The page you are reading is part of a draft (v2.0) of the "No bullshit guide to math and physics."
The text has since gone through many edits and is now available in print and electronic format. The current edition of the book is v4.0, which is a substantial improvement in terms of content and language (I hired a professional editor) from the draft version.
I'm leaving the old wiki content up for the time being, but I highly engourage you to check out the finished book. You can check out an extended preview here (PDF, 106 pages, 5MB).
Prove that $(AB)^T = B^TA^T$
verify that $|-B| = (-1)^n |B|$
let $E = e^A=Taylor(e,A)$, show that:
Find the inverse of \[ A=\begin{pmatrix}2& 2& 3\nl 2& 5& 3\nl 1& 0& 8\end{pmatrix}. \]
Sol:
We begin by forming the matrix \[ \begin{pmatrix} A & | & I_3 \end{pmatrix} =\left(\begin{array}{ccc|ccc}2 & 2 & 3 & 1 & 0 & 0\nl 2 & 5 & 3 & 0 & 1 & 0\nl 1 & 0 & 8 & 0 & 0 & 1\end{array}\right). \]
Interchanging the first and third rows of the matrix $\begin{pmatrix} A & | & I_3 \end{pmatrix}$, we obtain the matrix \[\left(\begin{array}{ccc|ccc}1 & 0 & 8 & 0 & 0 & 1\nl 2 & 5 & 3 & 0 & 1 & 0\nl 2 & 2 & 3 & 1 & 0 & 0\end{array}\right). \]
Adding $(-2)$ times the first row of the matrix to its second row, we obtain the matrix \[\left(\begin{array}{ccc|ccc}1 & 0 & 8 & 0 & 0 & 1\nl 0 & 5 & -13 & 0 & 1 & -2\nl 2 & 2 & 3 & 1 & 0 & 0\end{array}\right). \]
Multiplying the second row of the matrix by $\frac{1}{5}$, we obtain the matrix \[\left(\begin{array}{ccc|ccc}1 & 0 & 8 & 0 & 0 & 1\nl 0 & 1 & -\frac{13}{5} & 0 & \frac{1}{5} & -\frac{2}{5}\nl 2 & 2 & 3 & 1 & 0 & 0\end{array}\right). \]
Adding $(-2)$ times the first row of the matrix to its third row, we obtain the matrix \[\left(\begin{array}{ccc|ccc}1 & 0 & 8 & 0 & 0 & 1\nl 0 & 1 & -\frac{13}{5} & 0 & \frac{1}{5} & -\frac{2}{5}\nl 0 & 2 & -13 & 1 & 0 & -2\end{array}\right). \]
Adding $(-2)$ times the second row of the matrix to its third row, we obtain the matrix \[\left(\begin{array}{ccc|ccc}1 & 0 & 8 & 0 & 0 & 1\nl 0 & 1 & -\frac{13}{5} & 0 & \frac{1}{5} & -\frac{2}{5}\nl 0 & 0 & -\frac{39}{5} & 1 & -\frac{2}{5} & -\frac{6}{5}\end{array}\right). \]
Multiplying the third row of the matrix by $(-\frac{5}{39})$, we obtain the matrix \[\left(\begin{array}{ccc|ccc}1 & 0 & 8 & 0 & 0 & 1\nl 0 & 1 & -\frac{13}{5} & 0 & \frac{1}{5} & -\frac{2}{5}\nl 0 & 0 & 1 & -\frac{5}{39} & \frac{2}{39} & \frac{2}{13}\end{array}\right). \]
Adding $(\frac{13}{5})$ times the third row of the matrix \[\left(\begin{array}{ccc|ccc}1 & 0 & 8 & 0 & 0 & 1\nl 0 & 1 & 0 & -\frac{1}{3} & \frac{1}{3} & 0\nl 0 & 0 & 1 & -\frac{5}{39} & \frac{2}{39} & \frac{2}{13}\end{array}\right). \]
Adding $(-8)$ times the third row of the matrix to its first row, we obtain the matrix \[\left(\begin{array}{ccc|ccc}1 & 0 & 0 & \frac{40}{39} & -\frac{16}{39} & -\frac{3}{13}\nl 0 & 1 & 0 & -\frac{1}{3} & \frac{1}{3} & 0\nl 0 & 0 & 1 & -\frac{5}{39} & \frac{2}{39} & \frac{2}{13}\end{array}\right). \]
Thus, \[ A^{-1}=\begin{pmatrix}\frac{40}{39} & -\frac{16}{39} & -\frac{3}{13}\nl -\frac{1}{3} & \frac{1}{3} & 0\nl -\frac{5}{39} & \frac{2}{39} & \frac{2}{13}\end{pmatrix}. \]