outcome
of the random variable we’re studying, and the fact that we have n
independent observations is denoted with the box with label 7.
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Figure 22.7: Graphical representation for the probabilistic model for analyz-
ing samples of n observations {x1, X2, ..., X, }. The probabilistic model model
with parameters 6 defines the probability function fx for how the random
variable X is generated.

Statistical inference is the process of computing an estimate of the
model parameters, denoted 6, based on observed data {x1,%2,...,%n},
which we assume comes from the model.

The rest of this book is dedicated to various statistical procedures
for computing estimates of model parameters. In PART III of this
book, we'll learn various ways to compute estimates of model pa-
rameters f and also quantify the variance of these estimate 5(2;. In
PART IV of the book we'll discuss statistical inference in the context
of machine learning applications. I want you to keep this in mind as
you plot through the next few chapters of probability theory pereq-
uisites. I won’t lie to you and tell you it will be easy. There will be
lots of equations, code samples, and expectations imposed upon you
to try things out for yourself. There is no other way out of this. In or-
der to understand statistics and machine learning topics, you'll need
a solid grasp of all the concepts of probability theory. I'm talking not
just “I've heard of these things”-kind of knowledge, but real intuitive
understanding and hands-on experience. This is the goal rest of the
chapters in PART II of the book.

22.5 Discussion

Before we move on, here are two important comments and clarifica-
tions about the above material.

22.5.1 Continuous random variables

So far in this chapter we focussed on discrete random variables whose
sample space is a finite set, like the throw of a dice X = {1,2,3,4,5, 6},
or a countably infinite set, like the number of hard disk failures Z =
{0,1,2,3,...} = N.

In contrast, continuous random variables can take on continuous
values and represent quantities like time, length, or other smoothly
varying quantities. The sample space X’ for a continuous random
variable consist of some subset of the real numbers, and the proba-
bilities are computed using a probability density function.
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All the rules of probability and formulas we introduced in this
chapter apply to continuous random variables as well, with the change
of summation to integration. Recall the expectation operator Ex,
which computes the expected value of quantities that depend on the
randomness in X. Suppose X is a continuous random variable and
random variable G = g(X) is defined for some function g : X — R,
then the expected value of G is

Ex[G] = Ex[g(X)] = LeX 9(0) fx (x) dx.

Note the idea behind the expectation operator is that same—weight
each value g(x) by the probability of that outcome—but instead of a
summation over a finite set of values, we perform integration over a
continuous range of x values.

The expectation operator is important because it’s used comput-
ing the mean p

p=Ex(X) - |

Xe

xfx(x)dx,
X
and variance ¢? statistics:

= Exl(X -] = | (X w2 fx(x)d.
xeX
The mean tells is where the centre of distribution lies, while the vari-
ance tells you how spread out the distribution is around that centre.
We defer the detailed discussion on continuous variables and their
properties until Chapter 24.

22.5.2 Probability verbs

I know this has been a long chapter with a lot of information, thanks
for sticking with it until the end. Before we move on, let’s review the
new terminology that we introduced in this chapter. We can think
of probability theory as a language that includes specialized nouns,
verbs, adjectives, and adverbs for describing random events. Let’s
see some of that.

First let’s review the probability nouns like sample space, event,
random variable X, and probability distribution (a function fx : X — R).
We also referred to the specific outcomes of the random variable as
realization and denoted with lowercase x.

We also introduced a lot of new probability verbs to describe ran-
dom variables. When using the passive voice to referring to the ran-
dom variables, we say they are distributed (according to a distribu-
tion) or drawn (from a distribution). If instead we take probability



22.5 DISCUSSION 81

distributions as the subject of a sentence, then we say the probability
distribution assigns certain values to given outcomes of the random
variable. We can also put ourselves in the driver seat and say that
we generate or draw random samples from the distribution. Verbs
like compute and calculate are also used often in probability, but note
the same verb could refer to very different types of computations.
We can compute the value of a probability distribution, or compute
an expectation (a weighted sum of some quantity according by the
probability), or compute an estimate of a model parameter (by fol-
lowing a statistical inference procedure).

We also learned about some adjectives and adverbs that we can
apply to random events. We used the adjective random through-
out the chapter to describe probabilistic events. The adverb ran-
domly can similarly be applied to verbs: randomly distributed, ran-
domly chosen/selected, randomly drawn, etc. The adjective independent
and the adverb independently describe random events that do not in-
fluence each other. Recall also the mouthful-of-an-expression inde-
pendent, identically distributed (or i.i.d for short), which refers to mul-
tiple draws: X1, Xp, ..., Xj;, where the distribution of each X; is iden-
tical (come from the same probability distribution X; ~ fx), and the
draws are independent. The probability distribution for i.i.d. vari-
ables X1 Xy - -+ Xy is fx, Xy %, (X1, %2, ..., xn) = [ [1m1 fx(xi).



Chapter 23

Discrete probability
distributions

Feedback Some suggestions to consider

o | think we could move discussion of distributions and pmfs
from 02 - probability theory to the introduction of this chapter.

o Consistency note: We use this formatting for outcomes and
distribution families sometimes, and sometimes we don’t. Some-
times the families are capitalized and sometimes they’re not.

¢ In my opinion, it would be better to introduce all the families
of distributions first, then go over how to simulate them on the
computer and how they are related to one another.

o Either here or in the prob theory chapter, we need to tell readers
what it means when we say a “draw from a distribution”

o We're using capital N here for number of trials, but only in
some cases. Changed to lower case n. Also changed some cap-
ital Ks to lower-case ks.

o Justareminder that we have code here for Excel, R, and Python.
Not sure if you've decided yet whether we have space to in-
clude them all in every chapter.

e Not sure which distributions you'll use in machine learning,
but I think you could cover geometric, hypergeometric, and
negative binomial in less detail.

23.0.1 Probability distributions and probability mass
functions

The probability distribution of a random variable X is a description of
the probabilities associated with the possible values of X. In the case
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of discrete random variables, the distribution is easily specified by a
table of possible values and their probability of occurring . In some
cases, we can express the probability as a formula.

