Calculus explained in 25 pages

Excerpt from the No Bullshit Guide to Math and Physics by Ivan Savov

Abstract—This tutorial introduces the key ideas of calculus that
you need to know for science, engineering, and business. We'll

learn about limits, derivatives, integrals, sequences and series.

This material is normally taught in two separated university
courses: differential calculus and integral calculus, but we’ll present
both topics together so that we can highlight the connections
between derivatives and integrals. We'll explain calculus concepts
in multiple ways: using words, math formulas, graphs, and also
show Python code examples.

Visit bit.1ly/calctut3 to follow along in an interactive notebook.

II

III

v

CONTENTS

Introduction
I-A Example: car trip

I-B Doing calculus: then and now

I-C Applications of calculus

Math prerequisites

I-A Setnotation L.
II-B Functions
II-C Function inventory
II-D Functions with discrete inputs.
II-E Geometry of rectangles and triangles.
II-F Trigonometric functions
Limits

III-A Example 1: Archimedes” approximation to 7 . .
II-B Example 2: Euler’s number
OI-C Limits at infinity
MI-D Limit formulas
III-E Limitstozero
II-F Limits to a number
-G Continuity
II-H Computing limits using SymPy
-1 Applications of limits
Derivatives

IV-A° Numerical derivative calculations
IV-B Derivative formulas
IV-C Derivativerules
IV-D Higher derivatives
IV-E Examples
IV-F Computing derivatives using SymPy
IV-G Applications of derivatives
IV-H Solving optimization problems using derivatives

N N N DN

[SM)

X N NN NN oy OO

O O O O ®©

10

\%

VI

VII

VIII

IX

Integrals

V-A Act 1: Integrals as area calculations
V-B Properties of integrals
V-C Computing integrals numerically
V-D Formal definition of the integral
V-E Act 2: Integrals as functions
V-F Intermission00 L
V-G Act 3: Fundamental theorem of calculus
V-H Act 4: Techniques of integration
V-1 Computing integrals numerically using SciPy
V-] Computing integral functions using SymPy . . .
V-K Applications of integration

Sequences and series

VI-A
VI-B

VI-C
VI-D
VI-E

VI-F

VI-G
VI-H
VI-I

Sequences are functions with discrete inputs . .
Convergence of sequences

Summation notation

Exact formulas for finite summations

Series

Power series

Taylor series

Obtaining Taylor series using SymPy.

Applications of series

Multivariable calculus

VII-A
VII-B
VII-C

VII-D
VII-E
VII-F

Multivariable functions
Partial derivatives

The gradient operator
Partial integration
Double integrals

Applications of multivariable calculus

Vector calculus

VIII-A

VIII-B
VIII-C

VIII-D

Example: electric field around a positive charge

Vector calculus derivatives

Vector calculus integrals

Applications of vector calculus

Practice problems

Links

11
11
12
13
14
14

15
15
16

17
18
18

19
19
20

20
20
21
22
22

22
23

23
23
23
23

24
24
24

24
24

25
25

25

25

25

http://minireference.com/
https://bit.ly/calctut3

I. INTRODUCTION

Calculus is the study of functions and their properties. The two
calculus techniques we’ll learn in this tutorial are derivatives,
which tell us how functions change over time, and integrals,
which compute the total accumulation of functions over time.
Derivatives and integrals might sound like fancy math jargon,
but actually they are common-sense concepts that you're
already familiar with, as you'll see in the following example.

A. Example: car trip

Suppose you're driving to see a friend in a neighbouring town.
The total length of the journey is 27000 m (27 km) along a
straight road. We can describe your position over time as a
function x(t), and use the car’s trip odometer to measure the
distance travelled. Right before you leave, which we’ll call
t =0, you reset the trip odometer so it reads x(0) = 0 m.

4

Velocity: The derivative function x'(t), pronounced “x prime,’
describes how the function x(f) changes over time. In this
example x/(t) is the car’s velocity. If your current velocity is
x'(t) = 15 m/s, then the car’s position x(t) is increasing by
15 m each second. If you maintain this velocity, the position
will increase at a constant rate: x(0) = 0 m, x(1) = 15 m,
x(2) = 30 m, and so on until ¢+ = 1800 s when you'll have
travelled 1800 x 15 = 27000 m and reached your destination.

To estimate the time remaining in the trip, assuming the
velocity x/(t) stays constant, you can divide the remaining
distance by the current velocity:

27000 — x(t)
x/(t)

The bigger the derivative x/(t), the faster you'll arrive. If you
drive two times faster, the time remaining will be halved.

time remaining at t =

Inverse problem: Imagine that the car’s odometer is busted
and you don’t have any way to measure the distance x(#)
you have travelled over time. The car’s speedometer is still
working though, so you know the velocity x/(t) at all times.
Is there a way to calculate the distance travelled using only
the information from the speedometer?

There is! You can infer the position at time ¢ from the velocity
x'(t). Think about it—if the speedometer reports x'(t) = 15m/s,
then you know that the car’s position is increasing at the rate of
15 m each second. We can describe the total distance travelled
until time t = 7 (the Greek letter fau) as the integral of the
velocity function x/(t) between t = 0 and t = T:

t=T
x(1) = J xX'(t) dt.

t=0
The integral symbol { is an elongated S that stands for sum.
To calculate the total distance travelled, we imagine splitting
the time between f = 0 and ¢t = 7 into many short time
intervals dt. During each instant, the position increases by
x'(t)dt m, where x/(t) is the velocity (measured in m/s), and
dt is the time interval (measured in seconds). The integral
o X/(t) dt calculates the “sum” of these x/(t) dt contributions
accumulated between t =0 and t = 7.

2

The situation described in the car example shows that calculus
concepts are not theoretical constructs reserved only for math
specialists, but common ideas you encounter every day. The
derivative g(t) describes the rate of change of the quantity
q(t). The integral SZ q(t)dt measures the total accumulation of
the quantity g(t) during the time period from t = a to t = b.

B. Doing calculus: then and now

The key ideas of calculus were developed by Isaac Newton
and Gottfried W. Leibniz in the 17 century using symbolic
calculations performed with pen and paper. Today we have
computers at our disposal that are extremely good at doing
numerical calculations. This tutorial combines both symbolic
and numerical methods of doing calculus to give a complete
picture of all the tools available to you and their use cases.

Symbolic calculations: The pen-and-paper approach is still
a good way to learn calculus, because manipulating math
symbols “by hand” develops your intuitive understanding of
calculus procedures. Writing math on paper allows you to use
high-level abstractions and arrive at exact symbolic answers.

Symbolic calculations using SymPy: The Python library SymPy
allows you to do symbolic math calculations on a computer.
Using a computer algebra system like SymPy extends the reach
of symbolic calculus operations you can do by automating
some of the tedious steps and jumping straight to answers.
You can also use SymPy to check the answers you obtain from
pen-and-paper calculations.

Numerical computing using NumPy and SciPy: Most practical
applications of calculus don’t require exact symbolic answers.
Engineers don’t care about the exact value of the square
root of two /2, and instead represent v/2 approximately
the floating-point number 1.4142135623730951 on a computer.
This numerical approximation is good enough for most
engineering and scientific use cases. What we give up in
mathematical exactitude, we gain manyfold in computational
power: modern computers can perform trillions (10'?) of
floating point operations per second! The Python libraries
NumPy and SciPy make it easy to do numerical calculus
operations on a computer, as we’ll demonstrate in code
examples throughout this tutorial.

C. Applications of calculus

We use calculus concepts to describe various quantities in
physics, chemistry, biology, engineering, business, economics
and other domains where quantitative analysis is used. Many
laws of nature are expressed in terms of derivatives and
integrals, so it’s essential that you learn the language of
calculus if you want to study science. In all these areas, the
quantities of interest are described by functions and we use
derivatives and integrals to do various useful calculations
based on these functions. For example, derivatives are used for
optimization, and integrals are used to compute probabilities
in statistics and machine learning. This is the power of
mathematical abstraction: the calculus techniques you learn
for analyzing the rates of change of functions apply to solving
real-world problems in many different domains.

II. MATH PREREQUISITES

Let’s start with a review of key ideas from high school math,
which we'll need to use as building blocks for calculus.

A. Set notation

Sets are collections of math objects. Many math ideas are
expressed in the language of sets, so it’s worth knowing the
notation for sets.

o { definition }: we use curly brackets to define sets. The
definition in the curly brackets is either a description of
the set’s contents, or a list of the elements in the set.

o IN: the set of natural numbers N = {0,1,2,3,4,5,...}.

o IN,: the positive natural numbers Ny = {1,2,3,4,5,...}.

¢ IR: the set of real numbers.

e R,: the set of nonnegative real numbers.

e x € S: this statement is read “x is an element of S.” We
use this notation to indicate the “type” of the variable x.
For example, writing “x € R” tells us x is a real number.

We can use the set-builder notation {- | - } to define new sets.
Inside the curly brackets, we first describe the general kind
of mathematical objects we are talking about, followed by the
symbol “|” (which stands for “such that”), followed by the
conditions that identify the elements of the set. For example,
the set of nonnegative real numbers R is defined as “all real
numbers x such that x > 0,” which is expressed compactly as
R+ = {x e R | x > 0} using the set-builder notation.

The number line: The number line is a visual representation of
the set of real numbers IR, as shown in Figure 1.

I\J}(»)
Nl
N
A2

3
NI
8

Figure 1. The real numbers R cover the entire number line.

The set of real numbers includes the natural numbers
{0,1,2,3,.. .}, the integers {...,—3,-2,—-1,0,1,2,3,.. .}, ratio-
nal numbers like —%, 0.5, and %, as well as irrational numbers
like v/2, e, and 7. All the numbers you will run into when
doing math can be visualized as a point on the number line.

Infinity: The math symbol oo describes the concept of infinity.
We use the symbol o to represent an infinitely large quantity,
that is greater than any number you can think of. Geometrically
speaking, we can imagine the number line extends to the
right forever towards infinity, as illustrated in Figure 1. The
number line also extends forever to the left, which we denote
as negative infinity —co.

Infinity is not a number but a process. When we use the symbol
+00, we're describing the process of moving to the right on
the number line forever. We go past larger and larger positive
numbers and never stop.

Infinity is a key concept in calculus, so it’s important that
we develop a precise language to talk about infinitely large
numbers and procedures with an infinite number of steps,
which we’ll do in Section III.

B. Functions

A function is a mathematical object that takes numbers as
inputs and produces numbers as outputs. The output of the
function f for the input x is denoted f(x). We can define a
function by writing an expression for the output of the function
when the input is x. For example, the quadratic function is
defined as f(x) & x2. We use the “is defined as” symbol
in the definition instead of the regular equals sign =. The
function f(x) takes any number x as input, and produces the
square of this number as output. For example, when the input
is x = 3, the output of the function is f(3) = 3% = 9.

In this tutorial, we'll often show code examples that mirror
the math calculations. For example, here is the Python code
that defines the function f and evaluates it for the input x = 3.
>>> def f(x):

return x**2
>>> £(3)
9.0
Note the Python syntax for evaluating the function £ for the
input 3 is the same as the math syntax f(3).

Function graphs: The graph of a function is a curve that passes
through all input-output pairs of a function. Each input-output
pair corresponds to a point (x, f(x)) in a Cartesian coordinate
system. We obtain the graph of the function by varying the
input coordinate x and plotting all the points (x, f(x)), as
illustrated in Figure 2. The graph of the function f allows
us to see at a glance the behaviour of the function for many
inputs. Function graphs are an essential tool for calculus.

We can use the Python to plot the graph of the function
f(x) & x2 that we defined earlier. We start by importing the
module numpy under the alias np. Next, we use the function
np.linspace to create an array (a list of numbers) xs that
contains 1000 x-values that range between x = —3 and x = 3.
We then evaluate the function for all inputs xs and store the
outputs of the function in an array called fxs.

>>> import numpy as np

>>> xs = np.linspace(-3, 3,
>>> fxs = f(xs)

1000)

At this point, the array xs contains 1000 x-inputs, while the
array fxs contains the corresponding 1000 outputs of f(x).
To generate the graph of f(x), we just need to trace a line
passing through the 1000 coordinate pairs (x, f(x)). We can do
this by importing the seaborn module (alias sns) and calling
the function sns.lineplot.

>>>
>>>
See

import seaborn as smns
sns.lineplot (x=xs, y=fxs)
Figure 2 for the output.

1

— f(x)

(
o N O ® O

3 2 1 0 1 2 3
X

Figure 2. Graph of the function f(x) = x*> from x = —3 to x = +3. The
graph of the function f passes through the coordinate pairs (x, f(x)) for all
x-values between x = —3 and x = 3.

We'll use this combination of np.linspace, function evalua-
tion, and sns.lineplot to plot function graphs.

Inverse functions: The inverse function f~! performs the inverse
operation of the function f. If you start from some x, apply f,
then apply f~1, you'll arrive—full circle—back to the original

input x:
FH) =

In Figure 3, the function f is represented as a forward arrow,
and the inverse function f~! is represented as a backward
arrow that puts the value f(x) back to the x it came from.

Figure 3. The inverse f~! undoes the operation of the function f.

For example, when x > 0, the inverse of the function f(x) = x?

is the function f~!(x) = v/x. Earlier we computed f(3) = 9. If
we apply the inverse function f~!(x) = v/x to 9, we get back
to the number 3 that we started from f~1(9) = /9 = 3.

>>> from math import sqrt

>>> sqrt(9)
3

Function properties: We often think about the possible inputs
and outputs of functions. We use the notation f: A — B to
denote a function from the input set A to the output set B.
The set of allowed inputs is called the domain of the function,
while the set of possible outputs is called the image of the
function. For example, the domain of the function f(x) = x?
is R (any real number) and its image is R} (nonnegative real
numbers), so we say f is a function of the form f: R — R;.

C. Function inventory

Your function “vocabulary” determines which math expres-
sions you'll be able to read and understand in the same way
your English vocabulary determines which English sentences
you'll be able to read and understand. Figure 4 shows the
graphs of six important functions that are used in many areas
of mathematical modelling.

@) f(x) = x

-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2

(d) f(x) = |x| (f) f(x) = In(x)

2 3
2
1
2 1
0
1

) 0 -2
2 10 1 2 0 1 2 3 4 0 2 4 6 8

Figure 4. Graph of six math functions that you should know about.

Linear function: The linear function f(x) £ mx describes

an input-output relationship where the output value f(x)
is proportional to the input value x, and the constant of
proportionality is m. Geometrically, m is the slope in the

4

def

graph of f(x). Figure 4 shows the graph of f(x) < x which is
the linear function with m = 1 for which the output f(x) is
equal to the input x. More generally, we can define the line
f(x) € mx + b, where m describes the slope of the line, and b
is the value of the function when x = 0.

