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Figure 1: A concept map showing the important ideas of high school math, mechanics, and calculus.

To learn more about these topics, check out the No Bullshit Guide to Math and Physics by Ivan Savov
(Minireference Co., v5.4 2020, ISBN0992001005) available in print from lulu & bit.ly/noBSmathphys-sc
or amazon @ amazon.com/dp/0992001005, and as a digital download from gumroad (5 gum. co/LgdsS.


http://bit.ly/noBSmathphys-sc
https://amazon.com/dp/0992001005
http://gum.co/LgdS
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Figure 2: An overview the computational, geometrical, and theoretical aspects of linear algebra.
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Figure 3: Linear transformations and their properties play a central role in linear algebra.

matrices

input and output [fundamental subspacesJ [EIgendecomposmlon
i T
spaces for matrices is a type of .
N
(pointsj (Iinesj (planes] (hyperplanesj matrix decomposmonj

vectors

(Gram-Schmidt orthogonalization

~—

are

can be defined as (span) (basisj

number of
dimensions

can be generalized to

(Iinear independencej
(abstract vector spacesj

RREF

[abstract inner product spacesj
symmetric
normal
orthogonal

(special types of matricesj

examples: { polynomials I matrices j( fu nctionsj

linear algebra over the complex field ]

(Iinear algebra over finite fieldsj

used in

T
used in

[cryptography |

[theoretical linear algebra| [quantum mechanics|

Figure 4: Concept map showing the theoretical aspects of linear algebra and links to certain applications.
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Figure 5: Matrix computations play an important role in science and engineering. Matrices are used to
represent linear transformations, systems of linear equations, and geometric operations.
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Figure 6: Linear algebra has applications to physics, chemistry, biology, economics, business, computing,
signal processing, probability theory, and quantum mechanics.

To learn more about these topics, check out the No Bullshit Guide to Linear Algebra by Ivan Savov
(Minireference Publishing, v2.2 2020, ISBN 0992001021) available in print from lulu { bit.1ly/noBSLA-sc
or amazon a amazon. com/dp/0992001021, and as a digital download from gumroad (5 gum. co/noBSLA.
For more info about the books in the No Bullshit Guide series visit our website minireference. com.
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