Definition 23.0.1. For a discrete random variable X with possible
values x1,xy,...,x,, a probability mass function is a function, fx, is
defined pointwise on Q) = {x1,x,...,x,} such that f(x;) = P{X =
x;}) and furthermore satisfies;

() fx(x;) > 0, Vi

(i) 2l fx(xi) =1

23.0.2 Cumulative distribution functions

Definition 23.0.2. The cumulative distribution function (CDF), F(x), of
a discrete random variable X is defined by
F(x) = P(X <x) = ) f(x)

X <x

and has the following properties
(0<F(x)<1
(ii) If x < y then F(x) < F(y).

23.0.3 Mean and variance of a discrete random vari-
able

o The mean or expected value, j or E(X), of a discrete random vari-

able X is
p=EX) =) xf(x)
xeX

e The variance, c? or V(X), of X is

o =V(X)=E(X—pu)? =Y (x=w?flx) = D) ¥*f(x) —p?

xeX xeX

e The standard deviation of X is o = v/ 02.

Furthermore, the expected value (mean) of a function of a discrete
random variable is

E[h(x)] = Y h(x)f(x)

. The expected value is linear so that E(aX +b) = aE(X) +b. In
contrast, the variance of a linear term scales quadratically with the
coefficient V(aX + b) = a®V(X).
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23.1 Discrete distributions reference

We'll now give an overview of some of the most important discrete
probability distributions. The idea is to give you a quick overview
of the these building blocks, and provide you with a fact sheet to
refer to when you need to lookup facts and formulas related to these
distributions. In this chapter, we use the notation X ~ fx, which
is read as “X is distributed according to fx”. This means that the
random variable X has properties of the distribution specified by fx.

23.1.1 Bernoulli

A Bernoulli trial is an experiment which results in either true of false,
positive or negative, heads or tails, zero or one, or some other binary
choice. The distribution is named after the mathematician Bernoulli
who did some important early work in probability theory.

A random variable X ~ Bernoulli(p) has the probability mass

function
fx0)=1-p,  fx(1)=p.

In the case of a coin toss, the heads outcome {X = 1} has proba-
bility p, while the tails outcome {X = 0} has probability 1 — p. If
the coin is fair, then p = 0.5and 1 —p = 1 —0.5 = 0.5. Both heads
and tails have a p = 0.5 chance of occuring. Many random phe-
nomena besides coin tosses have two possible outcomes: success or
failure, such as... . Bernoulli trials also serve as building blocks for
other probability distributions that we’re about to learn about.

o Thebinomial distribution is defined as the count of success out-
comes in 1 Bernoulli trials.

o The geometric distribution describes the waiting time until first
success in sequence of repeated Bernoulli trials.

Can we use computers to generate random numbers? I'm asking
you now in case you already know because we’ve just seen the math-
ematical notion of a coin flip. How can you make computers flip the
coins for you?

It turns out computers have random number generators that can
be used for this exact purpose. The random numbers generated by
computers are called pseudorandom. Essentially, we start with some
seed number and then perform lots of operations on it, twisting and
shifting it until we generate a “random” output number. The number
is not truly random, since the a generator that starts with the same
seed always produces the same output number. This is why we call
these computer-generated random numbers “pseudorandom”.
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The the promises provided by a random number generation al-
gorithm Is not that it will produce random numbers for you out of
nowhere, What if you feed it with a random number you to start
generating additional random numbers based on the random seed.

For the purposes of this book, we’ll be doing computer simula-
tions of random phenomena. For these, we’ll use pseudorandom
numbers to represent random outcomes. As long as the result looks
random, it will work for these demonstrations. Know that the no-
tion of random number generation for the purposes of cryptography
has much more stringent requirements about how random numbers
are generated. The discussion of cryptography and actual random
number generation is beyond the scope of this book.

Most computer languages have a built-in functionality for gener-
ating pseudorandom numbers. In Excel the function RAND() to gen-
erate a random number between 0 and 1. The equivalent function in
R is runif (1), which is short for random uniform and the number
indicates we just want one draw. In Python, you can import the mod-
ule called random (use the statement import random), then generate
random numbers between 0 and 1 using random.random().

If you want to simulate the outcomes of the random variable
X ~ Bernoulli(p), you can draw a random number using one of
the above functions, then declare success if the random outcome you
see is smaller or equal to p and failure if the value you see is greater
than p. Since the random numbers generated by the computer are
uniformly distributed between 0 and 1, your outputs will be “suc-
cess” with probability p of the time an “failure” with the remaining
probability (1 —p). .

The scipy module for Python, provides the function bernoulli.rvs (p)
which you can use to draw random variables from Bernoulli(p).

The random number generator functions RAND () /runif (1) /random.random
are essential building blocks we need to generate random samples
from any distribution. We’ll talk more about using computers to gen-
erated samples from various distributions in Section [COMPUTER-
GEN PROB CHAPTER IN PROB PART].

23.1.2 Uniform

The discrete uniform distribution DiscreteUniform(a, b) describes the
random phenomenon of picking a number between a and b at ran-
dom, where each number has an equal chance of being selected. This
distribution is called “uniform” since it assigns the same probability
to each of the possible outcomes.

A random variable X ~ DiscreteUniform(a, b) has the probabil-
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ity mass function
1
fxk) = b—a+1’

where k can be any number between a and b. Note the sample space
X ={a,a+1,...,b} hasatotal of n = b — a + 1 elements. Note also
that the probability of each outcome does not depend on the value
of k—the same probability value is assigned to all outcomes in the
sample space.

The cumulative distribution function that corresponds to the dis-
crete uniform distribution looks like a step function, with (b —a + 1)
steps of height b—;ﬁ each. It starts at zero, jumps to Fx(a) = ﬁ
at x = g, then jumps by the same amount at every integer until x = b
where it reaches one the value one, Fx(b) = 1.