Quadratic function: The quadratic function f(x) £ x? calculates

the square of the input x. The name “quadratic” comes from
the Latin quadratus for square. Geometrically, x? is the area of
a square with side length x. See Figure 4 (b) for the graph.
The outputs of the quadratic function are always nonnegative
numbers since x2 > 0, for all real numbers x.

Polynomial functions: We can combine different powers of x
to obtain the polynomial f(x) £ ayx? 4 a1 x + ag, where a,,
a1, ag are arbitrary constants. This is called a second degree
polynomial, since the highest power of x it contains is x2. The

general equation for a polynomial function of degree n is
Pu(x) = ag + a1 x + arx? + azx® + - - + apx".

The constants ag, a1, 4y, ...,a, are called the coefficients of the
polynomial. Polynomials are a very useful family of functions,
because they can take on different shapes depending on the
choice of the coefficients. In Section VI-G, we’ll learn how to
obtain polynomial approximations to any function f(x).

Exponential function: The exponential function base ¢ is defined
as f(x) € ¢* = exp(x), where e = 2.7182818... is Euler’s
number. Figure 4 (c) shows the graph of the exponential
function f(x) = e, which passes through the following points:
(-2, %), (-1,3), (0,1), (L e), and (2,¢%).

Absolute value function: The absolute value function tells us
the size of numbers without paying attention to whether the
number is positive or negative. We compute the absolute value
of the number x by forgetting the sign of x. Geometrically, |x|
corresponds to the distance between x and the origin of the
number line. We see the absolute values whenever we apply
the combination of squaring followed by square root on some
number, v/x2 = |x|, since squaring destroys the sign.

Square root function: The square root function is denoted
f(x) = 4/x. The square root 4/x is the inverse function of
the square function x?, when x > 0. The symbol +/c refers to
the positive solution to the equation x> = c. Note that —/c
is also a solution of x> = c. Another notation for the square

def

L 1 .
root function is f(x) £ x2, where the fractional exponent
1

. . 1
> makes sense since if we square x2, we get back to x:
1 2 eps .
(x?)2 = x2 = x! = x. In addition to square root, there is
1
also the cube root function f(x) = +/x = x3, which is the

inverse function for the cubic function f(x) = x. For example,
V8 =2since 2x2x2=8.

Logarithmic function: The natural logarithm function is denoted
f(x) £ In(x) = log,(x). The function In(x) is the inverse
function of the exponential e*. The graph of the function
In(x) passes through the following coordinate pairs: (elz, -2),

(1,-1), (1,0), (e,1), (€2,2), (€3,3), (¢* 4), etc.

e’
There are many other functions worth knowing about, but if

you're familiar with the six function shown in Figure 4, you're
doing well.

D. Functions with discrete inputs

Later in this tutorial, we’ll study functions with discrete
inputs, ar : N — R, which are called sequences. We often
express sequences by writing explicitly the first few values the
sequence [y, 1,42,43,. ..], which correspond to evaluating ay
fork=0,k=1,k =2, k = 3, etc. We’ll learn more about
sequences and their properties in Section VI.

E. Geometry of rectangles and triangles

The area of a rectangle of base b and height h is A = bh, as
illustrated in Figure 5 (a). The area of a triangle is equal to %
times the length of its base b times its height i: A = 1bh, as
shown in Figure 5 (b).

b b
(a) A5 =bh (b) Ap = %bh

Figure 5. Formulas for calculating the area of a rectangle and a triangle.

E. Trigonometric functions

The unit circle is a circle of radius one centred at the origin,
as illustrated in Figure 6. The unit circle consists of all points
(x,y) that satisfy the equation x> + y?> = 1. A point on the unit
circle has coordinates (cos 6, sinf), where 0 is the angle the
point makes with the x-axis.

(cos 8, sin 0) N

2y =1 - .-

Figure 6. The coordinates of the point on the unit circle are cos @ and sin 6.

In math, we use radians to measure angles instead of degrees °.

One full circle is 360° or 27 radians. Some common angle
measures are 30° = ¢, 45° =7, 60° = %, and 90° = 7. The
trigonometric functions sin and cos take inputs in radians, so
we often convert angles from degrees to radians.

Sine function: The graph of the sine function f(6) ¥ sin(6)
oscillates up and down and crosses the x-axis multiple times, as
shown in Figure 7 (a). This graph corresponds to the vertical
position of the point turning around on the unit circle, as
illustrated in Figure 6 (a). We also use the sine function to find
the y-component of a unit length, as shown in Figure 6 (b).

5

Cosine function: The cosine function is the same as the sine
function shifted by 7 to the left: f(6) = cos(0) = sin(6 + 7),
as shown in Figure 7 (b). The cosine function represents the
horizontal position of a point on the unit circle, and the x-
component of a unit length, as illustrated in Figure 6.

(a) f(0) = sin(6) (b) £(8) = cos(8)
2 2
1 1
0 0
1 1
-2)

0 Z m 3x 27 5¢ 3w X 4w 0 Z g 3t 27 5% 3w In 4m

5 7 3 2 2 2 2

Figure 7. Graphs of the trigonometric functions sin(f) and cos(f) showing
two full cycles. The graphs represent the vertical and horizontal position of a
point that completes two full circles around the unit circle.

We use the trigonometric functions sin(f) and cos(f) to
compute components of vectors in different directions. The
sine and cosine functions are also used to describe waves
and periodic motion in physics. In this tutorial, we won't
discuss these applications too much, and instead focus on the
trigonometric functions” graphs and rates of change.

OVERVIEW AND A LOOK AHEAD

The goal of this tutorial is to introduce you to the language
of calculus. The concept map in Figure 8 shows an overview
of the calculus ideas you’ll learn in the next few pages.

provide a precise language for talking about:
integral operation

1A
area under the graph
[T

Riemann sum

integration techniques
applications
ative

derivatives formulas | integrals | | sequences and series |

calculus

Figure 8. The calculus concepts and topics you'll learn in this tutorial.

used in

derivative operation

slope of the graph

derivative rules

higher derivatives

fundamental
theorem

optimization Taylor series

We'll start by introducing limits in Section III. Limits give us a
precise language to talk about infinity. Limits are a cornerstone
idea in calculus, because they allow us to define the calculus
operations: derivatives, integrals, and series. We'll discuss
derivatives in Section IV and integrals in Section V. We'll then
talk about sequences and series in Section VI, and conclude
with a brief intro to multivariable calculus in Section VII.

Throughout the tutorial, we’ll explain concepts using text,
formulas, graphs, and code examples. My intention is for you
to understand the key ideas of calculus in theory, but also
learn practical skills you can use to solve real-world problems.

III. LiMITS

Limits are a precise mathematical language for talking about
infinitely large numbers, infinitely small lengths, and proce-
dures with an infinite number of steps. We use the shorthand
“lim” to denote limit expressions. For example, the expression
limy . f(x), read “the limit of f(x) as x goes to infinity,”
describes what happens to f(x) when x gets larger and larger.

A. Example 1: Archimedes’ approximation to 1t

We'll start by looking at a visual example of a math procedure
that was invented by Archimedes of Syracuse around 250 BCE.
Archimedes wanted to calculate the area of a circle of radius
r = 1. Today we know the formula for the area of the circle is
Ao = 772, so the area of a circle with radius r = 1 is 7. Try to
place yourself in Archimedes’s shoes (sandals?) and suppose
that you don’t know the formula.

Archimedes had the clever idea to approximate the circle as
a regular polygon with n sides inscribed inside the circle.
Figure 9 shows the hexagonal (6-sides), octagonal (8-sides),
and dodecagonal (12-sides) approximations to the circle.

(a) n =6.

Figure 9. Approximations to the area of a circle using a hexagon, an octagon,
and a dodecagon inscribed inside a circle of radius r.

(b) n=8.

(c) n=12.

Archimedes split the area of the n-sided regular polygons
into 2n triangular slices, like the one shown in Figure 9 (b).
He then computed the area of each slice using the formula
for the area of a triangle, and added up the areas of the 2n
triangles to obtain the total area of the n-sided polygon. Let’s
denote A(n) the area approximation computed from a n-sided
polygon. Looking at Figure 9, we see the approximations to
the area of the circle using six-sided and eight-sided polygons
are underestimates for the total area. However, the polygon
with n = 12 is starting to look almost like a circle. We can use
our imagination to see that the approximation A(n) ~ A, will
become increasingly accurate as n becomes larger and larger.
Archimedes only managed to compute an approximation with
a 96-sided polygon, but thanks to computers we can push the
approximation to much higher values of n. For example, using
a 1000-sided polygon gives us an approximation that is accu-
rate to four decimals A(1000) = 3.1415.... Using n = 10000
we get an approximation to 7t that is accurate to six decimals
A(10000) = 3.141592.... See the computational notebook
bit.ly/calctut3 for the details of these calculations.

In the limit as n — oo, the approximation A(n) becomes exactly
equal to 7 = 3.141592653589793 . . ., which we can express as
the limit expression lim,_,o A(n) = 7. Note that A(n) # 7
for any finite number #n, no matter how large 7 is. It is only
in the limit as n goes to infinity that the n-sided polygon
approximation becomes exactly equal to a circle.

6

Let’s look at another example of a simple math procedure
with 7 steps that produces a useful approximation.

B. Example 2: Euler’s number

Suppose you take out a loan with 100% nominal interest rate.
This is a very bad loan that nobody would agree to in the real
world, but we’ll use it for this example to make the math come
out simpler. An interest of 100% calculated yearly means at the
end of one year, you'll owe the bank (1 +100%) = (1+1) =2
times the amount you borrowed initially.

However, most banks don’t calculate the interest only once per
year. If the bank calculates the interest twice per year, during
the first six months you’ll have accrued %O% = 50% of interest,
so you'll owe them (1 +50%) = (1 + %) = 1.5 times the initial
amount. Then during the second six months, the amount owed
will grow by an additional (1 +50%) = (1 + 3) = 1.5, so at
the end of the year, you'll owe them (1 + 3)(1 + 3) = 2.25.

If the bank computes the interest three times per year, the
amount owed after one year is (1+ 3)(1+ 3)(1+ 1) = 2.370.
If they compute the interest four times per year (quarterly),
then you'll owe (1+ 1)(1+ $)(1+ 1)(1+1) = 2.441. Note
the amount owed after one year keeps changing, as the
compounding is performed more frequently. In general, when
the compounding is performed »n times per year, the amount
owed at the end of one year will be

(1+%) (1+%)-~-(1+%):(1+%>n.

n times

With monthly compounding (n = 12), the amount owed will
be (1+ %)12 = 2.613 at the end of one year. With daily
compounding, the amount would be (1 + 31@)365 = 2.715.
If computing the interest n = 1000 times per year, the
amount will be (1 + ﬁ)looo = 2.717. The amount owed keeps
increasing, but it seems to “stabilize” around the value 2.71.

What happens if we perform the compounding even more
frequently? Specifically, we want to know what happens if the
interest is compounded infinitely often. The infinitely-often
calculation corresponds to computing the limit of expression
(1+ %)”, as n goes to infinity, which is written as follows
using math notation:

n
n—0o0
This limit expression converges to the value e = 2.71828.. .,

which is known as Euler’s number. If we borrow $1000, we’ll
owe $1000e = $2718.28 at the end of one year.

2.718281828....

We defined the number 7t as the limit lim;,_, A(n) and the
number e as the limit lim, (1 + %) . The definitions of

the numbers 77 and e as limits go beyond the regular math
operations we learn in high school math. The limit expression
limy, . doesn’t describe any particular number #n, but the
process of plugging in larger and larger values of #.

C. Limits at infinity

We can use limit expressions to describe what happens to a
function when its input variable tends to infinity. Does f(x)

https://bit.ly/calctut3

approach a finite number, or does it keep growing to o? The
function f(x) converges to L if the function approaches the
value L for large values of x:

lim f(x) =

X—00

We say “the limit of f(x) as x goes to infinity is L.” See
Figure 10 for an illustration.

Joo) A
L 4

» X

>

Figure 10. The function f(x) oscillates up and down initially, but then it
“settles down” close to the value L for large values of x.

Example 3: Consider the limit of the function f(x) = % as x

goes to infinity, which is illustrated in Figure 11 (a):
. T 1_
Jim f() = Jim 3 =0

The function 1

+ never actually reaches zero, so it would be
wrong to write f(x) = 0 for any x € R. However, the
expression % gets closer and closer to 0 as x goes to infinity.

Limits are useful because they allow us describe this tendency.

() f(x) = 22) (0) f(x) = H(x)
4 \\
2 L o2rtl 1 >
lim =~ =2 lim H(x) =1
0 %y 50
2 0)
lim H(x) =0
0
4
-1
5-4-3-2-10 1 2 3 4 5 —5-4-3-2-10 1 2 3 4 5 5-4-3-2-10 1 2 3 45
X X X

Figure 11. Visual representation of the limit calculations for three functions.

D. Limit formulas

The limit of the sum, difference, product, and quotient of two
functions are computed as follows:

lim (f(x) +g(x)) = lim f(x) + lim g(v),
Tim (f(x) — g(x)) = hm n f(x) - JLOO 3(0),
Tim f(x)g(x) = hm v f(x) - lim g(x),
xlgn (Fx)/() = lim f(x)/ lim g(x)

In words, these formulas tell us we can bring the limit
calculations “inside” basic arithmetic operations.
2x+1

Example 4: Calculate limy_, o . We're given the function
flx) = 2x+1 and must determlne what the function looks like
for very large values of x. We can rewrite the function as

72"; l_24 % then apply the sum formula for limits:
lim 21 = lim (2+%) = hm 2+ lim 1 ;=2+0=2.
X—00 X—00 X—00

As x goes to infinity, % goes to 0, so the second term vanishes,
leaving only the 2. See Figure 11 (b) for an illustration.

E. Limits to zero

The limit expression lim,_,q f(x) describes the behaviour of the
function f for values of x very close to 0. The limit lim,_,q f(x),
read “the limit of f(x) as x goes to zero,” asks us to evaluate
the function f for inputs like x = 0.1, x = 0.01, x = 0.001,
x = 0.0001, etc. to see the behaviour of the function for very
small values of x.

For example, when x > 0, the limit lim,_,o % = 0. In words,
the function f(x) = 1 “blows up” to infinity as x goes to 0,
as shown in Figure 11 (a).

F. Limits to a number

More generally, the limit of f(x) approaching x = a from the
right is denoted lim,_,,+ f(x) = lims_,o f(a + 6). We use the
symbol é (the Greek letter delta) to describe a distance that
gets smaller and smaller. This limit expression describes the
value of the function f as the input x gets closer and closer
to a with values like a + 0.1, a + 0.01, a + 0.001, a + 0.0001, etc.
The limit of f(x) when x approaches from the left is defined
analogously, lim,_,,— f(x) = lims_,o f(a —9).