The mean and variance of a random variable X ~ DiscreteUniform(a,b)

are

yX=a;b and 0% =

(b—a+1)?-1
12 ‘

Intuitively speaking, The mean ux = # tells us the average value
of X and is the centre of a and b. It’s possible that the halfway point
between a and b ends up being a fraction, and thus not part of the
sample space. For example, the process of rolling six sided die can
be represented as the random variable X with sample space X =
{1,2,3,4,5,6} and probability mass function DiscreteUniform(1, 6).

The action of “pick a number at random between a and b” is
one of the fundamental types of random phenomena and is imple-
mented in most programming languages. Below are some relevant
computer functions you should know about:

o In Excel, you can use the function RANDBETWEEN (a, b) to ob-
tain a random number between a and b, inclusiverly.

e In R use sample(a:b,1) to choose a “sample” of size one from
the list a:b.

e In Python, you can import the module called random using the
command import random, then generate random numbers be-
tween a and b using random.randint (a,b).

Relations to other distributions:
e The distribution DiscreteUniform(0,1) is identical to the dis-
tribution Bernoulli(%).

23.1.3 Binomial distribution

The binomial distribution models the number of successes in n con-
secutive draws from a Bernoulli distribution. Recall that the Bernoulli
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distribution with parameter p describes a random binary phenomenon
where the probability of “success” is p and the probability of “fail-
ure” is 1 — p. If we repeat this Bernoulli trial # times, then the num-
ber of successes is described by the binomial random variable X ~
Binomial(#n, p).

A random variable X ~ Binomial(n, p) has the probability mass
function

et = () o=

for k in the set {0,1,...,n}. The formula consists of the product of
probabilities for k successes, n — k failures, and the binomial coeffi-
cient (). This takes into account the number of ways the k successes
can occur within the sequence of # trials. The name for this distri-
bution comes from the binomial coefficient (}) that appears in the
formula.

The mean and the variance of the distribution Binomial(n, p) are

p=Ex[X]=np and o¢*=V[X]=Ex[(X-pux)*]=np(l—p).

We can verify the above formulas using the fact that the Binomial
distribution is the sum of the outcomes of n Bernoulli trials:

X =By+By+-+B,,

where B; ~ Bernoulli(p) are all draws from the Bernoulli distri-
bution with parameter p, each of which have mean p and variance
p(1 — p). Recall that the expectation of a sum of random variables
equals the sum of the expectations: E[Y + Z] = E[Y] + E[Z]. Apply-
ing this property to the equation that describes the Binomial random
variable we get

p = Ex[X]
= IEBle---B,l [B1 +By+---+ Bn]
= ]EBl [Bl] + ]EBZ[B2] + - ']EB,, [Bn]
= Ep[B] + Ep[B] + - - - Ep[B]
= nEg[B] = np.

The variance of the distribution Binomial(n, p) can similarly be
computed:

0% = V[X]
= W3132...Bn [B1 +B+---+ Bn]
= Vp,[B1] + Vp,[Ba] + -V, [B]
= nVg[B] = np(1-p),
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where in second equation we use the additive property of variance
for the sum of two random variables V[Y + Z] = V[Y] + V[Z]. See
E23.1 and P23.1 for an alternative derivation of the equations for the
mean that make use of calculus techniques.

n=50 n=50
p=0.01 p=0.1

n=50
p=0.2

0 10 20 30 40 50 O 10 20 30 40 50 O 10 20 30 40 50

n=>50 n=>50 n=>50
p=0.3 p=0.4 p=0.5

0 10 20 30 40 50 O 10 20 30 40 50 O 10 20 30 40 50

Kk

Figure 23.1: Plot of the probability mass function of the binomial distribu-
tion with n = 100 for different values of p.

Figure 23.1 shows the probability mass function for different val-
ues of p. Note the mean is np and the values get more spread out as
p increases since ¢ = np(1 — p).

Computer functions:

e In Excel use the BINOM.DIST(k,n,p,FALSE) to obtain the val-
ues from the pmf, and BINOM.DIST (k,n,p, TRUE) to obtain value
of cdf.

e InRuse dbinom(k,n,p) for the pmf and cbinom(k,n,p) for the
cdf.

o InPython use binom.pmf (k,n,p) for the pmf and binom. cdf (k,n,p)
for the cdf.

An example of a phenomenon that follows the binomial distribu-
tion is this: Imagine a bucket that contains n balls of which k are “suc-
cess balls” and n — k are “failure balls”. We choose one of the # balls
at random, record it’s value, then put it back in the bucket. (This is
called sampling with replacement.) The number of success outcomes
will follow the binomial distribution with parameter p = %
Relations to other distributions:

o The Bernoulli distribution is a special case of the binomial dis-
tribution with n = 1.
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e The distribution Binomial( %, n) describes the count of successes
for n draws with replacement from an that contains a total of
n balls of which k are “success balls.” If the sampling is per-
formed without replacement (choose one of the 7 balls at ran-
dom, record it’s value, put it away, then repeat the procedure
by choose one of the remaining balls in the ), then the num-
ber of successes is described by the hypergeometric distribu-
tion Hypergeometric(N, n, K).

o If the size of the sample 7 is large (n > 20), the normal dis-
tribution X’ ~ Normal(y = np, 0> = np(1 — p)) can be used
to approximate the binomial distribution Binomial(n, p). This
is known as the Moivre-Laplace approximation. We need to
apply a continuity correction of 0.5 when using the normal ap-
proximation to the binomial. For example, if we're interested
in computing Pr(X = 7) we compute Pr(6.5 < X’ < 7.5).

23.1.4 Geometric

The geometric distribution describes the distribution of the waiting
time until the first success in a series of independent Bernoulli trials,
where each Bernoulli trial has probability of a success p. The proba-
bility mass function of a random variable X ~ Geometric(p) is

fx(k) = (1—p)*p,

for k in the set {1,2,3,...}. The formula consists of the product of
k — 1 failure probabilities and once success. Note the sample space
is X = INT, which is a countably infinite set. Indeed, there is no
theoretical limit to the “bad luck” scenario in which the sequence of
Bernoulli trials continues to result in failure. By definition, the trials
must continue until the first success so the distribution is defined for
all positive integers.
The mean and the variance of the distribution Geometric(p) are

U= 1 and o2 = L ZP .
p p
See E23.2 and P23.2 for the derivations.

Note certain textbooks and computer programs use an alterna-
tive definition of the the geometric random variable Y in terms of
the number of failures that occur before the first success. The prob-
ability mass function for this alternative formulation is fy (k') = (1 —

2 _ 1-p

p)¥ p and it has mean jy = 1777’ and variance 07 = -

The values of the probability mass function decrease geometri-
cally by a factor of r = (1 — p). Each subsequent trial, fx(k +1) =
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(1 —p)fx (k). This is where the name “geometric” comes from. Recall
the geometric sequence has the form a,, = ar", and its infinite series
given by the formula }” jar" = ;%

—r .
Computer functions:

e In Excel use the formula POWER((1-p),k-1)*p to obtain the
values from the pmf.

e In R use dgeom(k-1,p) for the pmf and pgeom(k-1,p) for the
cdf.

o In Python use geom. pmf (k,p) for the pmf and geom. cdf (k,p)
for the cdf.

Relations to other distributions:

o If instead of stopping after the first success occurs, we continue
counting until the first r successes occur, the waiting time will
be described by the distribution NegativeBinomial(r, p).

Applications

You can model many situations with trials that are repeated until the
first success occurs using the geometric distribution.

For example, if the probability of success for some difficult task
is p, then fx(k) represents the probability of succeeding on the k"
attempt. Persistence is the key my friends!

Alternatively you can use the geometric distribution to compute
the probability of failure after repeated successes. Suppose each time
you turn on a light bulb it has a probability p of burning out, then
you can fx(k) represents the probability of burning out on the k"
use, after k — 1 successes.

In baseball you can model the probability of a batter with average
hit probability p of getting a hit on one of the first three attempts. In
business, you could model the number of interviews you’ll need to
perform in order to hire a competent candidate as a geometric dis-
tribution, assuming each hiring interview has probability of success

p.

23.1.5 Negative binomial

The geometric distribution describes repeated Bernoulli trials un-
til the first success outcome. The negative binomial distribution is a
generalization of a geometric distribution where we wait to obtain
7 successes. The probability mass function a random variable X ~
NegativeBinomial(r, p) is

et = (523 )a=piy,
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where p describes the probability of success, and k takes on values in
the set {r,r + 1,7 +2,...}. The minimum value of k is r you need to
run at least r trials to obtain r successes. Note the last trial is neces-
sarily a success so the coefficient (f:%) counts for the number ways of
choosing the remaining r — 1 successes among the k — 1 trials before
the last.

The name of this distribution comes from the fact that we can

rewrite (I;j) as as an expression that involves the negative binomial

coefficient (—1)" ("), where m = k — r. See E23.4 for the calculation.
The mean and variance of the negative binomial distribution with
parameters r and p are

H=EX) =" ad 2=-v)="12P
p p
See E23.3 and P23.3 for the derivations.
Computer functions:

e In Excel use the function NEGBINOM.DIST (k-r,r,p,FALSE) to
obtain the values from the pmf and NEGBINOM.DIST (k-r,r,p, TRUE)
to obtain the values from the cdf.

e InRusednbinom(k-r,r,p) for the pmfand pnbinom(k-r,r,p)
for the cdf.

e InPython use nbinom. pmf (k-r,r,p) for the pmfand nbinom. cdf (k-r,r,]
for the cdf.

Note the computer functions above take the number of failures as
their first argument, which corresponds to the difference k — r—if
the rth success occurs on the kth trial, then there must have been k — r
failures before it.

Relations to other distributions:

o The geometrics distribution is a special case of the negative bi-
nomial with r = 1.

Applications

One possible real-world situation where the negative binomial dis-
tribution would be needed Consider a distributed storage system
in which information is stored on multiples hosts for redundancy.
When adding a file to the system, the software needs to store r copies
of the file. Suppose the probability of connecting and completing the
transfer to any one of the peers is given by p, then the probability of
successfully publishing the file after k attempts is given the negative
binomial distribution.

a server must When a server wants to publish a piece of content,
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23.1.6 Hypergeometric

Consider a bucket that contains a total of n balls, of which k balls
are labelled “success” and the remaining n — k balls are labeled as
“failure.” We choose a sample of n balls randomly and count how
many of them are successes. If the sampling is performed without
replacement, meaning we choose one of the balls at random, record
it’s value then put it back in the bucket, then the probability distribu-
tion for the number of successes is described by the hypergeometric
distribution Hypergeometric(N, n, K).

The number of successes in the sampling scenario described above
is described by a random variable X ~ Hypergeometric(N,n,K)
with probability mass function

() i)
()
where k lies between max{0, n + K — N} and min{K, n}.

The mean and the variance of the hypergeometric distribution
with parameters 1, N, and k are

fx(k) =

N-—n
k
px =n-x and (T%zﬂp(l—p)N_l.

where we've defined p = K/N. See E23.5 and P23.4 for the deriva-
tions.

Compare the equations for the mean and the variance of the hy-
pergeometric with the equations for the mean and the variance of
the Binomial distribution (see page 86). The resemblance is not a co-
incidence. Indeed, the binomial and hypergeometric distributions
describe the same model, but the binomial distribution describes
sampling with replacement while the hypergeometric distribution
describes sampling without replacement. When k and n are large
numbers, the effect of sampling without replacement becomes negli-
gible and we can approximate the hypergeometric distribution using
a binomial distribution.

Computer functions:

o In Excel use the function HYPGEOM.DIST (k,n,K,N,FALSE) to ob-
tain the kth value from the pmf, and HYPGEOM.DIST (k,n,K,N, TRUE)
to obtain the values from the cdf.
e InRuse dhyper.pnf (k,K,N-K,n) for the pmf and phyper. pmf (k,K,N-K,n
for the cdf.
e In Python use hypergeom.pnf (k,N,n,K) to get the values of
the probability mass function and hypergeom. cdf (k,N,n,K)
for the values of the cdf.
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Relations to other distributions:

o If the draws from the are performed with replacements, the
number of successes is described by the binomial distribution
Binomial(%, n).