If both limits from the left and from the right at x = a exist
and are equal to each other, we say the limit as x — a exists:

J1(1_r>r111f(x) = 1im+ f(x) = lim f(x).

For the two-sided limit of a function to exist at a point, both the
limit from the left and the limit from the right must converge
to the same number.

G. Continuity

If the function f(x) obeys, f(a) = limy_,, f(x), we say the
function f(x) is continuous at x = a. Geometrically, the graph
of the continuous function at x = a is a “smooth” curve that
doesn’t have any hole or a jump at x = 2. When a function is
continuous, we can draw its graph using a single pen stroke
without lifting the pen. In contrast, functions that blow up to
infinity or make sudden jumps are not continuous.

Example 5: The Heaviside step function is an example of a
function with a jump discontinuity. It is defined as follows:

1, ifx=>0
Ho |
() {0, if x < 0.

The function is zero for negative values of x, then suddenly
jumps to one at x = 0, as shown in Figure 11 (c). The limit
as x approaches x = 0 from the left is lim, ,,— H(x) = 0. The
limit at x = O from the right is lim,_,q+ H(x) = 1. The two
limits are different, lim,_,,- H(x) = 0 # 1 = lim,_,o+ H(x), so
the function is discontinuous at x = 0.

H. Computing limits using SymPy

We can use SymPy to compute limit expressions, which allows
us to check the answers we obtain using pen-and-paper
calculations. We'll start by importing the sympy module under
the alias sp, defining the symbolic variable n = 1, which we
can then use to write various expressions.

>>> import sympy as sp
>>> n = sp.symbols("n")

To compute limit expressions, we use the SymPy function

sp.limit (expr,var,value), which returns limyay—yva1ye €Xpr.

For limits to infinity, we use the symbol sp. oo (two lowercase
os), which kind of looks like the infinity symbol oc.

n
Euler’s number is defined as the limit ¢ & lim,_ o (1 + %

To compute this limit using SymPy, we call sp.limit on the
expression (1+1/n)**n as n goes to infinity o0 = sp.oo:

>>> sp.limit ((1+1/n)**n, n,
E

sp.o0o0)

The result of sp.1limit is the exact value e which is represented
symbolically as E.

Let’s now compute the limits limy_, o % and lim, g+ % We

first define the symbol x then call the function sp.limit to

evaluate the two limits involving the expression 1/x = 1:

>>> x = sp.symbols("x")
>>> sp.limit(1/x, x, sp.oo)
0

>>> sp.limit(1/x, x, 0)

[e)e}

SymPy confirms that limx_,oo% =0 and lim,_,4+ % = o0, as
calculated earlier. See Figure 11 (a) for an illustration.

Here is another example, that computes the limit of the fraction
2x+1
X
>>> sp.limit ((2*x+1)/x, x,

2

sp.o0o0)

To calculate the limit from the left or the right of a number,
we provide a fourth argument "-" or "+" to sp.limit.

>>> from sympy import Heaviside
>>> sp.limit (Heaviside(x,1), x, O,
0

>>> sp.limit (Heaviside(x,1), x,
1

nony

0, |l+n)

I. Applications of limits

Limits are important because they are used in the formal
definitions of derivatives, integrals, and series:

o The derivative function f’(x) describes the rate of change
of the function f(x) at x. In Section IV, we'll calculate
derivatives by evaluating limits of the form lim;_,.

o The integral Sg f(x)dx describes the area under the graph
of the function f(x) between x = a and x = b. In Section V
we'll learn how to compute integrals by splitting up areas
into n rectangles, then taking the limit lim, .

o The series > _; a; describes the sum of all the first n
terms in the sequence 4. In Section VI, we’ll learn how to
compute infinite series by evaluating limits like lim; .

IV. DERIVATIVES

The derivative function, denoted f'(x), % f(x), or %, describes
the rate of change of the function f(x). For example, the constant
function f(x) = ¢ has derivative f/(x) = 0 since it doesn’t
change. Geometrically, the derivative function describes the

as x goes to infinity, which is illustrated in Figure 11 (b).

8

slope of the graph of the function f(x). The derivative of the
line f(x) = mx + b is f'(x) = m, since the slope of this line is
equal to m. For general curves, the slope of a function will
change at different values of x, so mathematicians invented
the notation f'(x) for describing “the slope of the function f
at x.”

Let’s start by calculating the average slope of the function
between two points. Consider the points (x, f(x)) and (x +
Ax, f(x + Ax)) on the graph of the function. We'll denote the
horizontal distance that separates the two points Ax (read
delta x), and similarly denote the vertical distance between the
points as Ay = f(x + Ax) — f(x). We can obtain the average
slope of the function using the rise-over-run formula: m =
By flathy) - f) Figure 12 illustrates the result of the
Ax x+Ax — x

average slope calculations at x = 1 for different horizontal

distance Ax. When Ax = 2 the average slope is m = ﬁ—z =8 =

4.WhenAx:1wegetm:%:%:S.WhenAx:O.C’athe
slope is m = % = @ = 2.3. If we continue this process with
even smaller Ax, we'll obtain the instantaneous slope at the
point x.

(a) Step size Ax =2 (b) Step size Ax =1 (c) Step size Ax = 0.3

0 — fx) =2
— y=4x-3

— fl0) =2+
— y=3x-2

— fx) =2

(3fB) — y=23x-13

Ay=8

(13,£(1.3))

Figure 12. Calculating the slope of the function f(x) = x? by finding the
line that passes through the points (x, f(x)) and (x + Ax, f(x + Ax)).

The derivative function f’(x) is defined as the following limit:
i s o) — f(x)
! def 1 f(x + .
flx) = lim 5

Here J plays the same role as Ax, but goes to zero. In words,
this derivative formula describes the rise-over-run calculation
for an infinitely short horizontal distance J.

The derivative is a function of the form f': R — R. It takes
the value x as input and tells you the slope of the function
f at that value. Figure 13 shows the slope of the function
f(x) = x? at two different locations: at x = —0.5 and at x = 1.

J(@) =22
f')=2

AN

-2 1 1 2

Figure 13. The derivative of the function at x = 4 is denoted f’(a) and
describes the slope function at that point. You can visually confirm the slope
calculation using the mini grids drawn near each point.

The derivative function f/(x) is a property of the function
f(x). Indeed, this is where the name derivative comes from:
f/(x) is not an independent function—it is derived from the

slope property of the original function f(x). More generally,
we can define the derivative operation, denoted %[<f >], which
takes as input a function f(x) and produces as output the
derivative function f’(x). Applying the derivative operation to
the function is also called “taking the derivative” of a function.
For example, the derivative of the function f(x) = x? is the
function f/(x) = 2x. We can also describe this relationship as
(x?)" = 2x or as %(xz) = 2x. Look at the graph in Figure 13
to convince yourself that the slope of f(x) = x? is indeed
described by f'(x) = 2x for any x. For example, when x = 0,
we see the graph has zero slope and the derivative gives us
the same thing: f/(0) = 0.

A. Numerical derivative calculations

Here is the Python code for computing a numerical approxi-
mation to the derivative of the function f at the point x:
>>> def differentiate(f, x, delta=1e-9):

df = f(x+delta) - f(x)

dx = delta
return d4df / dx

The function differentiate calculates the derivative using a
finite step delta = 1077 instead of the infinitely small step &
in the math definition of the derivative. This means the value
returned by differentiate will be an approximation to the
true derivative.

Let’s now define a Python function f that corresponds to the
math function f(x) = x*> and use differentiate to find the
slope of f when x = 1:
>>> def f(x):

return x**2
>>> differentiate(f, 1)
2.000000165480742
Using the numerical method, we obtain the approximation
f/(1) = 2.000000165480742, which is not perfect, but pretty
close to the true value /(1) = 2. For most practical applications,
this numerical approximation is good enough.

B. Derivative formulas

You don’t need to apply the complicated derivative formula
f(x) € lims_ M every time you need to find the
derivative of a function. For each function f(x), it’s enough to
use the complicated formula once and record the formula you
obtain for f’(x), then you can reuse that formula whenever
you need to compute f/(x) in later calculations.

Table I shows the derivatives of several functions. I invite you
to mentally bookmark this page so you can come back to it
when you need to know the derivatives of some function.

Table I presents the results in terms of the derivative operator
% [<£>], which takes as input some function f(x) and produces
as output its derivative function f’(x).

C. Derivative rules

In addition to the table of derivative formulas, there are some
important derivative rules that allow you to find derivatives
of composite functions.

TABLE I
DERIVATIVE FORMULAS FOR COMMONLY USED FUNCTIONS

f(x) — derivative — f/(x)

a = % — 0
X ——é% — 1
mx + b — % — m

x", forn #0 — % — nx~1

Visat i e

e’ - % — e’
In(x) -4 4

sin(x) - % — cos(x)

cos(x) - % — — sin(x)

Constant multiple rule: The derivative of k times the function
f(x) is equal to k times the derivative of f(x):

[kf ()] = kf'(x).

Sum rule: The derivative of the sum of two functions is the
sum of their derivatives:

[f(x) +g(x)] = fl(x) + gx).

Product rule: The derivative of a product of two functions is
the sum of two contributions:

[f(x)g(x)] = flx)g(x) + f(x)g'(x).

In each term, the derivative of one of the functions is
multiplied by the value of the other function.

Quotient rule: This formula tells us how to obtain the derivative
of a fraction of two functions:

[f(@]’ _ Flg

x) — f(%)8'(x)
g(x) ’

g(x)?

Chain rule: If you encounter a situation that includes an inner
function and an outer function, like f(g(x)), you can obtain
the derivative by a two-step process:

[f8)] = Flg(x)g(x).

In the first step, we leave the inner function g(x) alone and
focus on taking the derivative of the outer function f(x). This
step gives us f(g(x)), which is the value of f’ evaluated at
g(x). In the second step, we multiply this expression by the
derivative of the inner function g'(x).

D. Higher derivatives

The second derivative of f(x) is denoted f”(x) or ‘;2712(, It

is obtained by applying the derivative operation to f(x)
twice: 4[4 [<£>]]. Geometrically, the second derivative f”(x)
tells us the curvature of f(x). Positive curvature means the

function opens upward and looks like the bottom of a valley.

The function f(x) = x> shown in Figure 13 has derivative
f/(x) = 2x and second derivative f”(x) = 2, which means it
has positive curvature. Negative curvature means the function
opens downward and looks like a mountain peak. For example,
the function g(x) = —x? has negative curvature.

E. Examples

Armed with the derivative formulas from Table I and the
derivative rules from the previous section, you can find the
derivative of any function, no matter how complicated. Let’s
look at some examples.

Example 6: To calculate the derivative of f(x) = e, we use
the chain rule: f/(x) = e¥ [x2] = ¢*"2x.

Example 7: To find the derivative of f(x) = sin(x)exz, we
use the product rule and the chain rule: f/(x) = Cos(x)e"2 +
sin(x)erxz.

Example 8: The derivative of sin(x?) requires using the chain
rule: [sin(xz)]/ = cos(x?) [xz]’ = cos(x?)2x.

F. Computing derivatives using SymPy

The SymPy function sp.diff computes the derivative of any
expression. For example, here is how to compute the derivative
of the function f(x) = mx + b:

>>> m, x, b = sp.symbols("m x b")

>>> sp.diff (m*x + b, x)
m

Let’s also verify the derivative formula d%[x”] = nx" L

>>> x, n = sp.symbols("x n")
>>> sp.diff (x**n, x)
n * x*x(n - 1)

The exponential function f(x) = e* is special because it is the
only function that is equal to its derivative:
>>> from sympy import exp

>>> sp.diff (exp(x), x)
exp (x)

Here is an example of the derivative of function that includes
exponential, trigonometric, and logarithmic terms:
>>> from sympy import exp, sin, log

>>> sp.diff (exp(x) + sin(x) + log(x), x)
exp(x) + cos(x) + 1/x

Let’s check the derivative calculations from the examples:

>>> sp.diff (sp.exp(x**2), x)

2xx*exp (x**2)

>>> sp.diff(sp.sin(x)*sp.exp(x**2), x)
2xxkexp (x**2)*sin(x) + exp(x**2)*cos(x)
>>> sp.diff (sp.sin(x**2), x)

2xx*cos (x*%2)

As you can see, the function sp.diff gives the same answers.

G. Applications of derivatives

Derivatives are used in physics, chemistry, computing, biology,
business, and many other areas of science. We need derivatives
whenever we compute rates of change of quantities.

10

Tangent lines: The tangent line to the function f(x) at x = xg
is the line that passes through the point (xo, f(xo)) and has
the same slope as the function at that point. The tangent line
to the function f(x) at the point x = xg is described by the

equation
Ti(x) = f(x0) + f(x0)(x — x0)-

For example, the tangent line to f(x) = x% at xg = 1is Ty (x) =
fFO)+ f(1)(x—1) =1+2(x—1) = 2x — 1. Look at the right
side of Figure 13 for an illustration of this tangent line.

The tangent line T is also called a first-order approximation
to the function f, since it has the same value and the same
derivative as the function f, T;(1) = f(1) and Tj(1) = f/(1). In
Section VI-G, we’ll learn how to build a fancier approximation
T, (x) that matches the second, third, and higher derivatives

of f(x).

H. Solving optimization problems using derivatives

We're often interested in finding the values x where some func-
tion f(x) reaches its minimum value. Knowing the derivatives
of the function f(x) is very useful for solving optimization
problems. For example, let’s look the graph of the function
f(x) = x? shown in Figure 13. The minimum of this function
occurs when x = 0. We can make the following observations
about the graph of the function at the minimum value:

(A) The slope of the function is negative on the left of the
minimum, and positive on the right of the minimum.

(B) The slope of f(x) is zero at the minimum: f/(0) = 0.

(C) The graph of the function looks locally like the bottom
of a valley at x = 0. This means the second derivative
of f(x) is positive at that point f”(0) > 0.

We can use these observations to come up with general strate-
gies for finding the minimum of any function. We’ll describe
two different strategies below: the first one based on math
formulas, the second one based on numerical computations.

Analytical optimization: The values of x where the derivative is
zero are called the critical points of the function and denoted
x§, x5, etc. Observation (B) tells us that optimum values
(maximum or minimum) occur at the critical points of the
function. Observation (C) tells us that we can identify a
critical point x]’-", that corresponds to a minimum if the second
derivative is positive at that point f"(xf) > 0 (positive
curvature). In contrast, a critical point x; where f”(x;) < 0
(negative curvature) is a maximum. These observations lead
us to the following analytical procedure for finding minima
and maxima of the function f(x):

(1) Solve f'(x) =0 to find the critical points [x}, x5, x3,...].
(2) For each critical point x, check to see if it is a maximum
or a minimum by evaluating f"(x}):
o If f”(x¥) <0 then x} is a max (mountain top)
o If f(x¥) > 0 then x} is a min (bottom of a valley).