Example Suppose you have bag containing a total of N = 7 toma-
toes of which K = 3 are good tomatoes and N — K = 4 are rotten.
You want to choose two tomatoes from this bag to make a salad.
What is the probability you will end up with zero, one, and two
good tomatoes? The situation is described by the random variable
X ~ Hypergeometric(N = 7,n = 2,K = 3) whose probability mass
function is fx(k) = (17) (})(,*,). Intuitively, the distribution counts
the number of ways to choose k good tomatoes from the three good
ones, times the number of ways to choose the remaining 2 — k from
the bad ones, and normalization factor describes all possible ways to
choose two tomatoes from a bag of seven.

We can compute the probabilities of the three different outcomes
by hand. The probability of picking zero good tomatoes is given by
px(0) = 2 -2 = 0.2857, where # is the probability of picking a bad
tomato on the first draw, and % is the probability of picking a bad
tomato on the second draw. There are two possible ways to pick one
good tomato in a draw of two: the first one or the second one, so
the probability is px(1) = 7 - % + % : % = 0.5714. The probability of
picking two good tomatoes is px(2) = % : % = 0.1429.

Use one of the computer functions in Excel, R, or Python to in-
dependently compute the values of px(0), px(1), and px(2) stated
above and verify they are correct.

23.1.7 Poisson

The Poisson distribution is popular for modelling the number of
times an event occurs in an interval of time or space.

Assumptions: When is the Poisson distribution an appropriate
model? The Poisson distribution is an appropriate model if the fol-
lowing assumptions are true.

k is the number of times an event occurs in an interval and k
can take values 0, 1, 2, .... The occurrence of one event does not
affect the probability that a second event will occur. That is, events
occur independently. The rate at which events occur is constant. The
rate cannot be higher in some intervals and lower in other intervals.
Two events cannot occur at exactly the same instant; instead, at each
very small sub-interval exactly one event either occurs or does not
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occur. Or The actual probability distribution is given by a binomial
distribution and the number of trials is sufficiently bigger than the
number of successes one is asking about (see Related distributions).
If these conditions are true, then k is a Poisson random variable, and
the distribution of k is a Poisson distribution.

The Poisson distribution describes the number of random events
that occur during some period of time. We assume the events occur
independently of each other at a constant average rate of A. The
probability mass function for the random variable X ~ Poisson(A)
is k,—A

fuly = B

where k > 0. The parameter A > 0 describes the average probability
of the event during the chosen time period.
The mean and variance for a random variable X ~ Poisson(A)

are
px =E[X]=A and 0% =A.

See E23.6 and P23.5 for the calculations.

The parameter A depends on the length T of the time intervals
indexed by the random variable X. We can compute A by multiply-
ing the average rate r for the events to occur, and the time period:
A = rT. For example, if we know some event occurs three times
per hour on average r = 3/hour, and we want to know the proba-
bility distribution for the total number in a given day, the we choose
A =3x%x24="72/day.

A=05 A=1 Imb =2

0 10 20 30 40 0 10 20 30 40 10 20 30 40

A=4 A=8 ““ A=16

0 10 20 30 40 0 10 20 30 40 10 20 30 40
k

Figure 23.2: Histogram showing n = 20 draws from the Poisson distribution
with for different values of A.
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Figure 23.2 shows the probability mass function of the Poisson
distribution for different values of A. As A increases the mean of the
distributions shifts to larger values and also becomes more spread
out.

Computer functions:

e In Excel use the function POISSON (k,lambda,FALSE) to obtain
the values from the pmf and POISSON (k,lambda, TRUE) to ob-
tain the values from the cdf.

o In R use dpois(k,lambda) for the pmf and ppois(k,lambda)
for the cdf.

e In Python use poisson.pmf (k,lambda) for the pmf and
poisson.cdf (k,lambda) for the cdf.

Relations to other distributions:

o alskj

Relation to the binomial distribution

We can obtain the Poisson distribution from the binomial distribu-
tion by taking the limit# — oo and p — 0.

Consider a random variable X

The construction of this distribution is for a random variable X
as the number of “successes” in the interval [0, T], which has length
T. We assume, a priori, that the number of successes per unit length
has an average of r so the expected value of successes over the time
period of length T is E[X] = rT, which we'll give a new name A.

We know from the formula for expected value of a binomial dis-
tribution should also be equal to np. Thus, we may solve for p as

np=A :p:%.

Now, the probability that there are k successes given n trials is

Now, we seek to take the limit as n — oo. That is

P(X k) = lim M= (n=k+1) <A>k<1_/\>n—k

n—o0 k! n n

on on=1 n—k+1 W LM (A -k
n—-w n n n k! n n
—— —— — —

=1 —1 —1

Il
5
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Geometrically, taking the limit 7 to infinity represents dividing
the interval [0, T] into n equal segments where, as n increases, the
number of multiple successes in each equal segment necessarily be-
comes zero. In general, given the partition of [0, T] into n small
subintervals (tending to zero), we have

e the probability of more than one success in a sub interval tends
to0

e the probability of one success in a subinterval tends to 2
e events in each subinterval are independent of each other.

Applications

The Poisson distribution is an important model for many phenom-
ena we can observe in the real world:

e The number of earthquakes occurring in a fixed period of time.

e The number of phone calls arriving at a particular point in a
telephone network in a fixed time period.

e The number of visitors to a website per minute.
e The number of customers arriving at a ticket window.

The commonality is that all these phenomena is that we’re count-
ing the total number of statistically independent events that occur at
a constant rate A (the expected number of the events per unit time).

For the multinomial distribution see dmultinom.

23.2 Plotting distributions

commands to plot pmf/pdf and cmf functions in Excel, R, and Python
mention useful for understanding parameters — hands on

23.3 Modelling real-world data using proba-
bility

Let’s try to connect probability distributions we discussed in this
chapter with the data sets that we used as examples in the data chap-
ters. I want you to see that probability modelling skills you devel-
oped can help you better understand datasets.