We can also perform the check in step (2) visually by looking
at the graph of the function, or by evaluating the slope of
the function on the left and the right of the critical point. If
f/(x* —0.01) is negative and f/(x* 4 0.01) is positive, the point

x* is a minimum (like near x* = 0 in Figure 13). If f/(x* —0.01)
is positive and f'(x* + 0.01) is negative, then the point x* is
a maximum. If f/(x* —0.01) and f’(x* + 0.01) have the same
sign, the value x* is a stationary inflection point that is neither
a minimum nor a maximum.

Example 9: Let’s apply the analytical optimization procedure
to find the minimum value of the function g(x) = (x —5)2. The
derivative of the function is ¢/(x) = 2(x — 5). Next, we find
the critical point(s) by solving the equation 4'(x) = 0, which
has a single solution x} = 5. Is the critical value xj =5 a
minimum or a maximum? To find out, we compute the second
derivative ¢”(x) = 2, and check its sign at the critical value:
q"(5) = 2 > 0. The second derivative is positive (bottom of a
valley), so this means x{ = 5 is a minimum.

Example 10: What are the minimum and maximum values
of the function r(x) = x® — 2x? + x. The derivative function
is /(x) = 3x% —4dx+1 =3(x —1)(x — %) We find the critical
points by solving the equation #/(x) = 0, which leads us to
two critical points x} = 5 and x5 = 1. The second derivative
of the function is r”(x) = 6x — 4. For the critical value x§ = 1,
we find r”(%) = —2 < 0, which tells us x} = % is a maximum.
For x} =1, we find (1) = 2, so x§ =1 is a minimum.

Numerical optimization: Observation (A) suggests another way
to find the minimum of a function: if we repeatedly take steps
in the “downhill” direction, we’ll end up at the bottom of a
valley. This is the idea behind the gradient descent algorithm,
which allows us to find the minimum of any function. We
start at some point x = xp and repeatedly take steps in the
direction where the function is decreasing.
>>> def gradient_descent (f,x0=0,alpha=0.05,tol=1e-10):

current_x = x0

change = 1

while change > tol:

df _at_x = differentiate(f, current_x)
next_x = current_x - alpha * df_at_x
change = abs(next_x - current_x)
current_x = next_x

return current_x

The gradient_descent procedure takes two arguments as
inputs: the function we want to minimize £, and an initial value
xo where to start the minimization process. The procedure
then visits the points x1, x, x3, etc., by repeatedly taking
steps in the direction opposing the derivative at the current x.
The formula x; 1 = x; — af’(x;) is used to find the next point,
where the step size is determined by the parameter « and the
slope of the function.

Here is how to use gradient_descent to find the minimum
of the functions g(x) = (x —5)? and r(x) = x> — 2x? + x, using
the value x0 = 10 as the starting point of the gradient descent.
>>> def q(x):

return (x - 5)*%*2
>>> gradient_descent(q, x0=10)
5.000000000396651
>>> def r(x):

return x**3 - 2%x**2 + Xx
>>> gradient_descent(r, x0=10)
1.0000000932587236

The while loop in the gradient_descent procedure ran many
times, and in each iteration took a small downhill step until
we got to the minimum (the bottom of the valley). The opti-
mization procedure returned the values x = 5.000000000396651

11

and x = 1.0000000932587236, which are close to true minimum
values of the functions g(x) and r(x).

Numerical optimization using SciPy: The Python module SciPy
provides a high-performance numerical optimization pro-
cedure called minimize that runs much faster than the
gradient_descent procedure that we defined above. Here is a
demonstration that shows how we use the function minimize
to find the minima of the functions g(x) and r(x).

>>> from scipy.optimize import minimize

>>> minimize(q, x0=10)["x"][0]

4.9999999737

>>> minimize(r, x0=10)["x"][0]
1.0000004142283734

Once more, we obtain approximate values that are very close
to the true minimum values of the functions g(x) and r(x).

V. INTEGRALS

Integration is the process of computing the “total” of some
function f(x) accumulated over a range of inputs. The symbol
§, which we use to denote integrals, is an elongated letter S, for
the Latin summa. This should give you a hint that integration
is some kind of summation.

A. Act 1: Integrals as area calculations

Figure 14 shows a shaded region enclosed between the graph
of f(x) from above, the x-axis from below, and vertical lines
at x = a and x = b. The calculation of the area of this region
is described by the following integral calculation:

x=b

- f(x)dx.

The numbers a and b are called the limits of integration. We
refer to this type of integral as a definite integral since both
limits of integration are defined.

Af(ﬂ, b) =

X

f(x)

—

Figure 14. The integral of the function f(x) between x = a and x = b
corresponds to the area of the shaded region Af(a,b) = Si’ f(x)dx.

We often use the simplified notation Ss f(x)dx as shorthand

for S;:s f(x)dx and read this expression as “the integral of
f(x) between a and b.” If this is the first time you're seeing
the notation for integrals, it might seem very intimidating and
complicated, but don’t freak out and bear with me for two
more pages. You'll see this fancy-looking math notation is
nothing to worry about! It’s just the calculus way to denote a
particular calculation that involves the function f(x). You can
think of Ss <f>dx as a “template” that you fill in by replacing
<f> with the function f(x) you're interested in, whenever you
need to compute the area Af(a,b).

B. Properties of integrals

We'll now state some properties of integrals that follow from
their interpretation as area calculations.

o The sum of the integral from a to b and the integral from
b to c is equal to the integral starting from a going all the
way to c: SZ fx)dx +§, f(x)dx = §; f(x)dx.

o The integral of k times the function f(x) is equal to k
times the integral of f(x): SZ kf(x)dx = kgg f(x)dx.

o The integral of the sum of two functions is the sum of
their integrals: Ss[f(x) +g(x)]dx = ng(x) dx + SZ g(x)dx.

¢ An integral over a region with zero width has zero value:
§; f(x)dx = 0. Geometrically, this integral defines a region
with height f(x) and width 0, so it has zero area.

Let’s look at some examples.

Example 11. Integral of a constant function: Consider the constant
function f(x) = 3. We can easily find the area under the graph
of this function because the region has a rectangular shape.
The area under f(x) between x = 0 and x = 5 is described by
the following integral calculation:

5
Af(0,5) = fo F(x)dx = 3.5 = 15,

The area under the graph of f(x) is a rectangle with height 3
and width 5, so its area is 3 -5 = 15, as shown in Figure 15.

f(z)
5

A;(0,5) :/O F@)dz = 15

1 2 3 4 5 6 77
Figure 15. The area of a rectangle of height 3 and width 5 equals 15.

Example 12. Integral of a linear function: Consider now the area
under the graph of the line g(x) = x between x = 0 and x =5,
as shown in Figure 16. This area is described by the following
integral calculation:

5
Ag(0,5) = L g(x)dx =15.5=152 =2 =125,

The region under the graph of g(x) has a triangular shape, so
we can compute its area using the formula for the area of a
triangle: base times height divided by 2.

I hope these two examples are starting to convince you that
the scary-looking integral notation is not that complicated
after all. It’s just a fancy way to describe the “area under the
graph of the function” calculation.

Example 13. Integral of a polynomial: Consider now the function
h(x) = 4 — x*. We want to know the area under the graph of

12

5
4,0.9) = [g(oyds = 15°
0

12 3 4 5 6 717
Figure 16. The area of a triangle with base 5 and height 5 is 15% = 2 = 12.5.

h(x) between x = 0 and x = 2, as illustrated in Figure 17. We
need to calculate the following integral:

2
Ap(0,2) = J h(x)dx =?7??.
0
The region under the graph of h(x) is curved and not a simple

recognizable geometric shape with a known area formula.
How could we compute the area in this case?

0.0 0.2 0.4 0.6 0.8 1.0 12 1.4 1.6 1.8 2.0
X

Figure 17. The area under the graph of Ii(x) between x = 0 and x = 2.

One way to approximate the area under the graph of h(x) is
to compute the Riemann sum approximation, which splits the
region into a bunch of vertical rectangular strips of fixed width.
The height of each rectangular strip varies depending on h(x).
Look ahead to figures 18 and 19 to see where we're going
with this. Splitting up the area Aj(0,2) into n = 10 strips,
calculating the area of the individual strips, and summing
them together produces the approximation Ay(0,2) ~ 4.92. If
we split the area Aj(0,2) into n = 20 strips, we obtain the more
accurate approximation Aj;(0,2) ~ 5.13. The approximation
with n = 1000 rectangular strips gives us Ay(0,2) ~ 5.329,
and using n = 1000000 rectangles, we get A;(0,2) ~ 5.333329.
The more finely we chop up the region into rectangular strips,
the closer we get to the exact value of the integral, which is
S(Z) h(x)dx = 53 = 5.3 = 5.333333333333333.... .

In the next section, we’ll learn more about the split-area-into-
rectangles calculation (a.k.a. integration). Don’t worry, I won't
make you calculate sums with n = 10 or n = 20 terms by hand,
let alone the sum with n = 1000000 terms! Instead, we’ll write
a computer program that performs the integration procedure
for us. Modern computers are really good at this stuff. Indeed
early computers were often called “numerical integrators”
since they were built primarily to evaluate integrals.

C. Computing integrals numerically

Computing the integral SZ f(x)dx numerically means using a
computer to compute the Riemann sum approximation to
Ag(a,b) by splitting the region into many (think millions) of
strips, computing the areas of each strip, then adding up the
areas to get the total area under the graph of f(x). The key
step is to come up with a general mathematical expression that
describes the approximate area calculation with # rectangular
strips, then evaluate this expression for very large values of n.

Let’s start by lookmg at the math required to calculate the
approximation to So x)dx using n = 10 rectangles, which is
illustrated in Figure 18 (a) The width of each rectangle is Ax =
boa % = 0.2. The x-coordinates of the right endpoints of
the 10 rectangles are [0.2,0.4,0.6,...,1.8,2.0]. To find the area
of the rectangles, we need to know the height of the function /
at these x-coordinates: [1(0.2),1(0.4),1(0.6),...,h(1.8),h(2.0)].
The area of each rectangle is given by the height-times-width
formula, and we sum together all of them to compute the
approximation to the total area:

Ap(0,2) ~ h(0.2) 0.2 + 7(0.4) - 0.2 + - - - + h(2.0) - 0.2 = 4.92.

Looking at Figure 18 (a), we can clearly see that the area of
the rectangles underestimates the true area under the graph,
but let’s keep going. We have to trust the process: the quality
of the approximation will improve when we split the region
into thinner and thinner strips.

The procedure we used for n = 10 works more generally
for any n. In the general case, the rectangles have width
Ax = =14 = %, which gets smaller and smaller as n grows.
The x-coordinates of the right endpoints of the n rectan-
gles are located at [Ax,2Ax,3Ax,...,(n — 1)Ax,nAx]. The
heights of the rectangles are [h(Ax), h(2Ax), h(3Ax),..., h((n —
1)Ax),h(nAx)]. To find the area under the graph of h(x), we
sum together the individual height-times-width contributions

of the n rectangular strips:

Ap(0,2) ~ h(Ax)Ax + h(2Ax)Ax + h(3Ax)Ax + - - - + h(nAx)Ax.

Observe that all the terms in this summation follow the same
pattern: the k™ term in this summation is h(kAx)Ax, and k
goes from 1 to n. Mathematicians use the symbol), (the
capital Greek letter sigma) to describe long summations. The
approximation to the area under /(x) between x = aand x = b
using n rectangular strips corresponds to the following sum:
Ap(0,2) ~ Y4 h(kAx) Ax. The labels above and below the
summation symbol }] play the same role as the superscript
and subscript in integral notation: the label k = 1 tells us
where to start the summation, and label k = n tells us where
to stop the summation.

We can take what we learned from the particular example
above to write a general formula for approximating the area
under the graph of any function f(x) between x =g and x = b
using n rectangular strips:

n
b) ~ Z fla+kAx)Ax, where Ax= b%”
k=1
This is known as the Riemann sum formula for computing areas.
We’ll now turn this math formula into a Python procedure

13
that performs the n-rectangle area approximation calculation.

>>> def integrate(f, a, b, n):

dx = (b - a) / n

xs = [a + kxdx for k in range(1l,n+1)]
fxs = [f(x) for x imn xs]

area = sum([fx*dx for fx in fxs])

return area

The code implements the operations described by the sum-
mation Af(a,b) ~ >r_; f(a + kAx) Ax. We first compute the
width of the rectangles dx = Ax = bn;“, and create the list
xs that contains the x-coordinates of the right endpoints of
the rectangles, xs = [a + Ax,a +2Ax,a + 3Ax,...,a + nAx].
We then evaluate the function f at these x-values to obtain
fxs = [f(a+ Ax), f(a+2Ax), f(a + 3Ax), ..., f(a +nlAx)]. We
calculate the areas of the rectangles by multiplying the heights
fxs by the width dx, and sum everything together to obtain the
total area, which we return as the output of the procedure.

Example 13 continued: Let’s use the integrate procedure to
compute the integral of the function h(x) = 4 — x2. Recall we
previously defined the Python function h that implements the
same operation as the math function h:

>>> def h(x):
return 4 - x*%2

To calculate the n = 10 approximation to the area under the
graph of h(x) between x = 0 and x = 2, we call the integrate
procedure with the desired arguments.

integrate(h, a=0, b=2, n=10)

4.92
We can compute the approximation with n = 20 rectangles
just as easily:

>>> integrate(h, a=0,
5.13

b=2, n=20)

(a) Approximation A (0,2) ~ 4.92 when n = 10. ~ 5.13 when n = 20.

00 02 04 06 08 10 12 14 16 18 20 00 02 04 06 08 1.0 12 14 16 18 20

(b) Approximation Ay (0,2)

Figure 18. Approximations to the area under the graph of the function
h(x) = 4 — x? computed using n = 10 and n = 20 rectangles.

Let’s keep going to see what happens with n = 50 and n = 100:

>>> integrate(h, a=0, b=2, n=50)
5.2528
>>> integrate(h, a=0, b=2, n=100)
5.2932
(a) Ay(0,2) & 52528 when n = 50. (b) Ap(0,2) ~ 5.2932 when 7 = 100.

h(x)
N w =

0

0.0 0.5 1.0 15 20 00 0.5 1.0 15 2.0

Figure 19. Approximations to the area under the graph of h(x) = 4 — x?
computed using n = 50 and n = 100 rectang]les.

The approximations get better and better as we increase the
number of rectangles n.

>>> integrate(h, a=0,
5.329332

>>> integrate(h, a=0,
5.33293332

>>> integrate(h, a=0,
5.333329333332

b=2, n=1000)
b=2, n=10000)

b=2, n=1_000_000)

The approximation computed using n = 1M rectangles is
accurate to 4 decimals. The exact value of the area A;(0,2)
is 16 = 51 = 5.3 = 5.33333333333333..... To obtain the exact
value, we have to split up the reglon 1nt0 infinitely many
rectangular strips, as we’ll learn next.

D. Formal definition of the integral

In the limit as the number of rectangles n approaches co, the
approximation to the area under the graph of f(x) becomes
arbitrarily close to the true area.

The integral between x = a and x = b is defined as the limit as
n goes to infinity of the Riemann sum:

b n
x)dx € lim a + kAx)Ax
| r Jim, 3} fla+ k)

In words, the integral is a Riemann sum that consists of
infinitely thin rectangular strips. We previously defined the
integral XZ f(x)dx geometrically as the area under the graph
of f(x), but now you know the formal math definition for the
integral that mathematicians use.

Note the structural similarity between the summation formula
on the right and the integral notation on the left: in both cases
we evaluate f at different x values, multiply by a width, and
add all these contributions together to get the total. Perhaps
now the weird notation we use for integrals will start to make
more sense to you. In the limit as # — oo, the summation sign
Y. becomes an integral sign §, and the step size Ax becomes
an infinitely small step dx.

The integral SS f(x)dx is defined as a procedure with infinitely
many steps (lim,—,«) that we perform on the function f. Recall
that the formal definition of the derivative is also a procedure,
specifically f’(x) = lim;_,g M , which corresponds to
rise-over-run calculation with an 1r1f1n1te1y short run J. These
two procedures are the foundations of calculus. The limits
lim;, . and lim;_,(are essential tools that allow us to perform

these calculus operations on functions.

E. Act 2: Integrals as functions

The integral function Fy(b) corresponds to the area calculation
with a variable upper limit of integration Af(0, b):

x=b
Fo(b) & Af(0,b) = f(x)dx

x=0
As a matter of convention, we denote the integral function
using the capitalized letter used to denote the original function.
In the above definition, the starting point of the integral
function x = 0 is an arbitrary choice. We can obtain another
integral function if we use x = a as the starting point,

14

b) & §0f(x)

by a constant term: Fy(b) =

dx. The integral functions F, and Fj differ only
Fa(b) + C, where C = { f(x) dx.

The integral function Fy(b) contains the “precomputed” infor-
mation about the area under the graph of f(x). Knowing Fj
allows us to compute the area under f(x) between x = a and
x = b as the change in the integral function:

b
Ag(a,b) = Lf(x) dx — Fo(b) — Fola).

Intuitively, this formula computes the area Af(a,b) as the
difference between the areas of two regions: the area until
x = b minus the area until x = g, as illustrated in Figure 20.

f(®)
W\\li;;:iw/ W\\:;;\\(/ W;;%\\\\//

Flgure 20. The area under f x) between x = g and x = b is cornputed
using the formula A¢(a,b) = Fy(b) — Fo(a), Wthh describes the change in the
output of Fy(x) between x = a and x = b.

f) f)

Example 11 revisited: We can easily find the integral function
for the constant function f(x) = 3 because the region under
the curve is rectangular. Choosing x = 0 as the starting point,
we obtain the integral function Fy(b) that corresponds to the
area under f(x) between x =0 and x = b as follows:

b
Fo(b) = Af(0,b) = Jof(x) dx = 3b.

The integral function corresponds to the area of a rectangle of
height 3 and with width b, as shown in Figure 21.

f(x)

4
3
2
1
0

= fobf(x)dx ‘

0 1 2 3
X

4 b s 6 7

Figure 21. The integral function of the function f(x) = 3 is Fy(b) = 3b.
Knowing the function Fy(b) allows us to compute the area
under the graph of f(x) between x = 0 and x = 5 as the

difference Af(0,5) = Fy(5) — Fo(0) =3-5—-3-0 = 15.

Example 12 revisited: Consider now the area under the graph
of the line g(x) = x, starting from x = 0. Since the region
is triangular, we can compute its area using the formula for
the area of a triangle: base times height divided by two. The
integral function of g(x) is:

b
Go(b) = Ag(0,b) = fo g(x)dx = L2,

g(x)

S

Go(b) = Jy g(x)dx
0 1 2 3 4 b s 6
X

Figure 22. The integral function of the function g(x) = x is Go(b) = 152

Knowing the integral function Gy(b) allows us to compute the
area under the graph of g(x) between x =0 and x =5 as the
difference Ag(0,5) = Go(5) — Go(0) = 35% — 302 = 12.5.

Example 13 revisited: The area under h(x) = 4 — x> from x = 0
until x = b is described by the following integral calculation:

b
Ho(b) = Ay(0,b) = L h(x) dx = 2722.

We were able to compute the integral functions Fy(b) and
Go(b) thanks to the simple geometries of the areas under the
graphs, but h(x) is a curve so it requires some new integration
methods. In the next few pages, we’ll learn about symbolic
integration techniques that will allow us to find the integral
function Hy(b).

1214 16 18 20

0.0 0.2 0.4 0.6 0.8 1.0
X

Figure 23. The integral of the function h(x) = 4 —x? from x = 0 to x = b.

FE. Intermission

The integral in Example 13 was chosen to motivate the need
for more advanced methods for integration. Is there a math
formula that describes the area Aj(0, b) of the region shown in
Figure 23? We previously used numerical methods to compute
the particular area Aj,(0,2) for b = 2, but now we're looking for
a general math formula that computes the integral function
Ho(b) = Ay(0,b) for any b. In the next section, we’ll learn
about the fundamental theorem of calculus, which will allow us
to find the exact formula for Hy(b).

The section is like the intermission in the calculus show. As
in a real-world intermission, this is also your chance to skip
the rest of the show. Perhaps you have better things to do
right now than learning about advanced calculus concepts. I
won't get offended—mno worries! Feel free to skip ahead to
Section V-I for more technical details about high-performance
numerical integration, or jump straight to Section VI to learn
about sequences and series.

As a teacher, I'm happy that you know that integrals compute
areas under the graph of functions, and can be approximated
numerically using Riemann sums. These are the two key
ideas related to integrals, so I feel I've done my job. I think
you should stay though—you might enjoy the knowledge buzz
moment when you learn about the fundamental theorem of
calculus, which is coming next. My calculus teacher in college
described the realization you get after understanding this
theorem as similar to the feeling you get when smoking some
of that “funny stuff.”

Still with me? Okay, with your consent, let’s continue with
the calculus show.

15

G. Act 3: Fundamental theorem of calculus

Note the pattern in the formulas for the integral functions
Fo(b) and Gy(b). The integral function of the constant function
f(x) = 3 is a linear function Fy(b) = 3b. The integral of the
linear function g(x) = x is a quadratic function Gy(b) = %bz. In
both cases, the integral function seems to increase the degree
of the function. What is up with that? Is this a coincidence,
or is there some fundamental math pattern we could follow
to “guess” integral functions?

The fundamental theorem of calculus (FTC) describes the
inverse relation that exists between the integration operation
{<£>dx and the differentiation operation %[<f>]. A priori,
there is no reason to suspect that integrals would be related
to derivatives. The integral corresponds to the computation of
an area, whereas the derivative operation computes the slope

of a function. Yet behold:

Theorem (fundamental theorem of calculus): Let f(x) be a
continuous function, and let 2 € R be a constant. Define the
function F,(x) as follows:

Fa(x) € Af(a,x) = fo(u)du.

Then, the derivative of F,(x) with respect to x is equal to f(x):

%[Fu(x)] = f(x).

Note we use the new variable u inside the integral since x is
already used to denote the upper limit of integration.

To understand the inverse relationship between integration
and differentiation, we can draw an analogy with the relation-
ship between a function f and its inverse function f~!, which
undoes the effects of f. See Figure 3 on page 4. Given some
initial value x, if we apply the function f to obtain the number
f(x), then apply the inverse function f~! on the number f(x),
we get back to the initial value x we started from:

FHf) = x.

Similarly, the derivative operation is the inverse of the
integral operation. If you perform the integral operation
{ <£>dx followed by the derivative operation %[<f>] on any
function <£>, you'll get back to the original function:

= [s au = s

Let’s use SymPy to verify that the fundamental theorem of
calculus is true. We'll start with the function £x = f(x) = x?,
compute its integral function Fx using sp.integrate, then

take the derivative of Fx using sp.diff.

>>> fx = x*%2

>>> Fx = sp.integrate(fx, x)
>>> Fx

x**x3/3

>>> sp.diff (Fx, x)

X k*k2

We confirm that that the sequence of operations % §o f(u)du =
sp.diff(sp.integrate(f(x))) brings us back to the original
f(x) we started from.

For ordinary math functions, we know that if the function
f~1 is the undo action for the function f, then f is also the
undo action for f~!: f(f~!(y)) = y. Similarly, the inverse
relationship between integrals and derivatives holds in the
other direction too. The integral operation is the inverse
operator of the derivative operation. If we start with some
function G(x), calculate its derivative function G/(x), then
compute the integral of the derivative function G/(x), we arrive
back at the original function G(x) (up to an additive constant):

f " Glu) du = Glx) + C.

Let’s use SymPy to verify this formula. We'll start with the
function Gx = G(x) = x>, compute its derivative dGdx = G/(x)
using sp.diff, then use sp. integrate to compute the integral
function of G'(x).

>>> Gx = x**3

>>> dGdx = sp.diff (Gx, x)
>>> dGdx

3k X k*2

>>> sp.integrate (dGdx, x)
X**3

We see the operations integrate (diff (G(x))) = §y G'(u) du
bring us back to the original G(x) we started from.

Using antiderivatives to compute integrals: The fundamental
theorem of calculus gives us a way to compute integrals and
integral functions by “reverse engineering” derivatives. In
order to explain this idea, we'll introduce a new concept.

Given some function f(x), any function F(x) that satisfies the
equation F/(x) = f(x) is called an antiderivative of f(x).

In words, an antiderivative of f(x) is a function whose
derivative is f(x). There is no single antiderivative function,
since adding any constant C to an antiderivative function
still satisfies the definition “L[F(x) + C] = f(x), because the
derivative of the constant C is zero.

The fundamental theorem of calculus tells us that antideriva-
tive functions F(x) + C are closely related to integral functions
F.(x) = Sf f(u) du. The integral function Fy(x) is equal to an
antiderivative function F(x) + C, for some additive constant
+C.

This equivalence gives us an analytical shortcut for obtain-
ing the integral function Fy(b) = Sg f(x)dx by finding the
antiderivative function of f(x). To find an antiderivative of
f(x), we look for a function F(x) whose derivative is f(x). We
can use the table of derivative formulas (Table I on page 9) in
the reverse direction to find antiderivatives. For example, to
find the antiderivative of the function f(x) = m, we look for a
row where this function appears on the right side of the table,
and then look at the corresponding function on the left side
of the table, which is the function F(x) = mx + b in this case.
We can verify that F/(x) = f(x), so indeed F(x) = mx + b is
an antiderivative of f(x) = m. Furthermore, the equivalence
between antiderivatives and integral functions tells us that
the integral function of f(x) is F,(x) = §) mdu = mx + b, for
some constant b.

Let’s use the antiderivative reverse engineering procedure to
find the integral function Hy(b) in Example 13.

16

Example 13 continued: We're given the function h(x) = 4 — x?
and we want to find its integral function Hy(b) = Sg h(x)dx.
This fundamental theorem of calculus tells us this problem
is equivalent to finding a function H(x) whose derivative
is i(x). The function h(x) = 4 — x> has two terms. The first
term is a constant 4. We can guess that the corresponding
term in the antiderivative function H(x) will be 4x, since
%[4x] = 4. Now for the quadratic term —x?. Remembering
the derivative formulas for polynomials, we can guess that
antiderivative H(x) must contain a x> term, because taking the
derivative of a cubic term results in a quadratic term. Therefore,
the antiderivative function has the form H(x) = 4x — kx3,
for some multiplicative constant k. Pick the constant k that
makes this equation true: H'(x) = 4 — 3kx? = 4 — x%. Solving
3k =1, we find k = % and so the antiderivative function we're
looking for is H(x) = 4x — %xB' + C. The equivalence between
antiderivatives and integral functions tells us that the integral
function is Hy(b) = 4b — %b3 + C for some constant C. We
know from the geometric definition of the integral that when
b = 0 the integral function must have value zero, so C = 0 in
this case. The integral function we’re looking for is therefore
Hy(b) = 4b — 113

Using derivative formulas in reverse: Computing integral func-
tions by finding antiderivatives is very powerful. We can
use it to find the integral functions for all the functions
listed in the table of derivative formulas (see page 9). For
example, the table tells us that the derivative of the linear
function f(x) = mx + b is the constant function f’(x) = m. This
means the integral of a constant function is a linear function
§mdx = mx + C. The integral function of an exponential is
also an exponential {e*dx = e* + C, since %[e"] = ¢*. The
derivative of log,(x) is %, therefore the integral of % is log(x).
Similarly for the trigonometric functions {cos(x)dx = sin(x)
and § —sin(x) dx = cos(x). For economy of space, we’ll verify
all these integral formulas by computing the integral of the
function f(x) = m+e* + % + cos(x) — sin(x) that contains the
mix of several functions on the right side of Table I.

>>> fx = m + sp.exp(x) + 1/x + sp.cos(x) - sp.sin(x)
>>> sp.integrate (fx, x)

m*x + exp(x) + log(x) + sin(x) + cos(x)

SymPy tells us the integral function Fy is Fy(x) = mx +e* +
log(x) + sin(x) + cos(x), which are all the corresponding terms
on the left side of the table of derivative formulas.

Okay, but what do we do if the function we want to integrate
doesn’t appear in Table 1?

H. Act 4: Techniques of integration

Okay we'’re getting into the fourth act of the calculus show,
and I want to remind you that you can “tap out” at any time.
The material in this act is some of the most boring stuff. If
you're taking an integral calculus class, then you need to know
this stuff because it is going to be your final exam. Everyone
else, feel free to skip ahead to the next section.

There are a bunch of tricks that extend the reach of analytical
integration methods (anti-differentiation) to more complicated
functions. We don’t have space to discuss all these tricks in
this tutorial, but we’ll show the two most important tricks.