We'll plot the histogram of the data and and a plot of the pmf in
the same graph, then tweak the model parameters interactively until
the two curves start to look the same.
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Student grades data

Recall the students” grades data set we covered in Part I, let’s try to
find the parameters y and o that describe the shape of the data.

Hard disk failure rates

number of failures in a data centre

RECIPE: - repeat definitions - show mini plots with different val-
ues of the parameters - plot histogram of dataset - show steps: -
choice of distribution - choose mean to match data (by eyeballing
and trial and error) - choose variance to match data (by eyeballing
and trial and error)

Assume five examples of modelling real-world distributions by
"eyeballing" the parameters. Drill and repeat. No theory, only visual
explanations of fitting parameters to match real-world datasets.

23.4 Exercises

E23.1 Compute the mean of the random variable X ~ Binomial(n, p)
whose distribution is px (k) = (}) p*(1—p)" K forke {0,1,...,n}.

E23.2 Compute the mean of the random variable X ~ Geometric(p)
with probability mass function px (k) = (1—p)*~1p,fork e {1,2,...}.
a

Hint: You can use the formula 32 ; kark=1 = e which is ob-

tained by taking the derivative of },” jar" = % with respect to
r.

E23.3 Compute the mean of X ~ NegativeBinomial(r, p) whose dis-
tribution is px(k) = (")) (1 — p)*—"p’, fork e {r,r + 1,7 +2,...}.

E23.4 Show that (1) equals (—1)"(}") where m = k — 1.
Hint: Expand both expressions separately to show they are equal.

E23.5 Find the mean of the random variable X ~ Hypergeometric(n, K, N)
)Gk

()

with probability mass function fx (k) = , where k is between

max{0,n + K — N} and min{K, n}.

E23.6 Compute the mean of the random variable X ~ Poisson(A)

with probability mass function px (k) = ()‘)zf_A ,forke{0,1,2,...}.

E23.7 Use the probability functions dpois (k,lambda), ppois (k,lambda),
and gpois(q, lambda) toreproduce the calculations of the the number-
of-hard-disk-failures scenario from page 22.4.1. Compute a) the prob-
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ability of exactly 20, 21, and 22 failures, b) the probability of the event
{16 < Z < 24}, and ¢) the 95 percentile F, 1(0.95) for the random
variable Z ~ Poisson(A = 20).

E23.8 Use the probability functions in Excel to reproduce the calcula-
tions of the the number-of-hard-disk-failures scenario from page 22.4.1.
Compute a) the probability of exactly 20, 21, and 22 failures, b) the
probability of the event {16 < Z < 24}, and c¢) the 95 percentile
F, 1(0.95) for the random variable Z ~ Poisson(A = 20).

23.5 Chapter summary
You should now be able to

1. Determine probabilities from mass functions and vice versa.

2. Determine probabilities and mass functions from cumulative
distributions and vice versa.

Compute mean and variance of discrete random variable.
Understand assumptions for common discrete distributions.

Select appropriate distribution in specific applications.

o G kW

Compute probabilities and determine mean and variance of
common discrete distributions.

23.6 Discrete distributions problems

Intro/motivational text...
P23.1 Compute the variance of the random variable X ~ Binomial(n, p)
whose distribution is px (k) = (})p*(1—p)"~*, forke {0,1,...,n}.

Hint: Start from the formula ¢ = E[X?] — E[X]?, then add and subtract
E[X] and rewrite as 0> = E[X(X — 1)] + E[X] — E[X]2.

P23.2 Compute the variance of the random variable X ~ Geometric(p)
with probability mass function px (k) = (1 — p)*~1p, forke {1,2,...}.

Hint: Start from the formula ¢ = E[X?] — E[X]%.

P23.3 Compute the variance of X ~ NegativeBinomial(r, p) whose distri-

bution is px (k) = *71) (1 — p)k—"p", fork e {r,r + 1,1 +2,...}.

Hint: Use the formula 0% = E[X(X — 1)] + E[X] — E[X]? as in P23.1.
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P23.4 Compute the variance of the random variable X ~ Hypergeometric(n, K, N)
DG
()

Hint: Use the formula ¢ = E[X?] — E[X]?.

with probability mass function fx (k) = , for

P23.5 Compute the variance of the random variable X ~ Poisson(A) with

probability mass function px (k) = (A),if_A ,forke{0,1,2,...}.
Hint: Use the formula 0% = E[X(X — 1)] + E[X] — E[X]%.

P23.6 Suppose Z = > ; a;Z; is a linear combination of independent ran-
dom variables each having means ;. Show that E[Z] = >;_; 4;E[Z;] and
V[Z] = 3L, e} V[Zy].



Chapter 24

Continuous probability
distributions

By the end of this chapter, you should now be able to

1.

Determining probabilities for events given a probability density function

2. Determining pdf from the cdf and and vice-versa
3.
4

. Understanding the assumptions for some common continuous probability dis-

Calculating means and variances for continuous random variables

tributions

. Selecting an appropriate continuous distribution model for specific applica-

tions

6. Standardizing normal random variables

7. Using the table for the cumulative distribution function of a standard normal

distribution to calculate probabilities

The sample space of the a continuous random variable is some in-
terval of the real numbers. Instead of the random events taking on

24.1 Probability density functions

A continuous random variable X is described by a probability density
function fx(x) that satisfies

o fx(x)=>0forallxe X
o {0 fx(x)dx =1

The probability of the random variable falling between {a < X <
b} is obtained by computing the integral of the probability density

100
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function between a and b:

b
Pr(fo <X <b)) = | fx(xix

The analogy with the probability mass function of discrete
Due to the properties of integration, the limits of

Prla<X<b)=Pra<X<b)=Pra<X<b)=Pr(a<X<b).

:& §?§ Pr({0.6 < X <0.8})

7 e 0l g% (0 Yy

Figure 24.1: Illustration of the probability density function fx for some ran-
dom variable X. The area highlighted in the left half of the figure shows the
probability of the event {0.6 < X < 0.8}, which is computed as the integral

Pr({0.6 < X < 0.8}) = {1208 f(x) dx.