Substitution trick: Suppose the function we want to integrate
has the structure f(u(x))u/(x), which consists of an inner
function wrapped in an outer function multiplied by the
derivative of the inner function. We can use the substitution
trick to rewrite this integral in terms of the function f(u) using
u as the variable of integration:

x=b u=uy
Fuo) e = [fu)du,
x=a U=,
The substitution trick is sometimes called change of variable,
since we're replacing the variable x with the variable u, just
like the search-and-replace operation in a text editor. Because
we're doing the substitution “inside” an integral operation,
we must change the limits integration (from a and b to u, and
up), and also change the “step” parameter (from dx to du).

Follow these three steps to apply the substitution trick:

1) Replace all occurrences of u(x) with u.
2) Compute u/(x) and replace dx with ﬁdu.

3) Replace the x-limits of integration x = a and x = b with

u-limits of integration: u, = u(a) and u, = u(b).

Example 14: Let’s compute the integral SZ x_l s dx. This looks
like a scary formula, but we can use the substitution trick to
compute this integral. We’ll apply the substitution u = /x,
which implies u/(x) = ﬁ, and dx = 2y/xdu = 2udu. The

new limits of integration are u, = 1/a and u;, = \/b.

Performing the three steps of the substitution trick gives us:

x=b q u=u(b) 1 u=+b 1
J. dx = f >——2udu = J. >——2udu.
x=a X — /X u=u(a) U°—U u=+/a U°— U
We're simply doing the search-and-replace on u = /x, but to

do this right, we need to also replace dx with the equivalent
expression involving du, and use the new limits of integration.

We can now simplify the expression inside the integral:

Vb 1 Vb 2 Vb 1
J. 5 2udu=f du=2J- du.
Ja us—u vau—1 vau—1
The function inside the integral, f(u) = ulTv is similar to

the inverse function f(u) = % whose antiderivative is In(u).
Replacing u by u — 1 gives us the following antiderivative

formula Sﬁ du = In(u — 1), which leads us to the answer:

Vb
2 f !
vau—1
I know this sequence of steps went quickly, and there are a

lot of integral symbols, but if you read each step carefully,
you'll see we're just doing search-and-replace.

du = 2In(vVb—1) —2In(va —1).

The substitution trick for integrals comes from the chain
rule for derivatives [F(u(x))]" = F(u(x))u’(x). We can use
substitution only when computing the integral of a function
that has the special structure f(u(x))u'(x).

Integration by parts: The integration by parts trick can be used
when the function we’re integrating is the product of two
factors, { f(x)g'(x) dx, where f(x) is some arbitrary function,
and ¢'(x) is the derivative of some other function.

17

b b
Lﬂwyqu:[ﬂwmw—ﬂ@ﬂM]—Lﬂwmuwx

Example 15: Let’s calculate Sg’ xe* dx using the integration by
parts procedure. The expression xe® consists of two factors: x
and ¢*. We'll identify x with f(x) and e* as ¢/(x). This means
fi(x) =1 and g(x) = {g'(x)dx = ¢*. We now know all the
parts we need to apply the integration by parts formula:

> 5
f X e dx=[f(5)8(5) - f(0)3(0)] - Lf’(x)g(x) dx
fx) g

= [565

= [565 - Oeo] - [65 - eo]
=5 —¢®+1=4¢+1.

5
—Oeo] —fl-e"dx
0

Other tricks: Substitution and integration by parts are only two
of the multitude of integration techniques. There are tricks for
trigonometric functions, square roots, fractions that involve
x2 + a2, etc. There is an entire course, called integral calculus,
that is dedicated to learning integration tricks. If you want
to pursue advanced studies in physics or engineering, you
should definitely take this course to learn more integration
tricks. Section 5.15 in No Bullshit Guide to Math and Physics
is a good introduction to the material.

Despite all the formulas and integration techniques, not all
functions are integrable. There are many functions that don’t
have an antiderivative function, and hence no “closed form”
integral function. For example, the function f(x) = e
doesn’t have an antiderivative: there is no function F(x) such
that F/(x) = e~. For such functions, we can’t use the “reverse
engineering” analytical shortcut to find the integral, and we
must use numerical integration (the split-the-area-into-thin-
rectangular-strips procedure). Speaking of which...

I. Computing integrals numerically using SciPy

The Python function integrate that we showed in Section V-C
is a useful teaching tool, but it would be much too slow to
use for practical scientific computing tasks. The function quad
from the scipy.integrate module is a much more powerful
tool for computing numerical integrals. The name quad is short
for “quadrature,” which is a historical name for integrals.

Let’s revisit the examples 11, 12, and 13 using the function
quad. To compute the integral S(S) f(x)dx, we call the function
quad with inputs f as the first argument, and the limits of
integration 2 = 0 and b = 5 as the second and third arguments.

>>> from scipy.integrate import quad

>>> quad(f, 0, 5)

(15.0, 1.1102230246251565e-13)

The function quad returns two numbers as output: (Af(0,5),¢€).
The first number is the value of the area we're interested in.
The second number ¢ tells us the accuracy of the procedure
used to calculate the area. In the above calculation, the output
tells us the definite integral Sg f(x)dx is equal to 15.0 up to
a precision on the order of 10713. Since we're usually only
interested in the area Af(0,5) and not the precision €, we
often select the first element of quad’s output.

>>> quad(f, 0, 5)[0]

15.0

We can similarly use quad to calculate the integrals Sg g(x)dx

and SO x) dx from the other two examples.
>>> quad(g, 0, 5)[0]
12.5

>>> quad(h, 0, 2)[0]
5.33333333333333333

The answers we obtain match the results we obtained earlier.
The main takeaway message is that the quad function is
your friend whenever you need to compute integrals. All
the scary-looking math equations that contain the { symbol
can be approximated numerically using one or two lines of
Python code. Specifically, whenever you see Si’ <f>dx in a
math formula, you can replace that with quad(£,a,b) [0].

J. Computing integral functions using SymPy

We can use Python to do symbolic integration using vari-
ables (symbols) instead of numbers. The SymPy function
sp.integrate allows us to obtain the formulas for integrals
and integral functions. We’ll now revisit the integral calcula-
tions from the three examples using symbolic math. We start
by defining three symbols x, a, and b.

>>> import sympy as sp
>>> x, a, b = sp.symbols("x a b")

We'll use these symbols to express the functions and the limits
of integration.

Example 11S: Constant function: Consider the constant function
f(x) =3, which we can define as follows:
>>> fx = 3

>>> fx
3

To compute the integral Ss f(x)dx, we call the SymPy function
sp.integrate, passing in the function as the first argument,
and the triple (x,a,b) as the second argument, which specifies
the variable of integration and the limits of integration 2 and b.

>>> sp.integrate(fx, (x,a,b))

3*x(b-a)

Since a and b are arbitrary constants, the answer we obtain
for Af(a,b) = SZ f(x)dx is a general formula that works for
all possible limits of integration a and b. Geometrically, we
recognize the result 3 (b-a) as the height-times-width formula
for the area of a rectangle, which we have seen several times
already:.

To compute the definite integral SO x)dx, we specify the
numerical limits of integration instead of the symbols a and b.

>>> sp.integrate(fx, (x,0,5))

15

This result matches the value we obtained using geometrical
calculation in Figure 15, and the approximation we obtained
using numerical integration quad (£,0,5) [0].

We can also compute the integral function Fy(b), which is
defined as Fy(b) ¢ So x)dx, for the function fx = f(x) = 3.

18

>>> FOb =
>>> FOb
3*b

sp.integrate (fx, (x,0,b))

Recall that the integral function F is the area-under-the-graph
calculation with a variable upper limit of integration b. See
Figure 21 for an illustration of the integral function Fy(b).

Given Fy(b), we can compute the definite integral between a =
0 and b = 5 using the formula So x)dx = Fy(5) — Fo(0). We'll
use the method subs (short for substltute) on the expression
FOb to “plug in” the values b =5 and b =0

>>> FOb.subs ({b:5}) - FOb.subs({b:0})

15

Example 12S: Linear function: Let’s now compute the integral
function of the linear function g(x) = x, which corresponds
to the following SymPy expression:

>>> gx = 1*x
>>> gx

X

To compute the integral function Go(b) = SO g(x)dx, we call
sp.integrate using the symbol b for the upper limit of
integration:
>>> GOb =

>>> GOb
bx*x2 / 2

sp.integrate(gx, (x,0,Db))

The expression Go(b) = 1b* we obtain is identical to the for-

mula we obtained from the geometric calculation in Figure 22.

Given Gy(b) = GOb, we can compute the definite integral
Sg g(x)dx using the formula Sg g(x)dx = Go(5) — Gp(0). We
plug in b =5 and b = 0 using the subs method:

>>> GOb.subs ({b:5})
25/2

- GOb.subs ({b:0})

SymPy computed the exact answer for us as a fractlon > This
answer matches the value we obtained earlier using numer1cal
integration, quad(g,0,5) [0] = 12.5.

Example 13S: Polynomial function: We start by defining a SymPy
expression that corresponds to the function h(x) = 4 — x2.
>>> hx =

>>> hx
4 - x*%2

4 - x**2

We can now call sp.integrate to make SymPy compute the
integral function Hy(b) = Sg h(x)dx
>>> HOb =

>>> HOb
4xb - bx*3/3

sp.integrate (hx, (x,0,b))

The integral function Hy(b) = 4b 1 3b° corresponds to the area

calculation under h(x) = 4 — x2 startmg at x = 0.

K. Applications of integration

Intuitively, we use integrals whenever we want to compute
the “total” of some quantity that varies over time or space.

Kinematics: Calculus was originally invented to describe the
equations of motion x(t), v(t), and a(t), which correspond to
the object’s position, velocity, and acceleration at time t. We call
these the kinematics equations, from the Greek word kinema
for motion. The velocity function v(f) is the derivative of the
position function, and the acceleration a(t) is the derivative
of the velocity, which we can summarize as follows:

a(t) <di—f o(t) <di—t x(t).

The starting point of kinematics is Newton’s second law, which
tells us that the acceleration of an object of mass m that has a
net force Fnet acting on it is a = %Fnet. Given the knowledge
of acceleration over time a(t), we can predict the position
of the object x(t) at any time t by “undoing” the derivative
operations using integration:

v;+dt x;+§dt
— —>

u(t)

kinematics

L Fet(t) = a(t) x(t).

We integrate a(t) to obtain v(t) and choose the initial velocity
v; as the integration constant so that v(0) = v;. We then use
integration a second time to obtain x(¢) from v(t), using the
initial position x; = x(0) as the integration constant.

The case of uniform accelerated motion (UAM) is of particular
interest. Consider an object that experiences a constant accel-
eration a(t) = a. We can use integration to find the velocity of
this object at a later time f = T:

o(T) =vi+f a(t)dtzviJrJ

0 0

T T

adt =v; +at.

Knowing the velocity as a function of time v(t), we can use
integration a second time to find its position at time T:

x(7) =xi+J v(t)dt:xi+.[

0 0

T T

(v; + at)dt = x; + v; T+ %arz.
These two simple calculus steps allow us to obtain the
famous kinematics equation x(t) = x; + v;t + Jat? for descibing
the motion of objects undergoing constant acceleration a.
Students taking a physics class are normally presented with
this equation and it seems to come out of nowhere, but if
you understand calculus you’ll know where it comes from:
the integration operation applied to the acceleration function
a(t) = a and the initial conditions x; ¥ x(0) and v; ¥ ©v(0).

Solving differential equations: Many important laws in science
are described by differential equations that specify an unknown
function f(t) in terms of their derivatives f'(t), f"(t), etc.

Here are some examples of differential equations and their
solutions:

o The kinematics equations when the acceleration is con-
stant come from the differential equation x”(t) = a.
We use integration twice to find the unknown function
x(t) = x; + vt + %atz. We can verify that x(f) is a solution
to the differential equation x”(t) = a by computing the
second derivative of x(t).

« In biology, unconstrained bacterial growth is described
by the equation '(t) = kb(t), where b(t) is the number
of bacteria at time t. Intuitively, the bacterial growth rate
b/(t) is proportional to the number of existing bacteria.

19

The solution to this equation is b(t) = bge", where by
describes the number of bacteria at time ¢ = 0.

« Radioactive decay is described by the differential equation
r'(t) = —Ar(t), where r(t) describes the number of atoms
of some radioactive element. The solution is r(t) = rge .

o Simple harmonic motion is described by the differential
equation x”(t) + w?x(t) = 0, which has solution x(t) =
c1 sin(wt) + ¢3 cos(wt), for some constants ¢; and cp.

If you take a course on differential equations, you'll learn all
kind of tricks and techniques for solving differential equations.
Integration plays a key role in all these techniques, since it
allows us to “undo” the derivative operation.

Probability calculations: Integration is a key tool for computing
probabilities of continuous random variables. A continuous
random variable X is described by its probability density function
fx, and the probability of the event {a < X < b} is given
by the integral Pr({s < X < b}) = Ss fx(x)dx. For example,
the standard normal random variable Z is described by the
probability density function f7(z) = \/%e_%zz. To calculate
the probability of the event {—1 < Z < 1}, we must evaluate
the integral S£1 fz(z) dz, which is easy to do using SciPy helper
function quad(fz,a=-1,b=1) [0] = 0.68269.

VI. SEQUENCES AND SERIES

A sequence ay is a function that takes natural numbers as inputs
and produces real numbers as outputs: a; : N — R. The
series Y, ay describes the sum of all the terms in the sequence
ax. Sequences and series are the third pillar of the calculus
knowledge that I want you to have because they are powerful
computational tools that allow us to describe procedures with
an infinite number of steps.

A. Sequences are functions with discrete inputs

We use the notation f : R — R to describe functions that take
real numbers x € R as inputs and produce real numbers as
outputs f(x) € R. When studying functions that take natural
numbers k € IN as inputs, we use a different notation: ay, :
IN — R, where a; describes the kth term in the sequence. The
sequence’s input variable is usually denoted k and corresponds
to the index within the sequence. Usually k is a natural number
ke N £{0,1,2,3,4,...} but some sequences are only defined
for positive natural numbers k € INL & 11,2,3,4,...}. Note
the change in notation: we use subscript to denote the input
variable of a sequence a; instead of the usual notation for
functions a(k).

We can define a sequence by specifying the formula for the
k™ term in the sequence. For example, the harmonic sequence
is defined by the formula hy < % Another way to define a
sequence is by listing the first few values in the sequence:
[ho, by, ha, k3, .. .], which correspond to evaluating the formula
hy fork=0,k=1, k=2, k=3, etc. We'll now look at some
examples of sequences, specifying both their formulas and
showing the first few values of each sequence.

The natural numbers: The simplest possible example of a
sequence is the identity function, which returns the index
input k as output:

ne €k forkeN < [0,1,2,3,4,5,6,7,...].

This is the fundamental counting sequence that describes the
process of taking a “unit step” to the right on the number
line, starting at the origin.