The cumulative distribution function of a random variable X is de-

fined as "
F(x) =Pr(X <x) = J f(t)dt

It follows that Pr(X > x) = 1 — F(x).
The probability density can be obtained from the cumulative distri-
bution using differentiation

fx(x) = dl;gcx) .

The mean and variance of a continuous random variable are given

by

and
= vix) = [ o= [ ot -

Recall that probability theory concept is inspired by physics. Sim-
ilar to the case for discrete distributions, we imagine the probabil-
ity density function to represent the weight density of some one-
dimensional solid object. The calculation for the mean of a prob-
ability distribution p corresponds to the physics calculation of the
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centre of mass of the object xcm. The centre of mass of an object is
the point along the length of the object where it is balanced. Half the
mass of the object is to the left and half is to the right of x¢m, so if
you place your finger at x.m you can balance the objet using a single
point contact.

The variance of a probability distribution o2 corresponds to the
moment of inertia of the solid object I. For those of you who don’t
remember physics, the moment of inertia of an object tells you how
difficult it is to make the object turn around it’s centre of mass. The
quantity I plays the same role in angular motion as the mass m plays
in linear motion, and it appears in the formula for the torque, an-
gular momentum, and angular kinetic energy of an object. Roughly
speaking, the more the weight of an object is spread out, the more
difficult it will be to make it turn, and the relationship is nonlinear.
The contribution to the moment of inertia of a piece of mass dm at a
distance r from the centre of rotation is proportional to the square of
the distance dI = r?dm. In other words, if you want an object that
is easy to turn—easy to set into rotational motion—then should put
all the mass of the object near the centre of rotation. This same no-
tion of “squared distance from the centre” turns out to be useful for
describing probability distributions.

More generally, the expected value of any function h(X) in our
random variable is determined as

) = [ heofwr

24.2 Mathematical prerequisites

As you just saw, the derivative and integral operation are important
for continuous random variables, so it's worth reviewing the con-
cepts right now.

24.3 Continuous distributions reference

The following computer models for continuous distributions are de-
fined in the module scipy.stats.distributions: uniform, norm,
gamma, expon, t. We’ll describe these distributions in more detail in
Section 24.3.

For the uniform distribution see dunif. For the normal distribu-
tion see dnorm. For the log-normal distribution see dlnorm. For the
beta distribution see dbeta.

For the exponential distribution see dexp.

For the gamma distribution see dgamma.
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For the F distribution see df. For the chi-squared distribution see
dchisq. For the Cauchy distribution see dcauchy. For the Weibull
distribution see dweibull.

24.3.1 Uniform

The continuous uniform distribution on [a, b] is

1
f(x) = b 7&‘
Its mean and variance are
_a+b 2 (b— a)?
H="3 and 0* = R

respectively. Indeed, assuming we have already determined the mean
(exercise!), the variance is found as

b2 2
' X ~(a+D)
o _Lbfadx 1
b3_ 3

a a% + 2ab + b?

" 3(b—a) 4
b2 +ab+a%> 4%+ 2ab+ b2
- 3 - 4
_ 4(a® +ab+b?) —3(a® +2ab+b?)  (b—a)?
N 12 12

a + (b-a)*RAND()

24.3.2 Exponential

Along with knowing the number of "successes" on an interval (whose
probability is measured via the Poisson distribution) come a differ-
ent random variable measuring the distance between successes. The
link here is that distance between two successes is greater than x if
and only if the number of success is 0 on the interval [0, x]. That is
if D represents the distance between successes and N the number of
successes on on the interval [0, x] then

—Ax 0
Pr(D > x) = Pr(N = 0) = % — e,

The cumulative distribution here is

F(x)=Pr(D<x)=1—¢
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whose derivative, and hence the probability mass function, is then
fx) =F(x) = =™

for all x > 0.
The mean and variance are both calculated via integration by
parts as

© 1
i =E[D] = J xAe Mdx = =
0 A

and

2 * 2y ax 1
=V[D] = Ae My =
o [D] Lx e X=+3

Memoryless property

The exponential distribution is memoryless, which comes from the
conditional probability argument as follows:

Pr(D<t+¢|D>t)=Pr(t <D <t+e€)/Pr(D >t)

with
Pr(t <D <t+e€)=F(t+€)—F(t)
=1— e*/\(i‘l’é’) _ (1 _ e*/\t)
_ e—/\t(l _ e—/\E)
and
Pr(D >t) = e M
so that

Pr(D<t+elD>t)=1—¢=Pr(D<e).

More concretely this says, that the probability that a success will
occur in the next € given that it has not already in the first ¢ is the
same as the probability of success in the first epsilon.

For example, in the waiting room at the doctor’s office with the
time waited until your turn as the random variable. If this scenario is
modelled by an exponential distribution then this property says that
the probability it will be your turn in the next 30 seconds given that
you have already waited five minutes is the same as if you had just
arrived.

The memoryless property is expressed as

Pr(X<t+elX>t)=Pr(X<e)

or
Pr(X>t+e€elX>1t)=Pr(X>e¢)
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and the exponential distribution is the only continuous distribution
with this property. In fact, the exponential distribution can be de-
fined as the continuous random variable satisfying the memoryless

property.
24.3.3 Normal

The normal distribution on R is given by

1 —(x=p?
e 202

f) = 55—

having mean y and variance o. Notation for this extremely common
distribution is N (u, o).

24.3.4 The standard normal distribution

The standard normal distribution is N'(0,1) and the cumulative distri-
bution function (CDF) for N'(0,1) is denoted Fz(z) = Pr(Z < z). All
normal distributions have essentially the same “shape.” Consider
the random variable X which is normally distributed with mean u
and variance 0%

X ~ N(u,0?).

The probability density function for X has the same shape as the
standard normal Z ~ A(0,1), which has mean 0 and variance 1.
The two random variables are related by the following equation:

which involves subtracting the mean and dividing by the standard
deviation. Every gaussian random variable can be transformed to
the standard normal distribution using this transformation.