Squares of natural numbers: The sequence-equivalent of the
quadratic function f(x) = x? is the sequence of squares of the
natural numbers:

g 2k, forke N < [0,1,4,9,16,25,36,49, ...].

Harmonic sequence: We obtain another useful sequence by
computing the fractions % for each k€ {1,2,3,...} = Ny

2

forkeNy < [1,4,1, 40111]

1273747576777

This is called the harmonic sequence because it describes the
wavelengths of harmonic frequencies produced by musical
instruments. When we play the note that corresponds to the
frequency f, we also hear notes with frequencies that are
integer multiple of the “dominant” frequency: 2f, 3f, 4f,
etc., which are called the harmonics. The harmonic sequence
describes the wavelengths of the harmonics frequencies. On a
string instrument, the harmonic sequence tells you where to
place your fingers if you want to play higher harmonics.

The alternating harmonic sequence: Consider now a harmonic
sequence with alternating positive and negative terms:

dor (—1)FH1

11 11
ay = %

11
’ for keN+ = [1,_2,3,_1,3,—6,7,...].

The factor (—1)*1 is positive for all odd inputs k e
{1,3,5,7,...} since (—1)" = +1 for any even number m. The
factor (_1)k+1 is negative for all even indices k € {2,4,6,8, ...},
hence the values in the sequence oscillate between positive
and negative.

Inverse factorial sequence: The factorial function is denoted k!
and describes the product of the first k positive natural
numbers: k! £ k.(k—1)---3-2-1, and we define 0! = 1.
We'll see factorials in several formulas in this section. In
particular, the following sequence will be of interest:

frdl, forkeN < [1,1

The values in the inverse factorial sequence quickly become
very small because the factorial function grows very quickly:
20 =2,3! =6,4 =24, 5! =120, 6! = 720, 7! = 5040, ...,
10! = 3628800, ..., 13! ~ 6.2 x 107, ..., 70! ~ 1.2 x 1019, etc.

1111 1 1]
/217 31 41/ 517 gl 717+ -+ |-

Geometric sequence: The sequence-equivalent of the exponential
function f(x) = e* is the geometric sequence where the k™ value
in the sequence is the k" powers of some number r:

g &k,
Each term in the sequence equals r times the previous
term, which describes a geometric process that repeatedly
grows/shrinks by the amount . When r < 1, the values in the
sequence g, quickly go to zero, similar to how exponential
function e~ goes to zero for large values of x. When r > 1

forke N < [1,r,r2,r3,r4,r5,r6,r7,...].

20

the sequence gj increases quickly, similar to how exponential
function e* increases for large value of x.

Powers of two: We'll also use the label by for the special case
of the geometric sequence with r = 2:

b2k forke N < [1,2,4,8,16,32,64,128,...].

This sequence comes up all over the place in computer science
because it describes the number of different numbers we can
store in k bits of memory.

B. Convergence of sequences

What happens to a sequence as k goes to infinity? We can use
the limit notation limy_,, to describe this process. There are
two behaviours we're interested in: sequences that blow up
to infinity, and sequences that approach some fixed number
as k goes to .

For example, the sequences n; £ k, g; % k?, and by £ 2F keep
getting larger and larger as k goes to infinity:

lim 2% = oo,

lim k% = oo,
k—o0

k—00

lim k = oo,
k—o0

We say these sequences are divergent. In contrast, the values

)) o (—1)kH)
in the sequences /i & 1, a5 & %, and fi & L converge to

the value 0 in the limit as k goes to infinity:

=0, lim §=0.

(1
k k—o0

lim

lim } =0,
k—o0

k—o0

The geometric series g & r¥ converges only if the absolute

value of 7 is less than one: limy_,, ¥* = 0, when |r| < 1.

The limit of a sequence as k goes to infinity is directly
analogous to the limit of function f(x) as x goes to infinity.

C. Summation notation

We're often interested in computing sums of values in a
sequence. To describe the sum of 3td gth and 5t elements of
the sequence c, we turn to summation notation: 2223 Cp =
c3 + ¢4 + c5. The capital Greek letter sigma stands in for the
word sum, and the range of index values included in this sum
is denoted below and above the summation sign. The sum
of the values in the sequence ¢ from k = 0 until k = n is
denoted as > f_jcxr =co+c1+ca+ -+ Cy_1 +Cn

Since this is a calculus tutorial, you should expect that an
infinity of some kind will show up, and indeed we’ll soon
learn about infinite series that describe the sum of all the values
in the sequence ci:) cx = lim, o0 >y k. But before we get
to infinite sums, we’ll start by looking at some finite sums to
gain some experience with the summation notation.

D. Exact formulas for finite summations

We'll now show some useful formulas for calculating sum of
the terms in certain sequences. For example, here is a formula
for the sum of the first n terms in the geometric sequence:

1— rn+l

n
Gn = Zrk=1+r+1’2+---+r”= T,

k=0

We can use this formula to find the sum of the powers of 2:

1— 2n+1

7:27’1-"—1_1‘
1-2

n
Dt =142+448+ 42" =
k=0
The sum of the first n positive integers and the sum of their
squares are described by the following formulas:

Z”: n+1) nn+1)(2n+1)

k2
k=1 2 6

and

E. Series

Series are defined as the sums computed from the terms in
the sequence c. The finite series > |_; ¢ computes the first n
terms of the sequence:

Co=) ck=c1+cr+c3+cs+es++Cu_1+cn
k=1

The infinite series), ¢, computes all the terms in the sequence:

Coo =ch :nh_{n Z:lck =c1+c+c3+cg+c5+-
The infinite series > cx of the sequence ¢, : N — R is
analogous to the integral SSO f(x)dx of a function f : R — R.

Some infinite series converge to a finite value. For example,
when |r| < 1, the limit as n — o« of the geometric series
converges to the following value:
0
Gy = lim G, = Zrk=1+r+r2+r3+~~ =
n—0o0 s

1—7r

This expression describes an infinite sum, which is not possible
to compute in practice, but we can see the truth of this equation
using our mind’s eye. The formula for first n terms is the
geometric series is G, = 1 1’”“ The term "*1 goes to zero
1

as n — 0, so the only part of the formula that remains is 1=

Example 16: sum of a geometric series: Let’s use the formula to

compute infinite series of the geometric sequence with r = %:

Figure 24 shows a visualization for this infinite sum.

1/8

1/4
1/16’:d—
1

1/2

Figure 24. A graphical representation of the infinite sum of the geometric
series with r = % The area of each region corresponds to one of the terms in
the series. The total area is equal to Z,?O:O(= L =2.

That’s kind of cool, no? We’re able to compute the value of a
summation with infinitely many terms, because we have the
general pattern G, for the sum with #n terms then evaluate
the limit as n goes to infinity.

21

Convergent and divergent series: We say the geometric series
G = 2.8k = e’ converges to the value 1— We can
also say that the infinite geometric series >, gy is convergent,
meaning it has a finite value and doesn’t blow up. Another
example of a converging infinite series is Fx =)] fx, which
converges to the number ¢, as we’ll see in Example 17 below.

In contrast, the harmonic series) hy diverges. When we sum
together more and more terms of the sequences h, the total
computed keeps growing and the infinite series blows up to
infinity), iy = co. We say that the harmonic series is divergent.

Using convergent series for practical calculations: We can use
infinite series to compute irrational numbers.

Example 17: Euler’s number: The infinite sum of the sequence

fr el @ converges to Euler’s number e = 2.71828182845905. . .:
0
- 1 1,1,1, 1
FOO:nh—g)loP”=I§H=1+1+§+E+ﬂ+m+"'=e

The calculation above is not just cool math fact, but a useful
computational procedure that we can use to approximate the
value of e = 2.71828 ... using only basic arithmetic operations
like repeated multiplication (factorial), division, and addition.

Let’s look at some practical calculations where we compute
the first n = 10 and n = 15 terms in the series Y}_, fi:

>>> import math
>>> def f_k(n):
return 1 / math.factorial(n)
>>> sum([f_k(k) for k in range(0,10)]1)
2.718281. ..
>>> sum([f_k(k) for k in range(0,15)])
2.71828182845. ..
Summing together the first 10 terms in the series gives us an
approximation to e that is accurate to six decimals. With 15
terms, we get an approximation that is accurate to 11 decimals.
The more terms we include in the summation, the closer we

get to the true value of e, which is 2.71828182845905.. . ..

If we want to compute the exact value of e, we would need
to compute the infinite series /2, % We can do this using
SymPy by calling the function sp.summation whose syntax
is similar to the function sp.integrate we used to compute
integrals. The first argument is an the expression for the k'
term in the sequence, then we specify the index variable, the
starting point, and the end point of the summation:

>>> import sympy as sp

>>> k = sp.symbols("k")

>>> sp.summation(1/sp.factorial(k),
E

(k, 0, sp.oo))

We used sp.oo to make SymPy compute the infinite sum,
which produced the exact symbolic answer E = e.

There are other series we can use to compute values of interest.

Example 18: We can calculate the value In(2) by computing the
dot (—1)FF1

infinite sum of the alternating harmonic sequence a; = *—
1 (1)k+1
— 1 - — 1,1 1,1 1 _
AwfnlgngoZTfl—i—kg—z—&-g—g—i—m—ln(Z).
k=1

To obtain the exact value In(2), we need to sum together an
infinite number of terms in the series > 4y, but we can obtain
successively better approximations to In(2) using finite sums.

>>> def a_k(k):

return (-1)**x(k+1) / k
>>> sum([a_k(k) for k in range(1,100+1)])
0.6...
>>> sum([a_k(k) for k in range(1,1000+1)])
0.69...
>>> sum([a_k(k) for k in range(1,1_000_000+1)])
0.69314. ..

The series approximation to In(2) converges more slowly
than the series approximation to e we saw in the previous
example. We need to sum 1M terms in the series to obtain an
approximation that is accurate to five decimals. Nevertheless,
if we keep calculating sums with more and more terms, we
can obtain an approximation that is arbitrarily close to the
true value In(2) = 0.6931471805599453

To get the exact value In(2), we can make SymPy compute
the infinite series:

>>> sp.summation ((-1)**(k+1)/k,
log(2)

(k, 1, sp.oo))

We can come up with all kinds of other infinite series
expression for calculating other numbers. Instead of showing
you other series for approximating numbers, I'll show you an
even more powerful calculus technique: a way to approximate
functions as infinite series.

E. Power series

The term power series describes a series whose terms contain
different powers of the variable x. The k" term in a power
series consists of some coefficient ¢, and the k" power of x:
Py(x) = Z X = co 4+ c1x + cax? 4+ 033° + - -+ + cpx
k=0
The math expression we obtain in this way is a polynomial
of degree n in x, which we denote P, (x). Depending on the
choice of the coefficients (cg, ¢1,¢2,¢3,...,cn) we can make the
polynomial function P,(x) approximate some other function
f :R — R. To find such approximations, we need some way
to choose the coefficients ¢ of the power series, so that the
resulting polynomial approximates the function: P,(x) ~ f(x).

G. Taylor series

The Taylor series approximation to the function f(x) is a power
series whose coefficients c; are computed by evaluating the
kth derivative of the function f(x) at x = 0, which we denote
F®)(0). Specifically, the k™ coefficient in the Taylor series

. . . . ®)
approximation for the function f(x) is ¢ f (O) , where k! is
the factorial function. The finite series with n terms produces
the following approximation:

" (n) n
F(x) ~ £(0) + F(O0)x + 052 4. L2000 Z
In the limit as n goes to infinity, the Taylor series approxima-
tion becomes exactly equal to the function f(x):

3
f37!(0)x3+... =

f(X) :f(o) +f/(0)x_|_ @XZ_F

22

Using this formula and your knowledge of derivative formulas,
you can compute the Taylor series of any function f(x). For
example, let’s find the Taylor series of the function f(x) = e*
at x = 0. The first derivative of f(x) = ¢* is f/(x) = e*. The
second derivative of f(x) = e is f"(x) = ¢*. In fact, all the
derivatives of f(x) will be e* because the derivative of e* is
equal to e*. The k' coefficient in the power series of f(x) = e*
at the point x = 0 is equal to the value of the k' derivative of
f(x) evaluated at x = 0 divided by k!. In the case of f(x) =

we have f®0)(0) = ¢ = 1, so the coefficient of the k™ term is
(k) . .
- 0 (O) kl The Taylor series of f(x) = e* is
< 1 x2 x3 ¥ x° x® ¥
=2 Xty tytgtytea ot
k=0

Taylor series are a powerful computational tool for approxi-
mating functions. As we compute more terms from the above
series, the polynomial approximation to the function f(x) = e*
becomes more accurate.

Table II shows the Taylor series obtained using the formula

fx) =

(k)
>0 f (0) xk for several important functions.

TABLE 1II
TAYLOR SERIES EXPANSIONS FOR COMMONLY USED FUNCTIONS

1 o0
:Zxk:1+x+x2+x3+x4+x5+x6+~-~
1—x =
i :i(*x)k=1*X+x2*x3+x4—x5+x6+~-~
1+x =
0k 2 3 .4 L5
N E L L e 8 P
e_kzoﬁ ltxt+ S+ + 5+
& 3 5 7
i (D" ont I I
Sln() Z (2n+1)| X y"_a W+
n=0
0 2 4 6
(=D" o, X X X
cos(x) Z(2n)!x =l @ %
n=0
o0
_1)nt1 2 3 4,5
1(X+1):Z(21 e e b
n=1

Readers who are familiar with the concept of a basis from
linear algebra can think of the Taylor series shown in Table II
as representations of the corresponding functions with respect
to the basis of polynomial functions (1,x,x%,x3,x%,%5,...).

,x°, X%, x
The Taylor series coefficients cx = f* ,()
the function f(x) in the polynomial baszs

are the coordinates of

H. Obtaining Taylor series using SymPy

The SymPy function sp.series is a convenient way
to obtain the Taylor series of any function. Calling
series(fun,var,x0,n) will show you the series expansion
of any function fun near var=x0 up to powers of n. We can
quickly fact-check the Taylor series given in Table II using
SymPy.

>>> import sympy as sp

>>> x =
>>>
1 +
>>>
1 -
>>>
1 +
>>>
x -
>>>
1 -
>>>
x -

sp.symbols("x")

sp.series(1/(1-x), x, x0=0, n=7)

X + x**%2 + x**3 + x**%4 + x**5 + x**6 + 0(x*%7)
sp.series(1/(1+x), x, x0=0, n=7)

X + x*%2 - x*%3 + x**%4 - x**5 + x**%6 + 0(x*%7)
sp.series(sp.E*xxx, x, x0=0, n=6)

X + x*%2/2 + x*x3/6 + x*%x4/24 + x*x5/120 + 0(x*%*6)
sp.series(sp.sin(x), x, x0=0, n=9)

x**3/6 + x**5/120 - x**x7/5040 + 0(x*%*9)
sp.series(sp.cos(x), x, x0=0, n=8)

X*%2/2 + x*%4/24 - x**6/720 + 0(x*%8)
sp.series(sp.1ln(x+1), x, x0=0, n=6)

x*%x2/2 + x**3/3 - x**¥4/4 + x*x*5/5 + 0(x*%6)

The “big-O” notation 0 (x**n) appears in all the above outputs
as a reminder that the exact Taylor series contain additional
terms that are on the order of x".

L. Applications of series

Series allow us to compute numbers like e, 7T, In(2), etc. Taylor
series allow us to approximate functions. The Taylor series
representation for the function f(x) also provides an easy way
to compute its integral function Fy(x) & {J f(u) du. The Taylor
series of f(x) consists only of polynomlal terms of the form
cnx". To compute the integral function Fo(x) £ {3 f(u) du, we

can compute the integrals of the individual terms, Wthh gives

n+1
us n+1x

VII. MULTIVARIABLE CALCULUS

In multivariable calculus, we extend the ideas of differential
and integral calculus to functions with multiple input variables.
If you understood the concepts of single-variable calculus, then
you’ll also be able to understand multivariable calculus: it’s
essentially the same stuff but in more dimensions!

A. Multivariable functions

A single-variable function f : R — R takes a real number x € R
as input and produces a real number f(x) € R as output. A
multivariable function takes multiple real numbers as inputs.
For example, a bivariate function f : R x R — R takes two
real numbers as inputs (x,y) € R x R and produces a real
number f(x,y) € R as output.

Consider the bivariate function f(x,y) = 4 — x% — }Iyz. We can
plot this function as a surface in a three-dimensional space, as
shown in Figure 25. The height of the surface above the point
(x,y) is function output f(x,y).

Surface plots are very good for visualizing multivariable
functions, but they can be difficult to draw by hand. Another
approach for representing the function f(x,y) is to use a two-
dimensional plot that shows the “view from above” of the
surface f(x,y). We can trace level curves in the surface, to
produce a “topographic map” of the surface where each level
curve shows the points that are at a certain height. The curve
labeled 0.0 you see in Figure 26 represents the solution to
the equation f(x,y) = 0, which is where the function f(x,y)
intersects the xy-plane.

23

4.0
3.5
3.0
2.5
15
1.0

0.5
0.0

L e e
N
o

) 1]
i
b1t
i i

,/
gty

W
L/ ,m

o

=

"""" N
% \“\\\““‘ VAR

'/

=
\\:

\

«J/I "," ““ i
” 9, t" "' "“’Q’“ ‘\‘ D 5

oy i S

15 7
-1.0 ») Ly
™00 0.5 T K4 -2
X ~ 1.0 15 4—3
20

-2.0 -15 -1.0 —05 0.0 05 1.0 15 20

Figure 26. Topographic map that shows the function f(x,y) as level curves.

B. Partial derivatives

For a functlon of two variables f(x,y), there is an “x-derivative”
operator a and a “y-derivative” operator aay The operation

aax f(x,y) describes taking the derivative of f(x,y) with respect
to the input variable x, while keeping the input variable y
constant. Taking the derivative of a multivariable function
with respect to one of its input variables is called a partial
derivative and denoted with the symbol 0.

The partial derivative of f(x,y) with respect to x is

0 of w n fx+0,y)— flx,y)
wf &y = 5 = lim 5 '

Similarly the partial derivative of with respect to y is

9 _Of w o fuy+d) - fxy)
G/ Y =5 & im 5 '

Note that both % and %f are functions of x and y.

Intuitively, the partial derivative af tells us the slope of the
function f(x,y) in the x-direction, and f (x y) tells us the
slope of f(x,y) in the y-direction.

Example: The partial derivatives of f(x,y) =4 —x? — 1y? are

gé = —2x and af = —jy

C. The gradient operator

The gradient of the function is a vector that combines the x
and y partial derivatives:

Vi = (s, L) - (2 9.

We use the symbol V (nabla) for the gradient operation because
it looks like an upside A, which is the symbol for change. The
direction of the gradient vector tells us the direction of the
function’s maximum increase—the “uphill” direction at the
surface of graph of f(x,y) at the point (x,y). The gradient

vector is always perpendicular to the level curve at that point.

Example: The gradient of the function f(x,y) = 4 — x? — 11/?
is Vf(x,y) = (%,%) = (- 2x,—%y). The gradient vector
at coordinates (x,y) = (0,—4) is Vf(0,—4) = (0,2), which is
a vector pointing in the positive y-direction. Try to identify
the point with coordinates (0, —4) in figures 25 and 26 and
confirm that the “uphill” direction at that point is indeed in
the positive y-direction.

The other half of multivariable calculus involves computing
integrals of multivariable functions.

D. Partial integration

We can integrate over one of the input variables to produce a
function that depends only on the other input variable:

W = [Fapdx and) = [Fy)dy.

The functions f(y) and f(x) are called the partial integrals
or marginals of the function f(x,y). For example, the partial
integrals of the function f(x,y) = 4 — x* — %yz are obtained
by computing the areas of “slices” throughout the function
f(x,y), as illustrated in Figure 27.

10 5 i < -1y
00 . -2
x 10 -3

(a) Slices at different values of . (b) Slices at different values of y.

Figure 27. Visualization of the partial integration procedures.

E. Double integrals

The multivariable generalization of the integral Sﬁ f(x)dx that
computes the “total” amount of f(x) between a and b is the
multivariable integral of the form:

[[sy,
(x.y)eR

where R is called the region of integration and corresponds to
some subset of the Cartesian plane R x R. The idea behind
multivariable integrals is the same as for single variable
integrals—to compute the total amount of some function
accumulated over a range of input values. For single-variable
functions, we integrate by splitting the region into thin
rectangular strips of width dx. For double integrals, we split
the two-dimensional region of integration into small squares of
area dxdy, and compute the total volume of many rectangular
columns with base dxdy and height f(x,y).

24

F. Applications of multivariable calculus

Multivariable functions appear all the time in machine learn-
ing, engineering, physics, and other sciences. The optimization
techniques we discussed in Section IV-H (see page 10) readily
generalize to functions with multiple variables. Indeed, the
gradient descent algorithm is often used to optimize functions
with hundreds or thousands of variables. Many of the cutting-
edge machine learning models “learn” the model parameters
by minimizing the value of some multivariable function
and repeatedly taking steps in the “downhill” direction, as
indicated by the gradient vector. Multivariable integrals are
used a lot in probability theory and statistics, where they are
used to compute probabilities and expectations. Your basic
knowledge of derivatives and integrals concepts we discussed
earlier in this tutorial will be very useful for understanding
multivariable calculus topics.

VIII. VECTOR CALCULUS

A discussion on vector calculus is out of scope for an
introductory tutorial. Like, waaaaay out of scope. However, I
want to show you one picture and explain where you might
encounter vector calculus concepts in your future studies.
Vector calculus is the study of vector fields and their properties.
In a three dimensional space, vector fields are functions of
the form F : R® — R3. The vector field F assigns a three-
dimensional output vector F = (Fy, F, F;) for each point
r = (x,y,z) in R3. Note we use boldface to denote vectors.

A. Example: electric field around a positive charge

Figure 28 shows the electric field E around a positive charge ¢
Coulombs located at the origin of the three-dimensional
coordinate system. The electric field is strongest close to the
charge, and gets weaker as you move away from the charge.

00
y 05

Figure 28. The electric field E(x,y,z) = %f' around a positive charge 4.

The strength of the electric field E at the point r = (x,y,z) is

“ kg kq,
m(x,y,z) = 3t= b

where k is Coulomb’s constant, r £ [r| = /x2 +y2 + 22 is
the distance from the origin, and # dof § is a unit vector in
the same direction as r. Electric fields are used in the study
of electromagnetism. Specifically, the electric field E(x,y,z)
describes the strength and the direction of the electric force that

a charged particle would experience if placed at (x,y, z).

E(x,y,2z) =

B. Vector calculus derivatives

There are two derivative operations for vector fields, and
these are written in terms of the vector derivative operator V
(nabla), which is defined as V & (%, %, %) The divergence of
the vector field F is computed by taking the “dot product” of
V and the vector field F = (Fy, F, F;):

oF,
V- -F(x,y,z) = OF: | %%

Cox oy

+—.
0z

The divergence tells us if the field F is acting as a “source” or

a “sink” at the point (x,y,z).

The curl of the vector field F is defined as the “cross product”
of V and the vector field F = (Fy, Fy, F,):

_(0F. J0F, O0F, O0F, O0F 0F,
VXF(x'y’Z)_<6y_az' 22 ox’ ox 3y)

The curl tells us the rotational tendency of the vector field F.

C. Vector calculus integrals

There are several different kinds of integral operations you can
use with vector fields, depending on the type of “total” you
want to compute, and the region of integration. The concept
of a vector path integral is denoted {-F(r) - dr, where C is
some curve in three dimensional space, and dr describes a
short step along this curve. This integral computes the total
action of the vector field F in the direction along the curve C.
The vector surface integral is denoted (s F(r) - dS, where S is
some surface in three dimensional space, and dS is a small
“piece of the surface.” This integral computes the total flux of
the vector field F flowing through the surface S.

The two main results in vector calculus are Gauss” divergence
theorem and Stokes” theorem. Both theorems can be understood
as extensions of the fundamental theorem of calculus (FTC),
since they show equivalences between certain vector derivative
and integral operations.

D. Applications of vector calculus

Vector calculus is the math machinery used in physics (electric-
ity and magnetism, mechanics, thermodynamics) and electrical
engineering. If you're not planning to work in these fields,
you can probably skip vector calculus: it’s just derivatives and
integrals applied to vector quantities.

IX. PRACTICE PROBLEMS

Learning calculus requires calculating lots of limits, derivatives,
and integrals. Here are some practice problems for you.

P1 Calculate the following limit expressions:
p 7 o 4x2—7x+1 ; 1
@ Jig 5 O Jig B @ fim

P2 Assuming lirro1O f(x)=2and lingO g(x) = 3, compute:
X— X—

af()
(0) im 551

@) lim (2f(x) —g(x)) (b) lim f(x)g(x)

25
P3 Find the derivative with respect to x of the functions:

@) f(x)=xB () g(x)=vx () h(x) = ax® + bx +c.

P4 Calculate the derivatives of the following functions:

@) p(x) =38 (b) q(x) = Va2 +1
5

= i3 (c) r(6) = sin® 4.
P5 Find the maximum and the minimum of f(x) = x° — 5x.

P6 Calculate the integral function Fy(b) = Sg f(x)dx for the
polynomial f(x) = 4x% +3x% +2x + 1.

P7 Find the area under f(x) =8 — x3 from x = 0 to x = 2.

P8 Find the area under the graph of the function g(x) = sin(x)
between x = 0 to x = 7.

P9 Compute S(l) ﬁ dx using the substitution u = 1+ x2.
Check your answer numerically using the SciPy function quad.

P10 Calculate the value of the infinite series >} (%)k

P11 Find the Taylor series for the function f(x) =e™*.

Answers: P1 (a) 0. (b) 4. (c) —c0. P2 (a) 1. (b) 6. (c) 2. P3 f/(x) = 13x'2.
g'(x) = %x*%. W(x) = 2ax +b. P4 p'(x) = ﬁ g'(x) = x’;
(9) = 3sin?fcosh. P5 Max at x = —1; min at x = 1. P6 Fy(b) =
b* + b+ b* +b. P7 Af(0,2) = 12. P8 Ay(0,m) =2. P9 3. P10 3.

_1\kvk
P11 f(x) = 372 S

3

X. LINKS

Here are some additional resources for learning about calculus.

[Essence of calculus series by 3BluelBrown]
https://tinyurl.com/CALCess

[Calculus made simple by Silvanus P. Thompson]
https://gutenberg.org/ebooks/33283

Check out the No bullshit guide to math and physics for
further calculus explanations and lots of practice problems.

This book contains short lessons
on mechanics and calculus writ-
ten in a style that is jargon-
free and to the point. The main
focus of the book is to show the
intricate connections between
the concepts of mechanics and
calculus. This textbook covers
both subjects in an integrated
manner and aims to highlight
the connections between them.

NO BULLSHIT

guide to
MATH & PHYSICS

Contents:

7

bg Ivan Savov

e HIGH SCHOOL MATH
VECTORS

¢ MECHANICS

o DIFFERENTIAL CALCULUS
o INTEGRAL CALCULUS

e SEQUENCES AND SERIES

5%[in] x 8Y[in] x 528[pages]

For more info, see the book’s website: minireference.com.

https://en.wikipedia.org/wiki/Divergence_theorem
https://en.wikipedia.org/wiki/Divergence_theorem
https://en.wikipedia.org/wiki/Stokes's_theorem
https://www.youtube.com/playlist?list=PLZHQObOWTQDMsr9K-rj53DwVRMYO3t5Yr
https://gutenberg.org/ebooks/33283
http://minireference.com/

	Introduction
	Example: car trip
	Doing calculus: then and now
	Applications of calculus

	Math prerequisites
	Set notation
	Functions
	Function inventory
	Functions with discrete inputs
	Geometry of rectangles and triangles
	Trigonometric functions

	Limits
	Example 1: Archimedes' approximation to
	Example 2: Euler's number
	Limits at infinity
	Limit formulas
	Limits to zero
	Limits to a number
	Continuity
	Computing limits using SymPy
	Applications of limits

	Derivatives
	Numerical derivative calculations
	Derivative formulas
	Derivative rules
	Higher derivatives
	Examples
	Computing derivatives using SymPy
	Applications of derivatives
	Solving optimization problems using derivatives

	Integrals
	Act 1: Integrals as area calculations
	Properties of integrals
	Computing integrals numerically
	Formal definition of the integral
	Act 2: Integrals as functions
	Intermission
	Act 3: Fundamental theorem of calculus
	Act 4: Techniques of integration
	Computing integrals numerically using SciPy
	Computing integral functions using SymPy
	Applications of integration

	Sequences and series
	Sequences are functions with discrete inputs
	Convergence of sequences
	Summation notation
	Exact formulas for finite summations
	Series
	Power series
	Taylor series
	Obtaining Taylor series using SymPy
	Applications of series

	Multivariable calculus
	Multivariable functions
	Partial derivatives
	The gradient operator
	Partial integration
	Double integrals
	Applications of multivariable calculus

	Vector calculus
	Example: electric field around a positive charge
	Vector calculus derivatives
	Vector calculus integrals
	Applications of vector calculus

	Practice problems
	Links