Probability calculations

For every calculation you might want to do with the random vari-
able X, there is an equivalent calculation you can carry out using the
random variable Z:

Fy(a) = Pr(X < a) - pr(z < ag;x) _ PZ<“U:X)’

where Fx(a) = {*_ fx(x) dx is cumulative distribution function
(CDF) of the random variable X, and Fy is the CDF of the standard
normal. This means it suffices to know the values of the CDF for the
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standard normal distribution Fz, where Z ~ N(0,1), and the cal-
culations for all other normal distributions can be obtained after a
suitable transformation.

The function Fz : R — [0, 1] can be used in two directions. Either
we have a given value of z and we want to calculate Fz(z) (the cu-
mulative probability of the random variable Z taking on this or any
smaller value), or we start with some probability value g and want to
compute the corresponding z-value z; such that F(z;) = g, in other

words z, = F1(q).

q

Zg

Figure 24.2: Illustration of the cumulative probability density calculations
of the standard normal. The value z; is such that a total probability of g is
enclosed in the left tail of the distribution.

Numerical calculations

The values of the CDF of the standard normal distribution (z; =
F~1(g)) are used very often in statistics, so it is a good idea for you
to know them really well. If you look at Table XX in Appendix YY
you'll see the values of z; for different values of . From now on,
when you see z; written somewhere in the text, know that this refers
to the value of the inverse CDF for the standard normal. You can
compute it by looking up the value in Table XX, or using the formula
zg =NORM.INV(q,0,1) in spreadsheet software, or calling z; =77 in R
or z; =norm.ppf (q,0,1) in Python.

24.3.5 Student’s t distribution

Similar to normal but heavier tails. Used in statistical analysis of
samples where the population variance is estimated from the sample
variance.

TODO: define v degrees of freedom

TODO: plots for different values of v

The probability density of Student’s ¢ distribution with v degrees

v+1
W%r

tribution function is Fr, (t) = S oo Fr(

_v4l
of freedom is fr(t) = ()) (1 + ) * and its cumulative dis-
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q

tow

Figure 24.3: Illustration of the cumulative probability density calculations
of the ¢ distribution with v degrees of freedom. The value t4, is such that a
total probability of g is enclosed in the left tail of the distribution.

You can lookup values of the inverse CDF of the different ¢ dis-
tributions in Table WW in Appendix YY. You can also use the for-
mula t;4¢ =T.INV(q, df) in Excel, or calling t;4¢ =77 in R, or call
tgar =t.ppf(q, df) in Python.

24.3.6 The x? distribution
The probability density of the x? distribution with v degrees of free-
k X

7"7,:1 ¢ 2 and its cumulative distribution function
22 I(v/2)
. 2
isFpa, (x*) = fra(x)dx.

The shape of the distribution is determined by the degrees of free-
dom parameter v. Figure 24.4 illustrates three plots for different val-

ues of v.

domis f2,(x) =

04

Density

02
<
I

n

0.0

0.10
<
&

Density

0.00

Density

0.00 004 008 0.12
/

Chi Square

Figure 24.4: The x? distribution for the three different values of v. Note as v
gets larger the peak of the distribution moves to the right.
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The mean of a Chi Square distribution is its degrees of freedom.
Chi Square distributions are positively skewed, with the degree of
skew decreasing with increasing degrees of freedom.

You can lookup values of the inverse CDF of the different x? dis-
tributions in Table ZZ in Appendix YY. You can also use the formula
X%,df =CHISQ.INV(q, df) in Excel, or calling X%,df =77 in R, or call

X5,af =chi2.ppf (q,df) in Python.

Xon

2
X

Figure 24.5: Tllustration of the probability calculations for x> distribution
with v degrees of freedom. The value )(%,V is such that a total probability of g
is enclosed in the left tail of the distribution.

24.4 Discussion

24.4.1 Other distributions

The Erlang, Gamma, Weibull, Lognormal and Beta distributions are be-
yond the scope of this course.

24.4.2 Relationships between functions

TODO: insert simplified concept map from http://www.stat.rice.
edu/~dobelman/courses/texts/leemis.distributions.2008amstat.
pdf#page=3orhttps://pdfs.semanticscholar.org/c0db/71a4101347404d69
pdf#page=2

Normal approximation to the binomial distribution

If X is a binomial random variable with parameters n and p, then
X—np
np(1-p)

is approximately equal to the standard normal. To approximate a

binomial probability with a normal distribution, a continuity correc-
tion is given by

Pr(X = k) = Pr(k—0.5 < X <k+0.5) NPr<k 05_"19 <7< k+05—np>

Vnp(l—p /np(l—


http://www.stat.rice.edu/~dobelman/courses/texts/leemis.distributions.2008amstat.pdf#page=3
http://www.stat.rice.edu/~dobelman/courses/texts/leemis.distributions.2008amstat.pdf#page=3
http://www.stat.rice.edu/~dobelman/courses/texts/leemis.distributions.2008amstat.pdf#page=3
https://pdfs.semanticscholar.org/c0db/71a4101347404d698f68fbed54ddb88b1500.pdf#page=2
https://pdfs.semanticscholar.org/c0db/71a4101347404d698f68fbed54ddb88b1500.pdf#page=2
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Pr(X <K) = Pr(X <k+05)~ Pr 7z < A0 21P
np(l—p)

Pr(X > k) — Pr(X < k—05) ~ Pr [ 2 > 05— 1P
np(l—p)

This approximation is good for np > 5 and n(1 — p) > 5.

Normal approximation to the Poisson distribution

If X is a Poisson random variable with E[X] = A and V[X] = A, then

CX-A
VA

is approximately a standard normal random variable. The same con-
tinuity correction used for the binomial distribution can also be ap-
plied. The approximation is good for A > 5.

TODO: give other examples of phenomena to show normality
emerge for large n

http:/ /efavdb.com /normal-distributions /

Z

24.4.3 Limiting behaviour

LLN = FWD reference to Extra Topics
Central limit theorem = FWD reference to Extra Topics

24.5 Exercises

24.6 Continuous distributions problems

Intro/motivational text...
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